User menu

Computational Experience With Advanced Implementation of Decomposition Algorithms for Linear-programming

Bibliographic reference Ho, JK. ; Loute, Etienne. Computational Experience With Advanced Implementation of Decomposition Algorithms for Linear-programming. In: Mathematical Programming, Vol. 27, no. 3, p. 283-290 (1983)
Permanent URL http://hdl.handle.net/2078.1/56277
  1. D.C. Ament, “An implementation of theLift algorithm”, Master's Thesis, Econometric Institute, Erasmus University (Rotterdam, 1981).
  2. D.C. Ament, J.K. Ho, F. Loute and M. Remmelswaal, ”Lift: A nested decomposition algorithm for solving lower block-triangular programs”, in: G.B. Dantzig et al., eds.,Large-scale linear programming (IIASA, Laxenberg, 1981) pp. 383–408.
  3. C. Berger, “Une étude sur l'efficacité des algorithmes de décomposition à résoudre les problèmes linéaires engendrés parOreste”, Report to the CCE (Contract EM2-012-B), C.O.R.E., (Louvain-la-Neuve, 1981).
  4. A.M. Costa and L.P. Jennergen, “Trade and development in the world economy: methodological features of projectDynamico”,Journal of Policy Modeling 4 (1982) 3–22.
  5. B. Culot, and E. Loute, “Description du programmeDecompsx”, C.O.R.E. Computing Report 80-B-02 (Louvain-la-Neuve, 1980).
  6. B. Culot, “Mise en oeuvre de l'algorithme de décomposition de Dantzig et Wolfe”, Master's Thesis, Université Catholique de Louvain (Louvain-la-Neuve, 1978).
  7. G.B. Dantzig, and P. Wolfe, “The decomposition algorithm for linear programs”,Econometrica 29 (1961) 767–778.
  8. G.B. Dantzig, and S.C. Parikh, “On aPilot linear programming model for assessing physical impact on the economy of a changing energy picture”, Technical Report SOL 75-14, Department of Operations Research, Stanford University (Stanford, CA, 1975).
  9. R. Geottle, E. Cherniavsky and R. Tessmer, “An integrated multiregional energy and interindustry model of the United States”, BNL 22728, Brookhaven National Laboratory (New York, 1977).
  10. J.K. Ho, “Implementation and application of a nested decomposition algorithm”, in: W.W. White, ed.,Computers and mathematical programming, Special Publication 502 (National Bureau of Standards, 1978) pp. 21–30.
  11. J.K. Ho and E. Loute, “A comparative study of two methods for staircase linear programs”,ACM Transactions on Mathematical Software 6 (1980) 17–30.
  12. J.K. Ho and E. Loute, “An advanced implementation of the Dantzig-Wolfe decomposition algorithm for linear programming”,Mathematical Programming 20 (1981) 303–326.
  13. J.K. Ho and E. Loute, “A set of staircase linear programming test problems”,Mathematical Programming 20 (1981) 245–250.
  14. J.K. Ho and E. Loute, “Computational aspects ofDynamico: a model of trade and development in the world economy”, CBA WP-159, University of Tennessee (Knoxville, 1982).
  15. J.K. Ho, E. Loute, Y. Smeers and E. Van der Voort, “The use of decomposition techniques for large-scale linear programming energy models”, in: A. Strub, ed.,Energy models for the European community (IPC Press, London, 1979) pp. 94–101.
  16. J.K. Ho and A.S. Manne, “Nested decomposition for dynamic models”,Mathematical Programming 6 (1974) 121–140.
  17. IBM, “IBM mathematical programming system extended/370 (MPSX/370) program reference manual” SH19-1095-3 (December, 1979).
  18. P. Jadot, T. Heirwegh and C. Thonet, “Data base, simulation and optimization models”, in: A. Strub, ed.,Energy models for the European community (IPC Press, London, 1979), pp. 72–88.
  19. M.W. Remmelswaal, “Lift: A nested decomposition algorithm for lower block-triangular LP problems”, Master's Thesis, Econometric Institute, Erasmus University (Rotterdam, 1981).