User menu

Low-temperature Heat-capacity of Magnetic Graphite-intercalation Compounds

Bibliographic reference Shayegan, M. ; Dresselhaus, MS. ; Salamancariba, L. ; Dresselhaus, G. ; Heremans, J. ; et. al. Low-temperature Heat-capacity of Magnetic Graphite-intercalation Compounds. In: Physical Review. B, Condensed Matter, Vol. 28, no. 8, p. 4799-4809 (1983)
Permanent URL
  1. A. V. Zvarykina, Fiz. Tverd. Tela (Leningrad), 13, 28 (1971)
  2. Yu. S. Karimov, Fiz. Tverd. Tela (Leningrad), 13, 2836 (1971)
  3. Yu. S. Karimov, Zh. Eksp. Teor. Fiz. Pis'ma Red., 14, 271 (1971)
  4. Yu. S. Karimov, Zh. Eksp. Teor. Fiz. Pis'ma Red., 15, 332 (1972)
  5. Yu. S. Karimov, Zh. Eksp. Teor. Fiz., 66, 1121 (1974)
  6. Yu. S. Karimov, Zh. Eksp. Teor. Fiz. Pis'ma Red., 19, 268 (1974)
  7. Yu. S. Karimov, Zh. Eksp. Teor. Fiz., 68, 1539 (1976)
  8. Suzuki M, Ikeda H, Magnetic phase transition of second-stage NiCl2-graphite intercalation compound in an external magnetic field, 10.1088/0022-3719/14/30/005
  9. Elahy M., Nicolini C., Dresselhaus G., Zimmerman G.O., Magnetic phases in transition metal chloride intercalation compounds of graphite, 10.1016/0038-1098(82)90376-3
  10. Onn David G., Alexander M. Grayson, Ritsko J. J., Flandrois S., Heat capacity and magnetic studies of graphite intercalated with FeCl3and NiCl+2, 10.1063/1.330956
  11. M. Elahy, Intercalated Graphite (1983)
  12. M. Shayegan, Intercalated Graphite
  13. Kosterlitz J M, Thouless D J, Ordering, metastability and phase transitions in two-dimensional systems, 10.1088/0022-3719/6/7/010
  14. Kosterlitz J M, The critical properties of the two-dimensional xy model, 10.1088/0022-3719/7/6/005
  15. José Jorge V., Kadanoff Leo P., Kirkpatrick Scott, Nelson David R., Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model, 10.1103/physrevb.16.1217
  16. Chisholm R. C., Stout J. W., Heat Capacity and Entropy of CoCl2and MnCl2from 11° to 300°K. Thermal Anomaly Associated with Antiferromagnetic Ordering in CoCl2, 10.1063/1.1732698
  17. Hutchings M T, Neutron scattering investigation of magnetic excitations in CoCl2, 10.1088/0022-3719/6/21/018
  18. M. Elahy, Synth. Met.
  19. Stout J. W., Catalano Edward, Heat Capacity of Zinc Fluoride from 11 to 300°K. Thermodynamic Functions of Zinc Fluoride. Entropy and Heat Capacity Associated with the Antiferromagnetic Ordering of Manganous Fluoride, Ferrous Fluoride, Cobaltous Fluoride, and Nickelous Fluoride, 10.1063/1.1740657
  20. Tobochnik Jan, Chester G. V., Monte Carlo study of the planar spin model, 10.1103/physrevb.20.3761
  21. A. Hérold, Physics and Chemistry of Materials with Layered Structures (1979)
  22. Stumpp E, The intercalation of metal chlorides and bromides into graphite, 10.1016/0025-5416(77)90011-8
  23. Stewart G. R., Cort B., Webb G. W., Specific heat ofA15Nb3Sn in fields to 18 tesla, 10.1103/physrevb.24.3841
  24. Bachmann R., DiSalvo F. J., Geballe T. H., Greene R. L., Howard R. E., King C. N., Kirsch H. C., Lee K. N., Schwall R. E., Thomas H.‐U., Zubeck R. B., Heat Capacity Measurements on Small Samples at Low Temperatures, 10.1063/1.1685596
  25. Fagaly R. L., Bohn R. G., A modified heat pulse method for determining heat capacities at low temperatures, 10.1063/1.1134895
  26. Heremans J., Shayegan M., Dresselhaus M. S., Issi J -P., High-magnetic-field thermal-conductivity measurements in graphite intercalation compounds, 10.1103/physrevb.26.3338
  27. Sample H. H., Brandt B. L., Rubin L. G., Low‐temperature thermometry in high magnetic fields. V. Carbon‐glass resistors, 10.1063/1.1137145
  28. Neuringer L. J., Shapira Y., Low Temperature Thermometry in High Magnetic Fields. I. Carbon Resistors, 10.1063/1.1683773
  29. M. G. Alexander, Phys. Rev. B, 22, 4534 (1980)
  30. B. T. Kelly, Physics of Graphite (1981)
  31. D. G. Onn, Bull. Am. Phys. Soc., 27, 405 (1982)
  32. Suganuma Motohiro, Kondow Tamotsu, Mizutani Uichiro, Low-temperature specific heats of rubidium-graphite intercalation compounds, 10.1103/physrevb.23.706
  33. Mizutani U., Kondow T., Massalski T. B., Low-temperature specific heats of graphite intercalation compounds with potassium and cesium, 10.1103/physrevb.17.3165
  34. G. Landwehr, Physics of Solids in Intense Magnetic Fields (1969)
  35. Shayegan M., Dresselhaus M. S., Dresselhaus G., Shubnikov—de Haas measurements in alkali-metal—graphite intercalation compounds, 10.1103/physrevb.25.4157
  36. Dresselhaus M. S., Dresselhaus G., Fischer J. E., Graphite intercalation compounds: Electronic properties in the dilute limit, 10.1103/physrevb.15.3180
  37. Dresselhaus M.S., Dresselhaus G., Intercalation compounds of graphite, 10.1080/00018738100101367
  38. M. S. Dresselhaus, Adv. Phys., 30, 213
  39. Shoenberg D., Magnetic oscillations, Fermi surfaces and high magnetic fields, 10.1016/0304-8853(79)90267-1
  40. Mizutani U., Suganuma M., Kondow T., Low-temperature specific heats of bromine—graphite intercalation compounds, 10.1016/0038-1098(82)90097-7
  41. Kawabata C., Bishop A.R., Monte Carlo simulation of the two-dimensional classical Heisenberg model with easy-plane anisotropy, 10.1016/0038-1098(82)90616-0
  42. Van Himbergen Johannes E., Chakravarty Sudip, Helicity modulus and specific heat of classicalXYmodel in two dimensions, 10.1103/physrevb.23.359