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Avant-propos et remerciements

Le texte que vous avez sous les yeux est sans doute le plustampde tout cet
ouvrage, tant ce travail de thése aurait été impossible Isassutien de nombreux
proches et amis, sans d’importantes rencontres et frustiseamitiés approfondies ou
renouvelées.

Ce travail fut au départ un cheminementindividuel avec asigine une intuition,
un désir de prendre une certaine orientation dans un dongiingj’ignorais tout.
Aucune certitude, mais la conviction de vouloir suivre un@\personnelle au risque
de I'impasse. Au fur et a mesure des questions soulevéeprdbemes rencontrés
se firent plus précis et plus incisifs. Pendant six ans, jeaetnais a chaque étape
du raisonnement et de I'élaboration de cette théorie uneeiudifficulté, toujours
inattendue, et requérant a chaque fois plusieurs mois @eilty@our la surmonter.
C’est dans ces moments que la nécessité du compagnonnagmamepromoteur
Francois Dupret se fit sentir: les plus beaux moments de m=tterche furent alors
ces réflexions a deux, ces débats souvent a une heure avariesmdée, des calculs,
beaucoup de calculs chacun son tour sur le grand tableau. b, hiver, jour et
nuit, week-end parfois: six cycles de saisons complets ssutd¥ent ainsi. En fait,
une grande ressource d’énergie et d’enthousiasme prdavenadtre décalage presque
systématique a propos des découragements de I'un ou desl'aut

En écrivant cete thése, presque pour chaque calcul, formmate d’'une piste ex-
plorée ou ébauche d’un calcul, j’ai souvent pu reconnaftnmament précis de ma vie
qui elle aussi, comme cette recherche, absorbait corpsetartaissant ses marques.
De longues périodes furent improductives et je tiens icireneier Francois Dupret
pour toute I'amitié et la compréhension manifestées dassmmements. Temps, désir
et amitié se révélent étre des ingrédients indispensabl@sayriver au bout d'un tel
travail.

C’est pourquoij'y retrouve tous ceux que j'aime et tout ce {jai aimé. Les équa-
tions, entres elles ont leur propre langage, mais isoléo®aont des objets du monde
sensible car produites par des étres de chair et de coeurn&toment, une formule
mathématique peut toucher la sensibilité artistique. I[@iais I'exposé d’'une théorie
a un public “profane” peut susciter bien des commentairetinaats et fructueux. Je
tiens ici & me remémorer I'ADEM (atelier d’écriture musieplancé par le compo-
siteur Pierre Bartholomée convaincu de la nécessité de éamirer en “résonnances”
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compositions musicales et sciences universitaires. @israt que j'ai pu suivre pour
ensuite tenter pendant des années de les maintenir jusgjoaic ont été d’une im-
portance cruciale dans le développement de ma sensiltildé emes connaissances
musicales bien sdr, mais ont aussi constitué un apporticattas mes recherches.
En effet, la rigueur du musicien et son exigence sont tréesh@® de celles requises
par un chercheur. Cet apprentissage a été poursuivi averrpasiteur Peter Swin-
nen, trés curieux de nos recherches et trés pertinent damsre@rques. Je tiens aussi
a remercier Thierry De Smedt, Jean-Pierre Peuvion, Guy Daferie-Dominique,
Tanguy, et bien entendu Bruno, mon meilleur ami, pour cettstre et cet appren-
tissage collectifs. L'extension de 'ADEM vers le LABO# este aventure en cours:
I'idéal poursuivi est celui d’'une démarche de créationeaxille permetttant d’affiner
les choix et les sensibilités individuelles autour de profle composition mélant jeu-
nes professionels et amateurs de tous bords.

Je ne saurais trop insister sur I'importance que jaccorbti@pprentissage aupres
de “maitres”, du compagnonnage, de la recherche en équeppukxpérimenter cela
dans mes recherches des mon mémoire de fin d’étude qui meisihetuAllemagne
pour un séjour de recherches expérimentales, puis a Pisimartement de mathé-
matiques aupres de Giuseppe Buttazzo a qui je dois énorméBems me connaitre
au préalable, il répondit positivement a mon souhait deatil@v dans son équipe de
recherches sur des problémes d’optimisation de forme. mwe séjour je réalisais
comment des sujets de recherche fascinants a vocatiomagpliétaient traités dans
des cadres mathématiques rigoureux. Mon orientation deleler fut vraiment déter-
minée par toute la série de séminaires suivis durant cetteipre année de recherche.
A partir de ce séjour, ce fut une réelle vocation de se lanaasae que 'on ap-
pelle aujourd’hui la “mathématique des matériaux”. Cedcilguimpact direct sur ma
recherche qui débutait alors.

Fin 2003, j'eus la belle occasion de travailler trois moie@bavid Preiss a la
University College de Londres. Une recherche en Analysdi®geus forme de sémi-
naires le mardi aprés-midi ol nous ne sortions pas de sonbpetiau avant d’avoir
avanceé sur le theme proposé. Autrement dit, nous y avong passheures...de temps
en temps il sortait de sa poche une petite boulette de paie @agier et la machait,
alors que nous restions affamés devant un début d’ébauckauteon esquissée sur
le petit tableau noir. Aprés quelques semaines, il nousriyigsé de constituer entre
nous des groupes de recherches, un Allemand, un Hongrois Rigsses et moi avec
I'opportun conseil de d’abord “match your different verssoof English”...

Gréce a tout cela, de retour en Belgique,“les affaires”irept de plus belle.
L'année 2004 fut trés riche et commenca par la plus belleartne d’entre toutes
puisque je rencontrais Sabine qui avait rejoint mes amisadierime du Biéreau.
Depuis ce jour c’est a Sabine et aux amis de “la Ferme”; Giptst, Manu et Caro-
line, Pierre, Devi, Benjamin, ..., que je dois I'essenties delles heures de ces trois
derniéres années. L'organisation collective d’événeméettifs, comme les fétes
saisonnieres, le lancement d’'un cycle de concerts de maisigatemporaine, la ré-
sistance et la solidarité pour tenter de conserver un arfwte Wé a I'habitat et une
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programmation indépendante représentent aujourd’higdesenirs les plus enthou-
siasmants de mon engagement extra-professionnel. Conuuleli¢r la “Grande féte
du Renon Constant” ou nous rechaulames les murs de la Fentre éarces de I'ordre
communales et huissiers de tous ordres venus signifieriéemn “renom” (sic) de
notre bail. Comment oublier la “Conférence Mobile en Formadbse” que je congus
avec Bruno et la complicité de certains professeurs degtdépents de Lettres, Com-
munication et Musicologie. Le 23 novembre 2004, 'aud&#d8C10 fut réorganisé
pour accueillir 4 pétales d’'une rose imaginaire: les pétales Cantates”, du “Thééatre
Musical”, “du docteur Faust” et “de I'Utopie”. Une centaide personnes avaient
répondu présent et avaient pris place dans le pétale deHeix. dl leur était demandé
de chanter un fragment du "Temps des Surprises” en sachantejte intervention
collective au sein du pétale provoquait une convergence wee seule note qui dé-
clenchait alors, via un ingénieux procédé, I'événemeniisudes enfants avec leur
instrument, une classe du secondaire, une classe de I'lAl@pmédien et plusieurs
musiciens, ainsi que le public, intervenaient alors authutravail commun du com-
positeur Henri Pousseur et du poéte Michel Butor, tous deéggnts au sein de la
"Rose Butor-Bousseur* qui prenait forme sous nos yeux: agissant aux interven-
tions, ils nous donnérent & voir et a entendre une conférdicegenre tout a fait
nouveau.

Si je raconte cela c’est aussi pour affirmer I'extraordiadiieu d’expérimentation
que représente I'Université, si I'on en exploite ses regseaiprimordiales comme
la curiosité et I'exigence. Bien autre chose, a mon avis,lfjusine a cerveaux de
demain“...pour servir le monde de hier?

Je tiens a présent remercier Frangoise Paron, qui a été rafespeur de chinois a
I'ILV pendant5 ans. Ce furent aussi parmis les heures lesipkolites et passionantes
de mes 6 années sur ce campus. Je fut bien vite fasciné pé@uféchinoise, par les
idéogrammes surtout, sous leurs différentes formes, et@iig de les introduire dans
mes processus de composition musicale car je leur trouvasens musical profond.
Ce travail continue de m'accompagner aujourd’hui, et jspg&e pourra rester un
compagnon de route a l'avenir.

Tout cela a été possible durant cette importante périodesddenvenant ponctuer
une recherche dans mon domaine de thése qui se précisaititeujavantage, alors
que les immenses efforts consentis étaient peu a peu récsémpar une clarification
progressive de notre théorie. J'ai di beaucoup me documérgeles articles parfois
anciens car cette théorie est née dans les années 50 des @fgrlusieurs mathé-
maticiens et physiciens, pour disparaitre vers la moitgateées 80 (sans doute par
I'absence d’outils pour s’y engager d’avantage, ce a quadiaail est supposé con-
tribuer) pour réémerger aujourd’hui trés sporadiquement.

Cette théorie exige en effet une compréhension de domasemdthématiques
assez ardus, tels la géométrie non-riemannienne, par dgefp simplifiant énor-
mément, on peut donner une premiére vue de I'étude géométdqs dislocations
dans les mono-cristaux en la comparant a la théorie de laitatian telle que décrite
par Albert Einstein: des corps en mouvement qui déformentgpat masse I'espace-
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temps, visualisé comme une toile d’araignée courbée auo#adu ces corps massifs
poursuivent leurs trajectoires. Les dislocations dansiissaux sont des défauts con-
centrés sur des lignes consistant en des imperfectiong dtuacture cristalline con-
sidérée comme parfaite, c’est-a-dire sans défauts, lersguatomes qui la composent
sont alignés de maniére réguliére, périodique. Ces steEmtomiques caractérisent
les cristaux, qui sont des solides déformables, mais si sarob les atomes de prés,
I'essentiel de la matiére solide est en réalité constituégide. Le fait d’observer
et d’analyser la matiére a un niveau plus ou moins proche eanides atomes est
le sens du mot "analyse multi-échelle” (en particulier Hétte dite "mésoscopique”
est intermédiaire entre les échelles atomiques et maguapoes). A notre échelle
(dite "macroscopique”), les dislocations impriment urect visible de leur présence
dans la matiére, qui n'est pas nécessairement néfasteabiemntraire. D'aprés notre
théorie, les dislocations sont comprises comme des défemtsquant courbure et tor-
sion intrinséques, non pas de I'espace-temps, mais daldastju’observé par un ob-
servateur interne lié a la structure cristalline: c’estdasdu terme "non-riemannien®.
Les singularités causées par leur présence sont ceperdaribfies que dans le cas
de la Gravitation, c’est pourquoi nous utilisons une appeadite "distributionnelle®.

Au sein de I'Unité, je voudrais remercier pour leur amitideatr soutien Adrien,
Brieux, Francois Bi(d)oul avec qui la cohabitation fut uraivplaisir, Roman, Wu,
Nathalie et Vincent, Michéle bien s(r avec qui j'ai beaucoufmotre "cantate” est
toujours un work in progress...), Edmond, et tous ceux quiigpérent & son bon
fonctionnement. En particulier Fabrice, qui fut un vérieasbompagnon de route tant
nous avons suivi les parcours de vie de I'un et I'autre dep@ians, avec beaucoup de
discrétion et compréhension. De temps a autre, je retreweaimon bureau un livre
gu’il m’offrait, dont nous allions causer aux Halles suraéenps de midi. Si je repense
aux temps de midi, j ai été heureux de pouvoir compter suistibphe, ma soeur
Valérie et Mario ces trois derniéres années pour m'échappetemps, hors de ce
monde...D’autres belles rencontres durant ces années lgarpersonnes rencontrées
a la Ferme: Mathieu Dupont, Francoise et Charles, Davidagid®, entre autres, mais
aussi certains étudiants rencontrés durant mes 6 annéds eie MIMC.

Les deux derniéres années de travail furent terriblemesggées: nous avons en
réalité tout développé en deux ans, que ce soit la théorididiexations décrite dans
la premiére partie de cette thése (les trois premiers deapiou le travail plus ap-
pliqué sur les défauts ponctuels décrit dans la seconde flartiernier chapitre). Pour
cette partie, je tiens a remercier Nathalie et Vincent, Néetlet Arnaud de la société
Femagoft pour la collaboration fructueuse: je crois que nous avoes béveloppé
ce module, qui est quasi-complet a présent. Pour toutegdderches produites du-
rant cette derniére période, je tiens tout particuliérerderemercier Francois Dupret
pour son soutien indispensable a la compréhension et alogg@esment des outils, de
la physique et la mathématique en jeu, pour la rédactionxie enfin, qu'il a eu la
générosité de relire attentivement. J'ai appris énormémest lui, cela va sans dire,
et bien au dela des domaines scientifiques, sur le plan huégalement. Je remercie
également les autres membres du jury, Issam Doghri, Jealndaet Erik van der
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Giessen, qui ont bien voulu critiquer et apporter des conaiess sur mon texte, dont
j'ai tenté de tenir compte. Je n'y suis certainement pasgraryet je m’en excuse: je
leur ai donné beaucoup de mal avec un premier chapitre guag§émaginé comme

"une boite a outils" permettant la lecture et la compréhmmdies deux chapitres suiv-
ants, mais qui fut un flop, dans un premier temps, il faut béelile, pour cause d’'une
difficulté de ma part & conduire le lecteur de maniere coliérdans les méandres
d'une théorie ardue. J'espére que les amendements appantéte partie corrigeront
un tant soit peu le mauvais tir de départ.

Avant de terminer cette section, je tiens tout particuliéeaet a remercier mes pa-
rents et mes deux soeurs, Valérie et Laurence, qui m’ontdmegusoutenu pendant
ces années. Je ne pourrai jamais assez remercier Sabinegpoampréhension et
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General introduction






The ever-shrinking size of the microelectronic deviceswfronodern eraimposes chal-
lenging restrictions on the quality of the silicon substrased in the manufacturing of
these devices (Kulkarni et al, 2004). It is known that moshefsemiconductor single
crystals including silicon, germanium, gallium arsenided indium phosphide crys-
tals are grown by the Czochralski (CZ) method and some ofat&wts whose major
problem is the formation of crystallographic imperfecaesulting from large tem-
perature gradients in the growing crystal. These gradierag cause the generation
of thermal stresses and dislocations, while excess pafgets aggregate in various
types of crystallographic defects during the crystal aoglperiod and the subsequent
integrated circuit (IC) device processing (Wijaranakul893). Various types of de-
fects which are not related to ingot growth, but generatethdwafer manufacturing,
are also observed on and in silicon wafers, eg, damage duec¢banical processing,
particles on the surface or dislocations originated bysstebove the yield stress dur-
ing thermal wafer treatment. Real crystals, as opposedtt itystals, incorporate a
finite number of types of imperfections, such as impuritsetf-interstitials, vacancies,
grown-in microdefects and dislocations. These structumalerfections can be cate-
gorized according to their dimensional extension into pdine, surface and volume
type defects. The different structural defects are sunmsadrbelow and illustrated for
silicon (Dornberger, 1998):

Point-defects. The class of point-defects comprises the mono-atomic teféwoint-
defects are the fundamental building blocks for grown-ifedts in silicon crys-
tals. Self-interstitials and vacancies are intrinsic paiefects. Foreign atoms
such as oxygen, boron, phosphorus, carbon and metal ateragtansic point-
defects. Some point-defects occupy interstitial sitespxggen, while other
defects are incorporated substitutionally, such as bor@aidon.

Line defects. Typical line defects are dislocations. Once generatedduhie growth
of a silicon crystal, they can multiply instantaneously gederate networks of
dislocations, that render the material unusable for dewiaaufacturing.

Surface defects.Typical surface defects in crystals are grain boundanigs, bound-
aries and stacking-faults. Interstitial type defects,hsas extrinsic stacking
fault, are formed in wafers by agglomeration of self-intiti@ls during heat
treatments. Stacking faults consist of an additional degiblL1} lattice plane
and are bordered by Frank-type partial dislocations.

Volume defects. Volume defects in silicon crystals are observed as polydlearids
or precipitates of impurity atoms. Precipitating oxygemeetes octahedral
defects in CZ silicon crystals.

1An ideal crystal is a perfectly symmetric and periodic agement of lattice atoms, whose elementary
cell defines the geometrical configuration of the latticeralats and builds the basis of the crystal.
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Figure 1: Crystal defects: a) impurity interstitial, b) ldisation, c) self-interstitial, d)
cluster of impurity atoms, e) extrinsic dislocation loopsiall substitutional impurity,
g) vacancy, h) intrinsic dislocation loop, i) large suhgiinal impurity; from Foll and
Kolbesen (1976).

Surface and volume defects, together with dislocations,adso termed “microde-
fects”. The most common microdefects in Czochralski silicare voids and disloca-
tions loops, formed by the agglomeration of point-defeathsas “vacancies” (formed
by a missing silicon atom from the lattice) and “interstiigwhich are silicon atoms
not bonded with the atoms forming the lattice). V. Voronk@@82) was the first to
describe the conditions leading to the formation of micfedes on the basis of an
interplay between the transport of point-defects from thedtforystal interface and the
Frenkel pair reaction.

This thesis will give contributions to the fields of point-caline-defects, only. The
approach followed for the point-defects (PD) analysis iseasially relying on the
numerical simulation of “well-known” evolution equatigr&iming at the solution of
effective applications in the field of industrial crystabgrth. Here, simulation results
can be compared with real growth experiments, and the eapecs from the growth
industry are known and possibly fulfilled. In contrast, ndifactory macroscopic



evolution model for dislocations in single crystals is knote us so fat. Although
huge contributions in this field for the last 5 decades, nedesas still hamper on the
intrinsic difficulties of the problem, viz. the complex dishtion geometries (includ-
ing the effect of their conservation properties), the higiisiorial orders of the involved
fields (defect densities of order 2 meaning constitutivesl&wvolving 4h-order ten-
sors, etc.), letting apart the seeking of evolution lawgiefect densities as a function
of temperature, external and internal constraints, thetitieation of elastic and plastic
contributions with their respective constitutive lawsg 8etting of appropriate bound-
ary conditions, etc. Our initial aim was the creation of sactlislocation model, in
the same spirit as for the PD model, but this objective sogeared as non-realistic
for two reasons, to be developed in the present thesis., FisPD model has shown
unexpected issues of phenomenological nature, in the gkassignificant discrep-
ancies (sometimes of several orders) between the physicaheters available in the
literature were reported, and this made us at the very lesgticious for the passage
to the (higher order) dislocation problem. Also, the regdifthe known theories on
dislocation modelling presented (in our opinion) some weses, and the answers to
these challenging problems took several years. Let us n@fbdescribe these two
topics, and outline the structure of the thesis.

The structural properties of as-grown silicon are contblbby the type and concentra-
tion of intrinsic point-defects incorporated into the grog crystal. An incorporation
model which is now commonly accepted, assumes the fast t@ioation of intrinsic
point-defects in the vicinity of the crystal/melt interfacThe annihilation stage is ef-
fectively complete when the temperature is below the mglbioint by about 10QC].
After this stage, only one kind of point-defect, either vacaor self-interstitial, re-
mains present in supersaturated concentration while thmpeting defect rapidly dis-
appears. There are five basic constants for the self-iittelstand the same for the
vacancies: two for the equilibrium concentration (the imgltpoint value and the
formation energy), two for the diffusivity (the melting pdivalue and the migration
energy) and one for the drift velocity along a temperatueagnt (to account for ther-
modiffusion). The problem in its simplest and conventibnatcepted version (that is,
when fast recombination of the point-defects is assumentpeizes 10 parameters. It
has been emphasised by Voronkov & Falster (2003) that notteeat is well defined
(or well known) in the current state of knowledge. Moreovara simple approxi-
mation of a one-dimensional diffusion field, there is a urseé critical value of the
ratio of the growth rate (V) to the axial temperature gradigs), generally referred
to as V/G ratio, which separates the vacancy growth modeigaeh VV/G) from the
interstitial growth mode (at lower V/G). Due to the radiabaaxial non uniformity of
G, the same crystal may contain both vacancy-type and tiigksype regions sepa-

2Let us mention some recent progresses made in the theory whgiand interacting dislocations,
as, eg, by Kubin (1992), Schwarz (1999) and Rodney (2004}.ukelso mention other approaches to
multiscale analysis, as found in Forest et al. (2001), Cetrai. (2002), Rodney et al. (2003).



rated by a well-defined boundary, known as “OSF rihgrhe critical V/G ratio is of

fundamental importance to improve the growth of disloaatiee silicon crystals of
controlled microdefect properties. For the standard stial growth mode the basic
microdefects were found to be interstitial-type “disldoatloops” (Voronkov and Fal-
ster, 2002). For the standard vacancy growth mode the basiodefects were found
to be vacancy-type “microvoids”.

In fact, dislocations can be considered as the most undésiaad resistant class of
defects for several kinds of single crystals (Maroudas &Brp1991; Jordan et al.,
2000). Therefore, in order to improve crystal quality, theselopment of a relevant
and accurate physical model represents a key issue withwat@ieeducing the dislo-
cation density in the crystal by acting in an appropriate wayhe temperature field
and the solid-liquid interface shape during the growth pesc(Van den Bogaert &
Dupret, 1997).

However the dislocation models available in the literatateh as the model of Alexan-
der & Haasen (1968, 1986), are often based on a rather crielestan of models pre-
viously developed for polycrystals (such as usual metatscamamics). In this case,
some particular features of single crystals, such as nahtanisotropy or the exis-
tence of preferential glide planes, can be taken into adaguio some extent, but the
fundamental physics of dislocations in single crystalsaibe captured. In fact, dis-
locations are lines that either form loops, or end at thelsingystal boundary, or join
together at some locations, while each dislocation segheed constant Burgers vec-
tor which exhibits additive properties at dislocation jtions. These properties play
a fundamental role in the modelling of line defects in singigstals and induce key
conservation laws at the macro-scale (typically definedheydrystal diameter). On
the contrary, no dislocation conservation law exists antlagro-scale for polycrystals
since dislocations can abruptly end at grain boundariédertee medium without any
conservation law holding across these interfaces.

Aware of these principles and of the pioneer works of Volet907) and Cosserat
(1909), Burgers (1939), Eshelby, Frank and Nabarro (19956}, Kondo (1952),
Nye (1953), and Kroner (1980) among other authors (BilbQ Mura, 1987) con-
sider a tensorial density to model dislocations in singlestals at the macro-scale,
in order to take into account both the dislocation orientaand the associated Burg-
ers vector (cf the survey contributions of Kroner (1980, @P&nd Kleinert (1989)).
However, in these works, the relationship between macatesarystal properties and
the basic physics governing the atomic scale (defined byntiee-atomic distance) is
not completely justified from a mathematical viewpoint. féfere, to well define the
concept of tensorial dislocation density, we will intro@ua this thesis an additional
scale to the macro-and atomic scales, viz. the meso-scalefam®d by the average
distance between dislocations. The laws governing diflmcaehaviour are modelled

3The ring-like distributed oxidation-induced stacking lfaappears with a high density on wafers after
oxydation. A key reference is here Dornberger (1998).



at the atomic scale, while the meso-scale (defined from treiatscale by ensemble
averaging or by averaging over a representative volumer(&r2001)) defines the
"dislocated continuous medium", where each dislocatioriés/ed as a line and the
interactions between dislocations can be modelled whéddtvs of linear elasticity
govern the adjacent medium.

This thesis is twofold. The main part, viz. Chapters 1-3 dgated to establish a “dis-
tributional approach”in order to analyse the geometry of2id 3D dislocations, aims
at answering to the drawbacks of the “classical theoriesii¢tvessentially rely on the
work done in the early 50ies by Eshelby, Frank, Nabarro, Kol Nye (1951-1956)
and the review book on differential geometry by Schouterb@)® These approaches
are termed as “Kroner’s” and “Kleinert's” approaches in @Gtea 1, Section 1.8, where
they are reviewed and criticised. In particular, Chaptes dévoted to be the toolcase
for the understanding of both the motivations and the fordestelopments of Chap-
ters 2 & 3. Chapter 2 focuses on the analysis of the 2D cassjrmé all the concepts
are exposed in their full 3D generality, this chapter shdaddconsidered as the key
chapter of our theoretical work on dislocations in this the€hapter 3 provides an
extension (obtained in Section 3.6) of the methods develape used in the 2D case
with a view to reaching a full generality for this “static”"therwise termed “geomet-
ric” analysis of dislocations.

The reader aware of these classical dislocation theoriekiding the non-Riemannian
description of the defective crystal, can read Chapter Bout consulting Chapter 1.
He can also skip most of Chapter 3, which mainly consists dheraatical develop-
ments without new formal concepts, but is invited to glamcé new mesoscopic for-
mulas for dislocation densities and strain incompatipfirmulated in Section 3.5.1.
On the other hand, Chapter 1 is really conceived for non-espe the field. All the
necessary concepts, of mechanical or mathematical ndiuteglso to some extent
of “philosophical” nature, are exposed in an attempt of covald accuracy and peda-
gogy. Moreover, in case the reader is satisfied by the coofe@hapter 1, he might
skip Chapters 2 and 3 which appear as more specialised, wtithigsing the point of
this thesis.

The second and last part of this thesis is dedicated to therncahsimulation of point-
defects in silicon crystals. Let us emphasise that no susbryhcan be considered as
complete without comprising a combined model for pointed#$, microdefects and
dislocations, since these latter two are sinks and sourtesiot-defects. In fact,
the scheme followed in Chapter 4 addresses problems whicbcemmon to both PD
and dislocation modelling, viz. the nature of the evoluteruations as a balance
between transport, diffusion and recombination, to whiaghleation equation should
be added in the case of line and volume defects (see, eg,a\étall. (2006) for an
analysis of nucleation in the framework of discrete distamaplasticity). This chap-
ter also includes a discussion on the PD formation and mdara&nergies as well as



their equilibrium concentration values. It also comprigefiscussion on the nature of
diffusion, including the combined effects of self- and thediffusion, the transient ef-
fects, the asymptotic analysis leading to the observatisaegions where a particular
mechanism is preponderant with respect to others, and @aignthe thermodynamic
analysis of the complete problem including the setting @irapriate boundary condi-
tions.

All these aspects of the PD problem were not completely ckeat Chapter 4 provides
a contribution to the field, consisting in the following steSection 4.1 is a review
of the evolution coupled equations between interstitiald @acancies in the case of
Si CZ growth, while Section 4.2 describes more intensivey arious mechanisms
of diffusion, addressing the unclear and sensitive “thefiffiasion” issue. Section
4.3 proposes to set the problem in terms of non dimensiorrédhlas and aims at
showing that the commonly accepted 1D model is probably atisfactory if the
sole “Damkohler number” effect is introduced. In fact, venthe so-called “outer
region” is well understood, the “far-field” region is morelidate since, on the one
hand, the “freezing” of all thermo-dependent parameteosikhnot prevent the how-
ever slow mechanisms of diffusion, nucleation etc. to pesgr even very slightly
and, on the other hand, the existence of a boundary layeranhfrmation from the
lower regions is transported and which gets thinner as teatpe decreases should
be included in this asymptotic analysis. Briefly, this sectutlines the difficulties of
an asymptotic treatment of the exponentially decreasingterrelated mechanisms
of point-defect evolution. Section 4.4 follows a discussigith N. Stolwijk (Lerner
& Stolwijk, 2005) who obtained, via direct measurementduga for the vacancy
equilibrium concentration in silicon, in dramatic contiettbn with the commonly ac-
cepted values in the crystal growth community. This secioms at summarising the
various proposed values with a view to enlightening questide aspects of the fit-
ting approach in numerical simulation, while showing theuléng lack of physical
understanding of the underlying mechanisms. Our coniohstto the field from an
applied point of view are explained in Sections 4.5 and /Sdction 4.5 we present
the results of time-dependent simulations of point-def@ctSi crystals, identifying
regions that were not correctly treated by quasi-steadyagmh, while Section 4.7
aims at proposing a reconciliation between “Stolwijk vafuand the classical model
by highlighting the possible role of thermodiffusion. HigaSection 4.6.3 is a small
complement to the abundant literature on OSF ring.

As a conclusive remark, let us claim the benefit of our twofaghroach, where the
first approach is the target of the second one. Point-detgeténdeed not separa-
ble from dislocations, neither from a conceptual physigelwpoint, nor in terms of
application to the effective calculation of defective reattSince dislocations are in-
trinsically more complex structures because lines arermgdision 1 and codimension
2 in the 3D ambient space, and hence may exhibit complex gei@s\et is natural
to spend much effort on their understanding, and to be patterthe blooming of
a complete model for their behaviour. However, PD analysihe mean time has



shown the milestones for such a model, and simultaneouslgdhgers and issues to
address for its elaboration. Much work remains to be donahaioly mostly from an
experimental viewpoint, but combination of modelling arngerimental approaches is
surely the best way to facilitate physical understandingalfy, the rich nature of the
phenomena involved in defect modelling, is for sure an imsedield to be explored
by mathematicians, and their contributions to the field hasatdvantage of being not
programmable, leading to unexpected solutions or to thpqwal of new approaches.
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Mesoscopic modelling of the
geometry of dislocations






Nomenclature

Acronyms

2D: two-dimensional
3D: tri-dimensional
Pf.: pseudo-function
Fp.: finite part

BV: bounded variation
LHS: left-hand side
RHS: right-hand side

Variables

t: time

X Or Xj: position vector

Xo OF Xgi: reference point

x- orx-: position vector on the line L

&i: vector (maily position vector on a curve)

r,8,z cylindrical coordinates
zor Z: variable of the complex plane

Fields

Classical fields of the multiscale linear Elasticity theory

& macroscopic elastic strain tensor
&jj* mesoscopic elastic strain tensor
0ij: macroscopic stress tensor
0j;: mesoscopic stress tensor
&*: elastic energy density (compliance)



14 Nomenclature

&°: concentrated enery term

&*°: corrected elastic energy

nij: macroscopic elastic strain incompatibility tensor
ni*j: mesoscopic elastic strain incompatibility tensor
u;: macroscopic displacement field

U mesoscopic displacement field

u™: atomic displacement field

w: macroscopic rotation or Bravais rotation field

«)": mesoscopic rotation field

w™: atomic rotation field

Fields introduced for the purpose of the distributional aggch to dislocations

bj*: mesoscopic Burgers field
Bij: macroscopic distortion (i.e. displacement gradigaf) or Bravais distortion
diwj*: mesoscopic Frank tensor

9 bj: mesoscopic Burgers tensor

9;0;u;: tensor related to second order derivatives of the mesasdigplacement
0jwj: macroscopic Bravais rotation gradient

0i0jux: macroscopic Bravais distortion gradient

5iwj* : mesoscopic Bravais rotation gradient

0i0juy: mesoscopic Bravais distortion gradient

Defect densities

Ojj: macroscopic discination density

Ajj: macroscopic dislocation density

aij: macroscopic displacement jump density
Kij: macroscopic contortion

: mesoscopic discination density

N} : mesoscopic dislocation density

o’ . mesoscopic displacement jump density
K{s: mesoscopic contortion

Symbols

General symbols

€,0: small nonnegative numbers

i,j--- and all Latin indices: indices taking their values{ih 2,3}

a,B--- and all Greek indices: indices taking their valueg in2}
Gij: Kronecker symbol in 3D



Nomenclature

dqp: Kronecker symbol in 2D

&ijk. permutation (pseudo-)tensor (Levi-Civita symbol) in 3D
&qp: permutation (pseudo-)tensor (Levi-Civita symbol) in 2D
g Cartesian base vector

€,€9,€,: cylindrical base vectors

Geometrical symbols

L: dislocation line

Z: set of dislocation line

sort: arc parameter

T;: tangent vectorto L

Vi, 0;: other Frenet's unit normal vectors

C: circuit or loop (a closed curve)

Ce¢: circuit of radius epsilon

Ui (X): unit vector joining the pointg andx

Gi: tangent vector to C o€,

Q: dislocated crystal

Q. : dislocated crystal without the dislocation lines

Qr: mesoscopic Frank vector

di: distance vector

dx: tangent line element

dG: line element multiplied by the external unit normal
dS: area element multiplied by the external unit normal
A, B,D,E, G, U, Vg, S;: pointor subsets

K: compact subset

Physical symbols

B;: mesoscopic Burgers vector
B;i*: atomic Burgers vector

Zo. macroscopic reference crystal
4. mesoscopic reference crystal
24" atomic reference crystal
Z(t): macroscopic crystal at tinte
Z*(t): mesoscopic crystal at tinte
Z**(t): atomic crystal at time

Mathematical symbols

d: partial derivative in the smooth classical or distribuibsense

ai<s>: partial derivative for defect multifunctions
F: Riemann set
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L Or v: measures

o, ¢,y Y test functions

Ff,f,f, g, h: functions or real or complex variables

[-]: jump of a function around the dislocation L or along the git€
&: Dirac mass

d.: concentrated measure on the line L

Js. concentrated measure on the surface S

Function spaces

2(Q) or 6;°(Q): smooth functions with compact support o¥er
2'(Q): distribution space ove®

%<(Q): continuous functions with compact support oger
LY(Q,u): Lebesgue space overwith respect to the measure
A (Q): space Radon measures



Chapter 1

Ingredients for a multiscale
analysis of the geometry of
dislocations

1.1 Introduction

This chapter is devoted to provide a toolbox for the underditag of both the moti-
vations and the formal developments of Chapters 2 and 3. iy flae viewpoint of
our approach is to study the geometry of dislocations ambeoscalewhere linear
elasticity is assumed away from the dislocation line. Simdgth this approach, a sin-
gle dislocation is viewed as a line (i.e. as a set of vaniskisigme and surface), all
the effects which do not strictly pertain to linear elasgicand in particular the elastic
strain incompatibility, will be assumed to be concentradtmhg this line. However,
in contrast with the Gravitation theory, where massive bedire also modelled as
concentrated Dirac masses, it will be shown that the thebtine-defects in single
crystals also involves the gradient of such concentratesba®s therefore requiring a
particular treatment which is not fulfilled by classical imamatical tools. Moreover,
since in a single crystal the defect lines can sometimes f@nmyncomplex aggregates,
the multivaluedness of some fields (such as the displaceonentation fields) is an
issue to be addressed in its full generality, with a view tovite appropriate tools for
the homogenisation of various (including fractal-like3ldication clusters. Let us em-
phasise that this particular difficulty is not encountergabilycrystals are considered
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instead of single crystals, since the existence of integraihs renders these effects
much less critical.

