User menu

Swirling Flows of Viscoelastic Fluids of the Integral Type in Rheogoniometers

Bibliographic reference Dupont, S. ; Crochet, Marcel. Swirling Flows of Viscoelastic Fluids of the Integral Type in Rheogoniometers. In: Chemical Engineering Communications, Vol. 53, no. 1-6, p. 199-221 (1987)
Permanent URL http://hdl.handle.net/2078.1/53540
  1. Savins J. G., Metzner A. B., Radial (secondary) flows in rheogoniometric devices, 10.1007/bf01975403
  2. Oldroyd J. G., On the Formulation of Rheological Equations of State, 10.1098/rspa.1950.0035
  3. Crochet M J, Walters K, Numerical Methods in Non-Newtonian Fluid Mechanics, 10.1146/annurev.fl.15.010183.001325
  4. Lodge A.S., Elastic liquids. (1964)
  5. Curtiss C. F., Bird R. Byron, A kinetic theory for polymer melts. I. The equation for the single‐link orientational distribution function, 10.1063/1.441246
  6. Viriyayuthakorn Montri, Caswell Bruce, Finite element simulation of viscoelastic flow, 10.1016/0377-0257(80)80005-x
  7. Malkus D.S., Bernstein B., Flow of a curtiss-bird fluid over a transverse slot using the finite element drift-function method, 10.1016/0377-0257(84)85006-5
  8. Dupont S., Marchal J.M., Crochet M.J., Finite element simulation of viscoelastic fluids of the integral type, 10.1016/0377-0257(85)80013-6
  9. Court H., J. Non-Newtonian Fluid Mech., 15, 241 (1983)
  10. Crochet M.J., Proc. IXth Int. Congress of Rheology, Mexico (1984)
  11. Walters K., Rheometry. (1975)
  12. THOMAS R. H., WALTERS K., THE MOTION OF AN ELASTICO-VISCOUS LIQUID DUE TO A SPHERE ROTATING ABOUT ITS DIAMETER, 10.1093/qjmam/17.1.39
  13. Crochet M.J., Numerical simulation of non-Newtonian Flow (1984)
  14. Walters K., Savins J. G., A Rotating‐Sphere Elastoviscometer, 10.1122/1.548992