User menu

Sdtq-mppt(4) Electric Moments and Static Polarizabilities for Li2(x1-sigma-g-+)

Bibliographic reference Maroulis, G.. Sdtq-mppt(4) Electric Moments and Static Polarizabilities for Li2(x1-sigma-g-+). In: Molecular Physics : an international journal at the interface between chemistry and physics, Vol. 63, no. 2, p. 299-315 (1988)
Permanent URL http://hdl.handle.net/2078.1/53225
  1. Buckingham A. D., Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces, Advances in Chemical Physics ISBN:9780470143582 p.107-142, 10.1002/9780470143582.ch2
  2. Bogaard M.P., Molecular Structure and Properties (1975)
  3. Buckingham A. D., Molecular quadrupole moments, 10.1039/qr9591300183
  4. Buckingham A. D., Fowler P. W., A model for the geometries of Van der Waals complexes, 10.1139/v85-334
  5. Buckingham A. D., Fowler P. W., Stone A. J., Electrostatic predictions of shapes and properties of Van der Waals molecules, 10.1080/01442358609353370
  6. Fowler P. W., Stone A. J., Induced dipole moments of van der Waals complexes, 10.1021/j100287a004
  7. Spackman Mark A., A simple quantitative model of hydrogen bonding, 10.1063/1.451441
  8. Price S. L., Stone A. J., The electrostatic interactions in van der Waals complexes involving aromatic molecules, 10.1063/1.452037
  9. Murad S., Mansour K.A., Powles J.G., A model intermolecular potential for hydrogen fluoride including polarizability, 10.1016/0009-2614(86)80524-3
  10. van der Avoird A., Wormer P. E. S., Jansen A. P. J., An improved intermolecular potential for nitrogen, 10.1063/1.450457
  11. Buckingham A. D., The polarizability of a pair of interacting atoms, 10.1039/tf9565201035
  12. Buckingham A.D., Clarke K.L., Long-range effects of molecular interactions on the polarizability of atoms, 10.1016/0009-2614(78)85517-1
  13. Hunt K.L.C., Long-range dipoles, quadrupoles, and hyperpolarizabilities of interacting inert-gas atoms, 10.1016/0009-2614(80)85346-2
  14. Hunt K. L. C., Bohr J. E., Field‐induced fluctuation correlations and the effects of van der Waals interactions on molecular polarizabilities, 10.1063/1.450755
  15. Linder Bruno, Kromhout Robert A., van der Waals induced dipoles, 10.1063/1.450299
  16. Grossel Philippe, Vigoureux Jean Marie, Van Labeke Daniel, Magnitude of van der Waals–induced dipole moments in physisorption, 10.1103/physreva.34.3587
  17. Vigoureux Jean-Marie, Grossel Philippe, Van Labeke Daniel, Girard Christian, Quantum electrodynamics near an interface: Polarizability of a pair of adsorbed molecules, 10.1103/physreva.35.1493
  18. Bounds D.G., Wilson S., Molecular multipole moment calculations using universal systematic sequences of even-tempered basis sets, 10.1080/00268978500100351
  19. Bishop David M., Maroulis George, Accurate prediction of static polarizabilities and hyperpolarizabilities. A study on FH (X 1Σ+), 10.1063/1.448957
  20. Maroulis George, Bishop David M., On the dipole and higher polarizabilities of Ne(1S), 10.1016/0009-2614(85)85083-1
  21. Maroulis George, Bishop David M., Electric moments, polarizabilities and hyperpolarizabilities for BH(X1Σ+ and CH+ (X1Σ+), 10.1016/0301-0104(85)85102-8
  22. Maroulis G, Bishop D M, On the polarisability and hyperpolarisability of the four-electron sequence Be(1S), B+(1S) and C2+(1S), 10.1088/0022-3700/18/17/024
  23. Maroulis G, Bishop D M, On the electric polarisabilities of argon, 10.1088/0022-3700/18/24/012
  24. Maroulis George, Bishop David M., Dipole and higher order polarizabilities of the 10-electron systems : OH-(X1Σ+), F-(1S), NeH+(X1Σ+) and Mg2+(1S), 10.1080/00268978600100281
  25. Maroulis G, Bishop D M, On the electric polarisabilities of Li+(1S), Li(2S) and Li-(1S), 10.1088/0022-3700/19/4/005
  26. Maroulis George, Bishop David M., Electric polarizabilities and hyperpolarizabilities for the ground state of the nitrogen molecule, 10.1080/00268978600101141
  27. Maroulis George, Bishop David M., Electric moments and polarizabilities for LiH (X1?+), 10.1007/bf00527687
  28. Maroulis George, Bishop David M., HF SCF electric polarizabilities and hyperpolarizabilities for the ground state of the hydrogen molecule, 10.1016/0009-2614(86)80654-6
  29. Maroulis G., Z. Naturf. A, 41, 756 (1986)
  30. Simons Jack, Jørgensen Poul, Geometrical derivatives of dipole moments and polarizabilities : GEOMETRICAL DERIVATIVES, 10.1002/qua.560250616
  31. Hessel Merrill M., Vidal C. R., The B1Πu–X1Σg+ band system of the 7Li2 molecule, 10.1063/1.437281
  32. Wu C. H., Thermochemical properties of gaseous Li2 and Li3, 10.1063/1.433489