The combination of field multivaluedness outside thesedadifees together with con-
centration effects along these lines is a difficult task,umeqg, at least in our ap-
proach, the use of mathematical concepts which are desddrittbe present chapter.
This chapter also aims at introducing the defects from aighygiewpoint, which, of
course, is prior to the choice of the mathematical tools. rétoee, we have decided
to organise this chapter in the form of small sections, eddhem being divided in
smaller subsections where a single issue is addressedeindeptly. These sections
alternatively address physical descriptions and the dhtetion of mathematical ob-
jects. Eventually, all the objects are combined togethesraer to provide a clear
description of the physics of defects in single crystals.

The ingredients for a multiscale analysis of the geometdisibcations are addressed
as follows. In the first section the basic physics of dislmeatormation is described,
while in the second section, the question of a multiscaleehiscdtaised. Then, in the
third section, the physical field multivaluedness is ddmaiin mathematical terms,
while the fundamental invariance properties of the Burgerd Frank vectors are
stated and proved. The fourth section is a complement tontbgtevious ones, aim-
ing at discussing the consequences of the displacemenbgatibn multivaluedness
in single crystals, and at proposing an appropriate bagcogeh for the mesoscopic
modelling of dislocations which avoids the use of a refeeecgnfiguration (noting
that the latter is not required and arbitrary). This apploail be completed along
the 3 last sections of the present chapter and further ddtail all the subsequent
chapters. The next ingredient of this chapter is a collectibexamples of rectilin-
ear dislocations, devoted to validate the general resiite sixth ingredient of this
chapter is an introduction to several concepts of diffeadigieometry, which will all
be encountered in the presentation of the results of Craptand 3. Here, the reader
might not be interested in the reading all technical detaitéch are presented actually
for the sake of completeness. We have chosen to mentioregilatticular difficulties
encountered in terms of a geometric description of the dgfét order to highlight
the full complexity of the problem, and hence the need forramlete clarification of
the topic from a mathematical viewpoint. The seventh sad8a discussion of pre-
vious approaches published in the literature, as compardiuet approach described
in this thesis. This section must be understood as provitliegmotivation for the
development of the present theory. Finally, the last sadgcan introduction to the
distribution theory and to other related concepts aiming &agorous description of
concentration mechanisms.



Dislocations and disclinations 19

1.2 Dislocations and disclinations

This section aims at describing the basic physics of disioea and disclinations and
contains the following subsections:

Atomic formation of dislocations

Interaction of dislocations with point-defects

Five families of line-defects

A selection of dislocations and disclinations

1.2.1 Atomic formation of dislocations

The formation of a dislocation line such as an “edge” disliorg as illustrated in
Figure 1.1, takes its origin in the removal (due to thermaivation or the supply of
external forces) not only of isolated atoms, but of a coregeset A of atoms originally
located at regular lattice sites. These atoms change docatside the crystal lattice
by occupying “interstitial” sites and leaving vacanciegh are the abandoned lat-
tice sites) behind them. Atoms might also leave the crystedss its boundary or,
reversely, penetrate from the external world into the @alyghereby perturbing its
perfect atomic order. A rearrangement of the atoms in thaiyjcof A tending to
suppress the vacancies follows in any case, but unless thljpity of the upper and
lower layers is maintained, the crystal is not anymore “getfin a region D surround-
ing the boundary of A, thereby forming a dislocation linegrndified as D. A similar
mechanism can be associated with the formation of an additiconnected layer A
of interstitial atoms whose boundary forms a dislocatioe liln fact, the dislocation
line at the atomic scale cannot be determined uniquelyedine removal of several
distinct atom lines from the perfect crystal can producedamiical dislocated atomic
picture. Therefore it seems preferable to use the term cfision “region” instead of
dislocation “location” at the atomic scale. Related to tiisFigure 1.2, it is pointed
out that given a dislocated crystal, the atoms may be coreidas having moved
from a perfect lattice, but their displacement in the pdréwt region is not uniquely
defined. On the contrary, the deformation field around thé&diion region may
be considered as uniquely defined. More exactly, we have diptaivalued” atomic
mapx; ;= x;{*(X), 1=1,2,3, whereX € Z§* denotes position in the reference body
andx € #Z**(t) denotes position in the actual crystal at time t. In Figs. anhd 1.2,
multivaluedness results from a displacement of the ordénefnteratomic distance.
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Figure 1.1: Example of a dislocation loop (“edge dislocat)o In general the dislo-
cation is a loop or an open curve ending at the crystal rinmf(&leinert, 1989).

Let us emphasise that this general situation does not akpweither to uniquely de-
fine some important dynamical fields such as displacemertation, nor to identify
the precise location of the dislocation lines. In fact, @bding these issues will govern
the mathematical model construction at higher scales reowpto the present chapter
review.

1.2.2 Interaction of dislocations with point-defects

The most common microdefects in Czochralski silicon groar voids and disloca-
tion loops, as formed by the agglomeration of point-defe@sancies and interstitials.
The Frenkel interstitial-vacancy recombination reactiand the transport of point-
defects occur simultaneously (cf Chapter 4 for further f&tavVioreover microdefects
are submitted to the diffusion of point-defects from andheitt surface according to
the nucleation theory, in such a way that a complete pictfiteendislocation dynam-
ics should allow for a point-defect mass balance includifigision, recombination,
convection and consumption by the loops. Since in the cas#éi@in growth, nucle-
ation occurs at lower temperatures, where point-defecmdxnation and diffusion
have been damped out, it is accepted that the region abovedthisolid interface is
concerned with “pure” point-defect dynamics as descrilme@hapter 4, whereas mi-
crodefect, or dislocation dynamics is rather observed ingrer region, where several
physical parameters are submitted to slow variations onetaly frozen.
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Figure 1.2: Multiple definition of the atomic dislocationcktion and displacement
field multivaluedness; from (Kleinert, 1989).

More precisely, it has been mentioned in the Introductiat the magnitude of the
V/G ratio just above the solidification interface, where the pulling rate and G,
the thermal gradient, determines whether interstitialamancies will be the surviving
point-defect species in the “far field” region. In fact atststage the other species has
been almost completely consumed, and hence, a microddfiatecstitial or vacancy
type will be formed. Let us go back to Figure 1.1, and to the atomic formation ef th
associated edge dislocation. It has been explained howdacwoild be reduced to a
dislocation loop by atomic movements. Moreover, the disptaent or enlargement of
such a loop occurs together with the creation or consumptieacancies (or intersti-
tials) along its edge part in the Burgers vector directiord @ results that dislocation
dynamics is intrinsically related to point-defect evodutiand should be associated to
appropriate conservation laws. Finally, let us mention, imeactual crystals, it should
be taken into account that extrinsic point-defects, sucbxggen, can segregate at a
dislocation core, leading sometimes to its immobilisai®ankader et al., 2000).
Since a proper analysis of all these interrelated phenomegrasents a very complex
task, it is beyond the scope of this thesis to describe theeeaictions and to analyse
the complete set of conservation laws for multisized dsfektowever, although the
approach followed to describe dislocations is here purttics it should be kept in
mind that only a coupled description of point-and line-@¢fvolution could provide
a complete picture of the dislocation behaviour, and hemnevery occasion it will
be stressed that from both formal and computational viemgothese two classes of

Linterstitial microdefects have been identified by varicwsigs and termed A-clusters and B-clusters, or
A-swirl and B-swirl defects, as associated with interalitelated dislocation loops and globular structures,
respectively. The vacancy agglomerates, or voids, areg@fiiclusters (Kulkarni and Falster, 2003).
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Figure 1.3: Screw dislocation; from Kleinert(1989).

defects are per se inseparable.

1.2.3 Five families of line-defects

In the above description of the atomic formation of a distarg one immediately
distinguishes two classes of defects. If the lattice disgri@ent is perpendicular to line
D, the line is known as aedge dislocatioifthis was the case in the above Figures). If
otherwise the lattice displacementis parallel to D, the iscalled acrew dislocation
as depicted in Figure 1.3. Let us however here cite H. KI¢ifi®89). “Another type
of defect calledlisclinationsis capable of destroying the global rotational order while
mainting it locally. To describe the formation ofveedge disclinatioras depicted in
Figure 1.4(a), take a regular crystal in the form of a che@skramove a section sub-
tending an angl€. The free surfaces can be forced together. For |Q&geis requires
considerable energy. Still, if the atomic layers on the fsagfaces match together
perfectly, the crystal can re-establish locally its peigostructure. We can imagine
also the opposite procedure.We may cut the crystal, foredipps open byQ and in-
sert new undistorted crystalline matter to match the atombe free surfaces. These
are wedge disclinations of negative angle. As for the daions case, if the vector
Q, instead of pointing in the direction of the line, now poietshogonal to D, two
other types of defects appear, namely sipday andtwist disclinations”, as depicted
in Figure 1.4(b). The edge and screw dislocations, and tligeseisclination can be
computed as rectilinear defects in planar elasticity, &tile two other disclinations
are fully 3D defects. These three 2D examples will be congpirteSection 1.6 and
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Figure 1.4: (a) Wedge disclination;(b) Splay (top) and twisottom) disclinations;
from Kleinert (1989).

will allow us to validate our theory in the three first Chayster

1.2.4 A selection of dislocations and disclinations

Figures 1.5-1.8 are chosen to show a variety of dislocatiosimgle crystals. Whereas
Figurel.5 clearly illustrates the geometry of dislocafiaes, which either form loops
orend at the crystal rim, Figure 1.6 shows an array of reddr dislocations in silicon-
germanium layers — which are crystals of interest in our w@kChapter 4 for a

point-defect analysis). Figure 1.7 shows a collection sfadiations in gallium ar-

senide, which can be considered (together with indium phidgpdislocations) as a
particularly resistant class of defects and Figure 1.8 shaiypical network of dislo-

cations, with interactions, branching points and clustgions. Let us point out that
it is typical of single crystals to exhibit dislocations whican freely evolve while

forming complex geometrical structures (cf Section 3.6.3)

1.3 The multiscale problem

The present work focuses on the mesoscale modelling ofdéieets, but one should
keep in mind that our ultimate objective is the obtention ofrfogenised defect den-
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Figure 1.5: Dislocations in nickel
observed by TEM. “The Trans-
mission Electron Microscope
is a powerful tool for materials
science. A high energy beam of
electrons is shone through a very
thin sample, and the interactions
between the electrons and the
atoms can be used to observe fea-
tures such as the crystal structure
and features in the structure like
dislocations and grain bound-
aries.”

Figure 1.7: As precipitates deco-
rating dislocations in a GaAs sam-
ple (from SEMILAB).

P

b
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Figure 1.6: IBIC images of dislocations
in relaxed silicon-germanium layers: “lon
Beam Induced Charge analysis of devices
provides a unique method of studying fully
functioning circuits beneath their thick
surface layers without the need to remove
any surface layers prior to analysis. This is
due to the high penetrating power and low
lateral scattering of the focused MeV ion
beam used for analysis” (cf Dr. M. Breese,
Univ. of Surrey).

Figure 1.8: Dislocations in aluminum.
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sities and the associated laws at the macro-scale. Mordbsbkould also be recalled
that some aspects of the fundamental physics of dislocatian only be handled at
the atomic scale. Therefore, this section will briefly intuze these 3 scales of matter
description and the relations between them. In particwarwill discuss the Burg-
ers and Frank vectors, which are the basic defect propesssciated to line-defects.
This section contains the following subsections:

The 3 scales of matter description

Burgers and Frank vectors and tensors

— Burgers circuit size
— Dislocations and disclinations at the meso-scale

Atomic scale analysis: crystalline lattice

Meso-scale analysis: dislocated continuous medium

Macro-scale analysis: continuous medium

Defect densities

1.3.1 The 3 scales of matter description

To address the modelling of single crystals with line-defethe various scales rele-
vant for matter description and their interrelations aresHwiefly reviewed.

¢ At the atomic scale (generally indicated in the sequel bywebtinx) the char-
acteristic length is the interatomic distance. At titnthe body is referred to as
2 (1) and the reference body is a perfect lattiZg".

e Atthe meso-scale (indicated in the sequel by a sirjjthe characteristic length
is the average distance between two neighbour dislocdties.| At timet, the
body is referred to a&*(t), to be interpreted as a random sample corresponding
to a given growth experiment. The reference bogdyis a perfect crystal, i.e. a
body without dislocations or disclinations.

e At the macro-scale (indicated without stars) the charattedength is the di-
ameter of the crystal and the bod(t) has a physical meaning related (t)
andZ**(t) in terms of ensemble average; the reference k@ggan be, or not,
a perfect crystal. The difficulty of selecting this refereraonfiguration will be
discussed at a later stage.
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1.3.2 Burgers and Frank vectors and tensors

According to the above classification, the Burgers and Fratkors associated with a
line-defect can be defined at every scale:

e Theatomic Burgers vectas, in the absence of disclinations, equal to the lattice
displacement created by the dislocation. More exactlg, &jual to the closure
failure in the reference configuration of the image of a ofbk®p enclosing
once the dislocation in the actual crystal, that is, is defiae

Bi**(c:):| Z A (Xn) (1.3.1)

loop

whereAd;(xn) denote the increments of the displacement vector betwggn
andZ** along the closed loop C. Figure 1.9 shows how a closed cinclite

actual crystal is deformed into an open circuit in the refiessconfiguration,
while preserving the number of atomic steps (contrarilytte turve length)
along this circuit in the presence of an edge dislocationth@rother hand, the

Figure 1.9: Atomic reference (left) and dislocated (rigtrf)stal configurations for an
edge dislocation. The Burgers circuit and vector are definedtomic step counting;
from Kleinert(1989).

atomic Frank vectors the total rotation experienced by a vector field paraflell
transported (that is, transported while keeping a fixedamgth respect to the
lattice lines) along a circuit enclosing the disclinatiorel (which is also a dis-
location since the deformation of a closed loop from actoakference crystal
will be an open curve if the number of atomic steps is presBrveigure 1.10
illustrates the case of a wedge disclination.
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(a) Circuit C encircling the discli- (b) Rotation by -90 of a vector

nation inZ(t). parallelly transported along C (the
circuit starting and ending point is
designated by a dot).

Figure 1.10: Atomic scale observation of a crystal with a geedisclination; from
Kleinert (1989).

e Considering now the mesoscopic scale (the “dislocatedmomtis medium”),
the mesoscopic Frank vect@long a circuit (i.e. a closed loop C in the actual
crystalZ*(t)) encircling once a dislination is defined as follows:

Qf = [@](C) = /Cﬁmcq:dfm, (1.3.2)
where theFrank tensoiis introduced as
Oy (X) := EkpndpSmn(X).- (1.3.3)

while &5, denotes the (assumed) linear straigy, stands for the permutation
symbol andd,, for the gradient operator, whilgg](C) is the jump over C of
the multivalued linear rotation vectog;. The classical summation convention
of Einstein over repeated indices is used.

The symbob, is here introduced and it should be emphasised that, foonsas
that will become clear at a later stage, it does not indicateederivative. In
fact, Imwy; simply represents a 2nd order tensor defined from the lineains
by Eg. (1.3.3) and related to the gradient of the multivaliield wy.

Similarly, themesoscopic Burgers vectalong a circuit encircling once a dis-
location is defined from the knowledge of the linear stré&ihand a reference
pointxg as follows:

BI(C;%o) := [U](X;C;X0) — &iim|[wy'](C) (Xm — Xom) = /C oibrdg, (1.3.4)
where theBurgers tensois introduced as

91 (X:X0) 1= &f (X) + Eipa(Xp — Xop) 91 & (X), (1.3.5)
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with the same remark as before concerning synahol

Expressing the Burgers vector in terms of the strain, irtsigfathe displace-
ment gradient, is here of fundamental importance (suchrabéd-rank vector).
Indeed, contrarily to the linear rotation and displacenfezits, the strain is
single-valued and hence can be homogenised to provide atdbeo-scale the
so-calledelastic strain The precise justification and detailed computation of
Egs. (1.3.2)-(1.3.5) is given in Section 1.5, while its majpplication to the
validation of Weingarten's theorems is given in Section4..4

From Stokes theorem and strain incompatibility outside deéect lines, i.e.
from the relation

Ejim 9 0 6 = Ejim A Eprdpym =0 (1.3.6)

away from L, it turns out that the mesoscopic Burgers and tansors are
equal for any pair of curves C and C’ which are continuousfipdeable into

each other. This is the well-known Weingarten’s theoremictvistates that the
Frank and Burgers vectors are invariant vectors attachadjteen defect line L
(cf Section 1.4.4).

e Finally, at the macroscopic level, teacroscopic Burgers and Frank vectors
associated to any surface S4sft) are in turn defined from the dislocation and
disclination densities over S:

Q(9)

/Seikds, (1.3.7)
/S/\ikds, (1.3.8)

Bk(S)

whereAjx and @y stand for the dislocation and disclination density tensors
respectively, to be defined at a later stage (cf Section)1.3.6

Burgers circuit size

Since the macro-scale Burgers/Frank circuit (or surfa@néter is much larger than
the mesoscopic average distance between the defect liresjacroscopic densities
only provide information on the average defect densitingdrticular these densities
only provide the excess of defects of a given sign over theratign defects in the
selected region, whereas the crystal microstructure gtyatepends on the positively
and negatively oriented defects; for example the resulBoggers vector turns out
to be zero if an equal number of dislocations of both signspaesent in a given
region, even it this number is very highMoreover, experience shows that often the

2A prominent example is tension, where for reasons of symneefual numbers of positive and negative
dislocations are produced, so tf&{C) = 0 for each C (Kr6ner, 2001).
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material state can change in spite of the absence of a nonmymaroscopic dislocation
density, while in some other cases (such as bending andm)rsixcess dislocations
of a given sign are produced, but their number is usually sallstimat the resulting
change of state is much lower than that resulting from thaikameously produced
dislocations of both signs (Kréner, 2001). In fact, thisigades that the second-order
defect densities (introduced in Section 1.3.6) are notdafft to completely describe
the matter behaviour in such cases and that higher-ordsoteshould be considered
in addition.

Dislocations and disclinations at the meso-scale

The Frank vector of a defect line L is the invariant jufp := [w;], while for a given
reference poinkg its Burgers vector is the invariaBy := [Ug](X) — &amQ} (Xm — Xom)-

A defect line with non-vanishing Frank vector is called actiisation, while a defect
line with non-vanishing Burgers vector is called a dislamat Clearly a disclination
should always be considered as a dislocation by an appteti@ice ofky while the
reverse statement is false sif@g might vanish. This is why, in the present work, the
word “dislocation” means in the general sense a dislocatimaior a disclination. A
pure dislocation is a dislocation with vanishing Frank weciMoreover, let us remark
that a purely rotational defect (i.e. such thag] # 0 while [uf] vanishes) does not
truly exist, by the invariance of the Burgers vector whictowh that an appropriate
selection of the reference poikg can always provide a non-vanishigg if Qy # 0.
This can be observed on Figure 1.10 where the perfect lattioensions have been
modified by the presence of a disclination.

1.3.3 Atomic scale analysis: crystalline lattice

Given a dislocation in the general sense, the atomic arraegeZ**(t) differs from
the reference latticgZy*, and in addition the atom displacements fref* to Z2**(t)
are not uniquely defined (Kleinert, 1989). More exactly,scdétemultivalued(cf Sec-
tion 1.4 for details) mapping, := x;*(X),i = 1,2 or 3 applying the reference atom
positions onto the actual atom positions, is defined Witk Z5* andx; € Z2**(t).

In general, to understand the meaning of the mapgjtg it should be first recalled
that the dislocation position cannot be determined prgcesethe atomic level since
several dislocation locations in the actual crystal candseeiated with the same pic-
ture of the atom positions (in fact the defect should be ustded as located inside a
nanoscopic lattice region). Moreover, as already expthitieere is no way to uniquely
define the displacement field at the atomic scale. Indeedtanyaf.Z}* can in princi-
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ple be selected to define the displacement of a given ato@tt(t) which is therefore
a multivalued discrete mapping. In fact, the atom locatiamesunchanged in the left
and right parts of Figure 1.2, both #3* andZ**(t), while the displacement defini-
tion and hence the dislocation line location are diffened#éfined (the distinct atomic
planes S or S’, pictured on Figure 1.2, are filled with vacasend the dislocation is
at the boundary of this set of vacancies).

1.3.4 Meso-scale analysis: dislocated continuous medium

This scale is the one on which Chapters 2 and 3 of this work n&itus, in the
framework of linear elasticity. Let us here describe someegal and basic field prop-
erties at the meso-scale level.

¢ Outside the defect line ldisplacement fielts amultivalued functiorfcf Section
1.4) such that for any poin{ € #; (the perfect crystal) one has

U(X) =x—X, with x:=x(X),

and wherex; (X)) is a multivalued mapping fron#j to Z*(t). Displacement
multivaluedness represents an important difficulty to addrat the meso-scale
in dislocation modelling. As opposed to multiple-valuedd# single-valued
fields will also be called uniform.

e Thelinear strainwill be denoted bygjl* In general, the Lagrange deformation
tensor is given by

el
&= %(ﬁj U+ auj + djundidy,), with  gjuf == Z%

i
In the sequel, linear elasticity will be assumed and heneentinlinear terms
are not taken into account at the meso-scale. This fundattgrgothesis relies
on the assumptictthat all nonlinear deformation effects take place aroumd th
dislocation in an atomic scale region whose diameter is Istcoahpared to the
meso-scale characteristic distance between the distosatir herefore, using a
singular perturbation asymptotic treatment, the nonlirefects become con-
centrated inside the defect line at the meso-scale and hkacstrain can be
assumed to be the single-valued linear symmetric tensendiy

1
&7 = 500 +au) (1.3.9)

3In practise this assumption is certainly valid in singlestay growth.
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outside the defect line and arbitrarily set to 0 on the defeet (noting that
concentrated deformation effects inside this line do naym@ny role in dis-
placement integration at the meso-scale).

o Outside the defect line L, tHafinitesimal rotation tensois a possibly multiple-
valued field given bywj := 1(0jur—a, uj) with the associated rotation vector
given by

K 1 %3 1 *
W =~ 58K W] = k)Y

and the identitywy; = —¢&jkay. The Frank and Burgers vectof and Bf
associated with a defect line are commonly defined as fumetidthe jumps of
wy andu’ around this line. From Weingarten's theorems (cf Chaptee&isn
2.2.2 or Kleinert (1989)), these vectors are shown as iawgsiof the defect
line (Egs. (1.3.2) & (1.3.4)). In general at the meso-scatbstocation or a
disclination is a defect line (i.e. a singular line for theast) to which non-
vanishing Burgers and/or Frank vectors are attached.

e The mesoscopic strain is said to @mpatibleon a region U if thancompati-
bility tensoras defined by

Nk = Slmnskpqﬁmdpé:n (1.3.10)

vanishes on U. The dislocated crystal cannot be globallgrie=d by a com-
patible deformation field derived from a single-valued thspment field and
hence the incompatibility tensor is concentrated in thecddfnes.

This work is devoted to provide a clarification of the relatibetween meso-
scopic incompatibility and defect densities.

1.3.5 Macro-scale analysis: continuous medium

At this level, a pointx of the actual bodyZ(t), with x; = xi (X)), X| € Zo, will be
called a material point — to be understood as a certain reptatve volume of matter
of mesoscopic size located around point

In order to define macroscopic concepts such as temperatusteess, one needs to
give a meaning to the temperature and stress at any pointrifémus definition is
obtained from an ergodicity argument and hence, at the rsaopic level, the fields
on Z(t) are defined as “ensemble averages” of the fields define#ddh) (see Sec-
tion 1.3.6 for a short review of this issue). By this opematibese fields are smoothed,
which means that concentration effects at the meso-soaédéong the defect lines
are erased. To this end, a weak limiting procedure (or homiggéon) is needed in
order to define the dislocation and disclination densitigsand®;; at the macro-scale
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level from the knowledge of the meso-scale fiefgsand©j;.

To justify that homogenisation of mesocopic concentragechs results in continuous
macroscopic counterparts of these terms, the following Ai&agy can be made. Con-
sider the continuous functiag(x) on the intervala, b) R discretised by pointsx(¥)
and define the distribution

with A(Mx(K representing the lengths of small intervals covefiad) and which tend
to 0 asn — o, while 5(x— x(X) is the shifted Dirac measure. Then, for any appropriate
test functiongp, one finds that

n—oo n—oo

n b
lim < g™, >=lm 3 p(x*)g" (x0)aMXO = / () W(x)dx
k=0

and hence the atomic measug®8 weakly converge to the continuous functign

In this context, the macroscopic reference bogyis basically arbitrary and can, or
not, be a perfect crystal. Indeed, at the macro-scale, $@atiement;; must be a
single-valued function, whereas the displacement fiel multivalued at the meso-
scale (cf Section 1.4.2). Consequently the ensemble aneragocedure is forbidden
for multivalued fields such as® and hencey; is not the ensemble averagewt It
should also be observed that removing the field multivalesdivy performing appro-
priate cuts is of no use here, since by derivation these aotrisduce arbitrary distri-
butional contributions without physical meaning. In gealgit is important to make it
clear that the only fields which can be obtained at the macatedy ensemble aver-
aging from the meso-scale are the so-called extensive fssisciated with additive
physical properties (such as specific mass, stress, spetdimal energy... and the
dislocation and disclination densities).

1.3.6 Defect densities.

¢ At the meso-scale, the dislocation line L has an arbitraigragation, while the
Frank and Burgers circuits are always defined in the sequmidar to encircle
L in the right-handed sense, in such a way that choosing thesi direction
for the line orientation will let the Burgers and Frank vestohange sign. How-
ever the productBj 7 andQj 1, wherer; is the tangent vector to L, will keep
the same sign. Since this quantity simultaneously accdantle defect orien-
tation and the resulting local crystal structure modificatwith respect to the
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reference perfect crystal, the following geometric tessare introduced:

DISCLINATION DENSITY: Oi*j = QJ*&L
DISLOCATION DENSITY: /\i*j = B]-‘dL
* . * *
DISPLACEMENT JUMP DENSITY: aj = Njj + EimOj) (Xm — Xom)
1
* . * * .
CONTORTION: Kij == ajj — Eammdj’

wherexgm is a reference point for rotation and displacement intégmnatHere,
symbol g is used to represent the concentrated vectorial measusstylem
the defect region L (in case of an isolated regular defeetilinvill be equal to
70, whered, is the “line-Delta measure”, cf Section 1.10.2).

Notice that not only the Burger and Frank vectors do not dderthe position
xon L (by Weingarten’s theorem, cf Section 1.4.4) but alsoracpce the num-
ber of Burgers and Frank vector types is finite, often smélba&ing however
connected to the lattice structure (Kréner, 2001). Thelidiatton and dislo-
cation density tensor®;; and/\; are measure densities related to the strain
incompatibility nj; as it will be shown later. Therefore, the tensdy$ and

ei*j are basic physical tools to model defect density at the nseate while

ni*j plays a key role to understand their behaviour. The disphece jump den-
sity and mesoscopic “contortion” (otherwise termed la&ttarvature, cf Section
1.7.3) tensorsr’s andk;: are combinations of these basic density tensors, with
ajj = /Ajj when the disclination density tensor vanishes. Measuhegiensi-
ties©]; and/; can be performed at every spatial poxf the actual crystal,
by scrutating the presence of a defect lin,dts orientation and the type and
length of the associated Burgers and Frank vectors. Thigldhmrovide the
exact internal mechanical state of the crystal.

e At the macro-scale defect densities are introducethdayrogenisatiorf their
mesoscopic counterparts. In other words, we do not obsesiaghe speci-
men (as in the mesoscopic approach) but study the behavi@mr ensemble
consisting of several repetitions of the real (mesoscapisjem. To obtain a
manageable statistical theory it is necessary to assumlid@y of an ergodic
hypothesis, which in our case of a static (geometric) apgrpstates that the
volume averagef a random function (as performed on a so-called “represent
tive volume”) equals thensemble average the same function (Kréner, 2001),
that is, in the case of defect densities:

1 * H *
0=y L, @IV = im. > O

ergodicity | ,
ensemble average

1 |
Nij = N/AV/\i*jdV:,m%/\rj.

volume average
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Here AV is the representative, or macroscopic, volume elementtwisidn-
finitesimal at the macro-scale, but very large at the mesesedile N is the
number of members of the statistical ensemble on which tterieasurements
are performed (Kroner, 2001).

1.4 Mesoscopic field multivaluedness

This technical section introduces the concept of multigdlfunctions in precise math-
ematical terms and allows us to correctly introduce the wallied displacement and
rotation fields. Its main results, termed as Weingartereptbms, show the rotation
and displacement jumps as obeying to invariance propestigdbe associated defect
line.

The present section contains the following subsections:

Basic properties of multivalued functions

The space of defect multifunctions

Single-valued strain and multivalued rotation and dispiaent fields

Weingarten’s theorems and strain multivalued decompositi

Geometry of the dislocation lines

1.4.1 Basic properties of multivalued functions

Let us here start by introducing the meaning of some matheatabncepts. A “func-
tion”

f: QRN

is referred to as a “multifunction” if the image sétx) for x € Q contains more than
one element oRN. Let us already point out that the spacerafitiple-valuedunctions
cannot be considered as a vector space.

In the presence of a cut surfaBe_ Q passing by the defect line L, a multifunctidn
could sometimes be written as

f(6C) = £ +K[f](x),
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whereK € Z, [f](x) is the jump of the function at due to the presence of the line L,
and wheref (9 (x) denotes a simple function related to the arbitrary choic®.of
However, it is precisely one of the key aspects of this worlatoid any kind of ar-
bitrary introduction of a cut surface without precise jiisttion, since this procedure
appears in general as an artificial trick and does not reallygha tractable way to
handle multifunctions. In particular, no homogenisationite macroscale is possible
when such cut surfaces are used. On the other hand, we will 8tad the multival-
uedness of the elastic displacement and rotation fields edaken into account in a
rigourous manner. To this end, a general notion of multi@kted functions is given
below in the case of line-defects in linear elasticity.

Exact definition of a multivalued function. In the sequel, symbda@ will denote the
entire crystal, wherea@ _ will denote the crystal without its dislocation lines.
A multivalued function

f:Q cRV RN

consists of a set F with a topological structure (usuallyeceRiemann set or
Riemann foliatiopand with two maps

f:F-Q and f:F-RV
such that

o fis asurjective map
o foreveryp € F, there is a neighbourhood V @fs.t.
— f(V)is aneighb. off ()
— the restrictionf, of f s.t. f; :V — (V) is an homeomorphism (i.e.
one-to-one, continuous, and with a continuous reciprocal)

This definition can be summarised by the following scheme:
Q —F —RN,

where only the introduction of a cut surface can bring outdlassical represen-
tation of f as a single-valued function associated with the sch@mé&s F —
RN,

Example. To understand the multivaluedness of the position vegter x*(X;), let
us observe the analogy betweghand the multivalued function of a complex
variablez= f(Z) =logZ = logR+i® whereZ = Re®. The set of image points
of Z=1is{2kmi,k € Z} and the difference between two elements of this set
is an entire multiple of the jumfz] = 2mi. It is possible however to make
single-valued by cutting the compl&kplane for instance along the positive
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real half-axis. HenceZ = 1 does no more belong to the domain of the single-
valued functionf but can be approached by letti@y— 0" or © — 2~ with
R=1.

A selection of multivalued functions. Figure 1.11 pictures a multivalued function
with two branches. Note that the notion of branch only app@arsoon as a
cutting surface has been introduced, otherwise one canfpamsone branch
to the other one without observing any particular changeguié 1.12 shows
the real and imaginary parts of the multivalued complex cubbt function,
which has a 3-branch Riemann set. Let us remark that Riemetarcan exhibit
infinitely many branches and can differ from the sole supsitfoms of identi-
cal sheets around a branching line, and hence can exhibjleartopological
structures.

Figure 1.11: Example of multivalued function, with two bciues.

a,

Figure 1.12: Cubic root function on the complex plane. (sgafpart; (b): Imaginary
part; from MIT OpenCourseWare
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1.4.2 The space of defect multifunctions

In this work, the following particular subclass of multiuald functions called “defect
multifunctions” will only be considered.

Defect multifunctions. The multiple-valued scalar or vector functibmelongs to the
defect multifunction class if the single-valuet® (Q, )-differential formd, fd¢
is closed o, (thatis, if it verifiesejq dcd, f =0 onQ_), whered, f is defined
onQ and equal t@ f onQ_, while it is extended in some way @b. The same
definition can be applied to distributions as well.

If xp € Qu is a point wheref (xg) := fg is known and ifC C Q| is a continuous
curve joining the endpointg),x € Q| for a givenx € Q_, the “function”

f(x,C) = fo+/C§|f(E;X)dE|,

is multiply defined, since it depends on the choice of C. Sima@ehomotopic
(i.e. continuously deformable into each other) curves diee same value to
f(x;C), a so-calledlefect multifunctiomf index 1 is associated with

f(x#C),

where the equivalence clas€ #f C is the class of all curves homotopic@
We observe that the Riemann set related to this class ofituris the set

F:= {(x, #C) for everyx € Q, and for every continuous curve joining to x},

while the canonical projectiofx,#C) — x defines the mag and where the
map f designates for instance the elastic displacement or ootdigld in the
forthcoming discussion.

It is crucial to observe that single-valued functions canalddded since they share
the same domain, whereas a multivalued function is definets@pecific Riemann
foliation and cannot be added to a multivalued function @efion another Riemann
foliation, thereby showind as not belonging to a (linear) Banach space.
Moreover, a defect multifunction will be called @fidex nif its nth differential is
single-valued. Typically, the rotation fieldy; is a defect multifunction of index 1,
while the displacement field is a defect multifunction of index 2.

The jump of a defect multifunction of index 1 (such as the rotation le Burgers
fields, as introduced below) is computed along the equicaletass € of the closed
curveC encircling once the line L as follows:

1l©) = [ f(E0da,
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and also termed jump df around L. The principal mathematical difficulty associated
with multivalued functions results from the fact that thegnaot be derived on the
entire domairQ, even in the distributive sense. This is why the notatiptis intro-
duced to represent in some sense the gradient of a defedfunation of index 1.

In the same way, the notatia_hﬁj is used for defect multifunctions of index 2. The
notationsd; andé, coincide away from L and it is one of the concerns of this wark t
distinguish between the gradiefity; of a single-valued fielav and the single-valued
second-order (resp. third-order) tens@swy: (resp. d;d)uy), whose first (resp. sec-
ond) line integral is the index 1 (resp. index 2) multivaluetation field cw; (resp.
displacement fieldy).

In addition, & will usually mean partial derivation w.r.tx; € Z*(t) or x, € Z(t).
The notatiorﬁj<s) is used for partial derivation of a single- or multiple-vatufunction
whose domain is restricted @, . Locally aroundx € Q| , for smooth functions, the
meanings oﬁj<s) and the classical; are the same, whereas on the enfiréhe partial
derivation operatod; only applies to single-valued fields and must be understood i
the distributive sense. defect-freesubset U of2 is an open set such thdtnL =0, in
such a way tha&j<s) andd; coincide on U for every single- or multiple-valued function
of index 1.

