User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

The Structure of Gibbs-states and Phase Coexistence for Non-symmetric Continuum Widom Rowlinson Models

  1. Bricmont, J., Kuroda, K., Lebowitz, J.L.: Surface Tension and Phase Coexistence for General Lattice Systems. J. Statist. Phys. 33, 59 (1983)
  2. Cassandro, M., Da Fano, A.: Rigorous Properties of a Continuous System in the High Activity Region. Commun. Math. Phys. 36, 277?286 (1974)
  3. Cassandro, M., Gallavotti, G., Lebowitz, J.L., Monroe, J.L.: Existence and Uniqueness of Equilibrium States for Some Spin and Continuum Systems. Commun. Math. Phys. 32, 153?165 (1973)
  4. Dobrushin, R.L.: Descriptions of a random field by means of conditional probabilities and conditions for its regularity. Teor. Veroyatnost. i. Primenen. 13, 207?229 (1968)
  5. Dobrushin, R.L.: A problem of uniqueness of Gibbsian random field and a problem of phase transition. Funkcional Anal. i. Prilokien 2, 44?57 (1968)
  6. Gibbs, J.W.: Elementary Principles in Statistical Mechanics: Yale University Press, New Haven (1902). Reprinted by Dover Press. New York 1960
  7. Lanford, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194?215 (1969)
  8. Lebowitz, J.L., Lieb, E.H.: Phase transition in a Continuum classical system with finite interactions. Phys. Letters 39A, 2 (1972)
  9. Lebowitz, J.L., Monroe, J.: Inequalities for Higher Order Ising Spins and for Continuum Fluids. Commun. Math. Phys. 28, 301 (1972)
  10. Lucretius: De Rerum Natura, 55 B.C. in Latin. English translation by C.E. Bennett, On the Nature of Things. N.Y.: W.J. Black 1946
  11. Minlos, R.A., Sinai, Ja.G.: The phenomenon of ?phase separation? at low temperature in some lattice gas models. I. Mat. Sb. 73, 375?448 (1967)
  12. Minlos, R.A., Sinai, Ja.G.: The phenomenon of ?phase separation? at low temperature in some lattice gas models. II. Trudy Moskov. Mat. Ob??. 18, 113?178 (1968)
  13. Pirogov, S.A., Sinai, Ja.G.: Phase transitions of the first kind for small perturbations of the Ising model. Functional Anal. Appl. 8, 21?25 (1974)
  14. Pirogov, S.A., Sinai, Ja.G.: Phase diagrams of classical lattice systems. Theoret. and Math. Phys. 26, 39 (1976)
  15. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969
  16. Ruelle, D.: Existence of a phase transition in a continuous classical system. Phys. Rev. Letters 27, 1040 (1971)
  17. Sinai, Ja.G.: Theory of Phase Transitions: Rigorous Results. New York: Pergamon Press 1982
  18. van der Waals, J.D.: Physica, 73 (1974). This volume contains both technical and historical articles about the subject
  19. Widom, B., Rowlinson, J.S.: J. Chem. Phys. 52, 1670 (1970)
Bibliographic reference Bricmont, Jean ; Kuroda, K. ; Lebowitz, JL.. The Structure of Gibbs-states and Phase Coexistence for Non-symmetric Continuum Widom Rowlinson Models. In: Zeitschrift fuer Wahrscheinlichkeitstheorie und Verwandte Gebiete, Vol. 67, no. 2, p. 121-138 (1984)
Permanent URL http://hdl.handle.net/2078.1/55779