  33. Wu C. H., Experimental investigation of a stable lithium cluster. The thermochemical study of the molecule Li4, 10.1021/j100232a017
  34. Welker T., Martin T. P., Optical absorption of matrix isolated Li, Na, and Ag clusters and microcrystals, 10.1063/1.437445
  35. Kimoto Kazuo, Nishida Isao, Takahashi Hiroshi, Kato Hiroshi, A Study of Lithium Clusters by Means of a Quadrupole Mass Analyzer, 10.1143/jjap.19.1821
  36. Bernheim R. A., Gold L. P., Kelly P. B., Tomczyk C., Veirs D. K., A spectroscopic study of the E 1Σ+g and F 1Σ+g states of 7Li2 by pulsed optical–optical double resonance, 10.1063/1.441529
  37. Molof Robert W., Miller Thomas M., Schwartz Henry L., Bederson Benjamin, Park John T., Measurements of the average electric dipole polarizabilities of the alkali dimers, 10.1063/1.1682180
  38. Rao B. K., Jena P., Physics of small metal clusters: Topology, magnetism, and electronic structure, 10.1103/physrevb.32.2058
  39. Rao B. K., Khanna S. N., Jena P., Structural and electronic properties of compound metal clusters, 10.1007/bf01384810
  40. Kouteck� J., Fantucci P., General principles governing structures of small clusters, 10.1007/bf01384800
  41. Cardelino B. H., Eberhardt W. H., Borkman R. F., Ab initio SCF calculation on LinHm molecules and cations with four or less atoms, 10.1063/1.450253
  42. Igel‐Mann G., Wedig U., Fuentealba P., Stoll H., Ground‐state properties of alkali dimers XY (X, Y=Li to Cs), 10.1063/1.450649
  43. Sundholm Dage, Pyykkö Pekka, Laaksonen Leif, Two-dimensional, fully numerical molecular calculations : X. Hartree-fock results for He2, Li2, Be2, HF, OH-, N2, CO, BF, NO+and CN-, 10.1080/00268978500103131
  44. Bishop David M., Chaillet M., Larrieu C., Pouchan C., Charge perturbation approach to the calculation of molecular polarizabilities: Application toLi2, 10.1103/physreva.31.2785
  45. Müller Wolfgang, Meyer Wilfried, Static dipole polarizabilities of Li2, Na2, and K2, 10.1063/1.451251
  46. Padial N. T., Low-energy scattering of electrons fromLi2, 10.1103/physreva.32.1379
  47. McLean A. D., Yoshimine M., Theory of Molecular Polarizabilities, 10.1063/1.1712220
  48. Kucharski Stanislaw A., Lee Yoon S., Purvis George D., Bartlett Rodney J., Dipole polarizability of the fluoride ion with many-body methods, 10.1103/physreva.29.1619
  49. Cernusak Ivan, Diercksen Geerd H.F., Sadlej Andrzej J., Finite-field many-body perturbation theory. X. Electric field gradients and other properties of N2, 10.1016/0301-0104(86)87005-7
  50. Paldus J., čížek J., Time-Independent Diagrammatic Approach to Perturbation Theory of Fermion Systems, Advances in Quantum Chemistry Volume 9 (1975) ISBN:9780120348091 p.105-197, 10.1016/s0065-3276(08)60040-4
  51. Krishnan R., Pople J. A., Approximate fourth-order perturbation theory of the electron correlation energy, 10.1002/qua.560140109
  52. Hubač Ivan, Čársky Petr, Computational methods of correlation energy, Topics in Current Chemistry ISBN:3540088342 p.97-164, 10.1007/bfb0048837
  53. Kucharski Stanislaw A., Bartlett Rodney J., Fifth-Order Many-Body Perturbation Theory and Its Relationship to Various Coupled-Cluster Approaches, Advances in Quantum Chemistry Volume 18 (1986) ISBN:9780120348183 p.281-344, 10.1016/s0065-3276(08)60051-9
  54. Møller Chr., Plesset M. S., Note on an Approximation Treatment for Many-Electron Systems, 10.1103/physrev.46.618
  55. Urban Miroslav, Hubac̆ Ivan, Kellö Vladimír, Noga Jozef, The fourth order diagrammatic MB‐RSPT calculations of the correlation energy of ten electron systems, 10.1063/1.439521
  56. Dykstra Clifford E., Dipole (electric field) and quadrupole (field gradient) polarizabilities of hydrogen, nitrogen, and acetylene from the application of derivative Hartree–Fock theory, 10.1063/1.448852
  57. Dunning T.H., Modern Theoretical Chemistry (1977)
  58. Maroulis G., to be published
  59. Huber K.P., Constants of Diatomic Molecules, 4 (1979)
  60. Freemen David L., Many-body perturbation theory applied to molecules: Analysis and correlation energy calculation for Li2, N2, and H3, 10.1063/1.432518
  61. Bishop David M., Pouchan Claude, The quadrupole moments of Li2, Li2+ and Li3+, 10.1016/0009-2614(83)87378-3
  62. Visser F., Wormer P. E. S., Stam P., Time‐dependent coupled Hartree–Fock calculations of multipole polarizabilities and dispersion interactions in van der Waals dimers consisting of He, H2, Ne, and N2, 10.1063/1.445591
  63. Binkley J.S., GAUSSIAN 82 (1982)