1.4.3 Single-valued strain and multivalued rotation and dsplace-
ment fields

For obvious physical reasons, it indispensable to assumtethle strain and all its
derivatives are single-valued @b , whatever definition is selected for the reference
configurationZj. From Eqgs. (1.3.2) & (1.3.3), the rotation vector is a defaaiti-
function of index 1 defined of as

(0 = i+ [ Sl €)dEm, (14.1)

whereggpndpéim is denoted by may, while the displacement vector is a defect multi-
function of index 2, which is obtained d&_by recursive line integration (ﬂj<s) a|<5> U =
(9J-(S) (&4 + wy) and hence by recursive integration of (cf Section 1.5 foaiie}

5j5|u§ = o'?jéﬁJrekajw;. (1.4.2)
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1.4.4 Weingarten’'s theorems and strain multivalued decomgsi-
tion

The reader is invited to complement this section by readaaiSn 1.5, which specifi-
cally focuses on the obtention of the rotation and displas@rfields by recursive line
integrations of the linear strain only.

Weingarten’s theorem for the rotation field. The rotation vectoy is a defect mul-
tifunction of index 1 whose jumg@j := [w;] is an invariant of the line L.

Proof. Referring to the notations of Figure 1.13, for two distinoimgs X andx’, it it
can be observed that

@G =tim [ Fexdén and ()= m (< [ Greden).

whereC, andC; stand for two circles of radiusencircling L and defining a tube
enclosing L, whiled denotes the thickness of a small strip removed from this
tube parallel to L. Since the Frank tensor is a single-vat@dinuous function
away from L,

in such a way that

K _ k- / — i 3 * — i 3 S
04](Ce) — k)G = fim [ Gnekdén=lim, [ Gncdén,

wherel'? = C3(R) UC2 (%) UL?. By application of Stokes theorem,
(X)(Ce)~ )€ = lm [ e TmedS

for any surfac&? enclosed by 2. By strain compatibility orQ, , the vanishing
of the integrand for every > 0 yields [w](Ce) = [w)](C;), both terms being
denoted byQy, whereCy is called the Frank vector of the line. O

Multivalued displacement field. From the symmetric smooth linear strain tengg)r
the multiple-valued displacement fielgl of index 2 is defined of2.. More-
over, the symmetric part of the distortion teanﬁ) ur is the single-valued strain
tensor&;y onQ, while its skew-symmetric part is the multiple-valued taia
tensorwj = —&jay.
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Figure 1.13: Scheme of a tube around L.

Proof. By Eq. (1.4.1), the rotation field);(x;l') is defined for every smooth curve
I" joining Xg to x € Q_, in such a way that its gradient is the known expression
OmWy = &paPdpégm in the framework of the infinitesimal displacement theory.
The displacement vectof is defined as the equivalence class of

U (x ) = ugi + /l_[gil* + Eipa(&p — Xop) 91 W5 ]d& + &g} (% T) (Xg — Xag),
(1.4.3)
for all curves homotopic td. From the definition of the Burgers field
bi*(X) 1= U (X) — Eipqtp(Xq — Xoq)
wherex € Q, , and of the Burgers tensor

91 (X) := & (X) + &ipg(Xp — Xop) 91 6§ (X),
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the jump of the displacement fieldat Q| writes as
0100 = Epa @y —00)+ [ 3B (£)0i
Ce(x)

Sinceal(s)wa =015 andal(s) by = 9)br away from L, the (s)-partial derivatives
of the multifunctionu atx € Q_ write as

07Uk (%) = (&) — &iip}) (),
in such a way that the symmetric part of this multivaluedatisbn onQ,_is the

single valued strair%(o'?j(S> u + o ut) = &7, while its skew-symmetric part is

the multivalued (o'?j<S> U — (9i(s) uj) = —&jp wp, thereby proving the statemeint.

Weingarten’s theorem for the displacement field. It turns out that the jump of the
multiple-valued displacement field is a constant vectos plfixed rotation term
EipgQ}(Xq — Xog, Which is the cross product of the rotation jurf by the posi-
tion vectorx — Xg. In fact, by the same arguments as in the above proofs, it can
be observed that

191(Ce) ~ {)(Ce) = Im | Frbiciém = Im [ cqmdiambicls

for any surfaceZ? enclosed byl'g. By strain compatibility onQ,, it fol-
lows from Egs.(1.3.5) and (1.3.3) that the integrand is zé@mosuch a way
thafby](Ce) = [b](C;) defines the invariant Burgers vectBf of L as given
by Eg. (1.3.4). O

1.4.5 Geometry of the dislocation lines

From Weingarten'’s theorem proofs it immediately appeaas ttislocation lines are
either closed loops or end at the crystal rim.

In fact, if the line had an endpoi € Q, then a surfac& enclosed byC,(x) and
contained insid€, could be found entirely insid@ in such a way that, by application
of Stokes’ theorem and strain compatibility away from L,

)= [ Omk0&n = [ eqmerondl9p61% =0

€

Moreover, by strain compatibility o and since??mtqfn =0, it readily follows from
Egs. (1.3.5) and (1.3.3) that

B := [0b}](CaiXo) :/c (A)dmbj*dfm = /z£q|m0| Ombjd&; =0,

€

thereby proving that eithek € dQ or the line is closed.
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1.5 Expression of the Burgers vector in terms of the
elastic strain only

This section is devoted to justifying the use of the soledim(elastic) strain and Frank
tensor in the expression of the multivalued displacemeld, fef the Burgers vector
and the associated defect densities at the meso-scale.e@berris that, using this
approach, no reference configuration is needed at the noade{secause the strain is
in fact defined from the stress tensor and the temperatuck (fidlose existence can
of course be assumed) by the equations of linear elastiCitythe contrary, starting
from the displacement field requires to define a referencégumation (the displace-
ment being defined from some reference position to some lgotisition), and this
represents a problem for several reasons:

e There is arbitrariness in the selection of the referencdigoration (in particu-
lar, in single crystal growth from the melt, no privilegeder=nce configuration
exists since the crystal grows dislocated). Any furthergitsi development
then requires to show that the obtained result is indeperfethe reference
configuration. In fact, passing by the objective strain f{glsl related to the dis-
placement by Eq. (1.3.9)) solves the problem. However,iatdtage, it turns
out that the displacement field is not required anymore aatkhdevelopments
can be carried out from the strain only. Considering thdrstnathout reference
configuration might seem contradictory, but this is not tasecbecause this
strain is in fact the elastic strain (at the meso-scale, titaénsis purely elastic,
except within the defect line). Both at the meso- and macedes, the elastic
strain is directly defined from stress and temperature witlequiring a refer-
ence configuration.

e There are complex issues related to displacement field valugdness, since
in the presence of disclinations, the rotation field is ftselltiple-valued. In
particular, let us emphasise that no homogenization isvelibfor multivalued
fields whereas the single-valued elastic strain, stresspéeature, and defect
density fields can all be homogenized from meso- to macrte shtoreover, our
approach is not devoted to avoid the treatment of multivéfiedds, but to carry
out the developments in a sound mathematical framework. Wsia benefit,
this approach will allow us to rigorously demonstrate théiear fundamental
identity “inc & = curl k" relating the elastic strain incompatibility to defect
densities, as explained in the remaining of this Chapter.

Let us now give the precise justification and detailed comatiat of Egs. (1.3.2)-
(1.3.5) and Eq. (1.4.3). Starting from the mesoscopic digghent fields, all the
required quantities are successively defined as follonQan
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Strain
* 1 ko *
Rotation tensor
K 1 * *
Rotation vector
* 1 * 1 *
W = E&'ijk(q(j = Esijkdjuk (1.5.3)
and hence
W = —&ijk W (1.5.4)

It results that Eqgs. (1.5.1) & (1.5.3) imply that

and hence imply strain compatibility d_. Now, from classical elasticity, Eq. (1.5.5)
implies that the rotation field is defined as

W= W+ /X: EkprOp&rndEm. (1.5.6)
From Egs. (1.5.1), (1.5.2), (1.5.4), it results that
AU = & + W = & — &k (1.5.7)
and hence by integration that
500 =+ [ (47(8) e (6)) di.

and by partial integration (where the brackets denote thiatian of a quantity be-
tween positiongg andx) that

09 = Ut [ (67(8) + mlEn—Xom) X (£) 88
— Bk (§) (Em—Xom)] 2 -

which shows the displacement field as equal to

U (X) = g +/X;([é?r+€imk(fm—X0m)5| w]dé) — Emig (X) (Xm—Xom).  (1.5.8)



44 Ingredients for a multiscale analysis of the geometry ofidlocations

Let us remark that, when disclinations are present in anlditd dislocations, the dis-
placement jump around the defect line is not an invarianhisfline. Nonetheless the
jump of the quantityb; defined as follows is an invariant of the line and can be used
to define the Burgers vect&:

by := U — Eikm@g (Xm — Xom), (1.5.9)
and therefore
b = U + /XO (67 + €k Em— Yom) 3 W A&, (1.5.10)
in such a way that
abi = & + &mk(Em — Xom) 9 & (1.5.11)

When disclinations are absent, the displacement jump ardlm defect line is an
invariant of this line and can be used to define the Burger®ov&. In fact, since

[Eimk@ (X) (Xm — Xom)]c = &mk[@k (X)]c (Xm — Xom) = O,

where the brackets here denote the the jump of a quantitgalasiosed curve C, it
can be observed from Eqg. (1.5.8) that

[Ulc =B = /C (&5 + Emk(&m — Xom) A @i ]d&. (1.5.12)

On the other hand, let us compute the displacement deryaiis obtained from Eq.
(1.5.8) as

AU (X) = & 4 Eimk(Xm — Xom) ) W + EikmO) W (Xm — Xom) + ikl X -
= &ito

which, after integration around C, provides the BurgerdweB;. Hence in the pres-
ence of disclinations, the Burgers vector writes as

B = [blc = /C (67 + Bl &m— Xom) 0 G A&,
while in the absence of disclinations it writes as
B = [Blc = [Wle = [[& + sm(En—ramdeidd = [ au(£)dé.

As a consequence, the jumpg®fandu; are exactly the same in the absence of discli-
nations.

However, and this is the key justification of the present wdhere are important
reasons to usk" instead ol in any case:
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e This approach is more general since it is adapted to both ltkeree or the
presence of disclinations.

e This approach allows us to define the Burgers vector from ttaensé;; only
(noting that, at the meso-scale, the strain is elastic evieeye along the inte-
gration paths defininlg® andB; since non-elastic effects are concentrated within
the defect lines). Indeed the rotation gradigmby is itself related to the strain
gradient by Eq. (1.5.6) and hence Eg. (1.5.10) defiidsom the strain only.

1.6 Computation of 2D rectilinear dislocations

In the present section, the computation of 3 well-known gxasof line-defects (2
dislocations and 1 disclination) is carried out in the plagese, that is, in the case of
a rectilinear defect associated with an elastic strain Wiscindependent of the'8
coordinatez (as defined along the defect line). Let us precise that theeswation and
constitutive laws involving strain and stress are only id&®d in the present section
for the computation of explicit expressions of rectilineiglocations, and no more in
the remaining of this thesis In the sequel, in order to handle 2D (planar) and 3D
computations together, Greek indices, 3...) will be assumed to take their values
from 1 to 2, while Latin indices take their values from 1 to 3.

The present section contains the following subsections:

First group of solutions: planar displacement field

Second group of solutions: vertical displacement field

Three 2D examples of rectilinear line-defects

Screw and edge dislocations, and wedge disclination

4The goal is to clarify the geometrical theory of dislocationithout introducing any restricting and
superfluous assumption on the body forces and the tempeiféld in order to address a maximum physical
generality.
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1.6.1 First group of solutions: planar displacement field

From the elastic constitutive lagf; = A &8 +2u &} with A, p the Lamé coefficients
and sinces, = &}, the following planar law holds

B—K *E)Oap +2UEY GB’ (1.6.1)
with the planar compreSS|b|I|ty modulusk defined byk* := A + u and the planar
deviatoric strain given b aB =&4p éawéaﬁ, with 8,5 the Kronecker symbol.
From the equilibrium conditiondg oﬁ =0 it follows that
for a smooth enough Airy function F, in such way that

Ohy = 02F = AF. (1.6.3)

The relations between stress and strain are
14v* v*
* *
apB — E* OGB E* UVV
with the 3D and planar elastic coefficients

Sap; (1.6.4)

_p@E\ 2w A . E eV
E= ey ’V_Z()\Jru)’E =10 and v* .= 1 v
The first compatibility condition Eq. (2.3.1) writes from £91.6.3) and (1.6.4) as
AAF = 0.

In this and the following sections, functions of the complexiableZ = x+ iy and
its conjugateZ are introduced. Remembering that, compared to holomorfoimic-
tions, analytical functions may be multivalued, it is easiéen that given two analytic
functionsf andg, all real functions of the form

F=0{Zf+g}
satisfy Eq. (1.6.2) and vice-versa. Eqg. (1.6.3) then shbas t
Oy + Oy = 40{f'(2)}.
From Egs. (1.6.3) and (1.6. 4) the deformation tensor isrgbse
St 6y = A VInyf
{ gx*x+£x*x+ zlg* = {”V()éf"( 2)+d"(2)), (16:3)
yielding after integration
E (i —iuy) = (B—v)f(Z2)—(1+v)(ZF(2)+d(2), (1.6.6)
E'wy = 40{f'(2)}.
It should be recalled thﬁgl3 must be a single-valued field.
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1.6.2 Second group of solutions: vertical displacement fie!

Another solution concerns the particular case whgre- 0, noting that each solution
of 2D elasticity can be decomposed into a purely planar ande@yvertical solution.
In fact, since stress equilibrium shows that

(A +u)addjui + pAyf =0,
it is easy to infer foi=z that

U= @D{h(zn, (1.6.7)

with h(Z) an analytic function. Then

* s 1+V

The functionh/ (Z) must be uniform. The complex rotation is

O = o Hiag = —i(lz?’)mzy (1.6.9)

In 2D isothermal linear elasticity without body forces, gvdisplacement solution has
planar components given by Eq. (1.6.6) and a vertical corapogiven by Eq. (1.6.7)

while the rotation vector has planar components given by @¢6.9) and a vertical

component given by Eq. (1.6.7) (cf Sokolnikoff (1946) andiigp (1996)).

1.6.3 Three 2D examples of rectilinear defects

In this section we consider the two typical multivalued gtielfunctionslog(Z) and
Zlog(Z). Starting from the general uniform strain expressions E#.6.6) or Eq.
(1.6.8) it is easily observed that any of the holomorphicctions f” (with O{f’}
single-valued)g” andh’ can provide a solution to the 2D problem. Since these func-
tions can be expanded in Laurent series:

400 +o0 +
f'(2)=%aZ" , ¢g'2)=3bz" , N(Z)=3 e,
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inside their respective convergence annuli, primitivatstows that

+o0
— an n+2 _
f(Z) = _zoo nt 1)(n+2>2 a 2In(Z)+a_1ZIn(Z) + ALZ + Ay,
n4—1,-2
< bn n+2
9(2) = Zoo mz —b_2In(Z) +b_1ZIn(Z) 4+ B1Z + By,
n4—1,-2
+o00
h2)=y - 1z“+1+c 1In(Z) +Co,
n;éool

with a_1 real in order that]{ '} be uniform. The relevant cases are those which give
rise to a dislocation or a disclination, i.e. such that thectionsf, f’,g’,0{h} or

0O{ '} are multivalued. Hence, in order to obtain non-vanishirtgtion or displace-
ment jumps, one needs to consider the following cases:

f(z) = —a,zln(é)+a,lzln(é), aieR, (1.6.10)
9z) = b,lzln(é), (1.6.11)
h(z) = c,lln(é), c_1€iR, (1.6.12)

whereR is a constant length and to which any purely elastic term ntagys be
added. In fact, from Egs. (1.6.6), (1.6.7), (1.6.7) and.@),6and from the definition
B* := B +1iBj with B given by Eq. (3.3.4), it follows that:

* _ 4 !
QZ - E[D{f }]’
B: = B* iB*—[] [] Q3(iz)
_ 3 _ 1+v {Z _|_[g/]}_|_E_Z D{f}
Q= Q§+iQ§:—(12J|;V)[h’]
B = [u)-0fizey = TV o) - S oEm) = S D))

It should immediately be noted th@t vanishes identically sindeg cannot be multi-
valued. From Egs. (1.6.10)-(1.6.12) and some easy conipusathe only possible
solutions are given by the following proposition (in sumgjarfor a straight defect
line L in 2D elasticity, there are no more than three distihetect classes. The two
dislocation classes are the screw dislocation which hasteakeBurgers vectors;

and is generated by the analytical functfogwith f = g=0), and the edge dislocation
which has a planar complex Burgers vedBjr+iBj, and is generated by the analyt-
ical functiong (with f = h=0). There is a single class of disclinations, the wedge
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disclination, which has a vertical Frank vec@} and is generated by the analytical
function f (with g = h = 0). These functions are:

CEQ Z

= 1.6.13
WEDGE DISCLINATION f(2) i zIn(R) ( )
E* * 4 IB* 7
EDGE DISLOCATION 9(2) = M In(ﬁ) (1.6.14)
iEBS z
=——>"—In(2). 1.6.15
SCREW DISLOCATION h(2) 2T V) n(R) ( )

For the edge dislocation, a detailed derivation was giveRstelby (1966).

1.6.4 Screw and edge dislocations, and wedge disclination

The remaining of this section is devoted to present the tblassical examples of 2D
line-defects for a medium assumed to be body force free addsmal.

e Pure screw dislocationFrom Eqg. (1.6.7), (1.6.9), and (1.6.15), the displace-
ment and rotation vectors write as

) 1., B
u'e = Zzngz and QQ:EDxuiQ:Ang, (1.6.16)

with {g } the Cartesian unit base vectors gt eg,€,} the cylindrical unit base
vectors, in such a way that the juni@*] vanishes identically, while from Eq.
(1.6.8) the Cartesian strain writes as

B 0 0 vy
[éﬁ‘f] = 4—22 0O 0 —x/|. (1.6.17)
m y —x 0

Moreover, inQ, , appealing to Eq. (1.6.17), the Frank tensor writes as

cos®d sin28 O
sin26 —cos®d O
0 0 0

_R*
y4

4mr?

[Omax] = . (1.6.18)

e Pure edge dislocatior-rom Eq. (1.6.6), (1.6.7), and (1.6.14), the displacement

is the vector r
—Bj(logg+1) N B 6

ue = 21 &t on S
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while the rotationwy* vanishes together with its jump. The Cartesian strain
writes from Eq. (1.6.5) as

x| X y O
(&) = % {y —X 0], (1.6.19)

2
219 0 o0

noting that the tensa_?m(qj vanishes identically i1, .

e Wedge disclinationFrom Egs. (1.6.7), (1.6.6), and (1.6.13), the rotation wect
is

*
4

we =%

with the multiple-valued planar displacement field given by

o
Yy 4

i [ @-vyin(g) -

and a vanishing Burgers vector:

ux —iu (1—v*)x|n(§)—§—f{(1+ v*)x—?—f[ye
52 (L+ V)x+ 58] (1.6.20)
Bx —iBy = [uy] —i[uj] + Q5 (y+ix) = 0.

The Cartesian strain writes from Eq. (1.6.5) as

o« | (logg+1) 0 0
J ATT R
0 0 0
N « cos® sin20 O
— w sin28 —cos® 0 |, (1.6.21)
n 0 0 0
and hence
_ o | 0 0 sing
[Omax] = — anr 0 0 —cosh |. (1.6.22)
0 O 0

1.7 Geometry of the dislocated crystal

The theory of defects in single crystals at the macroscaiebeacompared in several
aspects to the physics describing our universe, as goygfominstance the gravi-
tation and electromagnetic fields (defect densities areelrewof a higher tensorial
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order). In fact, defects behave in an analogous way to theirgbodies curving the
space-time geometry of the universe as described by ther@drelativity of A. Ein-
stein. However, defects are properly described by a gegniretwhich curvature (in
the presence of disclinations) coexists with torsion (ia piesence of dislocations),
and, last but not least, where metric and connexion are regssarily compatible (to
account for the possible presence of point-defects).

The present section contains the following subsectionsh @ which pointing out
and describing a particular geometrical property of théodisted crystal.

e Metric tensors and the elastic strain

— Riemannian and Euclidian metrics
— Compatible elastic strain metric

e Space connexion and the internal observer

Parallel transport and curvature

Differential geometric connexion

Parallel transport of vector fields

External and internal observer
¢ Non-Riemannian geometry of dislocated crystals

— Metric compatible connexion

Since this technical section does not provide crucial mf@tions from a physical
viewpoint, the reader might wish to skip it and directly goSection 1.8, which ad-
dresses specific and key physical issues.

1.7.1 Metric tensors, and the elastic strain

The perfect crystal. Following Kondo (1954), by calling a crystal “perfect”, i i
meant that the atoms form, in its stress-free configuratioregular pattern
proper to the prescribed nature of the matter.

The defective crystal. Citing again Kondo (1954), “the defective crystal is, by €on
trast, an aggregation of an immense number of small piecperféct crystals
(i.e. small pieces of the defective crystal brought to tinaitural state in which
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the atoms are arranged on the regular positions of the penfgstal ) that can-
not be connected with one another so as to form a finite lumgdépt crystals
as an organic unity”.

This property of defective crystals is due to the presendmefdefects as it appeared
in the description of dislocation and disclination fornoatat the atomic scale (Section
1.2.1). In order to introduce the geometry of defective tigs let us now cite Elie
Cartan in his lecture on the geometry of Riemannian spadédse Riemannian space
is for us an ensemble of small pieces of Euclidian spacegliiowever to a certain
degree amorphously” (Cartan, 1922). Before giving the dédims of some specific
concepts of differential geometry, let us also observe tieayy between a perfect
crystal and a Euclidian space, whereas dislocated crysifllbe compared with a
non-Euclidian space as endowed with a Riemannian metritevileing submitted to
inner torsion and curvature (because of the presence dbtgrthis geometry was
called after Einsteimon-Riemannia?).

Riemannian and Euclidian metrics

When curved coordinate systems are used, the best appactstart from con-
travariant (with upper indices) and covariant (with lowedices) tensor components
and to introduce orthogonal coordinates and physical teaemponents at a later
stage. In general, Einstein’s summation convention haldevery covariant-contra-
variant pair of repeated indices. When physical componramsised, this convention
simply holds for every pair of repeated indices.

A Riemannian metriés a smooth symmetric and positive definite tensor figlduch
that the lengthé of ve.ctorEi is computed ag? = gij¢i¢j, while the scalar product
between two vector§' andn! is given by - n = g;;&'n!. From the Riemannian
metric definition (positive and symmetric properties) thiexya smooth transformation
a/ such thatgi; = a"admn. Let us note that the metrig;; is called Euclidian ifa/

is a global coordinate change to a Cartesian coordinatersyét= % (xX1) (X! being

the “old” coordinates and the Cartesian coordinates used for the description of the
actual body), that is %a) = ax | in such a way that the metric writes &g in this
new coordinate system.

SFollowing a remark of Unzicker (2000), some modern textsgjnmean by a Riemannian geometry, a
geometry endowed with a Riemannian metric. _
6The operators andd/ always denote the partial derivative with respecttandx’, respectively.
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Compatible elastic strain metric

In our work the reference crystafy is not necessarily a perfect crystal at the macro-
scale. Itis generally a body where all the external (theramal gravitational) stresses
have been released, thereby defining, by an elastic revefsentation ofZ(t), the
body denoted byZ,. The metric of the “external observer” a#(t) is the Euclidian
metric §j. However, as soon as the linear elastic stéjjns given, another Rieman-
nian metric can be defined o#(t), i.e. theelastic metric

o = & — 26;. (1.7.1)

The use of this metric on defect-free regions W#ft) implies the existence of a one-
to-one coordinate change betwe#tit) and %y, whose deformation gradient writes
as

aFM=gMm— guEm (1.7.2)

This relation can be easily checked since the absence oftdefeplies elastic strain
compatibility, which in turn precisely implies the existaof a displacement field™
such that, in the linear approximation, the metric tensolmgﬁ- = &mn (6,'“ — 0 uEm)

(61-“ ) uE”). In case of compatibility the coordinates oy are X%l = xi — uEl,

wherex! denote the Cartesian coordinates#t) anduF' the elastic displacement
field.

1.7.2 Space connexion and the internal observer

Citing Einstein "To take into account (...) gravitation, a&sume the existence of Rie-
mannian metrics. But in nature we also have electromagfielits, which cannot be
described by Riemannian metrics. The question arises: Howe add to our Rie-
mannian spaces in a logically natural way an additionatsiine that provides all this
with a uniform character ?” This additional notion is pretysrelated to the so-called
“Columbus connexion”: for Columbus, navigating straigight meant going west-
wards, that is, on a sphere, to keep a fixed angle with respehetlines of constant
latitude. In fact, theonnexions the differential geometric property which governs the
law of parallel transportof vectors (Unzicker, 2000), which is a notion generalising
Euclidian parallelism. Whereas in Euclidian geometry theafielism of two vectors
is equivalent to equaling the vector components, in Rien@gmgeometry this is no
longer true and the parallelism of two vectors depends owdloor origin locations,
on the choice of a curve joining these two points and of thesgannexion. In order
to define a space connexion, it is required to introduceahistoffel symbolselated
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to a given choice of coordinates. Basically, the space cdonaims at defining an
operation of covariant differentiation of tensors genisiag the Euclidian differential
in such a way that the gradient of any tensor still behavestaasor under arbitrary
coordinate changes.

Parallel transport and curvature

In the ordinary 3D Euclidean space, we can tell whether twaiors originating at
distant points are parallel, by moving one of these vectatisout rotating it in or-
der to try to let it coincide (at its origin) with the other anklowever, if a space is
curved, it is impossible to compare two distant vectors aithsome method of par-
allel transport of the vectors throughout the curved spatiee intuitive difference
between Euclidian geometry and curved non-Euclidian specemerging from this
consideration: if we parallelly transport a single vectiong two curves with the same
endpoints, depending on the path choice, this vector caupras different after the
two transports (as in the case of the black path as compatbd tehite path on Figure
1.14(a)). To let this comparison be possible, the vectortteparallelly transported
along both curves, and any “rotation” must be due to the spangture encountered
along the circuit. The parallel transport is provided by racture which is added to
the manifold, namely the connexion.

Figure 1.14: Rotation of 1800f a vector parallelly transported along path B (black
path), while it keeps its south-east orientation along paflvhite path) (a); Parallel
transport along geodesics on a sphere (b).
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Differential geometric connexion

Letv; andw denote a vector and;v; andJjw stand for two tensors given in terms
of Euclidian g:oordinatesi asdv, anddw. Then, in terms of arbitrary curvilinear
coordinatex’' the transformed componerit§y| andjw' are given by the formulas
(Dubrovin et al., 1992):

o

Oy = W—r’ﬂ“ - (1.7.3)
|
ow' = ‘;")‘({i o A (1.7.4)

where theChristoffel symbolare defined as

no oxX" 9%xm
i = 25 axTaxT (175
Formulas (1.7.3) & (1.7.4) directly result from the defiaitsv| = (dxm/ﬁx")vm and

w! = (dx"/ﬁxm)wm and the assumption théx'} denotes a system of Eucldian coor-
dinates.

Now, considering a second set of curvilinear coordina‘fésit is possible to show that
the new Christoffel symbolE”lnj are related to the previous Christoffel symbblg
by the relation

/n 7k /i 2,/M
r,/Inj _ X < ;moxX" oX 04X ) (1.7.6)

ax™ \ | Kox oy gx oy

Itis important to note that because of the last term insidgtirenthesis, the Christof-

fel symbol is not a tensor. Moreover, it appears that in treeaa an Euclidian coor-

dinate systen{x } associated to an affine, hence vanisHilfy Eq. (1.7.6) reduces to
Eq. (1.7.5):

- 20 (2 26, )

P axm \ " MoaxToxT T axTaxT )’

and so on for every change of curvilinear coordinates. Asresequence, the covari-
ant gradients of any covariant vectgror contravariant vectow is well-defined by
Egs. (1.7.3) & (1.7.4), whose use only requires a proper iiefinof the Christoffel
symbols, which are constrained to satisfy Eq. (1.7.6) for@ordinate transform.
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Parallel transport of vector fields

To understand the meaning of the gradiéntg andJw in a general non-necessarily
Euclidian space, the vectovsandw! are defined as being parallely transported along
a given path if, for any infinitesimal displacemai® along this path, the following
identities are satisfied:

ovy = [Ovdx=0 2.7.7)
ow = Owdx=0 (1.7.8)

of vy andw along the infinitesimal segmenix whose calculation must take into
account the space curvature and torsion.

In the present case, appropriate Christoffel symbols wilittroduced to represent the
defective crystal internal structure, with the associgterhllel transport meaning that
the vectors are dragged along the crystallographic lines different effects can be

represented by this way:

e In the presence of dislocations, the Christoffel symtigisare not symmetric
w.r.t. i andk. This mathematical feature is associated with the “torsexperi-
enced by an internal observer along the cristallographslias resulting from
the effect of the dislocations and the internal crystalcttrce.

e In the presence of disclinations, in addition the spaceature will not vanish.

External and internal observer

Citing Kroner (1990): “In our universe we are internal oh&rs who do not possess
the ability to realize external actions on the universehére are such actions at all.
Here we think of the possibility that the universe could béodeed from outside by
higher beings. A crystal, on the other hand, is an object whkgrtainly can deform
from outside. We can also see the amount of deformation j$vdiking inside it,
eg, by means of an electron microscope. Imagine some chyasitad) who has just the
ability to recognize crystallographic directions and tanblattice steps along them.
Such aninternal observewill not realize deformations from outside, and therefore
will be in a situation analogous to that of the physicist exjlg the world. The physi-
cist clearly has the status of an internal observer”.

The external observepbserves the crystal actual configuratiett) with the Eu-
clidian metricgﬁ-Xt = §j while the elastic metricgiEj allows him to locally define a
reference configuration by releasing all elastic straindie @efect-free regions of
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Z(t) are Euclidan regions since there is a coordinate chafige dnxE" such that
gﬁ-X‘ = aMal'gE,, The internal observer, in turn, can only count atom stepitewhov-
ing in Z(t), and parallelly transport a vector along crystallogragimies’. Since he
does not feel the body torsion, he will observe defectivéoregby analysing the ef-
fect of parallel transport (to observe curvature) while ingvalong closed curves, and
compare path lengths (to observe torsion).

1.7.3 Non-Riemannian geometry of dislocated crystals

Let us point out the following remark by Kroner (1992): “Whanattice vector is
parallelly displaced usinBk along itself, say 1000 times, then its start and goal are
separated by 1000 atomic spacings, as measuraglbhyBecause the result of the
measurement by parallel displacement and by countingasfieps is the same, we
say that the space is “metric with respect to the connekigg”.

Metric compatible connexion

Let us here precise the meaning of having a perfect cryselény defect-free region
of Z(t). Although in the motivation for introducing a metric and anoexion, these
two concepts appear as independent, it is aimed at havingsp#iae in every defect-
free region, that is, to have simultaneously

e a Euclidian metric

e an affine connexion, that is, vanishing Christoffel symbols

This is provided by requiring the connexion to be compatibidn the metric, hence
requiring that

Okgij = O — Mikdij — Mg = 0. (1.7.9)

Let us describe how a compatible connexion can be defined asctidn of the ar-
bitrary metricg;; and the connexion torsion defined Blg, := [ — ;. It is well

known (cf eg Dubrovin et al. (1992)) that a symmetric corriq:iaticonnexiori:‘jk

"We remark that noncrystallographic coordinate systems havneaning for the description of a crystal
from the stand point of an internal observer who sees thestmrhnot the space in between.
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writes asf‘jk = 3g™ (9 gmk+ Gmj — mgjk), While for any compatible connexion

rl, arl =l —rl is introduced in such a way that

1
Alyij =5 (i + Ficgig — M) (1.7.10)

whereAr yj := gkmAr{Tj‘, in such a way that the compatible connexion writes as

1 1
Mij = 5 (G0kj+ 010k — 0kgii) — 5 (Mg + i = M) » (1.7.12)

where the term on the right hand-side expressed as a condriradtthe connexion
torsion is called theontortion tensor(cf the next paragraph for a proof). Therefore,
it is one of the objectives of this analysis (this will be diga in Chapter 2, Section
2.5) to provide the following inter-dependent objects, viz

e a metric which is Euclidian in the defect-free regiong#ft): this metric is for
instance given bgiEj (by strain compatibility and Egs. (1.7.1)-(1.7.2)).

e a connexion compatible with this metric and whose torsiamsfzes in the ab-
sence of dislocations: if this torsion is chosen to be theatefuantity— 1 &5 Apk,
it defines by Eq. (1.7.11) a compatible connexion and vasisisesoon as the
Burgers vector vanishes.

1.8 Classical and new approaches to the geometry of
dislocations

This section summarises two approaches from the literasidescribed by H. Klein-
ert and E. Kréner. Our goal is to enlighten some inconsis¢snaf these approaches
and to thereby justify the description of the method devetbim this thesis, in order
to provide not only a complete justification of the geometrdiglocations, but also a
manner to handle and improve the existing theories, in daldevelop a manageable
macroscopic model for single crystals.

The present section contains the following subsections:

e Kleinert's approach

— Multivaluedness and the cut surface



Classical and new approaches to the geometry of dislocatien 59

— Mesoscopic geometry with macroscopic fields?
— Elastic-plastic decomposition
— Mathematical assumptions on the physical fields and defexg |

e Kroner's approach

— The “inc& = curlk” fundamental relation
— Discussion about Kréner’s approach

e Proposal for a multiscale programme

Passage from atomic to meso-scale

Defect measures at the meso-scale

Main 2D result: mesoscopic incompatibility of a set of idethdefect lines
Passage from the meso- to the macro-scale

Conservation laws for defect densities

Unbounded mesoscopic energy

New formulas for 3D dislocations

1.8.1 Kleinert's approach

The content of this paragraph originates from a monograpidnen Kleinert (1989),

“Gauge fields in condensed matter, vol.2: Stresses andtd&fedich summarises the
classical approach developed by G.I. Taylor (1934), J.MgBrts (1939), F.C. Frank
(1958), J.D. Eshelby (1966), F.R.N. Nabarro (1967), T. Mrg87) and others. In

this section we will point out the elements of this approatiiciv appear in our mind

as drawbacks, in particular the lack of a rigorous mathesabsietting, but also some
doubtful physical statements.

