User menu

Extended Orthomorphisms On Archimedean Riesz Spaces

Bibliographic reference Duhoux, Michel ; Meyer, M.. Extended Orthomorphisms On Archimedean Riesz Spaces. In: Annali Di Matematica Pura Ed Applicata, Vol. 133, p. 193-226 (1983)
Permanent URL http://hdl.handle.net/2078.1/56432
  1. C. D. Aliprantis -O. Burkinshaw,Locally solid Riesz spaces, Academic Press, New York-San Francisco-London, 1978.
  2. C. D.Aliprantis - O.Burkinshaw,Some Remarks on orthomorphisms, Colloq. Math., to appear.
  3. A. Bigard -K. Keimel -S. Wolfenstein,Groupes et anneaux réticulés, Lecture Notes in Mathematics,608, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
  4. R. Cristescu,Ordered vector spaces and linear operators, Abacus Press, Turnbridge Wells, 1976.
  5. F. K.Dashiell,Non-weakly compact operators on semicomplete C(S)lattices, with applications to Baire Classes, Trans. Amer. Math. Soc., to appear.
  6. Dashiell F., Hager A., Henriksen M., Order-Cauchy completions of rings and vector lattices of continuous functions , 10.4153/cjm-1980-052-0
  7. M. Duhoux -M. Meyer,A new proof of the lattice structure of orthomorphisms, J. London Math. Soc.,25 (1982), pp. 375–378.
  8. D. H. Fremlin,Inextensible Riesz spaces, Math. Proc. Cambridge Phil. Soc.,77 (1975), pp. 71–89.
  9. L. Gillman -M. Jerison,Rings of continuous functions, Graduate Texts in Mathematics,43, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
  10. M. Henriksen -D. G. Johnson,On the structure of a class of Archimedean lattice-ordered algebras, Fund. Math.,50 (1961), pp. 73–94.
  11. W. A. J. Luxemburg,Some aspects of the theory of Riesz spaces, Lecture Notes in Mathematics,4, Univ. Arkansas, Fayetteville, 1979.
  12. Luxemburg W.A.J., Schep A.R., A Radon-Nikodym type theorem for positive operators and a dual, 10.1016/1385-7258(78)90053-7
  13. W. A. J. Luxemburg -A. C. Zaanen,Riesz spaces I, North-Holland, Amsterdam-London, 1971).
  14. M. Meyer,Richesses du centre d'un espace vectoriel réticulé, Math. Ann.,236 (1978), pp. 147–169.
  15. M. Meyer,Une nouvelle caractérisation des espaces vectoriels réticulés presque σ-complets, C.R. Acad. Sc. Paris Ser. A,287 (1978), pp. 1081–1084.
  16. M.Meyer,Quelques propriétés des homomorphismes d'espaces vectoriels réticulés, Equipe d'Analyse, E.R.A. 294, Univ. Paris, VI (1979).
  17. M. Meyer,Les espaces vectoriels réticulés intercomplets, Ann. Soc. Scient. Bruxelles,95 (1981), pp. 93–114.
  18. M.Meyer,Les algèbres réticulées archimédiennes, Pub. IRMA, vol. 2, n∘ 4, Univ. Lille (1980).
  19. B.de Pagter,f-Algebras and orthomorphisms, Thesis, Univ. Leiden, 1981.
  20. Schaefer Helmut H., Banach Lattices and Positive Operators, ISBN:9783642659720, 10.1007/978-3-642-65970-6
  21. G. L. Seever,Measures on F-spaces, Trans. Amer. Math. Soc.,133 (1968), pp. 267–280.
  22. A. I. Veksler -V. A. Geiler,Order and disjoint completeness of linear partially ordered spaces, Siberian Math. J.,13 (1972), pp. 30–35.
  23. B. Z. Vulikh,Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Scientific Publ. Ltd., Groningen, 1967.
  24. The Stone-Čech Compactification, ISBN:9783642619373, 10.1007/978-3-642-61935-9
  25. A. W. Wickstead,Representation and duality of multiplication operators on Riesz spaces, Comp. Math.,35 (1977), pp. 225–238.
  26. A. W. Wickstead,Extensions of orthomorphisms, J. Australian Math. Soc. Ser. A,29 (1980), pp. 87–98.
  27. A. C. Zaanen,Examples of orthomorphisms, J. Appr. Theory,13 (1975), pp. 192–204.
  28. H. Nakano,Teilweise geordnete Algebra, Jap. Journ. of Math.,17 (1941), pp. 425–511.
  29. M.Duhoux - M.Meyer,Extending and inversing extended orthomorphisms on Riesz spaces, to appear in J. Australian Math. Soc. Ser. A.