User menu

Density-functional Approach To Nonlinear-response Coefficients of Solids

Bibliographic reference Gonze, Xavier ; Vigneron, Jean-Pol. Density-functional Approach To Nonlinear-response Coefficients of Solids. In: Physical Review. B, Condensed Matter, Vol. 39, no. 18, p. 13120-13128 (1989)
Permanent URL http://hdl.handle.net/2078.1/52386
  1. P. Hohenberg, Phys. Rev., 136, B (1964)
  2. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  3. Yin M. T., Cohen Marvin L., Theory of lattice-dynamical properties of solids: Application to Si and Ge, 10.1103/physrevb.26.3259
  4. Lam Pui K., Cohen Marvin L., Ab initiocalculation of phonon frequencies of Al, 10.1103/physrevb.25.6139
  5. Kunc K., Dacosta P. Gomes, Real-space convergence of the force series in the lattice dynamics of germanium, 10.1103/physrevb.32.2010
  6. Resta R., Kunc K., Self-consistent theory of electronic states and dielectric response in semiconductors, 10.1103/physrevb.34.7146
  7. McKitterick John B., First-principles calculation of the dielectric properties of GaAs: Dielectric constant, effective charges, and piezoelectric constant, 10.1103/physrevb.28.7384
  8. Vanderbilt David, Louie Steven G., Cohen Marvin L., Calculation of anharmonic phonon couplings in C, Si, and Ge, 10.1103/physrevb.33.8740
  9. Tao H. -J., Ho K. -M., Zhu X. -Y., Investigation of the electronic structure and phonon anharmonicity inβ- andγ-NbH, 10.1103/physrevb.34.8394
  10. Bachelet Giovanni B, Lorenzi Giulia de, Lattice Defects in Semiconductors: Towards a Finite-Temperature Theory, 10.1088/0031-8949/1987/t19a/042
  11. Rabe K. M., Joannopoulos J. D., Abinitiodetermination of a structural phase transition temperature, 10.1103/physrevlett.59.570
  12. H. Hellmann, Einführung in die Quantenchemie (1937)
  13. Feynman R. P., Forces in Molecules, 10.1103/physrev.56.340
  14. Nielsen O. H., Martin Richard M., Quantum-mechanical theory of stress and force, 10.1103/physrevb.32.3780
  15. Baroni Stefano, Resta Raffaele, Ab initiocalculation of the macroscopic dielectric constant in silicon, 10.1103/physrevb.33.7017
  16. Baroni S., Resta R., Ab initiocalculation of the low-frequency Raman cross section in silicon, 10.1103/physrevb.33.5969
  17. Hybertsen Mark S., Louie Steven G., Ab initiostatic dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators, 10.1103/physrevb.35.5585
  18. Scheffler Matthias, Vigneron Jean Pol, Bachelet Giovanni B., Tractable Approach for Calculating Lattice Distortions around Simple Defects in Semiconductors: Application to the Single Donor Ge in GaP, 10.1103/physrevlett.49.1765
  19. Scheffler Matthias, Vigneron Jean Pol, Bachelet Giovanni B., Total-energy gradients and lattice distortions at point defects in semiconductors, 10.1103/physrevb.31.6541
  20. Baroni Stefano, Giannozzi Paolo, Testa Andrea, Green’s-function approach to linear response in solids, 10.1103/physrevlett.58.1861
  21. Baroni Stefano, Giannozzi Paolo, Testa Andrea, Elastic Constants of Crystals from Linear-Response Theory, 10.1103/physrevlett.59.2662
  22. A. Dalgarno, Ser. A, 238, 269 (1956)
  23. Dupont-Bourdelet Françoise , Tillieu Jacques , Guy Jean , Sur le calcul des énergies perturbées d'ordre quelconque, 10.1051/jphysrad:019600021011077600
  24. Löwdin Per-Olov, Studies in perturbation theory, 10.1016/0022-2852(64)90081-5
  25. King Harry F., Komornicki Andrew, Analytic computation of energy derivatives. Relationships among partial derivatives of a variationally determined function, 10.1063/1.449924
  26. S. Epstein, The Variation Methods in Quantum Chemistry (1974)
  27. J. F. Nye, Physical Properties of Crystals (1957)
  28. W. P. Mason, Crystal Physics of Interaction Processes (1966)
  29. Ihm J, Zunger A, Cohen M L, Momentum-space formalism for the total energy of solids, 10.1088/0022-3719/12/21/009
  30. A. A. Maradudin, Theory of Lattice Dynamics in the Harmonic Approximation (1971)
  31. Martins José Luís, Cohen Marvin L., Diagonalization of large matrices in pseudopotential band-structure calculations: Dual-space formalism, 10.1103/physrevb.37.6134
  32. X. Gonze, J. Phys.: Condensed Matter, 1, 525 (1989)
  33. Perdew J. P., Zunger Alex, Self-interaction correction to density-functional approximations for many-electron systems, 10.1103/physrevb.23.5048
  34. V. L Gurevich, Transport in Phonon Systems, Vol. 18 of Modern Problems in Condensed Matter Sciences (1986)