Multivaluedness and the cut surface

Although Kleinert refers to the displacement and rotatiefd as multivalued at the
meso-scale, he indentifies the “non-integrability” sitoatat a given poink as

aij (X) := &k kA uj(x) #0 (1.8.1)
for the displacement, and
0j (X) == &k 0kd wj (X) # 0 (1.8.2)

for the rotation field, which we believe is not correct for tveasons:
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¢ Any field multivaluedness implies the existence of an undeg Riemann folia-
tion with branching lines, for which no such derivation ogi@wn in the classical
sense can be rigorously justified. In particular, obvioustyderivation of the
multivalued function is possible on the branching line (g¥his in fact the de-
fect line). Moreover partial derivations commute outsidis fine, except if he
symbold is replaced by the gradienl and the space is non-Euclidian, but this
meaning was not intended by the authir.

¢ In Kleinert’'s approach to multivaluedness, an arbitrarytting surface” S is
chosen to contain the defect line L and to obstruct the intctidn of a closed
path around L, therefore preventing any abrupt passage drmgrbranch to the
other one on the Riemann set. Of course this surface is a ol is often
removed after a couple of applications of Stokes’ theorbéergby recovering a
concentrated quantity on L. However, let us point out thatlerapplications of
Stokes’ theorem are often not justified.
But the more serious reproach to the introduction of S is gbbpits lack of
physical justification, such as, eg, as the author introgllpkastic distortion”
as a concentrated term on S. In fact, as explained in Sectib8, while there
is a distortion decomposition, on the one-hand, one caroratlude that it nec-
essarily consists of an “elastic” and “plastic” part and,tbe other hand, that
such a decomposition should not dependent on any arbjtcrdsen surface.
Often, the introduction of S aims at bypassing the diffi@dtof the treatment
of multiple fields and, as soon as a physical justificatioroisght, S is either
removed (because of its arbitrariness), or is interpresatbataining some non-
well-localised, non-well defined physical field.

Mesoscopic geometry with macroscopic fields?

In the classical approach described by Kleinert, the ling klivays present, which
involves that the considered scale relates to the mesasdagocated crystal. This
suggests that linear elasticity is assumed everywhere &eomayl, since diffuse plas-
tic effects are only macroscopic. But the definitiondgfe (apart from the problem
of derivation justification) is not clear. If this quantityene in fact elastic the®;;
as defined by Eq. (1.8.2) would identically vanish by straimpatibility away from
L since dmax = &pndpémn. However,Q;; is also computed (by introduction of the
surface S) as being equal to the non vanishing tefi3ard_, whereQ; is the Frank
vector andr; the tangent vector to L, while the strain incompatibilify appears as
distinct fromQ;1;d .. On the other hand, if displacement and rotation are thoaght
macroscopic fields (apart from their crude definition), themdistinction between the
disclination densityd;; and the incompatibility)j; can be justified by the author’s for-
malism. Moreover, if the macroscopic scale is intendedldisement and rotation are
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necessarily thought as non-smooth (othernv@geandaij as given by Egs. (1.8.1) &
(1.8.2) would identically vanish), but then the lack of jisation of their derivation
as macroscopic entities re-appears: are they still mllsagi(which again raises the
question of their physical interpretation), or just singldued and non-smooth (which
raises the question of the specification of this irregwanitview of their mathematical
treatment)?

Surprisingly enough, this incorrect formalism can leadhe torrect formulas, but it
does not provide any correct physical interpretation of&®rmulas.

In contrast, the present work aims at distinguishing betvike different matter scales,
at considering appropriate mathematical tools for eachhefr, and at clarifying
the passage from one to another scale, specifying the dgieantthich may be ho-
mogenised and those for which this is forbidden while givargrecise meaning to the
macroscopic fields.

Elastic-plastic decomposition

The author’s justification for displacement and rotatiolririntegrability” property
still remains connected to the classical elastic/plasticodnposition of the displace-
ment gradient, while the total strain, rotation, and displaent are macroscopically
smooth. We only accept this decomposition as a postulategaly for the distortion
and strain decompositions in the absence of disclinatichSéction 1.7.3). This ap-
proach is followed by Kréner (among others) and will briefly feviewed in Section
1.8.2. As we will see, this technique provides the corregnidas with a correct for-
malism, but the results are obtained by focussing on the orseale only, therefore
missing the key connection between the defect densitiessadhe different matter
scales. Let us emphasise that the discussion about sucmgesttion is not only a
matter of words. In fact, some authors (as reviewed by Klei{{i®89)) develop an ex-
pression for the “elastic” displacement field involving fhestulated elastic distortion
and the “Green'’s elastic function”, and consequently digyvel non-justified formal-
ism for the energy and mutual interactions between the chisions.

The objective of the present work is to clarify the matherwtiramework (in particu-
lar the working assumptions) and the physical meaning afrtheroscopically relevant
fields for building the physical model of a “defective crystantinuum” leaning on a
multiscale analysis.
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Mathematical assumptions on the physical fields and defecirles

In general no assumption is ever made in the literature eedh the regularity of the
involved fields, nor on the defect line regularity. Howevette meso-scale, strain,
rotation, displacement, and even compliance (or energy$iagular along L (as ob-
served on the 2D examples of dislocations and disclinatainSection 1.6). This
singularity can be reasonable, or very strong, therebyiddibhg any classical treat-
ments. Moreover, it is justified to raise the question wetikdefects show the same
type and order of singularity. Since the issue of well tregitiny field multivaluedness
is raised in the context of singular fields, the present woitkshiow how a “distribu-
tional approach” might help resolve the problem, underagable strain regularity
assumptions.

Another issue relates to the homogenisation from meso- wonscale, requiring in
particular the averaging of non-multivalued fields. How taen the macroscopic dis-
placement and rotation fields be defined, since the lattemaitvalued at the meso-
scale? Moreover, no assumption is ever made on the defectdigularity, and on
the possible clustering of defect lines in very irregulasseaising the question of the
selection of a formalism, such as the so-called “geometgasure theory”, to allow
for the presence of fractal effects as resulting from theaciéfe matter physical be-
haviour.

For general 3D lines, another question is the presence,tpohtheir curvature and
torsion in the expressions of the defect densities and ipeilnility (these effects be-
ing clearly absentin the classical formulas). Again, thevear could depend on the as-
sumptions made on the admissible strain and defect lindagtyfor the mesoscopic
dislocated crystal, and highlight the need of a well-defimedhematical framework.

1.8.2 Krdner's approach

This paragraph is devoted to very briefly summarise the veyiaper by Ekkehart
Kroner (1981) entitled “Continuum theory of defects”. Theteor here clearly situ-
ates his developments at the macro-scale and speaks of érfldaad crystal”, in the
sense that the lattice parameter is considered as a smathptgra, while the micro-
scopic Burgers vector is re-scaled accordingly in ordeekthe same defect content
during homogenisation from micro- to macro-scaleaas 0. Since the Frank vector
is a rotational jump (instead of a translational jump), ihcat be re-scaled as— 0
without modifying the crystal structure, and the authoréfiere does not consider the
presence of disclinations.
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The “incé& = curlk” fundamental relation

As soon as an elastic/plastic decomposition of the distorti.e. the displacement
gradient) is postulated, namely

Bl = Bij + B, (1.8.3)

where superscripts “T” and “P” here stand for “total” anddgtic”, while no super-
script means “elastic”, the dislocation density is definedhee curl of the plastic part
of B or, equivalently, as

Qij = — &k okBij, (1.8.4)

since the curl of the total distortion vanishes by macrosrsain compatibility. By
application of Stokes theorem the macroscopic Burgersovexster a surface S with
normaly; is introduced as the integral on S of the dislocation denséynely

Bi(S) = /Sai,-ds. (1.8.5)
Now, from the relationsjj = &k w + Gij, it immediately follows that
1
OmWx = &indl Smn+ (akm— Eappd(m) ) (1.8.6)

where the term inside the parenthesis is called contortimhdenoted by, The
author interpretsy as a rigid rotation of the volume element which “carries glon
the lattice orientation” (instead of a purely elastic raat as suggested by the strain
decomposition), and postulates that the absence of disicivs implies thatlw, be
an exact differential, in such a way that a further applmatif Stokes’ theorem yields
the relation

€ipmIp&kind Emn = €jpmIpKkm, (1.8.7)

hence providing the announced statemémt&” = curlk”.

To tell the truth, by introducing differential geometry ampts (as detailed in Sec-
tion 1.7), the author is more precise concerning the defimitif the elastic distortion.
In fact, dB is defined as the opposite of the variation by parallel disgraent of
the lattice triad, hence verifying by Eq. (1.7.8Bk = —lk;jdx;. SinceAl;; is
skew-symmetric irk andi while %ﬁjgki is the symmetric part off ., the following
identification easily follows:

Oik = Ok — 26k, (1.8.8)

8given by the connexiofj;jx = ﬁ;jk + ATk (cf Section 1.9)
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whereg;j is the chosen metric, while
dwk = — (AT kij — EpikEpgmPqémi) dX;. (1.8.9)
Writing Al ij = £pkiKpj andepgmfqémj = ijp, Eq. (1.8.9) shows that
jwp = 9wy — Kpj, (1.8.10)

where the ternkp;j depends on both the metric addij. By identification with
Eqg. (1.8.6), the contortion (this terminology originatifigm the so-called connexion
contortionArl ;) is related to the dislocation density.

Discussion about Kréner's approach

The validity of Eq. (1.8.3) has already been discussed. keemark that the intro-
duction of a distortion decomposition (instead of a disptaent decomposition) is
always possible in the absence of disclinations, the ongstion being the arbitrari-
ness of the choice of what might be called, or not, a “plagtait. We believe that
this specification should have a precise meaning inheritad the defect content at
lower scales. Here again we consider that this physical ingda not clear in the
work of Kréner, and therefore Eq. (1.8.3) still defines an ggubus defect quantity.
Then, Eq. (1.8.5), which is devoted to define the macrosdBpigers vector, hence
suffers from the lack of possible identification betwe®n{S) and the Burgers vec-
tor at lower scales as computed by Burgers circuit procedareund dislocations (cf
Section 1.3). Although Eg. (1.8.5) reminds us of an expogs§ir the dislocation
density such asij = BjT1j, wherert is the mesoscopic dislocation line orientation,
thereby providing a way to identif;(S) with the mesoscopiBJ*(L) as soon as L
is perpendicular to S, the introduction of a defect line otd¢ion at the macroscopic
scale (where the singularities have been smoothed) seens e very appropriate.
The question remains to understand the link between theaditbn density defined
by Eq. (1.8.4) and the mesoscopic defect measure, as givefj by \j;. Moreover,
Eq (1.8.6) is very ambiguous as well since, according to teegaling decomposition,
there is apparently no reason why the term on left-hand gidetlze first term on the
right-hand side should not be equal. Actually, Kroner’s coents appeal to another
interpretation of the rotation (and hence of the distotidaut then these fields should
be noted differently and the fact that the disclination dgns&nishing implies its ex-
istence should be better justified. Coming back to Eqgs. §}-@..8.10), the relation
“incé& = curlk” now clearly appears as an existence condition for the ictatector
in Eq. (1.8.10) and at the same time the meaning of the rot&igiven as an elastic
rotation minus the contortion term, to be interpreted asttic&arotation (as shown
by Nye (1952)). However, the link between the absence ofiditions and the re-
lation “inc& = curlk” is not clarified at this stage, since a relation showing that
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disclination density writes a®jj := & dd wj is still needed (apart from the crude
use of classical derivation on non-smooth rotation fieldifrly ajj remains to be
explicitly expressed in terms of the observed mesosco@oland Burgers vectors.
Moreover, the use of a connexion raises the question of figitlen. In Krbéner's
approach the contortion appears as a defect measure dafimedhe knowledge of a
law of parallel transport, which is itself defined by the nootiof an internal observer
in a Bravais lattice. Although the link between dislocatiemnsity and connexion is
clear, the ambiguity resulting from the dislocation densiéfinition also affects the
connexion definition. In particular, the link between thegtlel displacement of an
internal observer and the defect microstructure obseymas still missing.

1.8.3 Proposal for a multiscale programme

After the presentation of some physical prerequisitespaiestools from differential
geometry and of a multiscale analysis of our problem, togatlith a brief commented
review of the classical approaches used to describe the gtepof dislocations, let
US now expose our programme, as developed in Chapters 2 and 3.

Passage from atomic to meso-scale

Here homogenisation is not used in the sense of a small p&amenverging to
zero, such as the lattice characteristic length, sincehtbery should include discli-
nations as well as dislocations (cf Section 1.8.2). The ireduphysics here deals
with the reversible dynamical interactions between at@nd,homogenisation means
the volume averaging, or ensemble averaging, of a familytefé pictures. This
is a rough homogenisation, but it mainly allows us to obtairagerage mesoscopic
model, in which the crystal is everywhere a continuous mmadéxcept on the dislo-
cation/disclination lines, where the physical fields argsiar.

Defect measures at the meso-scale

At the meso-scale, displacement and rotation are defineddwysive line integrations
of the strain curl. Due to the presence of defect lines (whigheither loops or open
curves ending at the crystal rim), these fields are multedland hence are not ap-
propriate for homogenisation to the macro-scale. Theegfiora first stage, only the
single-valued strain cudmwy ‘= &pndpéiin Will be considered, with such assump-
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tions on the strain regularity th@mw; can be defined in theense of distributions
(cf Section 1.10) on the entire crystal domain, including gingular lines. Since the
displacement and rotation jumps around the defect lineglardified as the invariant
Burgers and Frank vectors and since the mesoscopic crystaissa limitted number
of such vectors according to its underlying atomic strugtitrseems relevant to seek
a relation between the strain incompatibility as definedy= emmangmw; and the
Frank and Burgers vectors.

Actually, the objective of Chapter 2 is not only to obtain lswcrelation, which was
obtained by other authors before us, but better to develapraa validation of this
relation. By validation it is here meant a rigorous proof aadove all, the determi-
nation of the restrictions needed to apply these formulas.ifstance, the minimal
regularity of the strain, stress divergence, and defeetdimape required for their ob-
tention have to be specified. In fact, under such a set of gstsoms, the following
theorem will be proved in the 2D case (cf Section 3.5 of Chapye

Main 2D result: mesoscopic incompatibility of a set of isoléed defect lines

For a set? of isolated dislocations parallel to tlzeaxis and located at the positions
X/|§’ L € ., incompatibility is the vectorial first-order distributio

Nk = A2y + O N

where

e its vertical component is

n=3 (@28 +eay (By+eay 05 —%0p) ) 0udL ), (1.8.11)

e its planar components are

1
Nk = ) 5&aB0ad, (1.8.12)
Les

and in which equations the quantities on the right hand-aideconcentrated “mea-
sures” (cf Section 1.10.2) on the defect lines.
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Passage from the meso- to the macro-scale

The preceding formulas include mesoscopic dislocationdisclination densities in
their right-hand side. These physical quantities are defie@asures and will be the first
objects to be homogenised, thereby defining their macrosamunterpart®;; and
aij, as introduced in Section 1.3.6, together with the macnmisdérank and Burgers
vector, as given in Egs. (1.3.7)-(1.3.8) as the macrosaogimterparts of the meso-
scopic defect measures. The following tensors are intreduc

Omk =  &pgdpbam— Kkm
00mux = o'?|<§km+ekpn5|wp, (1.8.13)

wheredim andkym, are the macroscopic elastic strain and contortion tendefsed as
homogenisations of their mesoscopic counterpgjtsandky; . (the mesoscopic con-
tortion was introduced in Section 1.3.6). Notice that syhilydas been intentionally
introduced to be distinguished from a derivation operadad will be shown to be a
proper derivative only in particular situations. Here wewase that all homogenised
fields are smooth at the macro-scale.

Now, instead of being postulated, the three following ieled appear as resulting from
the homogenisation of their validated mesoscopic couatésp

KRONER'S IDENTITY Nij = ©ij + &ipgPpKkq
MACROSCOPIC DISCLINATION DENSITY Oij = &ipqdpOqW; (1.8.14)
MACROSCOPIC DISLOCATION DENSITY Qij = &pgOpOgU;, (1.8.15)

together with the existence of a “Bravais” rotatia@ft and distortionBg = &k — qj w?
as proved if the disclination density vanishes, therebgfgiag the macroscopic elas-
tic strain decomposition. Moreover, the geometric intetptions of the above rela-
tions will be exposed in Section 1.9, showing for instan@edbnnexion as defined by
homogenisation of mesoscopic defect measurements. Te ttlegpresent discussion,
let us finally address in the following sections the exiseeoicmeso- and macroscopic
conservation laws for line-defect densities and raise thestion of the treatment of

the mesoscopic unbounded elastic energy density.

Conservation laws for defect densities

The mesoscopic disclination, dislocation and displacemuenp densities verify the
relations

dierj = 07 dl/\|*] = 07 di aﬁ = —gjmneﬁm,
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as easily verified, since for every smooth test-functpiit results from Weingarten’s
theorem and from the formalism to be introduced in Sectid® 1., that considering a
single defect line L,

<a.er,-,<p>:—<oi*,-,a.<o>=QJ*/Lmodn:<o<A>—<o<B>

where< -,- > denotes the distribution by the test-function product,levi and B
are the endpoints of L, which have been shown in Section 1odeher coincide, or
belong to the crystal boundary where the test-functporanishes.

By homogenisation it therefore results that

00 =0, dNj=0, daij=—&mnOmn,

which can be otherwise verified by Eqgs. (1.8.13)-(1.8.18)the assumed smoothness
of the macroscopic densities.

We believe that one of the key issues of dislocation/diatiim modelling in single
crystal growth is to take theses conservation laws into @aeto

Unbounded mesoscopic energy

It should be noted from the computed examples of Sectionhhithe energy density
(or compliance¥™ = %oi*j éﬁ‘j is notL-integrable for both kinds of dislocations, while
it is finite for the wedge disclination. Therefore, a Hadadhfimite part distribution
(Schwartz, 1957; Estrada and Kanwal, 1989) is needed t@sept the compliance
at the meso-scale (another approach makes use of straiificatibn by a so-called
core tensor (Koslowski et al., 2002)). This issue, whosat&wi requires to develop
matched asymptotic expansions around the singular linedordance with the in-
finitesimal displacement hypothesis, will not be addre$setier in this work, which
only focuses on the geometry of dislocations. A short inticithn to these concepts
and an interpretation in terms of energy concentrationbéllyiven in Section 1.10.1.

New formulas for 3D dislocations

It will be proven in Chapter 3 that using the approach justcdbed for a collection
& of 3D defect lines verifying certain assumptions, and aitmpfor the formation
of certain kinds of cluster regions, the elastic strain mpatibility as defined by Eq.
(1.3.10) is the vectorial first order distribution

Nin="Y (Gmnij(R)©f; (X°) + Hunnij (%) £jik A ki ()
LeZ
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where< f&L,¢ >= / f ¢ (2°)dL(X°) for any test-functionp, L1(L,.7#%)-integrable
L

function f and defect lind € .Z (cf Section 1.10 for some details concerning these
notions), and where the geometrical tengBxgij andHmpj write as

1
Gmnij = [<§anj+vnvj-+onoj)6mi]
m—n

1
Hmnij = [—ETanGj +TnTjdni] ,

m—n

with [Snnjmen indicating that twice the expression symmetric pg&hn+ Sim) is
taken.

1.9 Non-Riemannian objects in the dislocated crystal

The present section is devoted to summarise the dislocagsthtproperties from the
viewpoint of differential geometry and to define an admikesitistortion decomposi-
tion. Itis divided in the following subsections:

e Bravais distortion decomposition

e Non-existence of the Bravais displacement field

Dislocations show to be in some way translational defentfhé sense that a closed
curve in Z(t) might, because of the presence of dislocations, be seen apan
curve by an internal observer as soon as this curve enclodstogated region S. If
disclinations are present together with dislocations asparted vector along a cir-
cuit will end up as translated and rotaledTherefore, the presence of dislocations
and/or disclinations, on the one hand, and, on the other,lthaahoice of the elastic
metric together with a connexion which has the property afidgp¢orsion-free in the
absence of dislocations, will endow the crystal with a striees of non-Riemannian
space (that is, possibly curved and twisted). Before gidlhghe related details, let
us here summarise the basic concepts associated with thRirorannian crystal as

9Disclinations have shown in Section 1.3, Figure 1.10 to jsi®wector rotation effect by parallel trans-
port at the atomic scale. By homogenisation, the macrosaopstal filled with disclinations will therefore
have a non-vanishing curvature tensor, called the Riemanmatire tensor.
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follows.
EXTERNAL OBSERVER METRIC TENSOR: gﬁ-"t = 9
ELASTIC METRIC TENSOR: gij = &j—26
1

DISLOCATION TORSION: Teij = — Esp”/\pk

~ _ 1
SYMMETRIC CHRISTOFFEL SYMBOLS:  [yjj = > (di Okj + )9k — kJij )
CONNEXION CONTORTION: Alij = Tk + Tisjk — Tiji
NON SYMMETRIC CHRISTOFFEL SYMBOLST |jj = fk;ij — Al i

1.9.1 Bravais distortion decomposition

It is one of the aims of this work to explain why the choice oftaraffine connexion
compatible with the elastic metric is needed. The goals are:

o to well-define thBravais rotationw; (which appears as a combination of elastic

and lattice rotations) and tH&ravais distortion3y as
X
BRAVAIS ROTATION wj(x) := wjo—i—/ do
X0
X
BRAVAIS DISTORTION B (X) := &k (XO) — & wjo +/ dBu,
X0

wheredpy is defined as-I'|.xm0Xm, while dwj := dmwjdxm with an appropriate

definition of 9mw; accounting for mesoscale effects, and where the connexion

contortion vanishes as soon as thiglocation contortiorkj, (which is a defect
measure) vanishes. Moreover, in Chapter 2 it will also bewshthat the elastic
infinitesimal rotation?mwjdxm is the sum of the Bravais infinitesimal rotation
dwj and of the lattice infinitesimal rotation (or contortiokyndXm.

e to obtain the connexion torsion from the crystal internasion, namehAr q;
= Tmu - Itis fundamental to remark that, by Eq. (1.7 )y is a tensor.

e to prove that the dislocation density is the Bravais digarturf':

/Cdukz/seﬁaa,gpkadsz aw(S). (1.9.1)

10Note that the relation. dax = Ok(S) is independent of the metric and connexion choice, but only o

the homogenisation of mesoscopic elastic strain and daorior
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e to associate the defect density measurements of an extdyeaiver with the
parallel transport along Burgers circuits of an internad@tver who is provided
with a connexion computed from density measurements.

e to avoid an a-priori distortion decomposition in “elastiahd “plastic” parts.
In fact, in the literature Eq. (1.9.1) is generally postathand the fieldgy
together withwy are referred to as elastic distortion and rotation field Sgsttion
1.8.1 for a discussion on this topic). However, while the syetric part of
the Bravais distortion shows to be the elastic strain, tiere reason why its
skew-symmetric part should be the elastic rotation tensgji w where
is obtained from a line integration @ = &pqdpSjq- This crucial point
justifies the efforts of the present work to clarify the claaktheory.

1.9.2 Non-existence of the Bravais displacement field

By Bravais displacementve here mean the part of the macroscopic global displace-
ment whose gradient is the Bravais distortion. In contrast the existence postulate

of an “elastic” displacement in the dislocated crystal,wark aims at explaining why

no such decomposition is justified from a physical viewpadihbreover, itis explained
why the index 2 multivaluedness of the mesoscopic displacgfield is too strong to
provide a Bravais displacement at the macro-scale (whialddwave been defined by

a line integration ofiw), even in the case of flat crystals. In fact, multivaluedrnigss
recovered at the macro-scale, as immediately seen fronetatan

Uk (X) = Uk(XO)Jr_/X:Bkld)q,

which is meaningless as soonxs contained in a defective region &f(t), even with
the introduction of (arbitrary) jump surfaces»at

1.10 Elementary notions of distribution and geometric
measure theories

This section provides the basic notions of distributiorotlygin order to handle Dirac
masses, and their derivatives. It also provides an intrboludo the notion of gener-
alised function, otherwise termed as Hadamard pseuddifurscand to the geometric
measure theory, aimed at generalising the results of Ch&@pte Chapter 3. The
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notions of this section will also allow the reader to undanst the global strain as-
sumption as proposed in Chapter 2. The present sectionigedivn the following
subsections:

e Distribution theory and Hadamard finite parts

— Distributions

— 1D examples of diverging integrals: Hadamard finite pard pseudo-
functions

— 2D examples of radial functions
— Singular elastic energy decomposition

e Line integration and Hausdorff measures

— Radon measure and Radon-Nykodym decomposition

— Gauss-Green'’s theorem for BV-functions and Frank tensalsajlregular-
ity assumptions

1.10.1 Distribution theory and Hadamard finite parts
Distributions

Let us denote b (Q) := 65°(Q) the space of smooth functions with compact support
in the open se®, also known as the space taft-functiongp. The space of distribu-
tions is the dual space &f(Q) and, sincez(Q) is a very “small” function space, its
dual is known to be very large, thereby containing many ofdhgcts appearing in
physical modelling. In fact the distribution spa@&(Q)is defined as

2'(Q):={f:2(Q) -»R:f islinearand continuoys

where continuity here means that f, @, >— 0 as soon agy — 0 in appropriate
spaces (Willem, 1995) and where symkof, u > here simply means the application
of a distributionf against the test-functiogp. Let us here mention an important prop-
erty concerning the derivation of distributions: any dtmition can be derived to any
order, since derivation simply means that

<of,p>=—<f d¢p>,

which can be seen as a generalized partial integration pyopeer Q.
Moreover, theorder of a distributionf is known as the smallest integer m such that
is linear and continuous ov&™(Q).
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1D examples of diverging integrals: Hadamard finite parts am pseudo-functions

As an introductory example, let us consider the functigr Which is not integrable
on]0,+oo[. Similarly, the functionp(x)/x is in general not integrable d@, +oo[ for

@ € 65°(R). Nevertheles$l/x)x-0 can be associated with a distribution by taking the
finite part in the Hadamard sensé the divergent integral. This distribution is called
thepseudo-functiod/x for x > 0. Indeed, by partial integration one easily obtains the
relation

| 900/xdx=—gp(eyne — [ g/ mxclx

the last integral being convergent as— 0. Therefore it appears as quite natural
to define a pseudo-function as being equal to the finite paat divergent integral
(concisely written asPf. = Fp."l), viz.

< Pf.(1/X)x=0, @(X) >:=Fp. /Om @(X)/xdx:= liLno(/: @(X) /xdx+ (p(O)Ine),

whereg has been expanded around the origin wit%dm(\s) —@(0))Ing = 0. More-
E—

over, it should be observed that by the right-hand side fitbem ¢ of the previous
relation, the pseudo-functiddf.(1/x)x-o defines a distribution.

In general a divergent integral “DI” can be decomposed ihted parts, viz. diver-
gent part“DP”, a finite part“FP” and aconcentrated partCP” as illustrated here
below by the partial integration of/%? for x > 0. Since the limit

lim (/:, @(x)/x2dx— @(g)/e+ @ (€)In s)

£—0

existd?, letting @— = @0+ £¢@_, -+ O(£2) and defining the finite part of the diver-
gentintegral as

Fp./ @(x) /x2dx:= lim (/ @(x)/x2dx— @(0) /& + ¢/ (0)In s),
0 e—=0\J¢
shows the following relation “DI=DP+FP+CP” to hold:
/O 0(X)/Xedx= lim ((0) /e — ¢/(0)In) +F p./o o(x)/xedx— ¢/ (0).
Defining the pseudo-functid®f.(1/x%)x-0 as the distribution

< PF.(1/%)xs0,0 >= Fp./ @/X2dx,
0

and equals- / @ (x)Inxdx
0
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for every test functiorp € €°(R,R), it can be checked, from the definition and by
partial integration, that

< SPLAUXe00> = - <PLA/Xe0¢ >=—Fp. [ ¢(/xdx

dx
= —Fp. | o0/ <& 0>,
0
showing the following remarkable relatiolfs

d
< &(Pf~(1/x)x>o+ &), p>=< —Pf.1/x%, 0>,

where symboby denotes the Dirac measure.

2D examples of radial functions

Let us shortly analyse the pseudo-function Pflwherer = \/X2 in the plane. By
partial integration,

2m oo 2T poo
/ / @/rdrd8 = —2mp(0)ln£—/ / r@Inrdrd @,
0 £ 0 £

where the last integral is convergentas- 0. The pseudo-function is as usual intro-
duced as

21 oo
<Pf1/r? p>= Fp./ 2;dV = lim (/ / 9drd6+2nqo(0)|ns),(1.10.1)
R2T 0 e T

£—0
for every test functionp € €°(R?,R). It can be shown that
OPf.1/r = —Pf.1/r%e — 2mdy,

wheredy denotes the 2D Dirac measure centred at the origin.
As last example, let us analyse the gradient of Pf21

<OPf.L/r2 P >=—<Pf1/r20-¢ >,

wherey € €& (R?,R?) and hencap is a 2D vector test-function whose radial and
azimuthal components are denoted thy and (). Consider first the seBr, :=

where the left-hand side defines the “generalised derwat®, with the good property that
DxP f.(1/X)x>0 = —P f.(1/%%)x>0.
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B(O,R) \ B(0,¢), whereB(0, ¢) is the disk of radiug centred at 0 and with R large
enough in order to contain the supportpf By the Gauss-Green theorem we have

/BR’S(D-@/erV:—/B (0(1/r?)) -gdv—/angr/ers

R

Passing to the limig¢ — 0 and since Ii(r)n/ Y /r?dS= mil- @(0)3, it results that
€098,

Fp. [ O-@/r’dV=—Fp. [ D0O(1/r?-@dV—nd-y(0),

Bro Bro

equivalently written in the form

<OPf.A/r2,p >=Fp. 0(1/r?) - wdV + i (0),
¥ Bro ¥ ¥
and resulting, since the finite part on the right hand-sidands the pseudo-function
—2Pf.1/r3,, in the concise expression

OPf.1/r2 = —2Pf.1/r — nl&.

Singlular elastic energy decomposition

It was already announced in Section 1.8.3 that the elastggrdensity need not be
bounded. Let us take the screw dislocation as an examplehvelthibits the singular

termt4

1 * ek E * * EB%
¢ =359 = @y v 9% = 32Ras v

The fundamental reason for this singularity is due to thel@wuacy of the linear
elastic model in the vicinity of the defect line. In fact, thain is predominantly
nonlinear in a neighbourhood of the order of len®H around the defectline. This is
the reason why the energy required to create the dislochtiens infinite if the model
is restricted to linear elasticity. A concentrated enemgyrt&° will be substracted
from the divergent integral, as an increasing function,ofiz.

.__ EB

= I
16m(1+ v)60| n,

13This can be easily checked: from the divergence expressidghe cylindrical base, it follows that
Y /r2 =0 “Y/r—=o i /r— 1/r2d9 Y Where the last term vanishes after integration over theecio
radiuse, while o @ = cos 8+ sir? 89, is integrated up to an(@)-term asm -1(0) and the first
term as 2i0J- ¢(0).

1t is here meant for the non-dimensional radius< 1.
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forr < 1. More precisely, if the unbounded total enetgys considered as a distribu-
tional pseudo-function PEB?2)/(32r%(1+ v)r?), the following interpretation can be
proposed from Eq. (1.10.1). With a test-functiongy the concentrated Dirac mass
at the origin and); the planar section from which a disk of radiasround the de-

fect line has been removed, a diffuse tefff®st = (EB?)/(32r(1+ v))/ ¢ /r?dv
Q¢

accounts for the energy of the dislocation creation at tstadcer = €, and a con-
centrated termg is to be introduced and interpreted as a correction to theatin
approximations near the line. The substractio#®ffrom &€t while lettinge — 0
results in a finite “corrected elastic energ§*° writing as

EB;
EC°=——>=— [ Gr@inr/rdV.
3221+ V) /Q i/
Let us emphasise that this approach only consists in an ptiehan interpretation in
terms of the above introduced distributional objects, withproper physical justifica-
tion.

1.10.2 Line integration and Hausdorff measures

The length of the graph G of a smooth functign[0; 1] — R? is classically defined
as the integral ovel0; 1] of the jacobian\/% wherex; = g (t) since length is proved
to be independent of the parametrisation of G. This clakficaula is not adapted
if such a parametrisation is unknown, if the functigis irregular, or as soon as the
length of a curve other than a graph is seeked. The solutisrbkan found by F.
Hausdorff, who introduced in 1918 an “m-dimensional measoiR" defined on all
subsets A oR™ 5, In order to compute the “m-dimensional measure” of A, thesits
very simple, and very geometric indeed: it suffices to colierdet A by small subsets
Sj € R" whose diameted(S;) is known (usuallyS; are n-dimensional balls) and to
estimate the so-calleh-dimensional Hausdorff measuné A by the measure of an
“optimal” collection of covering small sets.

Let us give the precise definition of this concept for generand n (where n will be
equal to 2 or 3 in our work, whereas m will generally be equdl tr 2). Notice that
m is any positive real number.

The set A is covered by a collectidi; } of small sets of diamete¥(S;) lower than a
givend > 0. Clearly, the measure of A will be as accuratedds chosen small. The
(possibly infinite)m-dimensional Hausdorff measure of A is defined as

HM(A) ::a(m)(lsi%AiCrHS_ (6(Sj))m, (1.10.2)
1]

15which turns out to be equal, up to a known constant, to the sgie measure if m=n.
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/2

wherea (m) is the volume of the closed unit m-dimensional ball as givwe 2 D)

wherel is the usual “gamma function” (Evans and Gariepy, 1992).

Figure 1.15: Here the length of the curve is well-estimatgthle sum of the diameters
of the tiny balls, but grossly under-estimated by the diamnef the huge ball; from
Ambrosio et al. (2000).

Radon measure and Radon-Nykodym decomposition

Another type of measure, known as “Radon measure” will bel irs¢his work. First
of all, let us recall that aneasureu as applied to a subS&E ¢ R" with value in[0, «0]

verifiesu(0) = 0 andp UEh = Zu(Eh) for any collection of pairwise disjoint
h

subsetgE,}. Now, if for any compact subset Ki(K) < o, thenu is called aRadon
measure

Let us now define théntegral of a function with respect to a measurény u-
measurabl¥ functionu: R® — RP can be approximated from below pymeasurable
step functiony, that is, linear combinations of the characteristic fumiesiy (E) of the
subsetE C R", thereby defining the integral ofw.r.t. u as

/udu ::sup{/ vdu},
R3 R3

16By set and subset it is here always meant “Borel set” (Matti#95), hence including a large variety of
sets, such as the “closed”, “open” and “compact” sets.

