User menu

A Comparison Between a Primal and a Dual Cutting Plane Algorithm for Polynomial Geometric-programming Problems

Bibliographic reference Cole, F. ; Gochet, W. ; Smeers, Yves. A Comparison Between a Primal and a Dual Cutting Plane Algorithm for Polynomial Geometric-programming Problems. In: Journal of Optimization Theory and Applications, Vol. 47, no. 2, p. 159-180 (1985)
Permanent URL http://hdl.handle.net/2078.1/54995
  1. Kelley, J. E.,The Cutting Plane Method for Solving Convex Programs, SIAM Journal on Applied Mathematics, Vol. 8, No. 4, 1960.
  2. Duffin, R. E., Peterson, E., andZener, C.,Geometric Programming, Wiley, New York, New York, 1967.
  3. Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
  4. Avriel, M.,Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.
  5. Cole, F., Gochet, W., Van Assche, F., Ecker, J., andSmeers, Y.,Reversed Geometric Programming: A Branch-and-Bound Method Involving Linear Subproblems, European Journal of Operations Research, Vol. 5, No. 1, 1980.
  6. Gochet, W., andSmeers, Y.,On the Use of Linear Programs to Solve Prototype Geometric Programs, Cahiers du Centre d'Etudes de Recherche Opérationnelle, Vol. 16, No. 1, 1974.
  7. Beck, P., andEcker, J.,A Modified Concave Simplex Algorithms for Geometric Programming, Journal of Optimization Theory and Applications, Vol. 15, No. 2, 1975.
  8. Ecker, J., Gochet, W., andSmeers, Y.,A Modified Reduced Gradient Method for Dual Posynomial Programming, Journal of Optimization Theory and Applications, Vol. 26, No. 2, 1978.
  9. Beightler, C., andPhillips, D.,Applied Geometric Programming, Wiley, New York, New York, 1976.
  10. Beck, P., andEcker, J.,Some Computational Experience with a Modified Convex Simplex Algorithm for Geometric Programming, USAF, Report No. ADIC-72-20, 1972.