User menu

Mechanism of the Stimulation of Insulin Release Invitro By Hb-699, a Benzoic-acid Derivative Similar To the Non-sulfonylurea Moiety of Glibenclamide

Bibliographic reference Garrino, MG. ; Schmeer, W. ; Nenquin, Myriam ; Meissner, HP. ; Henquin, Jean-Claude. Mechanism of the Stimulation of Insulin Release Invitro By Hb-699, a Benzoic-acid Derivative Similar To the Non-sulfonylurea Moiety of Glibenclamide. In: Diabetologia : clinical and experimental diabetes and metabolism, Vol. 28, no. 9, p. 697-703 (1985)
Permanent URL
  1. Gylfe E, Hellman B, Sehlin J, Täljedal I-B (1984) Interaction of sulfonylurea with the pancreatic B-cell. Experientia 40: 1126–1134
  2. Geisen K, Hübner M, Hitzel V, Hrstka VE, Pfaff W, Bosies E, Regitz G, Kühnle HF, Schmidt FH, Weyer R (1978) Acylaminoalkyl-substituierte Benzoe- und Phenylalkansäuren mit blutglukose- senkender Wirkung. Arzneimittelforsch 28: 1081–1083
  3. Ribes G., Trimble E.R., Blayac J.P., Wollheim C.B., Puech R., Loubati�res-Mariani M.M., Effect of a new hypoglycaemic agent (HB 699) on the in vivo secretion of pancreatic hormones in the dog, 10.1007/bf00253415
  4. Blayac JP, Loubatières-Mariani MM, Ribes G (1979) Effets in vitro d'un dérivé acyl-amino-alkyl de l'acide benzoïque: le HB 699, sur la sécrétion d'insuline et de glucagon. J Pharmacol (Paris) 10: 229–238
  5. Efendic S, Enzmann F, Gutniak M, Nylen A, Zoltobrocki M (1981) Insulin, glucagon and somatostatin in the perfused rat pancreas and the effects of HB 699 (4-(2-(5 chloro-2 methoxy-benzamido)-ethyl)-benzoic acid). Acta Endocrinol 98: 573–579
  6. Glatt M, Schatz H (1981) The influence of an acyl-amino-alcyl-benzoic acid (HB 699) on biosynthesis and secretion of insulin in isolated rat islets of Langerhans. Diabete Metab 7: 105–108
  7. Brown GR, Foubister AJ (1984) Receptor binding sites of hypoglycemic sulfonylureas and related [(Acylamino)alkyl] benzoic acids. J Med Chem 27: 79–81
  8. Rufer C, Losert W (1979) Blood glucose lowering sulfonamides with asymmetric carbon atoms. Related N-substituted carbamoyl-benzoic acids. J Med Chem 22: 750–752
  9. Norlund L, Sehlin J (1984) The acyl-amino-alkyl benzoic acid residue and the sulfonylurea containing residue of glibenclamide affect different aspects of β-cell function. Acta Physiol Scand 120: 283–286
  10. Meissner HP, Schmelz H (1974) Membrane potential of beta-cells in pancreatic islets. Pflügers Arch 351: 195–206
  11. Meissner HP (1976) Electrical characteristics of the beta-cells in pancreatic islets. J Physiol (Paris) 72: 757–767
  12. Henquin JC (1979) Opposite effects of intracellular Ca2+ and glucose on K+ permeability of pancreatic islet cells. Nature 280: 66–68
  13. Henquin JC, Lambert AE (1975) Cobalt inhibition of insulin secretion and calcium uptake by isolated rat islets. Am J Physiol 228: 1669–1677
  14. Henquin JC, Meissner HP (1983) Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B-cells. Biochem Biophys Res Commun 112: 614–620
  15. Henquin JC (1980) Tolbutamide stimulation and inhibition of insulin release: studies of the underlying ionic mechanisms in isolated rat islets. Diabetologia 18: 151–160
  16. Meissner HP, Preissler M, Henquin JC (1980) Possible ionic mechanisms of the electrical activity induced by glucose and tolbutamide in pancreatic B-cells. In: Waldhäusl WK (ed) Diabetes 1979. Excerpta Medica, Amsterdam, ICS 500, pp 166–171
  17. Hellman B (1981) Tolbutamide stimulation of 45Ca fluxes in microdissected pancreatic islets rich in β-cells. Mol Pharmacol 20: 83–88