1"Which means that for any ope#r C RP, U := u~1(%) is such thap(U) = (U NE) + u(U \ E) for
all E C RP (Evans, 1992; Mattila, 1995).
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while the integral of the characteristic function is defirzesd

/Rsvdu =5 Zu(vi),

zelm(v)

wherelm(v) is the image set of. A function f will be said to belong to theebesgue
space E(R3, ) if the norm|| f||p := /3 | f|du is finite, thereby defining the measure
R

fu(B) as/ fdp.
B

Therestriction (or concentration) oft to the subset L is denotgd L(B) and defined
as byu(BnL).

Riesz representation theorem.The Radon measure is a particular kind of distribu-
tion in the sense that for any test-functipn< p, ¢ > as defined b)/s @du
R

is linear and continuous ip. The Riesz representation theoregives a finer
statement, namely that any linear and continuous fundtiover the space of
continuous functions with compact support (instead of tifaitely differen-

tiable test-functions) has a measure representatisnch that

< U, P >= /Rscpdu (1.10.3)

for all ¢ € 6.(Q) whereQ is an open subset of the Euclidian 3D space. Let
us remark that the space of Radon measures is much smalfetithapace of
distributions and that a measure is a distribution of order O

Radon-Nykodym decomposition theorem.Actually, it appears as more interesting
to work with a measurg: in the context of the “geometric measure theory”,
instead of the full distributional context, which, althdugider, is not able to
provide a fine analysis gfi. For introducing the next crucial theorem, let us
precise that a Radon measyrds said singular w.r.t. the Lebesgue measure
|- | if there exists a seA C R® such thatu(A) = 0= |R3\ A|. For instance,
the Dirac measure at the origin is singular w.r.t. the Lelbesgeasure as seen
by the choiceA = R3\ {0}. Now, for every Radon measuye, there exists
a Lebesgue-integrable functidnand a singular measune such that for any
subset B:

u(B) :/deu—irv(B).

This decomposition theorem will play an important role ie themonstrations
of Chapters 2 and 3.
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Hausdorff concentrated measures.The 1D Hausdorff measure concentrated on the
line L is denoted by

& =L,
while the 2D Hausdorff measure concentrated on the surfasev8tten as
Os:= H#2S.

Notice thatd_ is not a Radon measure (nordg) sinced_ (A) = o for all sets A
whose dimension is strictly higher than 1 (as, eg, surfaces)

Gauss-Green's theorem for BV-functions and Frank tensor ghbal regularity as-
sumptions

A function f is said (to be) obounded variatior(a “BV function”) on Q c R3 if it

is aL!(Q)-integrable function whose derivatives are all Radon messsuOne of the
interesting properties of BV functions is that they provateextension of the Gauss-
Green theorem.

Gauss Green’s theorem for BV-functions. Letting f € BV(Q,R) andQ with a reg-
ular boundangQ, then

|awtav—— [ yd@)+ [ wfds,

for all ¢ € ¢2(Q,R3). Here,dS denotes the vectorial measure @0, which
equalsv;dSwhen the outer unit normaj to 9Q exists.

Incompatibility and disclination density. This paragraph aims at showing that the
Frank tensorﬁmwg is not of bounded variation and consequently that Gauss
Green'’s theorem cannot be applied in a simple manner to byoleate the
incompatibility tensor and the disclination density. Tastlend, let us con-
sider a defect line L, enclosed by a tube of radiusind a cross-sectidbe (X)
with X €L and withdCq the infinitesimal vector normal 16, (X), which equals
vqdC when the outer normaly to C¢(X) exists. In fact, by the relations

o, @ >:/Qj*(nd>q andQj :/ ( )5mwj*dfm for everyXe L and fromd&p, =
L Ce(R

EmpaTpdCy, where we recall that, is the tangent vector to L af it results that
foraregularline L,

<6,a >:/z @ T TpOm; Empd Sy,
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where@ (&) = @(& — &) and whereX, stands for a surface enclosed Gy
(since the defect line is closed or ends at the boundarysthigce is either a
torus, or a tube ending at the boundary), in such a way thdicapipn of Gauss-
Green’s theorem (with the integrand vanishing on the tubemeties and with
Ve denoting the volume bounded By) yields the formula

<0Of,a >=/V @TiTpd (empqaqﬁmwj*) +0(¢),

thereby identifying by letting — 0 and by Eq. (1.3.10) the disclination den-
sity ©f with the incompatibilityri Tpn;. Since, referring to Eq. (1.8.11), the
expressior®; = n; is false in the 2D case, we observe that a “simple” BV as-
sumption for the Frank tensor global regularity is not v&lid

Itis one of the objectives of Chapter 2 to provide correcbglassumptions allowing
us to validate Egs. (1.8.11)-(1.8.12).

18 et us notice that referring to our previous explicit congigns of the rectilinear edge and screw
dislocations (resp. wedge disclination), the Frank terskmws a dependence upon the variable r iR 1/r
(resp. 1/r), and hence is not evehin the case of the two dislocations, and, for the disclimatits gradient
in 1/r> which, considered as a pseudo-function, has been shownciin6é.10.1 to be a distribution of
order 1 instead of a measure.



Chapter 2

A distributional approach to the
geometry of 2D dislocations at
meso-scale

2.1 Introduction

The present chapter focuses on mesoscale modelling witwvatei clarifying the ho-
mogenisation process from meso- to macroscale. Sincecdisbms are lines at the
mesoscale, concentrated effects, as governed by thebdisbn theory (a key ref-
erence is here Schwartz (1957)), must be introduced in theosoepic model. In
addition, since integration around the dislocations gatesra multivalued displace-
ment field with the dislocations as branching lines, multied functions must be
considered (Almgren, 1986; Knopp, 1996; Remmert, 1996is tbmbination of dis-
tributional effects and multivaluedness is a key featurthefdislocation theory at the
meso-scale but, unfortunately, the difficulties resultirgm this mathematical asso-
ciation have not well been addressed so far in the literafiom, 1980). As an
example, non-commuting differentiation operators arelfréntroduced without any
justification by Kleinert (1989). Therefore, the princifddjective of this chapter is
to provide a strong mathematical foundation to the mesteshaory of dislocations,
showing how the distribution and geometric measure thearé be correctly used
with multiple-valued fields. In particular, the applicatitimits of Stokes’ theorem
are clarified. For the sake of generality, disclinationsjolihrepresent a second but
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rarer kind of line defect, with in addition a multiple-vallieotation field, are here
considered together with dislocations.

After homogenisation from meso- to macro-scale, no comatad effects remain any-
more present in the macroscopic model, which consists of afsevolution PDE’s
governing scalar or tensorial defect density fields in thelework of elasto- or visco-
plasticity (Kratochvil and Dillon, 1969). However, it shdube pointed out that ho-
mogenisation from meso- to macro-scale has no meaning féitiptedvalued fields
such as displacement and rotation, since this operatioisgvely allowed for addi-
tive (or extensive) fields such as stress, energy densitgatrftlux. This consideration
becomes obvious when homogenisation is defined by an ensewdlaging proce-
dure, since multiple-valued fields are mathematically aefias extended functions
which cannot be added since their "domains" depend on threet@ie locations. This
issue is clarified in the present chapter. Moreover, sineertacroscopic displacement
and rotation fields are not defined as ensemble averagesiofittsoscopic counter-
parts, no unique privileged reference configuration candfadd at the macro-scale
for single crystals with dislocations. Having in mind thasmlacement and rotation
fields are defined with respect to the selected referencegroafion (which can be, or
not, defect-free), the invariance laws governing the behanof single crystals with
line defects at the macro-scale are constructed in accoedaith this observation.

In the literature the macroscopic dislocation density &ssically defined as the curl
of the plastic distortion (Head et al., 1993; Cermelli andti, 2001; Gurtin, 2002;

Koslowski et al., 2002; Ariza and Ortiz, 2005), following agtulated distortion de-

composition into elastic and plastic parts. However, thjgraach cannot be rigorously
justified (contrarily to the strain decomposition) sincastic and plastic rotations can-
not be set apart. In contrast, the present chapter intradinge macroscopic dislo-
cation density by homogenisation of well-defined mesoscfiplds, under precise
geometric-measure model assumptions, from which the rtiistodecomposition is

obtained together with its relationship with the dislooatdensity. Since dislocations
and disclinations represent body torsion and curvatuispeetively, these concepts
also appear as macroscopic counterparts of well-definedsoepic defect measures.

The present chapter is restricted to the 2D theory. Extensidhe 3D case is un-
der investigation and will be addressed in Chapter 3. A ceteplink between the
mesoscopic and macroscopic behaviours of single crysitiidine defects should be
derived from these developments. In Section 1.3.1 of Chdptthe scaling analysis
summarised in this introduction has been detailed and tbie bancepts used to repre-
sent the dislocated continuous medium have been introdlicéhis chapter, classical
invariance theorems are recalled in Section 2.2. In Se&i8nthe 2D distributional
theory of the dislocated continuous medium is establishetié case of a single dis-
location, while Section 2.4 treats the more general casenafrsemble of isolated



Introduction 83

dislocations. Finally, Section 2.5 introduces the nonaRianian macroscopic body
by homogenisation from the mesoscale, and conclusionsavendn Section 2.6.

Since our multiscale analysis of dislocations has alreadntexplained in Chapter 1,
Section 1.3, let us simply recall that the 3 scales of intei@sour analysis are the
atomic scalewhose characteristic length is the interatomic distanoe meso-scale
which defines the dislocated continuous medium and whosacteaistic length is the
average distance between two neighbour dislocation lavesthemacro-scalevhose
characteristic length is the diameter of the crystal. Meegthe mesoscopic reference
body Z; is a perfect crystal, while the macroscopic reference béidycan be, or
not, a perfect crystal. Let us also recall that the displaa@nfield is a multivalued
function such that for any poin%; € Z§ one hasuf(X) = x — X whereX; € %
andx € Z*(t), while the single-valued strain tensor is denoteddjy with &7 :=
%(o'?j us + diuj) outside the defect line and witj arbitrarily set to 0 on the defect
line. Finally, the possibly multivalued infinitesimal réitan tensor is denoted by;,

with ayj := 1(jur — aiu;) outside the defect line, with the associated rotation vecto
given by

*

1 , 1 o U
W = 58K W) = SEjKoj U
and the identityoyj = —é&jjcay. The Frank and Burgers vectdfl andB; associated
with a defect line are commonly defined as functions of thegsiofay; andu around
this line. From Weingarten’s theorems, these vectors ape/stas invariants of the
defect line (Kleinert, 1989). The following geometric tensare also introduced:

Definition 2.1.1

DISCLINATION DENSITY: Ofj :=QjoL (2.1.2)

DISLOCATION DENSITY: N == BjdL (2.1.2)

DISPLACEMENT JUMP DENSITY: 0} := Afj + €im©jj (Xm — Xom) (2.1.3)
1

CONTORTION: Kij = 0o — Ea,;mdj (2.1.4)

where ¥, is a reference point for rotation and displacement integnat

Here, symbol_ is used to represent the concentrated vectorial measusstylem

the defect line L. In particular, when L is a rectifiable curdg is equal tor; & with

T; the unit tangent vector to L anmil the one-dimensional Hausdorff measure density
concentrated on L.

The disclination and dislocation density tens&s and/\; are measure densities (cf
Evans and Gariepy, 1992; Mattila, 1995) related to the $legtatrain incompatibility
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n; to be defined later. In general at the meso-scale a dislocati@ disclination

is a defect line (i.e. a singular line for the strain) to whiwmbin-vanishing Burgers
and/or Frank vectors are attached. The tensgrsand ©j; are basic physical tools
to model defect density at the meso-scale wmjeplays a key role to understand
their behaviour. The displacement jump density and megascontortion (or lattice
curvature) tensors;; andk;; are combinations of these basic density tensors, with
ajj = /A\jj when the disclination density tensor vanishes. Moreoets also recall
that the macroscopic dislocation and disclination degsiij; and ©;; are defined

by homogenization from the knowledge of the mesoscopicdia and@i*j, whose
analysis is devoted to establish the properties of thesebemised fields.

2.2 Multiple-valued fields and line invariants; distri-
butions as a modelling tool at meso-scale

Notations 2.2.1 In the following sections, the assumed open domain is deipt®

(in practice but not necessarilp is bounded), and the set of defect line(s) is denoted
by . C Q. When considered alone, a defect line is indicated hy®, andQ, is the
chosen symbol faR \ L, which is also assumed to be open without loss of generality
Focussing on the meso-scale, symRair X, denotes a generic point of the defect
line(s), x or x is a generic point of2. and » or Xg; is a given fixed reference point
of Q.. When x anc are used togetheX denotes the projection of x onto the defect
line L in a appropriate sense ang := v;(X,X) is the unit vector joiningk to x. The
symbol®g is intended for a set of diamet@e enclosing the line L. More precisely,
@¢ is defined as the intersection with of the union of all closed spheres of radigis
centred on L:

©e :==Qn [ JB[X gl.

XeL
In case L is an isolated liney, is a tube of radiug enclosing L. In the sequel, con-
sidering a surface S d® crossed by L ak and bounded by the curve C, symbols dC,
dL, and dS will denote the 1D Hausdorff measures on C and L{fasm@D Hausdorff
measure on S, respectively, widif and 7; the unit tangent vectors to C at x and to L
at X (when they exist). In some cases (having fractal curvesndthe symbols dx
andd$:= eijkdxﬁndx(f) will stand for infinitesimal vectors oriented along C and nor
mal to S, respectively, with in addition d&) := &mndXnTn denoting an infinitesimal
vector normal to C whem, = 1,(X) exists.

Assumption 2.2.1 (Mesoscopic elastic strainHenceforth we will assume that the
linear strain &, is a given symmetri&™ (Q,R3*3)-tensor prolonged by on the
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line L, L'-integrable onQ and compatible o8, . In other words, the equality

is assumed everywhere @n .

2.2.1 Distributional analysis of the multiple-valued field

In general, a multivalued function fro@_ to RN consists of a pair of single-valued
mappings with appropriate properties:

F-Q and F—RN,

where F is the associated Riemann foliation (Almgren, 188&pp, 1996; Remmert,
1996). In the present case of meso-scale elasticity, we dinrselves to multivalued
functions obtained by recursive line integration of singé&ued mappings defined
on Q.. Reducing these multiple line integrals to simple line gnéds, the Riemann
foliation shows to be the set of equivalence path class€yk ifrom a givenxg € Q
with the homotopy as equivalence relationship. Accordingimultivalued function
will be called of index n o2, if its n-th differential is single-valued 0@, . No other
kinds of multifunctions are considered in this work, whethés a single line alone or
belongs to a more complex set of defect lines (with possitdedhings, etc).

Notations 2.2.2 The notation?j(s) is used for partial derivation of a single- or multiple-
valued function whose domain is restricted2p. Locally around x¢ Q_, for smooth

functions, the meanings o"fs> and the classicad; are the same, whereas on the en-
tire Q the partial derivation operatod; only applies to single-valued fields and must
be understood in the distributive sense. A defect-freeeduldof Q is an open set

such that UNL = 0, in such a way thaﬁj(s) anddj coincide on U for every single- or
multiple-valued function of index 1.

In the following essential definition the strain is consitkas a distribution of:

Definition 2.2.1 [Frank tensor] The Frank tensodmay; is defined on the entire do-
mainQ as the following distribution:

Om, = Ekpe@pSim (2.2.2)
in such a way that
< T, >i= — /Q SeoeimBpdV, (2.2.3)

with ¢ a smooth test-function with compact suppor€in
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In fact, the tensorial distributio@may; is the finite part of an integral when acting
against test-functions. Indeed, singgsy,, might be nonk!(Q)-integrable in view
of its possibly too strong singularity near the defect limestead of being directly
calculated as an integral, ékpqdpéqm ¢ > must be calculated of2 as the limit

lim ( /Q - EkpadpEim®dV + /{7 e skpqéi;m(pdsp), (2.2.4)

£—0

where the second term inside the parenthesis is preciselgdaih order to achieve
convergence. One readily sees after integration by pa#isekpression (2.2.4) is
equal to Eqg. (2.2.3) providegﬂlci)m\G)g = Q_ (which is a general hypothesis lim-
iting the acceptable defect lines together with the assiomphat L is of vanishing
2D Hausdorff measure). Considering the possibly multigdl@with index 1) rota-
tion vectoray’, it should be observed from Definition 2.2.1 thdiey = a5 @ on
Q.. This results from the classical relationship provided lasgcity theory between
infinitesimal rotation and deformation derivatives. Howe\ﬁmwﬁ is defined by Eq.
(2.2.2) as a distribution of2 and therefore concentrated effects on L and its infinites-
imal vicinity are added ta?r@w‘f, justifying the use of the symbamw; instead of
Omay; without giving todm the meaning of a derivation operator. In particular, it may
be observed that the identical vanishingdé?)ag on Q, does not necessarily imply

that the distributiorﬁmwg vanishes as well. In fact from Eq. (2.2.4), it can be shown
in this particular case that

<m0 >=1m | fingas, = - /Q SeimdpddV,  (2.2.5)

which is generally non-vanishing. Finally, as soon as tHenden of the tensor dis-
tribution dmay, is given, so are the distributional derivativesdyfay

< AT, § S= — < I, AP >= /stpnggnﬁpmdv. (2.2.6)

2.2.2 Rotation and displacement vectors

The rotation vector is defined from the knowledge of the lingtaain together with
the rotation at a given reference poxgt From this construction follows an invariance
property ofwy; as a multifunction (recalling that multivaluedness take®rigin from
the existence of a defect line which renders the strain ingatible on the entir€).
Starting from the distributive Definition 2.2.1 of«y;, the differential formdmw;dénm

is integrated along a regular parametric cufve Q, with endpoints¢,x € Q, . For
selected, andwy,, the multivalued rotation vector is defined as

o = (. 6) = @+ [ O o,
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where # is the equivalence class of all regular curves homotoplicitonQ, . Indeed,
from strain compatibility inQ,, i.e. from relation (2.2.1), it is clear that} is a
function of #~ only. Consider now a regular parametric loop C (in case C imagy
loop, it is called a Jordan curve) and the equivalence cl&ssf#all regular loops
homotopic to CinQ.. Here, the extremity points play no role anymore and two foop
are equivalent if and only if they can be continuously transfed into each other in
Q.. The jump of the rotation vectan; along # depends on@& only and is defined
ag

(6] = [](C) = | Tme e, (22.7)
The following developments address the displacement fieldivaluedness as a mere
consequence of strain incompatibility. The procedure dafithe displacement vector
from the rotation vector by means of line integrals is cleakin linear elasticity. The

following tensor plays in the construction of the displaegifield a role analogous
to dmay; in the construction of the rotation field:

Definition 2.2.2 [Burgers tensor] For a selected reference poiptxQ_, the Burgers
tensor is defined on the entire dom&ras the distribution

A1 (X X0) 1= &4 (X) + Ekpg(Xp — Xop) 91 W5 (X). (2.2.8)
The Burgers tensor can be integrated in the same way as th& t&nasor along any

parametric curvé, providing for selectedo, ay, andug, the multivalued displace-
ment vectowy of index 2:

U = UG, 68, U5) = U+ Bamd 057) (= Yom) + [ B105(8):
which is a function of # only. It may be observed thay by and the vector
b = Uk — &kim@)" (Xm — Xom)
are related in the same way @ga;: andcy, including the fact thad b = 3% b on
Q. The jumps ofby along # and ofu; at x along £ (which depends onGfonly)

are defined as

5] (HC: Xo) = U] (G Xo) — B[ (HC) (em — Xom) = [ 21Dl

Llet us note that the curve C could be non rectifiable, i.e. fifite length. In fact, integrals on fractal
curves and the related Stokes’ and Gauss-Green'’s theomenanalysed by Harrison and Norton (1992),
where it is shown, by th&”-smoothness of the differential fordnw;dx, on Q_ that Eq. (2.2.7) still
holds even when the Hausdorff dimension of C is higher than 1.
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Let us now, for the sake of simplicity, focus on the case of f@etdine L which (i)
can itself be represented as a sirfglg closed or not, parametric line without multiple
points except possibly its extremities and (ii) is isolatedhe sense that each of its
pointsX'is located inside a smooth surfaB&) bounded by a loof(X) and such
that S(X) \ {X} € QL. Such a defect line L will be called an isolated dislocation o
disclination. The jumpay] of the rotation vectoty; around L is defined as the jump
of ay; along #£(X) and hence is the same for arynd suitableC(X). Similarly, the
jump [bg] of the vectorbg around L is defined as the jump bf along #£(X) and is
also the same for any and suitableC(X), givenxp. In fact, the following result is
well-known (Kleinert, 1989):

Theorem 2.2.1 [Weingarten] The rotation vectasy; is a multifunction of index 1 on
Q whose jum@; := [wy] around L is an invariant of the defect-line L. Moreover, for
a given x, the vector B is a multifunction of index 1 o whose jump B:= [by]
around L is an invariant of the defect-line.

Proposition 2.2.1 [Multiple-valued displacement field] From a symmetric sitidin-
ear strain tensot;; on Q; and a point ¥ where the displacement and rotation are
given, a multivalued displacement fieltl of index 2 can be constructed 6h such
that the symmetric part of the deformation gradiéfff U is the single-valued strain
tensoré;; onQy while its skew-symmetric partis the multivalued tenspr= — &jx .

From this result, the Frank and Burgers vectors can be defisedvariants of the
single isolated line L.

Definition 2.2.3 [Frank and Burgers vectors] The Frank vector of the line Lligt
invariant

Qf = ], (2.2.9)
while for a given reference poingxits Burgers vector is the invariant
By := [bx] = [U](X) — &amS (Xm — Xom)- (2.2.10)

A defect line with non-vanishing Frank vector is called actiigtion while a defect
line with non-vanishing Burgers vector is called a dislacat

Clearly a disclination should always be considered as adhsion by appropriate
choice ofxg while the reverse statement is false siiggmight vanish. This is why
in the present work, the word “dislocation” means in the gahgense a dislocation
and/or a disclination. A pure dislocation is a dislocatiathwanishing Frank vector.
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Remark 2.2.1 Two distinct reference pointgxand X, define two distinct Burgers vec-
tors, related by

% — Bl = &kim(Xom — Xom) Q[

in such a way that Q5 is an invariant independent of the arbitrary choice ef x
Therefore, for a non-zero Frank vector, the vanishing of Bluegers vector depends
on the arbitrary choice of x

Definition 2.2.4 (Mesoscopic strain incompatibility) According to Eqg. (2.2.1) com-
bined with Eq. (2.2.2), the incompatibility tensor is defitgy

N = slmndmgno%?

The strain field is called compatible on the set U if the assted incompatibility
tensor vanishes on U.

2.3 Distributional analysis of incompatibility for a sin-
gle rectilinear dislocation

2.3.1 The 2D model for rectilinear dislocations

2D elasticity means that the strafff is independent of the “vertical” coordinate
However this assumption introduces no restriction on thpeddence of the multival-
ued displacement and rotation fields upon z.

Notations 2.3.1 Henceforth the single defect line will be assumed to be &statong
the z-axis. The two planar coordinates will be denoted by &air x,. The pro-
jection of x= (X4,2) on L isX = (0,0,2). By convention, Latin indices i,j,k,I; take
their values from 1 to 3 and are basically used for 3D elastjavhile Greek indices
a,B,y,9d, - take the values 1 or 2 and are used for 2D elasticity. Symigls,,e,)
or (e,,€,) denote the Cartesian base vectors, wliée eg,€,) denote the local cylin-
drical base vectors. For a planar curve C, the notation,d&) = £,3dxg will be used
for the curve normal.

Let us observe that many fields are singular at the origin &atlQ_ is in fact the
domain where the laws of linear elasticity will apply. Moweo, the strain can be
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decomposed into three tensors:

N— ——
planar strain 3D shear pure vertical compression

The following propositions can be readily proved from Asgiion 2.2.1.:

Proposition 2.3.1 [2D compatibility] In Q. , from 2D strain compatibility, there are
real numbers K, g and b such that

£apOa b, =K, (2.3.1)
&L= agXq +b.

Lemma 2.3.1 Let C(X) denote a family of 2D closed rectifiable curves. Then, in 2D
elasticity, the Frank tensor and the strain verify the redat

l dszwd Exdxg =0
ik c<>z>xa B+ Ecpop D =5

provided the length of C is uniformly bounded and as long astinvergence &) —
X is understood in the Hausdorff sense, i.e. in such a way that

max{|[x— ||,x € C(})} — O.

Proof. The second compatibility condition of Eq. (2.3.1) is eqleve to
0yép,— Opby, = Kéyp,

from which, so far as 2D elasticity is concerned,

and

Since, under the limit assumptions of this lemma,

lim XqdX¢ =0,
C(R)—%JC(®)
and since the strain is a single-valued tensor, the proaftigesed. O

Lemma 2.3.2 In 2D elasticity the planar Frank vectd®j, vanishes.
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Proof. Since
0t = & + Ery(Xy — Xoy) B 005 — Ery(2— 20)Fp )

the planar Burgers vector simply writes as

B: = /c (@@Er + &ry(Xy — Xoy) Op wz*) dxg — &ry(z— 20)QJ,

where C is any planar loop. By Weingarten’s theorems the 8srgector is a constant
while the integrand is independentnffrom which the result obviously follows. [

In general, the present theory does not make any use of tharlelasticity constitu-
tive laws and of the momentum and energy conservation lanse & the framework
of Continuum Mechanics arbitrary body forces and heat supplild be applied. Be-
fore entering into the heart of this chapter, let us recalt three explicit examples of
rectilinear dislocations have been computed in Section 1.6

2.3.2 Mesoscopic incompatibility for a single defect line

For 2D problems the incompatibility vector contains all théormation provided by
the general incompatibility tensor. The latter expresseghe one hand the non-
commutative action of the defect line over the second déwvesof the rotation vector
and on the other hand is related to concentrated effectsedfitink and Burgers vec-
tors along the defect line.

Definition 2.3.1 In the 2D case, the mesoscopic incompatibility vector imaefby

i = €qp0a 0 p K. (2.3.2)

A strain field is compatible if the associated incompatipiiector vanishes.

As shown in the following sections, concentration effecigtoe defect line L will be
represented by means of first- and second-order distrifbsitio

Notations 2.3.2 Recalling Notations 2.3.X2, and Qg stand for the set®, := {x €

Q suchthat x= (xg,2)} and Q% := Q,\ L, while the radius r= ||x— %|| is the
distance from a point x insid® to L. Then, the 1D Hausdorff measure concentrated on
L is denoted by (cf Ambrosio et al. (2000), Evans and Gariepy (1992) and Natt
(1995) for general definitions and properties on the geoimeteasure theory).
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In what follows the hypothesis consists in assuming thastten radial dependence
in the vicinity of L is less singular than a critical threstioThis is verified for instance
by the wedge disclination whose strain radial behavio@xisr) and by the screw and
edge dislocations whose strains & ~1).? For a straight defect-line L, according to
these examples, the hypotheses on the strain and Frankgeaad as follows:

Assumption 2.3.1[2D strain for line defects] The strain tensé; is independent of
the vertical coordinate z, is compatible @ in the sense that conditions (2.3.1) hold,
is smooth o and L!-integrable onQ.

Assumption 2.3.2 [Local behaviour] The strain tensaﬁ;j* is assumed to be(o?)
(€ — 0F) while the Frank tensor is assumed to le @) (e — 07).

Theorem 2.3.1[Main result for a single defect line] Under Assumptions.2.and
2.3.2, for a dislocation located along the z-axis, inconighbtly as defined by Eq.
(2.3.2) is the vectorial first order distribution

Nk = 3Nz + Ok
where its vertical component is
n; = Q;0 + £ay (B} — £5yX0pQ} ) 0a 41, (2.3.3)

while its planar components are

1
Mk = 5€aB;0adL. (2.3.4)

Proof. For some small enough > 0 and using Notations 2.2.1 a tubg can be
constructed around L and insi@e Assuming that the smooth 3D test-functigrnas
its compact support containing part of Q. ; denotes the slice d® \ ©, obtained for
agivenxelL, i.e.

Qe 7:={x€Q; suchthat ||xq]| > €},

while the boundary circle of), ; is designated b ,.
A Let us firstly treat the left-hand side of Eqg. (2.3.3). Indefedm Definition 2.3.1
with Eq. (2.2.2), Definition 2.2.1, and Egs. (2.2.3) and @) 2t follows that

<nig>= /dz lim M(z 6, ),
L £e—0t

2A function f(¢) is said to beD(g(¢)) (€ — 0*) if there existsK, gy > 0 s.t. 0< € < g = |f(g)| <
Klg(e)|. A function f(¢) is said to ben(g(€)) (¢ — 0T) if lim e =0.
e—0+ 9(€)
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where

M(z.6.¢) ::_/Q £aplpt0a S /C“ea,gekyng,;naacpdcy.

&€

The boundedness ¢;d5¢| onQ, provides the following Taylor expansions¢fand
of dyg ¢ around

2
B0 = SR +r0adad(R)+ 5 000056 (R+ n(x—K), (2.35)

Oap(X) = 0 (X)+r0:0:0ad (X4 yo(x—X)), (2.3.6)

with 0 < y1(X—X), o(x—X) < 1. A
A Consider the first term of Eg. (2.3.5), not8d. By virtue of strain compatibility on
Q. and Gauss-Green'’s theorem, this term writes as

Az ¢.2) = —~/Qs,z Oy (%4353@4’) dS= /cg &yp0p e $dC,.

Since by Notations 2.3V, := Xq — Xa = Xa, then Eq. (2.3.5) and Assumption 2.3.2
show that, fore — 0™,

Fle= [ 5030k (90 +xad0 (%)) Ay + o(D).

A Consider the second term of Eq. (2.3.5), ndf§d On account of Assumption 2.3.2
and by expansion (2.3.6), this term may be rewritten as

Mi(z¢.e) = —/C €apEnEpnda dCy
= 009 [ sapBanidCy+ol1).

A From Weingarten’s theorem, recalling thtG, = £,;dx;, the expressiofil, = ﬁk+
My writes as

€,2

+ Qo(X)+0o(1). (2.3.7)
A Consider the first term of Eq. (2.3.7), notBg}, and taked = y in the identity
&onéyr = 5Kz(5y55nr - 5ny6r5) - 6nz(6y55m - 5Ky615) (2-3-8)
in such a way that
ni(:da¢()z)/ (XGET@_@zsaﬁgﬁr"‘d«ga[;ggz) dXT. (239)

€,2

A The casek = zandk = k are treated separately.
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Whenk = z, Definition 2.2.2 shows that
g} = 85+ ry(Xy — Xoy)9p W — Ery(2— 20)0p w0,

which, after multiplication bye;q and using Eq. (2.3.8) with, a and z substi-
tuted for kg and n, is inserted into Eq. (2.3.9), thence yielding:

M, = 0ab(®) [ (eradpbi +x000p0% + (2- 2)0pe; ) g, (2:3.10)

CE,Z

and consequently, from the definitions of the Frank and Brgectors,

SILrQ+ N, = < {€atBf — (2— 20)Qf — %00 Q5 } 9a G0, ¢ >, (2.3.11)
wheredy is the 2D Dirac measure located at 0 apwiXy) := ¢ (Xq,2), While
symbol< -,- > denotes the 2D distribution by test-function product.
Whenk = k, Definition 2.2.2 shows that

by = &5, + &yt (Xy — Xoy) Ip
from which, after multiplication by, it results that:
Xagrw; = _gKGETb; + SKa(fga{—kz‘i— XOCIETO);(( + (XK - XOK)Eng{

Then, by Lemma 2.3.1 with a permutation of indieeanda, Eq. (2.3.9) also
writes as

M = %9 [

Cs,z

+0(1).

On the other hand, from Eqg. (2.3.9) and Lemma 2.3.1 (i.e. stain compati-
bility) it follows that:

Mo = 00 [ (~sepltia+ eapéne) +0()

€,2

29 (%)

€

EaxEf,d%5 +0(1). (2.3.12)

By summing this latter expression Bf, with Eq. (2.3.12), from the definitions
of the Frank and Burgers vector it follows that

1 S * *
Hence, in the limit — 0" Eq. (2.3.13) writes as

. 1 1 X
£||I"g|Jr I'I; =K {E‘EKGBZ — E‘QKGSVL?QVXOB} 0qa %, ¢z > (2314)
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Therefore, the result is proved @4, since

lim MN(z @,&) = lim Ni(z ¢,8)+ < Qtdo, d7>> . (2.3.15)
£—0t £—0t

A As suggested by Eq. (2.3.5), to obtain the result for theedvmain it suffices to
integrate Egs. (2.3.10) and (2.3.13) and expresSigf(X) over L, in order to replace
& by the line measuré_ in Egs. (2.3.11), (2.3.14) and (2.3.15). By Egs. (2.3.5),
(2.3.11), (2.3.14) and (2.3.15), the proof is achieved. d

2.3.3 Applications of the main result

Throughout this sectiofx, y,z) denotes a generic point & and all tensors are writ-
ten in matrix form in the Cartesian bagg, ey, €;).

e Screw disclocationSinceBy = Q; = 0, Eq. (2.3.4) yields

0,0
—kOL
0

o B

This result is easily verified with use of Eq. (2.2.6). Onedwseto compute
/ ekpneaﬁéagndpdacpdv, that is to calculate the integral of
Q

B; ayzxqb;—xz + ayzfp rlzy
an —05pz— 0oz |-

0
By integration by parts, using Gauss-Green’s theorer@pand recalling that
test-functions have compact supports and thdbgr = xm/r?, these integrals

become
- oo (axrxz + %%) B —d,002logr
_z _ "z 2
| o (3 +3%) | V=75 /. dodgloar | dv
0

Hence, fromA (logr) = 2119, with A the Laplacian operator, the first statement
is verified.
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Edge dislocation.Whereasz?me identically vanishes o, it is easily seen
that Egs. (2.3.3) and (2.3.4) wiBf = Q% = 0 yield

0
0

koL

(k] =By

We must computény] = / Epnk€apépndpda@dV. Fork =1 and 2 and with
Q

n +#+ 3, the tensorea,gggndpaaqb equalséy;d, 0y — £5,0:0«¢ and &40,0«¢ —
Exd.0y¢ respectively. By integration by parts, the related intégvanish. For
k = 3, the integrand is

EpnapbpndpOad = ExxOyByd + E0Ox — 263,0,0x9.

Integration by parts provides the expressi n—%{ﬁxqm(logr)dv, achieving
Q
the second verification.

Wedge disclinationincompatibility reads

0
0

o

We must calculates ), ¢ >. Fork=1,k=2,n# 0 andp = 3 the integrand
vanishes. Fok = 3, one computes

(k] = Q;

. B Q;(1—vY) r Qs (1—v¥) r
Eap syréarﬁﬁadyqb = TqﬁA(log ﬁ) + T(I)A(log ﬁ)
_ z
= —47_[(4715_),

achieving the third verification.

