User menu

The Minimax-min Location Problem

Bibliographic reference Drezner, Z. ; Thisse, Jacques-François ; Wesolowsky, GO.. The Minimax-min Location Problem. In: Journal of Regional Science, Vol. 26, no. 1, p. 87-101 (1986)
Permanent URL http://hdl.handle.net/2078.1/54842
  1. Ahuja Narendra, Pattern Models (1983)
  2. Chalmet Luc G., Francis Richard L., Kolen Antoon, Finding efficient solutions for rectilinear distance location problems efficiently, 10.1016/0377-2217(81)90197-1
  3. Cordellier F., Fiorot J. Ch., On the Fermat—Weber problem with convex cost functions, 10.1007/bf01588972
  4. Dear Michael, International Regional Science Review, 3, 93 (1978)
  5. Drezner Zvi, IEEE Transactions, 12, 249 (1980)
  6. Drezner Zvi, SIAM Journal on Algebraic and Discrete Methods, 1, 315 (1980)
  7. Francis Richard L., Operations Research, 15, 1163 (1967)
  8. Hansen Pierre, Annals of Discrete Mathematics, 11, 147 (1981)
  9. Hansen Pierre, Sistemi Urbani, 3, 299 (1981)
  10. Hansen Pierre, Sistemi Urbani, 5, 33 (1983)
  11. Harvey David, Social Justice and the City (1973)
  12. Jacobsen Søren Kruse, An algorithm for the minimax weber problem, 10.1016/0377-2217(81)90200-9
  13. Morrill Richard L., Symons John, Efficiency and Equity Aspects of Optimum Location, 10.1111/j.1538-4632.1977.tb00575.x
  14. Ostresh Lawrence M., Operations Research, 26, 597 (1978)
  15. Papageorgiou G. J., Social Values and Social Justice, 10.2307/142930
  16. Michael I. Shamos, and Dan Hoey . "Closest-Point Problem," Proceedings of the 16th Annual Symposium on the Foundation of Computer Science(IEEE), Berkeley, Ca., 1975 , pp. 151 -162 .
  17. Wendell Richard E., Operations Research, 21, 314 (1973)