  18. Henquin JC, Meissner HP (1982) Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic B-cells. Biochem Pharmacol 31: 1407–1415
  19. Ferrer Rosa, Atwater Illani, Croghan P. C., Rojas E., Omer E. M., Gonçalves A. A., ELECTROPHYSIOLOGICAL EVIDENCE FOR THE INHIBITION OF POTASSIUM PERMEABILITY IN PANCREATIC β-CELLS BY GLIBENCLAMIDE, 10.1113/expphysiol.1984.sp002872
  20. Pace CS (1984) Influence of a tumor-promoting phorbol ester on the electrical response of B-cells to glucose and glyburide. Mol Pharmacol 26: 267–271
  21. Loubatiéres A, Mariani MM, Ribes G, de Malbosc H, Chapal J (1969) Etude expérimentale d'un nouveau sulfamide hypoglycémiant particulièrement actif, le HB 419 ou glibenclamide. Diabetologia 5: 1–10
  22. Meissner HP, Atwater I (1976) The kinetics of electrical activity of beta-cells in response to a square wave stimulation with glucose or glibenclamide. Horm Metab Res 8: 11–16
  23. Hellman B, Sehlin J, Täljedal I-B (1984) Glibenclamide is exceptional among hypoglycaemic sulphonylureas in accumulating progressively in β-cell-rich pancreatic islets. Acta Endocrinol 105: 385–390
  24. Malaisse WJ, Mahy M, Brisson GR, Malaisse-Lagae F (1972) The stimulus-secretion coupling of glucose-induced insulin release. VIII Combined effects of glucose and sulfonylureas. Eur J Clin Invest 2: 85–90
  25. Hellman B, Lenzen S, Sehlin J, Täljedal I-B (1977) Effect of various modifiers of insulin release on the lanthanum-nondisplaceable 45Ca2+ uptake by isolated pancreatic islets. Diabetologia 13: 49–53
  26. Lebrun P, Malaisse WJ, Herchuelz A (1982) Modalities of gliclazide-induced Ca2+ influx into the pancreatic B-cell. Diabetes 31: 1010–1015
  27. Matthews EK, Dean PM, Sakamoto Y (1973) Biophysical effects of sulphonylureas on islet cells. In: Okita GT and Acheson GM (eds) Pharmacology and the future of man. Karger, Basel, pp 221–229
  28. Norlund L, Sehlin J (1984) Different effects of glibenclamide and the structural analogue HB 699 on the 45Ca2+ uptake by ob/ob mouse islets. Acta Physiol Scand 122: 187–190
  29. Puech R, Manteghetti M, Ribes G, Wollheim CB, Loubatières-Mariani MM (1985) Enhancement of insulin release and islet cell calcium content by an acyl-amino-alcyl benzoic acid derivative, HB 699. Horm Metab Res 17: 1–4
  30. Henquin JC, Meissner HP (1984) Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic B-cells. Experientia 40: 1043–1052
  31. Meissner HP, Henquin JC, Preissler M (1978) Potassium dependence of the membrane potential of pancreatic B-cells. FEBS Lett 94: 87–89
  32. Matthews E.K., Shotton P.A., The control of 86Rb efflux from rat isolated pancreatic islets by the sulphonylureas tolbutamide and glibenclamide, 10.1111/j.1476-5381.1984.tb10808.x
  33. Malaisse WJ, Carpinelli A, Herchuelz A (1980) Tolbutamide stimulates Ca2+ influx in islet cells without reducing K+ conductance. Diabetologia 19: 85 (Letter)
  34. Henquin JC, Meissner HP (1981) Effects of amino acids on membrane potential and 86Rb+ fluxes in pancreatic B-cells. Am J Physiol 240: E245-E252
  35. Carpinelli A R, Malaisse W J, Regulation of 86Rb outflow from pancreatic islets: the dual effect of nutrient secretagogues., 10.1113/jphysiol.1981.sp013738
  36. Paolisso G, Nenquin M, Schmeer W, Mathot F, Meissner HP, Henquin JC (1985) Sparteine increases insulin release by decreasing the K+ permeability of the B-cell membrane. Biochem Pharmacol 34: 2355–2361