2.4 Distributional analysis of incompatibility for a set

of isolated dislocations

In the previous section, a single defect line was considetddwever, to address
the macro-scale physics, homogenisation must be perfooneaiset of dislocation
lines whose number tends to infinity in order to define regd&fect density tensors.
Therefore, our goal is to introduce appropriate hypothésascan easily be applied
to a set of defect lines and to a regular defect density as well
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2.4.1 Governing assumptions for the strain and Frank tensa

Besides the strain Assumptions 2.3.1 two measure hypatioesthe strain derivatives
are introduced to replace the local Assumptions 2.3.2 ireotd validate Theorem
2.3.1in a global framework.

Assumption 2.4.1 The strain divergence and trace gradiedi&y; and 0,8y, are
finite Radon measures @h3

Remark 2.4.1 No assumption could be made on the complete Lebesgue ibkegra
strain gradient without contradicting the 2D examples ofa@ter 1, Section 1.6.3.
On the other hand, it can be shown that the sharp Assumptigh% are required to
demonstrate Lemma 2.4.4 and hence Theorem 2.3.1.

Remark 2.4.2 Assumption 2.4.1 is natural in infinitesimal elasticity ifeoconsiders
the strain-stress constitutive law and the equilibrium $awAs a consequence, the
stress divergence must be a measuré€on

The following Lemmas are needed for the proof of Lemma 2.4.4.
Lemma2.4.1 e A solenoidal distributional vector field,aon Q; writes as
ag = Eqy0yQ, (2.4.1)
with @ € 2'(Q,).
¢ A symmetric solenoidal distribution tensogfon Q; writes as
agp = EayEprOyor Y, (2.4.2)

with ¢y € 2'(Q,).
Proof.

o First statementLet ¢y be anyxy-primitive distribution ofa; (Schwartz, 1957).
Thend,@ = a; and, from the solenoidal property a§, there exists a distribu-
tion G(x1) s.t. A+ ax = G(Xq). By xz-primitivation of G(xz ), it is easy to find
F(x1) s.t.1F = G(x1), and to verify thatp = @+ F (x1) solves the problem.

3A (finite) Radon measure df is a measure bounded on compact subses. of
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e Second statementFrom dya,p = 0, there is a distributiorg s.t. azp =
EayOyPp. Theneay(?y (@) dgagp = 0 and hencelz ) is a constant C or
equivalentlyﬁﬁ((pﬁ ng) 0. From Eq. (2.4.1), there exists adistributiqbn
such thatg — —CxB = &3:0rY, and henc@,g = eayeﬁraydrw+ €q8C- The
symmetry ofa, g implies that C=0.

Lemma2.4.2 e Foragiven L1(Q,)-scalar function f, there exists an irrotational
distribution field g such that

e Foragiven L}(Q,)-vector function § such thatds f; = Ag where g is a £(Q;)
function, there exists a symmetric compatible tenggrgn Q such that

Proof.

o First statementlt is sufficient to consider an ultra-weak solution (Brei883)
of AH = f and to defingg = dgH.

e Second statemerBy primitivation, there is a non-compatiblé (Q,)-field ggB
such thatf; = 01074, f2 = d-05, and 0= g3, = gj,. A necessary condition for
gap 1o exist is thalgyg = Jap — ggB verifies dz§qp = 0, or by Lemma 2.4.1
thatdyp = €ay€prdydr @ for some gauge distributiop. In order thatg,g be
compatible om),, ¢ must satisfy the following equation, equivalent to the 2D
compatibility ofg,g onQz:

AAQ = Ay — 030a9ap = D(Gxx — 9)- (2.4.5)

Up to a harmonic and hence smooth functiortdn the solution of Eq. (2.4.5)
is the solution ob\g = g, — g. Since the right-hand sidelig(Q,), a solutiong
exists in the ultra-weak sense and hence the existence ofrastric compatible
distribution fieldg, g on Q; verifying Eq. (2.4.4) follows. O

Lemma 2.4.3 For constant C and g, there are a vector gand a symmetric, com-
patible tensor Gg on Q; such that

ok9k = Co, (2.4.6)
0aGap = Cglo. (2.4.7)
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Proof. The solutions are given ko = (271) 19k logr andGgp = % (ﬁa Hg +0dp Ho,),
where

C /3 X2 X1X2
H = — | =] S S =
1 on <2 ogr 2r2> 22
C /3 X2 X1X2
Hy = ==(Zlogr—-%|—-C-==.
2 27'[(2 9o > 4mr?

O

Lemma 2.4.4 Under Assumptions 2.3.1 and 2.4.1, the strain componentbegut
in the form:

&, = Extex, (2.4.8)
EO,B—i—eaB, (249)

*
ap
where vector k has a vanishing curl o, for any given z while vectords o(r—2)

as r— 0%, and where tensor f is compatible orQ, for any given z while tensor
eqpiso(r—2)asr— 0",

Proof. By Assumption 2.4.1¢,&Y; is a Radon measure dd,, and hence writes by
Radon-Nykodym’s decomposition theorem as

o0&l = fi+q, (2.4.10)

where f; € Ll(Qz) and whereg is a Radon measure dp; singular with respect to
Lebesgue’s measure. As a mere consequence of the smoottiakss; on Q% qis
a concentrated measure ©9 and hence is proportional to the Dirac magss

@ =GCid = (2m)~'CidZlogr. (2.4.11)

A First statement.

e By Egs. (2.4.10), (2.4.11) with= z, and Lemma 2.4.2, there exists an irrota-
tional gk such that

dK (éa’?z_ gK - (27-[)_1C26K |Ogr> = O,
in such away that, by Lemma 2.4.1,
&y — Ok — (2m)~1C,0¢ logr = &xydy Y, (2.4.12)

wherey is a distribution. Apply the curl operator to Eq. (2.4.12)laake into
accountthe irrotational property gf in such a way thaAy) = €, &5 Since
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&7, is all-vector, its curl is a first-order distributidrand hence, by the strain
compatibility which ensures the curl 6f;, to be a constark on Q9 and a com-
bination of the Dirac mass and its first-order derivativethatorigin (Schwartz,
1957), writes a¥ + ¢d + ¢,d,0.

e Now in the resulting equation
* -1 K
Op | &pdiz— (2m) coglogr — 5% ) = 0,0, (2.4.13)

the term on the left-hand side is the divergence afavector, and hence Eq.
(2.4.13) has no distributional solution unlegs= 0.

o Itresults that\y = K + (271)~1cA(logr) provides a gauge fielgh which writes
as
@ =h+(2m)clogr, (2.4.14)
where h is a solution cAh = K on Q. It is easily verified that the curl ap is
o(r—?) asr — 0",

e DefiningEx = gk + (21) ~1C,0« logr andey = EkyOy in Eq. (2.4.12) achieves
the first statement proof.

A Second statement.

e Let us prove that the divergence bfis the Laplacian of ah!(Q;) function. In
fact, sincen; writes as

n; = 0q (ﬁaé’K*K - aﬁggﬁ) , (2.4.15)

it is from Assumption 2.4.1 a concentrated first-order disiion writing as a
combination of the Dirac mass and its first-order derivatiiéence:

dBfB = dgﬁﬁéa;ﬁ—dﬁ(pﬁ ZAg;K—f];—dB% :AéD;K—ééo—éydyéo
= NA(& —clogr —cydy,logr), (2.4.16)

wherec; €, T, Ty are constants.

“4Following Schwartz (1957), a distribution is of order 1 itiéfines a linear continuous map @ (Q).
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e From Egs. (2.4.10), (2.4.7), (2.4.4) and Lemma 2.4.2, thrigts a compatible
gkp such that

Ok (@% — Gk~ GK;;) =0, (2.4.17)
in such a way that, by Lemma 2.4.1,
Sxp — g — Crp = ExyeprdydiA, (2.4.18)

for some gauge field € 7'(Q;) verifying, by the compatibility of, g andG,g
on Qg, the relation

n, =0AAA on Q. (2.4.19)

Hence, since the left-hand side writes as a combination wfateves of & of
order lower or equal to 1, the field A is the solution&f = (a-+a,dy) logr
with constanta,ay, up to a smooth harmonic function dm,. It follows that

A= (a+aydy) (%(Iogr = 1)) is a¢0(Q,) solution of Eq. (2.4.19) such that:
0cdpA is o(r?) as r—o0". (2.4.20)

e The proofis complete with the definitiofg g = Gg +0«p ande,g = &xy€prdy0rA
in Egs. (2.4.18) and (2.4.20). O

2.4.2 Mesoscopic incompatibility for a set of isolated de@ lines

Theorem 2.4.1[Main 2D result] Under Assumptions 2.3.1 and 2.4.1, for a_géof
isolated dislocations parallel to the z-axis and locatedts positions X, L € .Z,
incompatibility as defined by Eq. (2.3.2) is the vectoriatforder distribution

’7? = @zn; + @Kmﬁ, (2-4-21)

where

e its vertical component is

=3 (Q26+ eay (By+ 85y — o)) 0ud ), (24.22)

e its planar components are

1
Mk = ) &aBi0adr. (2.4.23)
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Proof. From Lemma 2.4.4 the stralﬁ,;n (n=a or z) is decomposed in compatible

parts Eg andEgp) ando(r~2) parts €3 ande,g) to which the demonstration may be
limited by linearity. Since from Eqgs. (2.4.14) and (2.4.2® gradient®),eg,dy€,p
areo(r—3) for r — 0™, the proof of Theorem 2.3.1 can be followed for everg .
as soon azﬁ"gz is replaced byeg andéagr by eg;. However, since the dislocations are

located at positionrdﬁ instead of 0, an additional sh'»fg is required in EqQ. (2.4.22)]

2.4.3 Mesoscopic defect densities in 2D incompatible elasty

Since the tenso®; , A3, a;x vanish for iz, the 2D densities for an ensemUé of
rectilinear dislocations write as follows

Definition 2.4.1

O = Y QA (2.4.24)
LeZ

A= S Ba, (2.4.25)
LeZ

aff = orz*k: /\E - 6ka£0,56§(x,3 - XOB) (2426)

Moreover, in the 2D case, the contortion tensor writes as:
* * 1 *
Kij = Cizaj — Eaz d] . (2427)
The following result expresses the incompatibility in terof Ki*j:

Theorem 2.4.2 Under Assumptions 2.3.1 and 2.4.1, the mesoscopic stragmipat-
ibility for a set.Z of rectilinear dislocations writes as

N = O+ eqpdukyp, (2.4.28)

or equivalently as); = O + &q10a Ky 4

Svarious notations are used in the literature to representifect densities. In particular, Nye (1953),
Kroner (1980) and Kleinert (1989) give different definitioof the dislocation density and contortion tensors
(without considering disclinations in the first two casaalke here follow Kroner's and Kleinert’s notations
for aff and Nye's original definition ok}, with Nye's a;j here denoted bwr. It should be recalled that
the term “contortion" was introduced by Kondo (1952).
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Proof. Consider any straight dislocatidne .# located at a give: € Q. From
Theorem 2.4.1, incompatibility writes as

’7|f = d(Z(Q;éL‘f‘gay(B;—F eﬁy()‘(ﬁ —XOB)Q;) dad)
1
+ 5KK§5K0{B§0015L- (2.4.29)

Taking into account Eqgs. (2.4.24), (2.4.25), (2.4.26), éhd.27), and the relation

0a (X —%op)8.) = 0u ((XG —Xap) 31 ) = (X5 —Xop)a

it results from Theorem 2.4.1 that incompatibility can bétien in the alternative
formulation

M) = Ok0Y) + eapdakip(X), (2.4.30)

or equivalently ag); (xt) = OF(xt) + &ka1da k2 (X-). The result follows after summa-
tion onL € . and using Egs. (2.4.24), (2.4.25), (2.4.26), and (2.4.27). O

In a next step, the tensdr; d, u;, is defined on the entir® in a similar way a® j w;:

Definition 2.4.2

00Uy = 0j & + &kp1 0 W}, (2.4.31)

By Proposition 2.2.1, the displacement fiefdis a multivalued function of index 2,
which is obtained o, by recursive line integration cﬂj<s> oy = o'?j<s> (&g + )
and hence by recursive integrationad, u.

Remark 2.4.3 In the situation where, for a particular selection of theaefnce point,
the dislocations have vanishing Burgers vectors, the idiatibn density equals the
incompatibility

€ap0adp Wy = Of = n§. (2.4.32)

Using an arbitrary reference point, this expression is aetly false in the general
case where disclinations coexist with dislocations. Meegpthe tensop jd,u; does
not provide relevant information in terms of defect demsitinceg;j djd,ug = 0 on
Q.

The mesoscopic vectors and tens&sA;, oy, ki andny are concentrated distribu-
tions on the defect lines which provide all the informationdislocation and discli-
nation densities. However, homogenisation to the macatestill requires to clarify
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their link with the multivalued rotation and displacemerids. In order to resolve
this problem, the tensog; w andd;d, ug are completed by appropriate concentrated
effects in the defect lines, without however modifying threiationship with the mul-
tivalued displacement and rotation fields define@jn

Definition 2.4.3

Opa = dpwk — K, (2.4.33)
0a0pUg = 0a0pUk— EppKpa = Oa by + EippOa Wp. (2.4.34)
Theorem 2.4.3 The vector and tensor distributiodg «y; andd,0guy verify:

MESOSCOPIC DISCLINATION DENSITY Ok = &qp0a0p0x, (2.4.35)
MESOSCOPIC DISLOCATION DENSITY ay = €qp0a0pUg. (2.4.36)

Proof. The first statement is a mere consequence of Eq. (2.4.28¢ Wiglsecond one
follows from Eg. (2.4.33) by simple calculations, notingtBmwy, = 0 onQ and that

ag = Kz — KppOzk- (2.4.37)
O

Remark 2.4.4 Eqgs. (2.4.35) and (2.4.24) directly show that

[ capdadpeids= [ oids= 5 it
S S LEZ

where the domain S is bounded by the counterclockwisetededordan curve C,
which encloses once each defect line of the sulfgebdf .. Similarly, Egs. (2.1.2)
and (2.4.26) show that

/880,5605BUEdS = /S(Aﬁ_aKagaBe;(XB_XOB))dS

3 (B Bagap0 06 —09)
€Zc

Remark 2.4.5 The vectord, w; does not verify Stokes’ theorem, neither in the clas-
sical sense, sinceaﬁﬁaﬁﬁw; is singular at X, nor in a measure theoretical sense,
sincesaﬁﬁaﬁﬁwz* is not a measure but a first-order distribution given by Eq4(22).

As often observed in the literature, even in an inapprogriadntext, a formal use of
Stokes’ theorem may give a correct final result. We here ptefavoid any confusion
and hence to mention that, in view of a clarification of Stok®sorem in the context
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of defective crystals, the following formula holds and carploved as a consequence
of the previous definitions:

/8|a>z*d>q :/&saﬁaaaw;ds (2.4.38)
C

2.5 Macroscopic analysis

2.5.1 A first approach to homogenisation from meso- to macro-
scale

The mesoscopic results given in the previous sections avdhomogenised (cf Chap-
ter 1, Section 1.7.1 and following). Indeed, in the conteixtimear elasticity, the
macroscopic elastic straifj; is obtained by averaging the mesoscopic stgsg¢and
from the known elastic constitutiv laws) and hence the msapic elastic incompat-
ibility njx is obtained by averaging the mesoscopic incompatibility Moreover the
defect densities are homogenised and the macroscopicarpants ofog, Ay, oy and
Ki*j write asOy, /\, 0k, andkij, with
1

Ok = Kzk— Kppdk  and  Kij = &0 — Eazdj. (2.5.2)
Definition 2.5.1 (Macroscopic Frank and Burgers tensors)The Frank and Burgers
vectors crossing a macroscopic surface S are defined as

(S = /Sekds (2.5.2)

Bu(S) = /S/\de (2.5.3)

By homogenisation of Egs. (2.4.33) and (2.4.34), the maoqis counterparts of
Definition 2.4.3 write as follows:

Definition 2.5.2

55@ = Ekpqapqu—Kkﬁ, (2.5.4)
6065Uk = da£k5+£kp560%, (2.5.5)

whereéig andkyg define the macroscopic elastic strain and contortion.
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Moreover, the macroscopic counterpart of Theorem 2.4e2 {he fundamental equa-
tion “inc & = © + curl k” of the continuum theory of defects by Kréner (1980)

together with Theorem 2.4.3 now follow from homogenisatibthe mesoscopic de-
fect densities and from Definition 2.5.2:

Theorem 2.5.1

KRONER'S IDENTITY Nk = Ok+EpTakKig, (2.5.6)
MACROSCOPIC DISCLINATION DENSITY Ok = &up0a0pik, (2.5.7)
MACROSCOPIC DISLOCATION DENSITY Ok = €gp0adpUk. (2.5.8)

Remark 2.5.1 By Stokes’ theorem, if S is a region enclosed by a curve Chwhight
have only fractal regularity (Harrison and Norton, 1992)enQy(S) = / Opxdxgs.
C

Moreover, in the absence of disclinationg(8) = /ade.
s

The macroscopic density tensdxgandki;, as obtained from the single-valued meso-
scopic densities, have a geometrical interpretation (Kro@980; Anthony, 1970)
which will be discussed in the following section. Indeeg,is directly related to the
torsion of a body submitted to an incompatible purely etagéformation to which a
non-Riemannian connexion is attached due to the contoktjon

2.5.2 The non-Riemannian macroscopic body

The following geometric objects are introduced after hosrdgation of the well-
defined mesoscopic elastic strain and defect densitiegdier @0 provide the model
of a macroscopic body endowed with a law of parallel disptaeet together with
internal torsion accounting for the defective crystal stae.

Definition 2.5.3

ELASTIC METRIC TENSOR: gij = Gj— 28 (2.5.9)
1
DISLOCATION TORSION: Tij = _Egpij/\pk (2.5.10)
~ 1
SYMMETRIC CHRISTOFFEL SYMBOLS:  [jj 1= > (di Okj + 00k — dkgij)
CONNEXION CONTORTION: Alij = Tpik+Tigjk — Tji (2.5.11)
NON SYMMETRIC CHRISTOFFEL SYMBOISjj = fk;ij — Al kijj - (2.5.12)

6Note that different sign conventions for the rotation veetod incompatibility apply in Kréner's work.
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Remark 2.5.2 The metric of the actual configuratia#(t) is &;. Therefore, as re-
quired (cf Section 2.1 and Chapter 1, Section 1.3.5) theeafe configurationz; is
nowhere used to introduce the above objects.

Since small displacements are considered, no distinctitmlie made between upper
and lower indices.

Lemma 2.5.1 The tensor g defines a Riemannian metric. The symmetric Christoffel
symbolsl:k;ij define a symmetric connexion compatible with this metridgdl;; and
Alj are skew-symmetric tensors w.r.t. i and j and i and k, respeigt Moreover,
the components ofJ; fori =z or j= z vanish in the 2D case.

Proof. The first statements follow from basic definitions (Dubroenal., 1992;
Schouten, 1954) while the last one follows from the fact,tirathe 2D caseqp(x")
and®pm(xt) for L € .# are proportional tapd (x-) with T, standing for the tangent
vector to the defect line. O

Proposition 2.5.1 The Cristoffel symbolsy;;; define a non-symmetric connexion com-
patible with the metric g and whose torsion writes a.J.’

Proof. It is easy to verify (Dubrovin et al., 1992) th&L;; is a connexion sincﬁk;ij

is a connexion andr;; is a tensor. Denoting byl (resp.ﬁk) the covariant gradient
w.r.t. ['ij (resp.lkij), and recalling that a connexion is compatible with the foefy

if the covariant gradient agjj w.r.t. this connexion vanishes, we find by Eq. (2.5.12)

OkGij © = OkGij — Miikdij — ki
Ui@ij + ATk + AT ki (2.5.13)

where in the right-hand side, thé'term vanishes by Lemma 2.5.1 while th&d2
and 39 terms cancel each other SINBE|: Qi = Alj:jx = —Al k. Itresults that the
connexion torsion, i.e. the skew-symmetric part\df;;j w.r.t. i and k, writes as

1 1 1
5 (BT jik = AT ji) = == (BT — Alji) = 5 ((Alij —Alik) +

(ATkji —ATij) — (ATij—ATiy)).  (2.5.14)

Observing that theSLterm in the right-hand side of Eq. (2.5.14) writeg¥ig;ij while,
by Definition 2.5.3 (Eq. (2.5.11)), the left-hand side anel tlvo remaining terms of

7Inthe literature, a so-called Bravais’ crystal is a macopsc body endowed with a lattice where parallel
displacement along the crystallographic lines is definedhigyconnexioryj of Proposition 2.5.1 and
where the metric is not defined by Eq. (2.5.9), but by the nmaditan internal observer who would measure
his own displacement by counting the atomic lattice stefithiont feeling the body torsion (Kréner, 1980).
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the right-hand side of Eq. (2.5.14) are equal{g, T;ji and—T;:jk, respectively, the
proof is complete. O

The following result showaAr ; as directly linked to the contortioky;.

Proposition 2.5.2 In the 2D case, the contortion tensQrF ;; writes in terms oki;
as

ATij = O« (BadjpxaKyp) + Aadpfarke  +  0zdipEprkux
—  O&z0adjg€apKzz

Proof. For k = z, by Definition 2.5.3, the last statement of Lemma 2.5.1, agd E
(2.5.1), itis found thal\l" zij = Al ,438iq 0;g, With

1
Alzap = Tzap = ~3faplz = —fapkz
= _Eggrérﬁaz = SarKTB.

Fork = k, by Definition 2.5.3 and the last statement of Lemma 2.5i§ fiund that

ArK;ij = da 5][5 (TK;aﬁ + T[};aK + Tg;BK> + daéjoz;aK + dzéjBTZ;[}Ka

. 1 . .
with T,.¢¢ = €5¢Krx and Te.p, = —5Ew (ag 4 &£yOz(xy—Xoy)). Since the combi-
nation of the terms if®, vanish inAr .j, the proof is completed by observing that
SaﬁaK+sKgaﬁ = (&,K&\;)&TBGV ZSQKGB :saKKZﬁ' |:|

The following definition introduces two differential formielated, on the one hand
(by Definitions 2.5.2 and 2.5.3, and Theorem 2.5.1 and Pitpon<.5.1) to the ho-
mogenisation of the well-defined mesoscopic defect measuré, on the other hand,
as shown by the forthcoming theorem, to macroscopic incdillpaotation and dis-
tortion vectors.

Definition 2.5.4 The following differential forms are introduced:

dwj :=0gwjdxg, (2.5.15)
dBa = —Tjpdxs. (2.5.16)

In the literature the existence of an elastic macroscoptodion field is generally pos-
tulated (Mura, 1987; Head et al., 1993; Cermelli and Gu&bn1, 2002; Koslowski
et al., 2002; Ariza and Ortiz, 2005) and the global distartitecomposition in elastic
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and plastic parts follovfs The point of view of the present work is to avoid this kind
of a-priori decomposition, which we believe cannot be ragaly justified. Never-
theless, the following theorem introduces rotation antbdi®n fields (which are not
the global rotation and distortion related to the macrogcegrain) in the absence of
disclinations. In contrast with the classical literaturbese it is basically postulated
that dislocation density is the distortion curl, this redaship is here well-proved.

Theorem 2.5.2 [Bravais rotation and distortion fields] If the macroscopiésclina-
tion density vanishes, there exists rotation and distarfields defined as

X
BRAVAIS ROTATION wj (X) := O.)JQ—F/ dwj, (2.5.17)
X0

X
BRAVAIS DISTORTION Bu (X) == &k (xo) — & ijQ + / dpBu, (2.5.18)
X0

with B = & — &qjwj, and wheremlQ is arbitrary and the integration is made on any
line with endpoints xand x. Moreover,

OuPyp = 0aOpuk  and  €q504 By = k- (2.5.19)

Proof. By Definition 2.5.3, the symmetric part of the connexion esiais

1 1
~T(110pd%3 = —50p9dXg = — 5 0mGk X = Il dxm = déia,

while, by Definition 2.5.3 and Proposition 2.5.2, the skeummetric part writes as

1
T = —5(5k9|5—5|9k5)+ﬂr|;k3:(7k<57;3—0"|5k5+ﬂr|;k3-

Observing, by Definitions 2.5.2 and 2.5.4 and PropositiénZ thatdw; = dgwjdxg

= —%akjrﬂ;k],;dxﬁ, it results thatdfy = déiy — &wjdw;. Under the assumption of
a vanishing macroscopic disclination density, the existeof well-defined Bravais
rotation and distortion fields follows from Eqgs. (2.5.150492.5.19), Theorem 2.5.1,
and Remark 2.5.1. Moreover, sindgBg = da i — &pjOa wj, bY EQ. (2.5.5), this

expression equatk, dgux, completing the proof by Eq. (2.5.8). O

Remark 2.5.3 Referring to “Bravais” instead of “elastic” rotation and ditortion
fields is devoted to highlight that these quantities do neetepurely elastic meaning

8In fact, the distortion is often considered as a constieutiariable in dislocation models (Davini, 1986;
Gurtin, 2002; Ariza and Ortiz, 2005).
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Remark 2.5.4 The Bravais distortion does not derive from a Bravais disptaent
in the presence of dislocations. In fact, around a closeg|Gp even if the macro-
scopic disclination density vanishes, the displacemédfardntial as defined by gu=
BrkadXy verifies by Theorem 2.5.2 the relationship:

/dezfssﬁaaﬁpkadsz aw(S). (2.5.20)

Remark 2.5.5 Eg. (2.5.17) indicates that symbélin Eq. (2.5.15) becomes a true
derivation operator in the absence of disclinations.

Remark 2.5.6 Proposition 2.5.1 defines an operation of parallel displaeat ac-

cording to the Bravais lattice geometry. The parallel désgment of any vector v
along a curve of tangent vector ﬁ&is such that dS})Davi = 0 and hence that the
components of;wary according to the law @v; = —ri;mvjdxgl) (Dubrovin et al.,

1992). This shows the macroscopic Burgers vector and diitmt density together
with the Bravais rotation and distortion fields as reminisces of the defective crystal
properties at the nanoscale. In fact, iffﬁ&dxf) are two infinitesimal vectors with

the associated area dS evgdxf,”dxif), it results from Eq. (2.5.10), Remark 2.5.1,
and the skew symmetry of g that, in the absence of disclinations,

dB. = 0kdS= —£qplcapdS= —Toap(dxs dX — dx3 dx),
whose right-hand side appears as a commutator verifyingetation

dBy = £,50a0pUKdS= —£45d @ (dXP)).

2.6 Concluding remarks

In this work we have developed a 2D theory to analyse disdataingle crystals at
the meso-scale by combining distributions with multivallkinematic fields. The dis-
tributions are basically concentrated along the defe@slirwhich in turn form the
branching lines of the multivalued fields. As a consequeri¢his analysis, a basic
theorem relating the incompatibility tensor (as derivezhirthe deformation field) to
the Frank and Burgers vectors of the defect line has beeblisstad. This theory
provides a framework for the homogenisation of the mediuopprties from meso-
to macro-scale. In particular the macroscopic dislocatiensity is defined without
stipulating an a-priori distorsion decomposition intostia and plastic parts (which
does not exist, actually). The classical relationship leetwBravais distortion and
dislocation densities, instead of being a definition, nowesps as a result taking its
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origin from the meso-scale analysis. Moreover, the torsiod contortion tensors,
which both describe the defective macroscopic crystalnake properly understood
as averages of concentrated mesoscopic tensors. Sincatireare the differentials
(in an appropriate sense) of multivalued mesoscopic figldave shown how meso-
scopic multivaluedness is recovered in the geometric ptgsof the non-Riemannian
macroscopic crystal. In particular, in contrast with thesaosrale (where defects are
due to the multivaluedness of the rotation and displacerfielids) the macroscopic
Burgers vector now appears as the commutator of a non-cldiffedential operator
related to the body torsion.

Extension to the 3D case is the topic of Chapter 3, were thdlmayof non-rectilinear

curves will be required in the framework of the geometricasgre theory. This should
eventually make it possible to consider a set of defect qyrfreely occupying the
crystal with possible intersections and accumulationaegiorming so-called dislo-
cation clusters.






Chapter 3

Extension of the distributional
approach to 3D dislocations

3.1 Introduction

This chapter is devoted to extend the results of Chapter 2e@D case, by applying
the method developed in Chapter 2 in order to validate Krériermulas in the 2D
case. However, in a first step, we will restrict to the case lopachitz line, and sub-
sequently generalise the result to a set which is compospdssibly infinitely many
lines, forming so-called OD clusters. The application @& thstributional approach to
the 3D case will highlighten new formulas relating strainampatibility to the Frank
and Burgers vectors. These formulas, as compared to thes"iac®@+ curl k” for-
mula, will exhibit two terms in the right hand-side which aetated to the disclination
and the dislocation densities, respectively (through theartion tensor), both being
weighted by a factor taking into account the line orientatiourvature and torsion.
Global strain assumptions for these formulas are simplgiokt by following the 2D
case without the need for any new assumption of any kind orldmic strain. The
structure of this chapter follows the structure and methafdthe 2D case, but the
mathematical tools required, and the computational teghes appear to be slightly
more complex.

The missing part of this chapter is the absence of homogémgeom meso-to macro-
scale, which would show new macroscopic defect densitidgadanto account the



114 Extension of the distributional approach to 3D dislocabns

mesoscopic aspects of the 3D lines and clusters.

3.2 Geometrical analysis of the defect line L

This section is a discussion on the defect-line assumptionsder to determine the
existence conditions for a tube surrounding the line L whosenal sections do not
intersect. Let us recall that for a smooth curve the clas&ienet’s formulas read

Th=XVm, Vp=—XTp—{0p, 0 =, (3.2.1)

where the derivation is intended with respect to the natamaparameter along L, and
wherertj, v; andg; denote the unit tangent vector, and the two natural normetbve,
respectively, whiley and{ stand for the line intrinsic curvature and torsion.

Assumption 3.2.1 Let us assume that the defect-line L is a siripbgular Lipschitz
curve contained if2 where the sef is open, that is, a curve satisfying the following
requirements:

i. An admissible defect-line L is parametrically descriida continuous map-
ping
X [0, 1] —Q
where its restriction to the open interval ]0,1[ takes itdwes inQ.
ii. The tangent vector; exists everywhere and is Lipschitz continuousda, 1].
ii. If %i(t) =%(t') thent=t' or {t,t'} = {0,1}. Moreover if{t,t'} = {0,1} then
%(0) =%i(1) € Qand1p(0) = 1p(1).

The Lipschitz condition (ii) states that there is a uniforomstant K which is the
infinum of all reals C>0 such that for everyt’ € [0,1],||7i(t) — 7i(t')|| < C|t' —t|. By
Frenet’s two first formulas the Lipschitz conditions on thedent vector guarantees
the curvaturey to be bounded at those points of L where they are defined ghétiost
everywhere on L (Lelong-Ferrand, 1963). Since the curvépscthitz continuous, the
natural continuous and strictly increasing length paramgt) < [O;L] whereL < o

1Let me express my best thanks to Thierry Depauw and Jean \faft®gen for valuable discussions
about some specific technical points of this chapter.

2«Simple” means that there are no distinct values of the lepgirameter other than the start- and end-
points whose images may coincide on L.
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will be used in the sequel, with the non-restrictive assuompthat the length of the
curve |L| be equal to 1. Moreover, symbolE=%° = %i(s) (or X) will always refer to a
point of L € Q, while C¢(%X°) denotes the circle of radiuscentered ak’and whose
plane is perpendicular to the tangent veatds) to L atx®.

3.2.1 Existence of aregular tube

Proposition 3.2.1 For every simple regular Lipschitz closed defect-line L &rdev-
eryX € L there exist® > 0 with d independent of such that the closed disks;[X)
and Ds(X) for X # X' have an empty intersection.

Proof. We need prove that there isé&> 0 such that for every’ #t € [0,1] with

X =% (t') close tox := %i(t) andX'# X, the closed disc of radiud perpendicular to

T/ ;=1 (t') at X belongs toQ and does not intersect the closed disc of radiyzer-
pendicular tor; := 1 (t) atX. Firstly, since the tangent vector is Lipschitz continuous

dr . Ti
the curvature((t) .= ||d—t'|| exists almost everywhere on L aﬂgcrs'ﬂm =|[X]]e0 < 00,

whereK = || x||~ is the uniform Lipschitz constant of the tangent veatoMoreover,
let us define the set D as the intersection of the plaHemdr, perpendicular ta;(t')
andr;(t) atX and¥X’, respectively.

Two preliminary steps and the main statement will now be pdov

Proof steps. e (stepd: 3n > 0, s.t.V(t' #t) € [0;1], if M ;= min{|t —t|,1— |t —
t'|} < n thenn’ andn are distinct (i.e. D is a line or the empty set).
e (step2: Lettinge > 0, thenv(t’ #t) € [0;1]s.t. M:=min{|t —t'|, 1 — [t —t|} >
g, 3n > 0 such thaCj(X') NCs(X) = 0 for everyd < n.
e (M): 38 >0,VY(t #t) € [0;1], C5(X) NC5(X) = 0.

Proof of (stepl). If t’ #t andM’ =M, then the vectox;— X belongs ta1’ =M and
hence(% —X) 1/ = 0. DefineArt;(t) := 1i(t) — (') wheret’ <t’, in such a
way that, from the Lipschitz assumptioffAti(t)|] < K(t —t’) and hence for
t<t<t,

AT(T) =T(1) - (t') = w(TK(T—t') with w:=w?(1)<1, (3.2.2)

whereaw is a continuous function. Since

t t
)“(i—fq’:/t, TidTZ/t, (i) +AT)dT =1/ (t —t') + w(t")K(t" —1),(3.2.3)
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where 0<t’ <t* <t < 1, it results that its projection orf writes as

(X —%)T = (t—1")[1+ OK]

where the scala® = r{m(t*)é‘_‘{, verifies 0< |©| < 1 and is non-negative, by
continuity of the tangent vectors, far ¢lose enough te,"that is, for M close
enough to 0, thereby provingtep).

Proof of (step2). Basically, the property that the curve be simple and its cactess
prove the statement. It is enough to prove the existencerpfa0 such that
the open balls centered &t andx; with radiusn do not intersect. Let >
0 and E := {(t',t) such thatM > ¢} andm = i2f||>‘<—>‘<’||. Assume that m

£

vanishes. Then from thog&t corresponding to a sequen¢gk, %) }i>1 such
that||% — X|| — 0 asi — oo, one extracts a subsequer{¢¥,t;) }i>1 converging
to (t},,tw) € [0,1]. ClearlyX{t,) = X(t») which, since the line is simple, implies
by Eq. (3.2.3) that eithef, = t., or (t,,,t=) = (0,1), or (t.,,t=) = (1,0), hence
contradicting the relatioM > £. Takingn = > > 0 achieves the proof of

(step).

