User menu

Descent Theory for Banach Modules

Bibliographic reference Borceux, Francis ; Pelletier, JW.. Descent Theory for Banach Modules. In: Lecture Notes in Mathematics, Vol. 1348, p. 36-54 (1988)
Permanent URL
  1. Cigler, J., Losert, V., and Michor, P., Banach modules and functors on categories of Banach spaces, Lecture Notes in Pure Appl. Math. 46, Marcel Dekker, Inc., New York and Basel, 1979.
  2. Civin Paul, Yood Bertram, The second conjugate space of a Banach algebra as an algebra, 10.2140/pjm.1961.11.847
  3. Dunford, N. and Schwartz, J., Linear Operators Part I, Interscience Publishers, Inc., New York, Fourth Printing, 1967.
  4. Graven A.W.M., Injective and projective Banach modules, 10.1016/1385-7258(79)90031-3
  5. Joyal, A. and Tierney, M, An extension of the Galois theory of Grothendieck, Memoirs Amer. Math. Soc. 51 (1984).
  6. Kaijser Sten, On Banach modules I, 10.1017/s0305004100058904
  7. Khelemskii, A. Ya., Flat Banach modules and amenable algebras, Trans. Moscow Math. Soc. (1985), 199–244.
  8. Knus, M.-A., and Ojanguren, M., Théorie de la Descente et Algébres d'Azumaya, Lecture Notes in Math. 389, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
  9. Rieffel Marc A, Induced Banach representations of Banach algebras and locally compact groups, 10.1016/0022-1236(67)90012-2
  10. Rieffel Marc A, Induced representations of C∗-algebras, 10.1016/0001-8708(74)90068-1
  11. Rieffel Marc A., Morita equivalence for c∗-algebras and w∗-algebras, 10.1016/0022-4049(74)90003-6
  12. Schubert Horst, Categories, ISBN:9783642653667, 10.1007/978-3-642-65364-3