User menu

A Restricted Trust Region Algorithm for Unconstrained Optimization

Bibliographic reference Bulteau, JP. ; Vial, JP.. A Restricted Trust Region Algorithm for Unconstrained Optimization. In: Journal of Optimization Theory and Applications, Vol. 47, no. 4, p. 413-435 (1985)
Permanent URL
  1. Levenberg, K.,A Method for the Solution of Certain Nonlinear Problems in Least Squares, Quarterly of Applied Mathematics, Vol. 2, pp. 164?168, 1944.
  2. Marquardt, D. W.,An Algorithm for Least Squares Estimation of Nonlinear Parameters, SIAM Journal on Applied Mathematics, Vol. 11, pp. 431?441, 1963.
  3. Goldfeld, S. M., Quandt, R. E., andTrotter, H. F.,Maximization by Quadratic Hill Climbing, Econometrica, Vol. 34, pp. 541?551, 1966.
  4. Hebden, M. D.,An Algorithm for Minimization Using Exact Second Derivatives, Atomic Energy Research Establishment, Harwell, England, Report TP-515, 1973.
  5. Moré, J. J.,The Levenberg-Marquardt Algorithm: Implementation and Theory, Proceedings of the Dundee Conference on Numerical Analysis, Edited by G. A. Watson, Springer-Verlag, Berlin, Germany, pp. 105?116, 1978.
  6. Gay, D. M.,Computing Optimal Locally Constrained Steps, SIAM Journal on Sciences and Statistical Computations, Vol. 2, pp. 186?197, 1981.
  7. Sorensen, D. C.,Newton's Method with a Model Trust Region Modification, SIAM Journal on Numerical Analysis, Vol. 19, pp. 409?426, 1982.
  8. Moré, J. J., andSorensen, D. C.,Computing a Trust Region Step, SIAM Journal on Sciences and Statistical Computations, Vol. 4, pp. 553?572, 1983.
  9. Bulteau, J. P., andVial, J. P.,Curvilinear Path and Trust Region in Unconstrained Optimization: A Convergence Analysis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, CORE Discussion Paper No. 8337, 1983.
  10. Bulteau, J. P., andVial, J. P.,Unconstrained Optimization by Approximation of a Projected Gradient Path, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, CORE Discussion Paper No. 8352, 1983.
  11. Moré, J. J.,Recent developments in Algorithms and Software for Trust Region Methods, Mathematical Programming?The State of the Art?Bonn 1982, Edited by A. Backen, M. Grötschel, and B. Korte, Springer-Verlag, Berlin, Germany, pp. 258?287, 1983.
  12. Powell, M. J. D.,A Hybrid Method for Nonlinear Equations, Numerical Methods for Nonlinear Algebraic Equations, Edited by P. Rabinowitz, Gordon and Breach, London, England, pp. 87?114, 1970.
  13. Powell M.J.D., CONVERGENCE PROPERTIES OF A CLASS OF MINIMIZATION ALGORITHMS, Nonlinear Programming 2 (1975) ISBN:9780124686502 p.1-27, 10.1016/b978-0-12-468650-2.50005-5
  14. Fletcher, R., andFreeman, T. L.,A Modified Newton Method for Minimization, Journal of Optimization Theory and Applications, Vol. 23, pp. 357?372, 1977.
  15. Moré, J. J., andSorensen, D. C.,On the Use of Directions of Negative Curvature in a Modified Newton Method, Mathematical Programming, Vol. 16, pp. 1?20, 1979.
  16. Goldfarb, D.,Curvilinear Path Steplength Algorithms for Minimization Which Use Directions of Negative Curvature, Mathematical Programming, Vol. 18, pp. 31?40, 1980.
  17. Bunch, J. R., andParlett, B. N.,Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations, SIAM Journal of Numerical Analysis, Vol. 8, pp. 639?655, 1971.
  18. Fletcher, R.,Factorizing Symmetric Indefinite Matrices, Linear Algebra and Its Applications, Vol. 14, pp. 257?272, 1976.
  19. Fletcher, R., andPowell, M. J. D.,On the Modifications of LDL T Factorizations, Mathematics of Computation, Vol. 28, pp. 1067?1087, 1974.
  20. Gill, P. E., andMurray, W.,Modification of Matrix Factorizations after a Rank-One Change, The State of the Art in Numerical Analysis, Edited by D. A. H. Jacobs, Academic Press, London, England, pp. 55?83, 1977.
  21. Zang, I.,A New Arc Algorithm for Unconstrained Optimization, Mathematical Programming, Vol. 15, pp. 36?52, 1978.
  22. Moré, J. J., Garbow, B. S., andHillstrom, K. E.,Testing Unconstrained Optimization Software, ACM Transactions on Mathematical Software, Vol. 7, pp. 17?41, 1981.
  23. Sorensen, D.,Updating the Symmetric Indefinite Factorization with Applications in a Modified Newton's Method, Argonne National Laboratory, Argonne, Illinois, Report No. ANL-77-49, 1977.
  24. Engvall, J. L.,Numerical Algorithm for Solving Overdetermined Systems of Nonlinear Equations, NASA, Document No. N70-35600, 1970.
  25. Zangwill, W. J.,Nonlinear Programming via Penalty Functions, Management Science, Vol. 13, pp. 344?358, 1967.
  26. Davidon, W. C.,New Least Square Algorithms, Journal of Optimization Theory and Applications, Vol. 18, pp. 187?188, 1976.
  27. Hock Willi, Schittkowski Klaus, Test Examples for Nonlinear Programming Codes, ISBN:9783540105619, 10.1007/978-3-642-48320-2
  28. Dixon, L. C. W.,Conjugate Directions without Linear Searches, Journal of the Institute of Mathematics and Its Applications, Vol. 11, pp. 317?328, 1973.
  29. Polak, E.,A Modified Secant Method for Unconstrained Minimization, Mathematical Programming, Vol. 6, pp. 264?280, 1974.
  30. Spedicato, E.,Computational Experience with Quasi-Newton Algorithms for Minimization Problems of Moderately Large Size, CISE, Segrate, Italy, Report No. CISE-N-175, 1975.