Proof of (M). Let & :=min{n, %}. From the second step, it is sufficient to consider
the caseM < &, while from the first step, the only relevant situation is tase
where D is a line. All other situations trivially give the tds The planeX is
defined (on the right of Figure 3.1) as the plane spanneri Bpdz;. Consider
the picture on the left of Figure 3.1 and defidfe(resp. d) as the vector from
X (resp. fromx) to D. Moreover letfi := X — X/, while g is the projection off;
on the line D, in such a way thd{— g is the projection offi onZ. Moreover,
di —d/ = fi — g and sinced/ C M’ andd; C M, it results thad/7{ = dit; =0 in
such away thad 7/ = f;7/. Since the unit vectors andt; are not perpendicular
to each other, the decompositidn= a1/ + 81; follows, whereat/ti + 3 =0
anda + B1/1 = fit/, and with

o fiTi/ _ -
BRSO

In order to prove(M), we need to compute the square of the dista(ugg =
a?+ B2 +2aB(t/1) and show that it is bounded from below by a constant
independent of. Using Eqg. (3.2.2), we firstly compute an accurate expressio
of T/1. Sincet? = (t/ +At1)? = 1+ 21/Ati + (ATi)? = 1, it results that G=
20T K (t —t') + w?K?(t —t')?, in such a way that@ 1/ = —w?K(t —t'), and
hence that

1
Thi=1+wrKt—-t)=1- EmKZ(t —t)2 (3.2.4)
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From Egs. (3.2.4) and (3.2.2), the square norrg; afrites as:

(it)?  (1-05t-t))?
1-(1n)? K2 — &KA4(t—t)2

d? = >5:=

whered > 0 sincee < % Since a uniform lower estimatehas been found such

3Dview 2Dview : planez

Figure 3.1: The sections of the tube do not intersect.

that, for everyx € L in the vicinity of any givernx”e L, the diskDs(X) is con-
tained inQ and has an empty intersection with;(X'), the proof is completed.
O

Remark 3.2.1 If the line L is open, let us denote by the portion of the line corre-

sponding to the intervdh; 1— n] for some givem > 0. The statement of Proposition
3.2.1 still holds for I, instead of L. By the arbitrariness gfwe can, in the remaining

of this discussion, consider the case of an open line as vgelha case of a closed
line.

Definition 3.2.1 In the sequel, considering a surface Stftrossed by L ak and
X only, and bounded by the curve C, symbols dC, dL, and dS wilbtedethe 1D
Hausdorff measures on C and L, and the 2D Hausdorff measuf®, sespectively,
with 6; and 1; the unit tangent vectors to C af gwhen it exists) and to L &. In
some cases (having fractal curves in mind) the symbqgladd d$:= sijkdxgl)dxff)
will stand for infinitesimal vectors oriented along C and m@ to S, respectively, with
in addition dG(X) := &mndXnTn denoting an infinitesimal vector normal to C.
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Definition 3.2.2 We define>; 5, the tube of radiug around the line |, as

Ogn = LJ De (X r}§2

Xely

Selectings > 0 according to Proposition 3.2.1 and Remark 3.2.1, let us nlesthat

if the line is a closed loop the tubie; := O ¢ of radiuse around the line L has the
same topology as a torus, while if the line is opegp, has the same topology as a
cylinder. Moreover, by the regularity of the domain bounddf, for anyn > 0, an

€ > 0 can be found in such a way that. , C Q. The boundary of the diskD,(X) is
denoted by gX) or Cs.

3.2.2 Geometrical properties of the defect line L

Definition 3.2.3 (Radial distance) The radial distance r of a point x (ofxin Q; to
the line L is the m|n|mal d|standp< X|| from x toX (or %) in L. For this particular x,

the positive number venfymg

we definey;(X,X) ;== ——— as the unit vector joining to x, in such a way that r is

Xi =X +rvi(X,X). (3.2.5)

let us remark that iro, , the vector; (X, x) is orthogonal tor;(X). In the case where
the pointx is uniquely defined for a given x in the vicinity of the defieet (which will
generally be the case since the tube is used for local pragsearound L), the vector
vi(X,x) will be denoted without risk of confusion By(x).

Planar curvature
Definition 3.2.4 (Planar curvature) Given xe ©¢, and the associated;(x), the
planar curvature of L for x is defined as

XX X) = x (R)vi(X) Vi (x), (3.2.6)
wherex (X) is the line intrinsic curvature at x.

Definition 3.2.5 (Projection plane and line) For x € Q| , the planex(x) is defined as
the plane whose unit normal vectorsa€ L writes as

Gi(X) 1= 01 (R, X) 1= &j T} (R) (X). (3.2.7)
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Then we introducé as the projection of L oif, whose (hon unit) tangent vector reads
sz rk—ékc‘)prp. (3.2.8)

In what follows % stands for the projection ot :=X(t) onL, while ¥ stands for the
(non-unit) normal vector a& ¢ L defined as

\~/|()?t) = Siijj()?,X)Tk()?t). (3.2.9)

Lemma 3.2.1 The planar curvature of L on forpequals to the curvature a@f

Proof. For some giveng € ©¢ 5, let us consider the projection plaigxo), where
Ro stands for the projection ofy on L, and let a point of. be denoted by} and
Xo = X(to), where 0< tp < 1. By Frenet's first formula and from Eq. (3.2.8), it follows
that

d. A
d—rk:)((vk—okopvp) (3.2.10)
in such a way that
d. d R ~ R R R
Gt =to = g (811 (%0,0) T(%)) iy, = X (%0)ij T (%0, %0) Vic(Ro)-

Since by Eq. (3.2.7}ijk0j(X0,%0)Vk(X0) = —Vj(Xo)Vj(X0,%0)Ti(Xo), it results from
Definition 3.2.4 that

d. . .
il (R)jt=ty = —X (R0, %0) Ti (R0), (3.2.11)
while the unit vectow; (%) is such that

Vi(R) = a(t)¥i() (3.2.12)

with [a| > 1. It remains to verify that the curvatuggXo, o) is the curvature (%) of
the planar curvé atXy. Firstly note that

@
dt [t=to N

while, by Frenet'’s first and second formulas for a planar eutivat

Sa%) = a0yl X)X (% Iu(E) (32.13)
ivi(i‘) = X&) (3.2.14)
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It results from Egs. (3.2.12), (3.2.13) and the unit propeftv; (%), that

da

~ d d.
Wy (w(i‘)aw(i{)+Vi(>?‘)—vi(>?‘)>tto:O. (3.2.15)

dt

Sincea = ¥ (%) vi(%), it follows from Eq. (3.2.9) and from the fact that(%o) =

gi (X0, %o) (since the line lies i (xg)), thata (tg) = 1, and hence by Egs. (3.2.12),(3.2.14)
and (3.2.15), that

di; da , .. dii

E(?o) + —t(to)Vi (X0) = E(XO)

—X(%0)ti(%) = =al(t)

which by Eq. (3.2.11) proves the statement. O

Jacobian of the tube
Let s and w denote the curvilinear coordinates associated with®, as chosen to
verify the relations

ViVi(x) =cosw, and oiVi(x) = sinw (3.2.16)
in such a way thaf(X,x) = x(X)cosw. Let us still denote byi(x) and &;(x) the

vectorsv;(s,w) = vi(X,X) and gi (s, w) = 0;(X,x), respectively. By Egs. (3.2.5) and
(3.2.16), it results that

d%; dvi(s,w)
%(s, w) = T(s)+ eT
= Ti(S) — &(X(s) coswri(s) + {(s) coswai(s) — {(s) sinwv(s))
X .
%(s, w) = &(—sinwvi(s)+ coswai(s)),

in such away that, by Eq. (3.2.11), the metric tergsgpwrites as the matrix (Dubrovin
etal., 1992):

gi] = (1-ex(&x)?+€20? —€%
Gijl = _£27 2 |
Provideds < —, whereK is the Lipschitz constant of the curve, the discriminant of

the metric tensor, that is, the square root of the deterntiofeg; writes as

g:=¢&(1—ex(Xx))>0. (3.2.17)
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Definition 3.2.6 For a fixede > 0O, the line ¢ C d©; is defined as the sék; € G :
Xi = X + €vi(X) whereX € L}. This line is described by means of the curvilinear
coordinate s’, with the length element @) (ds’) on L defined a$

ds = dL(x) == (1— £X(& X))dL(R), (3.2.18)

where dI(X) := ds is the Lebesgue measure density on L, while the tangetior vec
L, is given by
TE(X) = T (X). (3.2.19)

Moreover, d@x) denotes the Hausdorff measure density pfx; symbol dx denotes
an infinitesimal vector oriented along(x), and

dG = gmndXnTn(X)

stands for an infinitesimal vector normal te @).

X dL(x) = (1+ [x (& X)|€)dL(R)

Figure 3.2: Curvature of the tube wrapped around L.

Lemma 3.2.2 In the vicinity of the line L, the following relation expreskin the gen-
eral base holds:

HEEX) = XRUERT®) +0(L). (3.:2.20)

Proof. For x in the vicinity of L, there exists a unique projectigrof L, defining
Ti,vi andg; atX € L. Sinced;s = 1 while 9,s = d55 = 0, it results thav;s = 1j,

3Note that s’ is a function of x.
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and hence from Egs. (3.2.18), (3.2.19) and the first Frefamtaula (Eq. (3.2.1)), it
immediately results that

0itf = (1—eX)xvit;, (3.2.21)
proving the statement by Eq. (3.2.6) and the boundednebeg difie curvature. [

In the sequel of the chapter we make use of a local Cartesism digen by{ v; (X°),

gi (X®), 7i(X°)} at®® € L, where s is the curvilinear abscissa on L, and a correspondi
coordinate system given b3, x5,X3}, wherex3 = 2° is the coordinate of the axis
spanned by (8). Greek subscripts always refer to the planar coordingtes x5 of
the axes spanned hy(%) and g; (%), respectively. By analogy with the planar case

. . x5
we also introduce the polar coordinates= x§2+x§2 and 65 = arctanx—g, where

subscript s indicates that the arc coordingie fixed. Moreover, partial derivation
w.r.t. swill be denoted byds, and partial derivations w.r.tr3, 65, 7° by o, da,, 0=,
respectively. In general the notationrefers to partial derivation w.r.t. thi¢h coor-
dinate of a 3D Cartesian base and coordinate system whitssiapecified, is the
general e;, e,, 653 }-system attached to the origin. The notatdwmill, in turn, be used
for partial derivation w.r.t. the local Cartesian systemaeied toc € L.

3.3 3D elasticity of the dislocated crystal

In this section, the crystal is dislocated by a single Lipzothefect line and 3D linear
elasticity applies everywhere away from the dislocatioe li

3.3.1 Defect invariants and density tensors

In the following crucial definition the strain is considersla distribution o, where
either the global Cartesian bag® , e,,e;}, or the local Cartesian bage; (X°), g; (X°),
Ti(%°)} is considered, and where, for the sake of simplicity, theesaotations; is
adopted in all the following sections.

Let us firstly recall general notions and properties holdimgany set of dislocation
lines.Z including the case of a single lines L.

Definition 3.3.1 [Frank and Burgers tensor] The Franktensﬁ,rh(qj is defined on the
entire domaim? as the following distribution:

Omy, = Epa@pEim (3.3.1)
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in such a way that
<Om b > = — /Q SeoeimBpddV

= lim / SenOn & dV+/ & « 4d )7
< Q\@¢ kpadpqm 9010 kpaCam®d S

£—0

with ¢ a smooth test-function with compact suppor€in Moreover, for a selected
Xo € Q, the Burgers tensor is defined on the entire donfias the distribution

91b5 (%) 1= &4 (X) + Ekpal(Xp — Xop) 91 &% (X). (3.3.2)

Definition 3.3.2 [Frank and Burgers vectors] The Frank vector of the line Lligt
invariant

Qf =[], (3.3.3)

where the brackets here mean the jump of the considereditpaluing a curve mak-
ing a single loop around the defect line L. Moreover, the Rusgvector is defined
as

i = (0] = [UR] (%) — EamQf (Xm — Xom)- (3.34)
Theorem 3.3.1 [Weingarten] The rotation vectasy; is a multifunction of index 1 on
Q_ whose jum; := [w] around L is an invariant of the defect-line L. Moreover,
the vector  is a multifunction of index 1 o@_ whose jump B:= [by] around L is
an invariant of the defect-line.

Let us also recall the definition of the geometric densitysten as:

Definition 3.3.3

DISCLINATION DENSITY: Ofj :=QjoL (3.3.5)

DISLOCATION DENSITY: N == BjdL (3.3.6)

DISPLACEMENT JUMP DENSITY: 0} := Afj + €im©jj (Xm — Xom) (3.3.7)
1

CONTORTION: Kij =0 — Eaﬁ]m&j, (3.3.8)

where ¥m is a reference point for rotation and displacement integmaandd,. = ;0.
for a Lipschitz curve L.

Notations 3.3.1 The notatiord'® is used for partial derivation of a single- or multiple-
valued function whose domain is restricted2p. Locally around x¢ Q_, for smooth
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functions, the meanings dfs) and the classicad; are the same, whereas on the en-
tire Q the partial derivation operatod; only applies to single-valued fields and must
be understood in the distributive sense. A defect-freeeilhfQ is an open set

such that UNL = 0, in such a way thaﬂj(s) andd; coincide on U for every single- or
multiple-valued function of index 1.

Proposition 3.3.1 [Multiple-valued displacement field] From a symmetric stidmn-
ear strain tensozéij* onQ_ and a point x where the displacement is given, a multival-
ued displacement field'wf index 2 can be constructed €n such that the symmetric

part of the deformation gradie@(s) ur onQ is the single-valued strain tensor
G =2 (00 + 9
ij-=35\% Yo,
while its skew-symmetric part is the multivalued rotatiengor

Yl k. 1 %l *
—EijkW =W = > (o'?j<s>ui —o'?i<s>uj) .

3.3.2 3D strain compatibility

Let us now fix the arc parameter s, and consider the correspplutal Cartesian base
{Vi(%®),0i (%), 11 (%°)} attached ta <€ L, with the associated Cartesian coordinates
denoted a$x’}. Symbold; here has the meaning ggs— and symbob, the meaning

i

of % with a =1 ora = 2. The straing}j will be expressed in the components of the

base{vi(%°), 0i(%°), 7i(%°) } and fori = 3, will be written as&g;. In a first step, some
notations and assumptions are made.

Notations 3.3.2 The planar sections d® are introduced by fixing the arc parameter
s and defining

Q%:={x €Q suchthat (x—%(s))1i(%*) =0},
while
Q% :={x € Q% suchthat (Xq—4(5))%=rs>0}.
Moreover, the se®s is defined as
QF :={x €Q° suchthat ||x3|| > ¢},

while the boundary circle d®; is designated by £
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Assumption 3.3.1 The strain local behaviour iQ, is assumed to be of the following
form:

e ~
ap ™ rif+e(a,3logrs+haﬁ (3.3.9)
Eas ™~ ¥+é’aslogrs+has (3.3.10)
S
& ~ &glogrs+hss (3.3.11)

whereé,s = &G, with &, a function of s only, and wheégg and é{j are functions of
8s and s only, while fj is a smooth symmetric tensor @n As a consequence of Egs.
(3.3.9) (3.3.11) it results that

& is o(rs?) (3.3.12)
& s o(rgh), (3.3.13)

asrs— 0.
Definition 3.3.4 The 3D mesoscopic strain incompatibility tensor@is defined by
Mk = 8mnOm@n& = EmnEpa@mIpSan, (3.3.14)

while its restriction toQ* is denoted by)y; (X°) or more briefly by .

The general 3D strain compatibility condition in the locahr@sian basev; (%),
gi (%8), 7 (X°) } reads:

Nik = Eqim&kpndi Fpmn = 0 (3.3.15)

in Q, where three different cases are identified.

Let k=sand g=s. Itresults that
Nss= Eap€yr0adyby, =0 (3.3.16)
is the 2D compatibility irQs.
Let k=k andg=s. Itresults that
apxpnda Oy = Eapivda | Ov s — p,] =0
in Q_, and hence that

av(&x[}aaggs) = 8(,,300,02555\, (3_3_17)
0abhs— 0585 = Kpa(S)+0ptu (3.3.18)
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in Qr, whereKg, (s) only depends on s ang, is an (arbitrary) gauge field. It
results from strain symmetry that

050 = €qp0aEps = K(S) + Eapdp G, (3.3.19)
whereK (s) := ggqKqp(9).
Let k=k andqg= a. Itresults that
aptcy (0265, + 0pBOyELs— 0n0p 67— 00y 5
= 0REh,+ 0p0yEs— 0p0pE)— 050y &4 =0 (3.3.20)

in Q..

On properties of the strain and Frank tensors

Lemma 3.3.1 From Assumption 3.3.1 it results that the displacemenesris
uy =Uglogrs+hy and U = Gslogrs+ hs, (3.3.21)

on Q3, wherely, Us depend orf and s only, while his smooth orQ2s.

Proof. Let uy,uj,us denote the displacement components in the cylindrical base
sociated to{v;(X°), gi (%°), 1;(%°)} with the related coordinaterg, 6s, 2. By Assump-

tion 3.3.1, the radial compone#f; = J; Uy writes as— + €, logrs+ hy whereey,

depends ors andZ only, andhy, is smooth orQS, |mmed|ately proving, by primiti-
vation, thatuy = Oy logrs+ hy, whereu; depends oils andzs only andh; is smooth on
Q. The remaining of the proof immediately follows from Assuiiop 3.3.1 and from

1 u
the formulassy, = r—o'?gu: - r_e andé&g = 0sUs. O
S S

Lemma 3.3.2 Consider the local Cartesian bade; (%), 6i (%), 1;(%°)}. From 3D
compatibility onQ3, it results from Assumption 3.4.1 that

20565 — Ol is o(rg?) (3.3.22)
dswy  is  o(rs?) (3.3.23)
Oswf +&p0sps  is o(rgh). (3.3.24)
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Proof. For a fixed arc parameter s let us consider the 2D set
Ns={08,%8) 10 <rs< 0,65 < Bs< 62}NQ,

where 0< 62,02 < 2rrwith 62 — 61 # 27tin such a way thads is a defect-free subset
of Q.

Proof of Eq. (3.3.22). Observe from Proposition 3.3.1 that
2065~ 062 = 050y s — o s + 907 Uy,

onA\s, which by the smoothnessaf onAs, i.e. fromsijk&,dj(s) Ux = &ijk0i dj U =
(()3 ;hzolv;/s that &3, — 9pbss = 0SZUE, thereby proving Eq. (3.3.22) by Eq.

Proof of Egs. (3.3.23) and (3.3.24). Observe that Eq. (3.3.23) witk= k and Eqg.
(3.3.24) immediately follow from Assumption 3.4.1. For tfemaining asser-

tions, observe from Proposition 3.3.1 and from the relaﬁgwg = ds(s)wg =
Osws on/\g that

00y = 05 (G + iy ) = 06, — Epesct,

proving Eq. (3.3.23) wittk = s, under the strain and displacement field local
assumptions (Egs. (3.3.9) and (3.3.21)).

Since6Z, 62 can be selected arbitrarily {0, 271 providedd? — 62 # 2, Eq. (3.3.22)-
(3.3.24) have been provedp . O

Lemma 3.3.3 Let ¥ be a selected point on the line L and consider the local base
attached to®. If C(X®) denote a family of 2D closed curves, then, in 3D elasticity,
it results from Assumption 3.4.1 that the Frank tensor ardstinain verify the relation

im [ 0pidi + expéiedia =0,
C(%s)

C(%8)—58

provided the length of C is uniformly bounded and as long estinvergence &) —
%% is understood in the Hausdorff sense, i.e. in such a way that

max{|| x—%° |, xeC(°)} — 0

Proof. Since

OyEps— Opbis = £,50s0%,
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it results that
and hence that

Let us now multiply the right-hand side lx; and integrate the result oveX(%®).
Under the limit assumptions of this lemma, since the stasingle-valued and since
dswg anddzsé s areo(rg?) asrs — 0, the statement is proved. O

Corollary 3.3.1 LetX® be a selected point on the line L and consider the local base
attached ta&®. Then

* 1 Sk 1 A *
/Cg Esxg = 5Bi+ 7 (80, 27) +0(1). (3.3.25)

Proof. From the Burgers tensor definition in the local Cartesiarep@ésesults that
Xa 0 p W — X0 g W = &na 0 pbh — Ekna €3+ X0a Op Wk —Xk0p W5, (3.3.26)
in such a way that, by Lemma 3.3.3 and kot K,
— 8KaB;+LS gKagESdXB +X(S)GQ;_)€KQZ{+O(1):
€

_ /C Eap &% — Ecp&idXa :/CS eweaKeyngsde:/cs Ea &%,
thereby proving the statement since

1
. Ea 0xg = 5 (6B + 30005 30 25) + 0(D).

3.4 Governing assumptions for the strain and Frank
tensors

Let us now fix the arc parameter s and consider the correspgtatial Cartesian base
{vi(%®),0i (%), 7; (X°) }. Besides the strain Assumptions 3.4.1 two measure hypeghes
on the strain derivatives are introduced in order to repthedocal Assumption 3.3.1
and to validate Kroner’s identities in the global framewofla crystal dislocated by
the effect of several Lipschitz defect lines.
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Assumption 3.4.1The strain&jj is assumed to be a symmetric tensor of bounded
LY-norminQ.

Remark 3.4.1 By the strain smoothness outside L, the strain compo@mﬂd their

derivativesds & show to be of bounded'tnorm in QS for every givers® € L and
related Q.

Assumption 3.4.2 The strain divergence and trace gradieRt}] anddkggp are finite
Radon measures dd.*°

The following Lemmas are needed for the proof of Proposiahl.

Lemma3.4.1 e Asolenoidal distributional vector field,aon Q° writes as
ag = Eqay0yQ, (3.4.1)
with ¢ € 2'(Q3).
¢ A symmetric solenoidal distribution tensgfon Q° writes as
agp = EayEprOyor Y, (3.4.2)
with @ € 2'(Q5).

Proof. The proof can be found in Chapter 2, Section 2.4.1.

Lemma 3.4.2 For constant C and g, there are a vector gand a symmetric compat-
ible tensor G onQ® such that

ok9k = Co, (3.4.3)
0uGop = Cg. (3.4.4)
Proof. The proof can be found in Chapter 2, Section 2.4.1.

Lemma 3.4.3 If the symmetric distribution tensor;Everifies the compatibility con-
dition Eq. (3.3.15) o2, there exists a vectorial distribution field Buch that

1
Ej= E(ain—FajUi). (3.4.5)

4A Radon measure of is a measure bounded on compact subse®@ ¢Evans and Gariepy, 1992;
Mattila, 1995; Ambrosio et al., 2000).

5Assumption 3.4.2 is natural in infinitesimal elasticity if@considers the strain-stress constitutive law
and the equilibrium laws. As a consequence, the stressggimee must be a measure@n
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Similarly, if the symmetric distribution tensog,f: verifies the compatibility condition
Eq. (3.3.16) orQ2®, there exists a vectorial distribution field\such that

1

Proof. Sinceggmd (&pndpEmn) = 0, it results thatypndpEmn = dmgk for some dis-
tribution ¢, which from the symmetry property &m, turns out to be divergence-free
and hence writes ag = &«pndp¢n for some distributio,. Sincegypndp (Emn— Omén)

) !
= 0 it results thaEmn = Imdn + n P/, for some distributionp/,,. Posingu; = ¢ = &

2 2
proves the statement. The proof of the second statememilasi O

Lemma 3.4.4 Let the tensor & be such that gz is a Radon measure on the open set
U C QS. If Eq; verifies the compatibility conditions Egs. (3.3.16)-(373.on U, then

1
80,,3070,EBS: EEGBaZSagUB (3.4.7)

is a Radon measure on U withgUthe displacement field provided by Lemma 3.4.3.

Proof. Let § € %¢(U) and h be thes?(U)-solution ofAh = ¢ on U in such a way
thaty, := dyh verifiesd, g, = Y anddy Y, € 6c(U). The form
<K Eqp0aBps, W > = — <0y (€apdaps), Py >
= — <L &padsEpy,, Py > = <K &pdskpy,daly >

is linear and continuous iy = 9, Y, since<K &,05sEg,,da Yy > is, from the strain
assumption, linear and continuousdgay),. The proof is achieved by use of Eq.
(3.4.6), sinceg,gdydgUg = 0 in the distribution sense.

Lemma3.4.5 e Foragiven l}(QS)-scalar function f and a given Radon measure
U, there exists a distributiongsuch that

0595 = f (3.4.8)
saﬁdagﬁ = M. (3.4.9)

Moreover, if the restriction oft on Q$ is smooth, there exists &(QS)-function
kq such thatu = dgkqy.

e For a given L}(Q%-vector function § such thatds f; = Ag where g is a £(Q%)
function, there exists a symmetric compatible tenggr gn Q° such that
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Proof.

First statement. Consider first an ultra-weak solution (Brezis, 1983) of
AH = f, (3.4.11)

and define the particular squtiag;g = dgH of Eq. (3.4.8). Sincag;l*3 is defined

in the distributive sense up to a curl distributieg,d,A, Eq. (3.4.9) is verified
by solving

AA=—p. (3.4.12)

Sincep is a Radon measure, Eq. (3.4.12) has a solution in an ultedkgense,
and it suffices to takgg = g; + €ay0yA. Now, since the restriction gi on Q
is smooth, the measuye writes by Radon-Nykodym’s theorem @s= h+ ¢,
where h isL(Q®) and ¢ is concentrated at the origin. Hengeis as a Dirac
mass writing asp = c&,gda€,pdylogr, while theL(Q®)-function h defines a
linear and continuous form aNYP(QS) for a givenp > 2, hence writing, by its
Holder characterisation, @ hg wherehy is L1(QS). It results that

€ap9a0s = datap (€/8hy + CEydylogr), (3.4.13)
in such a way that the definition & := &, (£,sh, + ce,5dylogr) proves the
first statement.

Second statement. The proof can be found in Chapter 2, Section 2.4.1. d

Proposition 3.4.1 Under Assumptions 3.4.1 and 3.4.2, the strain componentbea
put in the form:

éa&\rs = EGS + eas (3415)
& = Essteéss (3.4.16)

. _ &ai .
where Eyp,Eqs and Esare compatible orQ, with e, = % +8,;logrs+ hgj and

€ss = Esslogrs + hsg and whereé:j,éfo,j are functions of6s and s only, while fj is a
smooth tensor oQ.

Proof of a preliminary result. By Assumption 3.4.23,&}; is a Radon measure @,
and hence writes by Radon-Nykodym'’s decomposition thed@r€hapter 1,
Section 1.10.2) as

aéi=Ti+a, (3.4.17)
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where T, € LY(Q®) and whereg is a Radon measure d@° singular with re-
spect to Lebesgue’s measure. By Assumption 3.4.1 and Re8natk 0s&7 is
L1(Q%) and hence

aaéa;i = fi + (ﬂ7

wheref; € L1(Q%). As a mere consequence of the smoothneg 6f; on QS,
@ is a concentrated measure Qf and hence is proportional to the Dirac mass

dp, i.e.
@ =Ci(s)& = (2m)~'Ci(s)dZ logrs. (3.4.18)

Proof of Eq. (3.4.14). e Letus prove thadis fg is the Laplacian of ah'(Q%) func-
tion. In fact, since)f; writes as

5= 0a (Gaii — 0p635). (3.4.19)

where the term inside the parenthesis is by the previousrAgsans a
Radon measurej; is in turn a first-order distribution concentrated on
%%, hence writing as a combination of the Dirac mass and its-dirder
derivatives (Schwartz, 1957), i.e.
(9B fﬁ = (Z,dﬁéagﬁ — 0B(pp = Aéo;K — r];s— dﬁ(pp = Aéa;,( — 660 — Cydyéo

= A(& —Tlogr —tydylogr), (3.4.20)
wherec] €y, T, Ty are functions of the curvilinear parameter s only, thereby
proving the statement.

e From Egs. (3.4.18), (3.4.4), (3.4.10) and Lemma 3.4.5¢tkgists a com-
patibleg, g such that

Ok (@% —Okg — GKB) =0, (3.4.21)
in such a way that, by Lemma 3.4.1,
g — 9k — Crp = ExyprdydrA, (3.4.22)

for some gauge field € 2'(Q®) verifying, by the compatibility ofy, g
andG, g on QS, the relation

nis=A0AA on Q°. (3.4.23)

Therefore, since the left-hand side writes as a combinatfaterivatives
of & of order lower or equal to 1, the field A is the solution & =
(a+aydy) logrs with a,a, functions of s only, up to a smooth harmonic
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function onQ®. It follows thatA = (a+ aydy) (%(Iogrs— 1)) is, up to

a smooth harmonic function oS, a #°(Q%) solution of Eq. (3.4.23)
verifying the relation:

é N
Exy€prOyOrA = rﬁ +8510grs+ heg, (3.4.24)
S

where€, g ande’KB are a functions ob and s only andhg is smooth on
Qs.

e The proof of the first statement is complete with the defingig, g :=
Gyp + Ukp ande,g ‘= &xy€prdydrAin Egs. (3.4.22) and (3.4.24). It re-
sults from Assump.tion 3.4.1thay, ep andEyp areL}(QS) O%W(Qa)—
symmetric compatible tensors. Moreover, from Lemma 3.4e3d exists
distribution fieldsU, on Q® andug := uy —Ug on QF such that

1
1
€kp = > (o'?KuB + dBuK) , (3.4.26)

noting in passing that, anduy are multivalued ane, g is incompatible
at the origin.

Proof of Eq. (3.4.15). e By Egs. (3.4.18), (3.4.18) with=s, and Lemma 3.4.5
(Eq. (3.4.8)) withE, g andU, as found above, there exists a figldsuch
that

Ok (65— 9 — (211)*C(s)dk logrs) =0,
and, by Lemma 3.4.5, such that
1
eBKngK = EazsgalgagUB = €aBagEBS, (3.4.27)
where the RHS is a measure by Lemma 3.4.4. Therefore, by Le3rdrih
Ers— Ok — (2m)~1C(s)dx logrs = &xy oy, (3.4.28)

wherey is a distribution. Apply the curl operator to Eq. (3.4.28)adaake
into account that, from Eq. (3.4.27),

1
(9\;8[;,((9[;9;( = Edzssaﬁdad‘/uﬁ = saﬁdadZSEﬁVv (3429)

and hence, by Eqgs. (3.4.28) and (3.4.29) and the compatibdindition
Eqg. (3.3.17), that

Ovepkdp (Exs— k) = gaﬁﬁadf(gﬁv—Eﬁv)

1
— eapdadsepy = 0sepcdp0s7 U (3.4.30)
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on Q3. It follows that

1
k0 (é}*s— Ok — E(?Zsu,(> =K(2) (3.4.31)

on Qf, for some scalar function K depending only o Let us remark
that, from Lemma 3.3.1 and the first statement of this Lemin@sults
thatuK = OK |Ogrs+ hK.

Since the LHS of Eq. (3.4.31) is a distributfban Q3 which is constant
on Q3, it results from Schwartz (1957) that

1
€83 (ggs—gK - EazsuK) =K(F)+ Y ca(90P &  (3.4.32)
p=0

on Qs wherec?é,p> denotes p-order derivatives withc N? such thata| =
p. Now, by Lemma 3.4.5, Eq. (3.4.32) rewrites as

1
2 (emf:s—kﬁ —eﬁkéazsux) =K@)+ Y ca(90” %, (3.4.33)
p=>0

where the term inside the parentheses is-aector, hence showing that
Ca(s) =0 unlesso = 0.
Applying the curl operator to Eq. (3.4.28) shows by Eq. (323 that

Co(s 1
A (w - 2—(7_[) Iogrs> = EﬁszngpuK +K(2), (3.4.34)
providing a gauge fieldy which writes as
2
Y=h+ ¥ logrs+ &g, dp (LJK(G,S)% (logrs— 1)) ,  (3.4.35)
where the smooth h is a solution &h = K(2°) + &g, dghx onQ°. There-
&s(s)

fore, &0y writes as
Qs.
By Eq. (3.4.29), it results that

ZsﬁKngK - dZS‘EBKdBUK = B(ZS), (3.4.36)

+ € logrs + hgs, wherehgs is smooth on
S

where the scalar function B is constant 3. Defining Exs := g« +
L &caXaB(Z°) andexs = &,y + (2m) ~1C(Z%)d« l0grs — 2 &caXaB(Z) in
Eq. (3.4.28) achieves the proof of the second statement.

6Defined for every test-functioy € 2'(QS) as— / <c5"K*S -
Jays

1

2525UK> SBKﬁﬁ lﬂdVJr < gK7SBK0BLLI >,

where S is an arbitrary cut set passing by the origin, whiclleesuy single-valued o2\ S (and hence the
distribution is single-valued 0©%), while having no effect on the value of the integral, sinde &hosen of
vanishing Lebesgue measure.
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e It results from Eq. (3.4.36) that equation

1
ZgK - aZSUK + Ech{Xa B(ZS) == 0KUS, (3437)

has a unique distribution solutidst, in such a way thaEks writes as
1

Proof of the third statement. The definitions
ESS:: dSUS a.nd ess:: éas*s— ESS (3439)

provide a compatiblds; on Q°. Moreover, sinceE;j identically verifies the
compatibility condition Eq. (3.3.20), it results from E@.8.20), Egs. (3.4.14)-
(3.4.16) and Eq. (3.4.39) thais verifies the relation:

050,055 = 00 (er—V: +¢logrs+ hys>

é N é
+ 980y (ri: +&glogrs+ hﬁs) — o2 (risy + ¢, logrs + hﬁy)

hence writing a®ss:= &sslogrs + hss, whereessis a function of6s andZ® only,
while hsgis smooth o8, thereby completing the proof. O

3.5 Mesoscopic incompatibility for an isolated 3D de-
fect line

Lemma 3.5.1 [Preliminary 3D result] For a 3D defect line verifying Assption 3.2.1
and under Assumptions 3.4.1 and 3.4.2, let us fix a pdial.. Planar incompatibility
in the local Cartesian base, as defined in Definitions 3.3d.&8.4, hence verifies the
relations

Nak = Nka=0, (3.5.1)
Ass = Q50+ Eay (B — ypg(Xp — Xop)4) Oa Sss, (3.5.2)
A~ ~ A~ * 1 Sk > A

Ao = s = Qude+ Soxa (B~ g5)(% —Kp)0)) dade,  (3.5.3)

whereQ, B, andéj denote the Frank and Burgers vectors, and the derivatiom-ope
ator in the local Cartesian base.
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Proof. By Proposition 3.4.1, the remaining part of the strain in &xgression of
incompatibility is the sole(r?)-part of Egs. (3.4.14)-(3.4.16), in such a way that the
global Assumptions 3.4.1 and 3.4.2 can be reduced to theAssiemption 3.3.7.

Let ¢, as a function of the coordinatés;, x5, z°), denote any 3D test-function.

Proof of Eq. (3.5.1). By definition of incompatibility onQS and Definition 3.3.2, in-
tegration by parts shows that

<ok ® > = < EqmdAOmay,d >

— lim (— | camdnaragas— [ emmerng,;na@dcp),

£—0

where the first and second terms inside the parenthesis actatkEbyTi: (a, k)
andrg(a, k), respectively, while their sum is written as

e(a,K) =T (a,K) + 15 (A, K). (3.5.4)

After integration by parts oft; and from strain incompatibility o, it results
that

TTg(a,K):/CgeaBgsw,ﬁcpdCB and ng(a,K):—/Cgea”e,(yéﬁ;dqbdcy.
Computation of T (o, k). This term writes as
Te(a,k) = /Cgeaﬁgsw;qbeﬁrdxr
which by Assumption 3.3.1 rewrites as
T K) =~ [ 35k (D) + 05~ K)00 () +Oax(1).

and also, using the relatio, — %} = €V),(x) and by Egs. (3.3.23) &
(3.3.24) (Lemma 3.3.2), as

Tie(a,K) :=Mg(a,K) +0gk(1),
with

Me(a,k) = (%) /C Ep0sE5 0 = D(F)0sA,  (35.5)

whereAq = /CS saﬁé’gsdxk.

"Let us recall that the strain components are here, for the sh&implicity, still denoted b)éjf More-
over, the subscript= Z° is denoted by = s, while i = 1 or 2 is denoted by a Greek subscript a,8,y
etc
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Computation of 7 (a,k). By Eq. (3.3.11) (Lemma 3.3.1), it results that
m(ak) = [ eandiaodx = M. K)+ oax(1)

where

NsS(o,k) = —/Cssaﬁg,;sazskaz

- s ) Lo

€ €

= 05 (9(X°)Aax) + ¢ (%) 0sAax + 0ax(1). (3.5.6)

Computation of 1(a, k). By EqQ. (3.3.10)Aqx = &(S)Tieqk in such a way that
both A« and ¢ (X®) are independent of® (they only depends on s but
dss= 0 in the local base affJ. Therefore, from Egs. (3.5.5) and (3.5.6),
it results thatre (o, k) writes asti(a,k) = Mg(a,K) + 0qx (1), where

Ng(a,k) =Me(a,k)+MN5(a,k) = 0qk (1), thereby completing the proof
of the first statement, by lettingg— 0.

Proof of Egs. (3.5.2) & (3.5.3). By definition of incompatibility o5 and Definition
2.5.17, integration by parts shows that

— lim (—/Q £2p0p 0 o 9dS— /Cssaﬁskpng,;naawcp),

£—0

where the first and second terms inside the parenthesis ameatebyTi (s, k)
and 1 (s, k), respectively, while their sum is written as (s k) = T (s,k) +
(s, k). After integration by parts oft; and by strain incompatibility o, , it
results that

Te(s.K) := /cg €aplpwW9dC, and TE(sk) = _/cg €apEkpnénda$dCp.
Computation of Tiz(s,k). This term writes as
Te(s.k) = /Cgﬁ,gtqjcpdxﬁ
which by Assumption 3.3.1 and singg— %, = £Vy(x), rewrites as
Tie (s,K) := Mg (s,K) + 0k (1),
where

Fe(sk) = ()0 + 0,6 () [ 0,dpaiady.
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Computation of 77 (s,k). By Lemma 3.3.1, it results that
m(sk) = _/cg EapEknEyrEpndXeda d (X°) +0k(1),
and hence that (s, k) := MN33(s,k) + ok(1), where,
NE(SK) = £apdad (F) | , (68~ 53:8) e

Computation of 1¢(s,k). From the preceding calculations, it results thgs, k)
writes as
T%(s, k) := Mg(s k) + 0k (1),
where
M3 (s,k) :==Ng(s, k) + M%(s k).

By slightly adapting the proof of the 2D result as treated ima@ter 2
(in particular by considering non-vanishifj, and writting the equations
in the local Cartesian system attached to the pmgnet 1), Egs. (3.5.2)-
(3.5.1) follow, thereby achieving the proof of all staterteen O

3.5.1 The 3D expression of Kroner’s formulas at the mesoscal

Let us recall Tee definitions and prove the following glokesult, for an arbitrary 3D
Lipschitz defect line irQ.

Theorem 3.5.1[Main 3D result] Under Assumptions 3.4.1 and 3.4.2, for a 3& d
fect line verifying Assumption 3.2.1, incompatibility afided by Eq. (3.3.14) is the
vectorial first order distribution

Nian = Gmnij (%) O} (%) + Hmnij(X°) )1k A Kij (X°) (3.5.7)
where< g, ¢ >= / ¢ (X°)1dL(%°) for any test-functio, and where the geometri-
L
cal tensors Gnij and Hynij write as

1

men
1
Hmnij = [—ETanaj-f—TnTjémi] ; (3.5.9)
me—n

with the subscrip{Smwnjm—n indicating that the expression symmetric pagihS- Sim
is taken.
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Proof. By Proposition 3.4.1, the remaining part of the str&jhin the expression of

incompatibility is the sole(r2)-part of Egs. (3.4.14)-(3.4.16), in such a way that the
global Assumptions 3.4.1 and 3.4.2 might be reduced, byditipn 3.4.1 to the sole
Assumption 3.3.1. By definition of incompatibility, integron by parts shows that

<Npn$ >0 = < Emigddquy, ¢ >= —lim

EmiaOqW ) pdV

</§;\i~)a mg?ah |¢

_ /a A gmlqgnpkggkmdsp), (3.5.10)
Oc

where the first and second terms inside the parenthesisagiig(m,n) and g (m,n)
while their sum writes as

me(m,n) =T (m,n) + 1T (m,n).

By integration by parts oft; and strain incompatibility o, it follows that

T(mn) = /m Emigdqi¢dS

emn) = = [ entpid 00S,

By Definition 3.2.6, let us write the relatio 5 ds(x) = / dL(x)dG (x) which,
[OF Le JC?

from Lemma 3.2.1, rewrites as

dS(x) = /dL()‘(S)/ (1 £X)dG (%), (3.5.11)
00¢ L Cg

for everye > 0. Hence, by the boundedness of the line curvature anff,pon QS
and the line concentration property Bf,, it results from Egs. (3.5.10) and (3.5.11),
that

< Mo & >= /L M) () dL(%),

where n;,,(X°) is the incompatibility onQ®, here expressed in the global Cartesian
frame. Since from Lemma 3.51;,,(X°) is known in the local Cartesian frame (de-
noted byfy,,and given in Lemma 3.5.1 by Egs. (3.5.1)-(3.5.3)), it suffiteexpress
N} in the global Cartesian coordinate system. The matrix reguior change the
coordinates from the local Cartesian system attached tord goof the line L to the
global Cartesian system is given by:

ajj = Vidj1+ 002+ Ti9j3,
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in such a way that

QF = 209 (3.5.12)
5 = aB] (3.5.13)
ad = o (3.5.14)
(XE_X(S)B) = ajp (X —Xoj), (3.5.15)

whereaj = (J1Vj + d20; + §3T1j). Incompatibility hence writes as

<M > = [ By ()9 ()dL(E)

| (ntafis (Tmvaes + Tn0ndez) - ) AL

wherem « n indicates as before the symmetrisation of the term as paddrby
interchanging m and n in the expression inside the pareisth€som Egs. (3.5.1)-
(3.5.3), let us consider the following 4 cases:

First term: ﬁs*|<1) = Q1 &s. After some computations, it results that

. 1
nr*n(nh (%) = <§TanTj + TmVnVj + Tm0n0j> ijé;(s. (3.5.16)

m—n

Second term: ﬁs*,(z) = dseayé;éadzs+ dK%eKaBgéaégs. After some computations, it
results that

Nme (%) = 2 (Tm(TnGiVj — TnO}Vi + T1.0}Vn — Ti0nV})) . B 0} B

NI =

1 *
= —Egkuvgvjlrl ru(rmenik)mHn B o'?,- Os. (3.5.17)

Third term (a): A = dsayes, (()“(IS3 —x8) Q5 — (- zg)fz;,) 0q 5s. After some com-
putations, it results that

M () = TinTn(8 — Xa) QA [Vj (ViTe— VicTi) + 03 (0 T — 0k Ti)] ;s
= TnT £|ji£iqumQ;()?g—qu)aj Os. (3.5.18)

Third term (b): ﬁs*,<3b

it results that

) —dK%eKae,gy(f(; — X(S)B)ﬁ;éaéf(s. After some computations,

N () = = (Tmenjl) o TiTiEipg Q5 (R — X0q) 0 . (3.5.19)

NI =
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The combination of Egs. (3.5.18) & (3.5.19) together wité ithentity
1 1
§T| (Tan€i|j - TmTi£n|j) = —§T| TménikEkuvTuévijl
results in the following expression:
Third term.
Mo (%) = e () + M (%) =
1 o
= —§T| ngnikekuve\,“TueiquB(Xa—qu)aj &s. (3.5.20)
By the definitions of the dislocation and disclination démesi(viz. Eqgs. (3.3.5) &

(3.3.6)), Eq. (3.2.20) and identityikEkuy = Onudiv — Onvdiu, it results that Egs. (3.5.16),
(3.5.17) and (3.5.20) rewrite as

1 1 R
Non = |:<§anj + VnVj + O'n0'j> @ﬁ]j + Egnjl T) Tm0j (/\ﬁ + €ipq(xlf1 - XOq)ei*p)
1 . R .
= 5 (&) 1T (A% + Eipa(%g - qu)an))} : (3.5.21)
m«—n
By Eq. (3.2.20) the last term is symmetric, and hence Eq.Z3)Fewrites as
X 1 . 1 . o )
Mion = || 20T+ Vavi+0n0) | Oj|  + SemiiTiTndj (A + ipal(%g —Xoo) Ofp)
m«—n

(&ji T Tmdj (AR + skpq(f(';] — X0q)©hp)

1 o *
— 58l TiTmd; 0 (A + Eipa(Rg — XOQ)eip)> :

By Egs. (3.3.5)-(3.3.8) the two last terms rewrite as thea@dion curl in the following
manner:

TmT| ajkdj Kr’:k7

while, fromaj = —2k;, the second term rewrites as
W &8jmdjKi = TnT&jkIjKmk— TnTi &k Jj Ok

TnT) &k 0j Kk — TmTn&ljk 0j Ok

= Ta0&jk0jKmk— TmTn& ik (K + Ki O)

= TnT S|jk(9j K;]k— TanS|jk(9j K|*k,

in such a way that (3.5.21) rewrites as

M%) = Grmnij (%) O} (X°) + Hinnij () & A K (%),
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where the geometrical tensdBgnij andHmpij read as
- 1
Gmnij(X°) = |:(§anj + VnVj + 0n0j> 5mi:|
m—n

1
Hmnij (%) = |:_§Tmrndj + TnTiémj:|

m«—n

thereby proving the statement.

Remark 3.5.1 In the 2D case, the lines are rectilinear along the z-axis aedce
T, = &3,Vi = 81,0, = O, in such a way that @ﬂj = 5ngdgéj3+ dBénKCSij while
Hanij = 430j30n3dm3. Therefore, sinc€y and k3 vanish in the 2D case, it follows
that:

n?tn = @§n + 50{3001 K;B’

according to the results of Chapter 2.

3.6 Incompatibility of a discrete family of 3D disloca-
tions

In this section, we will consider a family of 3D Lipschitz éet lines.Z C Q, such
that

i. either all lines of.Z are isolated or there is a finite number of contact points
between these lines;

ii. orthereis a“OD dislocation cluster ” in the sense that ofithe lines ofZ can
be approached infinitely closely by a subset®f

Definition 3.6.1 A Lipschitz defect line k . embedded in its tube is isolated if
. L o
LlrjO@g N.g ={L}.

If the latter condition is not verified, the set L said to be a @Dster and will be
denoted byt. In this case there exists a collection of isolated Lipschigfect lines

Lj c Qsuchthatl C [ JL;.
-1
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3.6.1 The case of an infinity of isolated dislocations

When the defect regior consists of a finite number of isolated dislocations lines
of arbitrary orientation the results extend in a straightfard manner by summing
the densities of each line. If two lines intersect, the rssalso extend, by slightly
adapting the proof of the single line situation: in fact iffees to consider a small
ball centered at the intersection points, to apply the teshtained for a single line
except for the portion located inside the ball, and to letrtddus of the ball tend to 0.
In the case of infinitely many lines without accumulationioag, the summation of the
incompatibility tensors of each single isolated line cesodle performed. However,
since the Burgers vector of a family of dislocations is dedibg encircling this family
inside a closed loop along which the total Burgers tensontisgrated, it should be
noted that the following condition must hold: for every disation subset?”’ of &,

the Burgers vectors of this subsg(.Z Z Bx(Lj), Lj € ./, must be of finite

norm. This condition restricts the p055|ble S|tuat|ons wehbe crystal is filled with
infinitely many dislocations.

3.6.2 Analysis of the OD clustering

The purpose of this section is to show how the theory develdpeisolated disloca-
tions and disclinations extends in a natural manner to thelsist case of a dislocation
cluster. Let us consider a OD clusterc .. By definition, there is a sé- of radius

€ > 0 containing both_ and an infinite family of I's (1 < j < »). Moreover, T+
and the family are chosen such that no defect line of the faisitrossing the bound-
ary of TL (this can be obtained either by just removing any line whicissesd T\,
or by changinge, or by following the ‘escaping” line witiT). Consider now any
non-isolated® € L and define the set

Q- (R):={x€Q st. (x—&)n(x")=0}, (3.6.1)
in such a way thax-"= lim % %-i (in the Hausdorff sense) whexéi € Lj Q- T},
i—
and define a sequenceaqf> 0 (1< j < ), ande > 0 such that

e D(&,¢)) CD(%,¢)
° D()?'-i,ej)m?:{i'-i},

whereD(x,r) denotes the open disk of radiusentred ak, hence such that the con-
verging sequence consists of isolated points strictly @ioed in a bounded set of
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radiuse. Define now

Ac = G D(sH, gj) (3.6.2)

=1
and
AL :=D(x-,¢)\ A (3.6.3)

which both have bounded areas and verfy< A., while A'g is a defect free sub-
set of QL. SinceAk has not necessarily a regular boundggy-) (in the sense of
rectifiability properties, finite perimeter, etc) it is nssary to introduce the theory of
line integrals along non smooth curves as developed by Jiddar(1999) (see also
(Harrison and Norton, 1992)).

3.6.3 Generalized Gauss-Green theorems and fractal clusge

The objective here is to give a very general version of Gahissen’$ formula
/dA(pdx+ qdy) = /A (dyp—0xq)dS (3.6.4)

where A is a subset @2 andp, g are smooth functions on A. Usual validations of Eq.
(3.6.4) require the set A to have a finite perimeter (Evan82}.9anyhow depending
on the link between regularity (that is, measurepéf and differentiability of p and

g (Harrison and Norton, 1991). Here we restrict ourselvethéoplane and seek to
validate Eq. (3.6.4) for @A that could be non-rectifiable, as for instanceA is

a fractal curve. Let us remark that the forthcoming statemsane proved under the
requirement that the left- and right-hand side of Eq. (3.6eldefined independently
of each other, while integration is still intended in the esbue sense. Since in 1935
H. Whitney (1935) (see also Harrison (1991, 1999)) constaia famoug™ (R? R)-
function which appears to be “not constant on a connecteof seitical points”, that
is, which verifiesdf = 0 on a (continuous) arg, even though f is increasing along
y. In particular, the fact thaf (y(0)) = 0 and f(y(1)) = 1, implies a failure of the

Fundamental Theorem of Calculus (“FTC’?[“df = f(y(0)) — f(y(1))". Of course,
y

the reason for this failure is the too higttausdorff dimensichof y w.r.t. the regularity
of f. For instance, there exists curves whose ranges cotitaientire 2-dimensional
unit square. These space-filling curves are knowReano curvesind a such curve
is illustrated on Figure 3.3. The relevance of this disauss$n the context of line-

8The general Stokes theorem would involve a/setR3 whose “Hausdorff-dimension” is less than 3.
9The Hausdorff dimension is defined disn(y) := inf{t : 5#*(y) = 0}.
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Figure 3.3: Example of a 2 dimensional (space-filling) Peanoe.

defect analysis appears as soon as one considers the itigolich such a counter-
example for the computation of the mesoscopic Frank and@argectors as jumps
of f =y or f = bf. For an “isolated” defect-line, neither Greens’ theorer, the
FTC pose any kind of problem, since the Burgers circuit carags be taken smooth,
while the Frank and Burgers tensors are smooth as well. Butléstering defect-
lines instead, one ought to show that any Burgers vector agpuated along a circuit
enclosing an infinite collection of infinitely many nearbysidications is the infinite
sum of the single Burgers vectors of these lines. Actualpythe Frank and Burgers
tensors smoothness away from the defect-line, the onleissuto find an optimal
version of Eq. (3.6.4) accounting for the largest possildmdins of integration, that
is, allowing for pathological clustering processes. THass of domains is given by
the so-calleathainletswhich are obtained by density pblyhedral chainsthemselves
defined as equivalence classesiaiplicial chaingthe equivalence relation permitting
the cancellation of the overlap region of two simplicial ttg, that is, finite sums of
oriented convex envelopas of points in the plane. In fact, let us simply write the
chainlet A as

k
A:dmzajoj, (3.6.5)

wherea; € R. Chainlets appearing as domains of integration have thet govantage
of being governed by an intuitive geometric construction@spared to the evaluation
of a domain dimension. Let us denote bg the space of chainlets in the plane,
weighted with the 2-dimensional Lebesgue measure, anéhelokhy completion w.r.t.
to an r-norm which will not be given het® but which is chosen in such a way thaf
will contain more and more strange and pathological liminpoasr € Z* increases.

10Ct the paper of J. Harrison (1999) which develops the whatempand the references therein.
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By a continuity property, it can be shown that, for smooth d gnthe integral over a
chainlet A as given by

[ (@p—agas=im | &p-aads

is well-defined, and thalA = l!im JA belongs todl“fl, thereby proving Eq. (3.6.4),

which classically holds for the simplicial chaky, for any givenr > 0 and for any
chainlet Aing7; .

The well-known “Von Koch snowflake” illustrated in Figure43is a fractal curve
which belongs tazle. If a dislocation line pierces the barycenter of each of the t

Figure 3.4: The snowflake as a sum of (oriented) simplexé&m(tr
gles) whose overlapping region has been cancelled (dattes)!

angles arising in the construction of the snowflake, thisyeus afractal clusterof
dislocations and the above mentioned Greens’ theorem altote define an equiva-
lent Burgers vector for that region (cf Section 3.6.2 of Ceaf3).

On Figure 3.5(a) the simulation of a clustering process wluislocations move to
each other is shown, while Fig. 3.5(b) shows the case of aiggpeluster of disloca-
tions, exhibiting fractal (or almost fractal) curves.

3.6.4 Incompatibility of a OD cluster

It appears that the sefs) andAj are chainlets as defined by completion using Eq.
(3.6.5). Therefore, the Frank and Burgers vectors aléfig,£) and dA coincide
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Figure 3.5: (a) Simulation of defect-line clustering (sslapt of dislocation network
evolution using the Paradis code; from Science & Technotegigw, November 2005;
(b) Growing dislocations in saphire exhibit very complexgetric structures.

since, by the extended Green’s theorem wptix+ qdy = Eﬁ(q*dxﬂ, it results that

/ ) ngdSvanishes!. Let us recall the necessary condition for OD clusters that
A

Bi(L) = Bi(C(x-,e))= Ew Bi(Lj) <
k(L) k(C(X",€)) P2 k(Lj) <
QiL) = QCH,e) =S Qp(L; 00
k(L) k(C(x,¢€)) jzz k(Lj) <

in such a way thalt can be considered as an isolated Lipschitz line with Burgeds
Frank vector®; (L) andQj (L ), respectively.
Incompatibility is therefore given by the following extegdiversion of Theorem 3.5.1.

Theorem 3.6.1 [Extended 3D result] Under Assumptions 3.4.1 and 3.4.2afool-

lection.Z of 3D defect lines verifying Assumption 3.2.1 and with g@eddD clus-
tering regions, incompatibility as defined by Eq. (3.3.14jHe vectorial first order
distribution

Ninn = Zf (Gmnij()A(L)@i*j (X) + Hmnij(f(l')ejlkal Kiﬁ(f('"))
LE

Usince dislocations of the same sign might not always be dbtegnergetical reasons, to form any
cluster, the OD cluster often consists of an ensemble abchsions of opposite sign.
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where< f&, ¢ >= / f @ (2°)dL(X®) for any test-functiorp, L*(L,.71)-integrable
L

function f and defect line k£ ., and where the geometrical tensorsg and Hupnj
write as

1
Gmnij = [<§anj+vnvj-+onoj)6mi]
men
1
Hmnij = —ETan&j‘f'TnTjémi
me—n

Let us remark that the cluster fine structure is consider¢ll mrore accuracy for small
values ofe.

3.7 Conclusive remarks

The results developed in this chapter did not require thedhtction of any new con-
cept. The same basic tools from geometric measure theory@sapter 2 have been
used, while slightly adapting the mathematical technigirese the proof complexity
increased quite much as a consequence of the treatment wiltB® strain together
with Lipschitz (instead of rectilinear) defect lines. Ortbther hand, restrictions have
been introduced on the defect line regularity. In fact reqgithe tangent vector to
be Lipschitz continuous is equivalent to requiring the defme to be described by
means of aV1= function of the arc parameter Moreover the line is assumed to
be “simple” and its dimension will always be 1, thereforeyamting the model from
fractal curves, such as “space-filling” curves for instantkis is not a major restric-
tion at this stage, since there is no specific interest in #fedl line class per se, but
rather in its completion class (in some appropriate sensehw beyond the scope of
this work), which could have been reached by an even smootass of curves (as
analytical curves for instance).

However, the developments showed gauge fields in the treafiglobal strain as-
sumptions. In fact, the occurrence of gauges is very nainridle study of defective
crystals, as a reminiscence of field multivaluedness.

The main interest of these developments is found in the “rfewhulas relating strain
incompatibility to defect densities, as showing the effectole played by the defect
line curvature and torsion, by means of concentrated temclading the line tangent
together with its normal vectors.

It would be even more interesting to obtain the macroscomimterpart of these quan-
tities by homogenisation in order to be able to compare oaw'result with Kroner's
general formula. This is a work under investigation.
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Point-defect dynamics in single
crystals






Chapter 4

Dynamic prediction of
point-defect formation in silicon
crystals

The silicort (Si) single crystals used for device manufacturing are deai crystals,
although they exhibit a high degree of perfection. Intérn@dint-defects, i.e. self in-
terstitials and vacancies, impurity atoms and defect elgsir micro-voids are present
in the crystal lattice at finite temperature due to energaitentropic reasons. Under-
standing the behaviour of self-interstitials and vacasieSi crystals during growth is
of fundamental importance, as they are the basic buildinghs for grown-in defects.

From a technological viewpoint, a major issue in Czochiial€iZ) Si growth is to
reduce the defect density to the lowest possible level,@albewhen the aim is to
produce defect-free crystals. Accordingly the effort plidthe last years to under-
stand the mechanisms governing the formation and evolui@elf-interstitials (1)
and vacancies (V) in the growing crystal has brought reasigrggood physical models
on the basis of the Voronkov theory (1982). However numéggperiments reveal a
very high sensitivity of the defect distribution in the cigidboth to the material param-
eters governing point-defect diffusion and recombinatiod to the thermal gradient

1Silicon is a group IV element with four valence electronso iw the 3s-state and two in the 3p-state.
The unit cell contains eight tetrahedral coordinated sitebe diamond structure, which can be described
as two interpenetrating face-centered cubic (fcc) ladtidisplaced along the [111] direction by one-fourth
of the diagonal length.
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in the crystal along the solidification front. Therefore waccurate numerical tools
are needed when the objective is to improve the crystal drpndcess on the basis of
defect modeling.

4.1 Point-defects and grown-in defect modeling

4.1.1 Interstitial and vacancy equilibrium concentrations

Statistical thermodynamics can be used to calculate thescdration of point-defects,
eg vacancies and interstitials (cf Fig. 4.1), in thermalildopium within a crystal. The
spontaneous formation of point-defects ab®ve 0[K] occurs because their presence
decreases the Gibbs free energy (Glicksman, 2000), as biven

G'va =Ho—TS+ny (AHlf,v - TAS{V) —koTINW, (4.1.1)

where the first two terms represent the Gibbs free energy efpthint-defects-free
crystal, the third term stands for the formation free endagynterstitials or vacancies
(which stems primarily from the energy of the free electramsl from the crystal
frequency changes, as associated with the first and seconihtgde the parentheses,
respectively (Shewmon, 1989)), while the last term is thefigoirational entropy, as
expressed by Boltzmann's formula for the random mixing @& ith interstitials and
ny vacancies among the N lattice sites (withny << N). The underlying atomic
reaction for a pure crystal consisting of a lattice of atomis ¥he so-called-renkel
reaction where an atom leaves a lattice by simultaneously creatvagrancy V and
an interstitial | (Philibert, 1988; Dornberger, 1998):

X=1+V, (4.1.2)

clearly showing that the formation of vacancies and initais is balanced in the crys-
tal bulk. However, due to boundary and microdefect effecthe formation and anni-

hilation of point-defects (eg if the solid crystal is adjat® gas or liquid phases), the
formation enthalpies and entropies slightly differ betw&acancies and interstitials.
In fact, related to these boundary mechanisms is the seec@thottkymechanism,

where a bulk lattice atom jumps to an interstitial site (#Brcreating a vacancy) and
diffuses to the surface, where it is added to the latticejioe-versa, where a boundary
lattice atom jumps to a bulk interstitial site (Philiber@88; Dornberger, 1998). Bulk

sources or sinks for point-defects are microdefects (aduesgers, voids and disloca-
tions loops) (Falster and Voronkov, 2002; Kulkarni et ai02.) and need to be taken
into account for accurate formation enthalpies and engésapiThe (thermodynamic)
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Figure 4.1: (a) Elementary cell of crystalline silicon, wb@=0.543 [nm] is the lattice
constant; (b) Two-dimensional schematic representatiareutral single vacancy;
Two dimensional representation of a free silicon self+igtiéal (c)-left, and a dumb-
bell configuration (c)-right; from Dornberger (1998).

equilibrium concentrations of point-defects as defined by

€q
Ceq . nI.V
(RYAR N’

can be computed by the minimization of G in Eq. (4.3.39) wir.{y (Shewmon, 1989;
Philibert, 1988), resulting in the Arrhenius-type form(ﬂ%‘, = exp(—AGlf,V) where
AG{y =OH/\, —TAS .

However, let us remark that since point-defects are formethd the transient solid-
ification process at the solid/liquid interface, thermoalymc equilibrium shows to be
a simplifying assumption (Dornberger, 1998).
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Non-dimensional expressions of the equilibrium concentréons

Letting the temperature-dependent formation enthalpidsatropies be expressed by
the linear expressionslfv = Hlf\? + HlféT andSﬁV =kp (Sff, + S{\l,T), respectively,
effective enthalpies and entropies are defined as

=
<
[

fo 12
Hiv + koS y T,
Sy Tm,

wn
<
I

in such a way that the non-dimensional expressions of dujuifn concentrations
reads:
f

HI.V (Tm T Tm

PR ?—1)+Sf,v(1—-r—m)(?—1)]a (4.1.3)

Crv =Cl\ exp[—

where the various parameter are given in a comparison Tal8edtion 4.4 compiled
with a set of data from the crystal-growth literature.
Nowadays, after controversial discussions and consigéhnieknown presence of self-
interstitial and vacancy related defects detected inailicrystals, it is accepted by
most researchers that vacancies and self-interstiti@ssenultaneously present in
silicon crystals under thermal equilibrium not too far frahe melting temperature
(Dornberger, 1998; Tan & Gdsele, 1985).

4.1.2 Transport of interstitials and vacancies

Obviously there is ho convection inside the solid crystal Hre transport is here cre-
ated by the uniform vertical motion of the crystal with respi the furnace (and the
solidification interface), the pulling rate being denotgd\b The transport affects all
atoms, of lattice or interstitial nature, and the vacaneigsvell. In addition, let us
remark that convection in the liquid phase plays a promimel&, since it governs
the melting interface shape and determines the rate andofyipgpurity penetration
inside the solid phase. Moreover, since the crystal is abuoleile being pulled, the
hot region just above the interface is the most critical sagh terms of the variety
and rate of diffusion, recombination, creation and incogtion mechanisms. In con-
trast the “upper region”, termed as the “far field” in the seljs “frozen” in terms of
diffusion and recombination, and hence only submitteddagport without any other
modification of the concentration isolines.
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4.1.3 Recombination of interstitials and vacancies

The recombination rate clearly depends on the point-defiffcisivities, in the sense
that high diffusivities will enhance the recombination rhanism. A linear law will
here be assumed. Moreover, since recombination is a meschamhich globally re-
leases energy while decreasing entropy, exponential ldvilseoArrhenius type are
introduced in the recombination rate expression to allowtie increasing energy and
decreasing entropy contributions. The final expressioteas

m Di+Dy H' Tm = [ Tm I
_ Hbirbv " dm Im _
Kiv =Kjy m \r}]exp[ ( 1)} epr < 1) (1 )], (4.1.4)
where the equivalent enthalpies and entropies are defined@ass

r

H = H +kT32S*
g = ng;l.

4.1.4 Diffusion of interstitials and vacancies

The diffusion of interstitials and vacancies is driven byncentration gradients in
the crystal and the flux of the diffusing species is basicallthe direction of lower
concentration. The diffusive flux is proportional to diffas constants depending on
temperature and concentration but as the concentrationinf-gdefects is in practice
lower than 1 ppma the concentration dependence can be tety(@ornberger, 1998;
Brown and Maroudas, 1991). Diffusivities can be computebthtically or experi-
mentally, both approaches suffering from the followingwdoacks:

e The theoretical approach requires an accurate statistitalysis of the corre-
lated atomic jumps and a description of the nano-physicewating for a va-
riety of diffusion mechanisms (where the predominance cduiqular mecha-
nism depends on the considered temperature range), mestlyfeom thermo-
dynamic equilibrium. Moreover, the calculation of the fation or migration
enthalpies and entropies relies on postulated diffusiahfarmation mecha-
nism in the crystal bulk or boundary, which may interact aadael each other.
Even employing atomistic simulations (such as eg eleatrdansity functional
theory-DST), which offer the advantage of letting a patacunechanism be
isolated, there is too much uncertainty to provide all theapeeters completely
independently of experiments. In particular, atomistimdiations are hand-
icapped by the inaccuracies caused by the crudeness oélaleaihteratomic
potentials (Sinno et al; 1998.).
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e The experimental approach for studying the propertiestoifisic point-defects
can be based on self- or foreign- atom diffusion experimgsgs Section 4.2.3),
for properties in or away from thermodynamic equilibriuraspectively. Even
though the experiments (as based on gold, zinc or iridiufusidn (Bracht
et al., 1995; Lerner and Stolwijk, 2005), positron annitida, or the use of
radioactive isotopes) are carefully realised, there isagwa deep lack of data
for high temperature (ie, close to melting point) diffusies and equilibrium
concentration values.

Let us also mention “ab-initio” calculations, which alsdfeufrom approximated in-
teratomic potentials and are limited to small atomistictsys and short simulation
times (Sinno et al., 1998). These difficulties justify toak the forthcoming chap-
ter some basic properties of the diffusion in solids, ertliyghas much as possible the
successive approximations and postulates used when tiyidgterminate the diffu-
sion coefficients.

They also explain why a new material data set based on updaligel from the exper-
iments by Lerner and Stolwijk (2005) will be considered imgn-in crystal processes
without contradicting some unquestionable observatisash as the OSF-ring equi-
librium and the V/G criterion (see Sections 4.6 and 4.7.2).

4.2 The mechanisms of diffusion

Diffusion occurs by means of molecular-scale entities mg\dporadically over dis-
tances and directions determined by the internal structitfee material. These erratic
motions are considered as elements of constrained randdka (kienited to few direc-
tions, precisely specified by the material crystallogrgphgcause the probability of a
motion occurring in a given direction and distance is biasgdetails of the material
ultrastructure and the interatomic forces (Glicksman,®0Mowever, the hypothe-
sis of random walk (independence of the successive jumpsitialways appropriate,
since the successive jumps of a particle can be, or not imdkge, depending on the
nature of the particle and the jump mechanism. When thesensoare not inde-
pendent, the jumps are called correlated (cf Section 4.2h8)jump frequencies of
the particle in the different jump directions deviate froine tprobabilities calculated
on the basis of a purely random walk, and the deviations diparthe nature of the
preceding jump (Philibert, 1988). Figure 4.2 recalls thestreimple mechanism by
which migration can take place.
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Figure 4.2: Scheme of the principal diffusion mechanismgdifect exchange, 2)
ring mechanism, 3) vacancy mechanism, 4) interstitial raai@m, 5) interstitialcy
mechanism, 6) crowdion; from Philibert (1988).

4.2.1 Atomic analysis of diffusion

The analysis of random walk is not a simple problem, sincequires to go back and
forth between the observed macroscopic diffusion coeffisiand the jump frequen-
cies and jump distances of the diffusing atoms. This analyansforms the study of
diffusion from the question of how fast a system will homoigerinto the construc-
tion of a tool for studying the atomic processes involved wadety of reactions in

solids, and for studying defects in solids (Shewmon, 19898jact the atomic theory
of diffusion provides an expression for the diffusive fluxfldoreign- or a self-atom

as proportional to:

e the concentration gradient (assuming that concentrativies slowly w.r.t. the
position),

o the diffusion coefficient D, itself basically dependent on
— a geometrical factog dependent on the crystallographic nature of the lat-
tice,

— the probabilityw that a given atom (being an interstitial or a lattice site)
will jump to a neighbour site,

— the probabilityp that a particular diffusion mechanism occurs at this neigh-
bour site (cf next paragraph).
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The flux of the defect A (in a lattice X) hence writes as
Fick's law: Jax = —DAxDCA7
where

Dax = OaxWax PAX (4.2.1)

is in general a second rank tensor depending essentiallgropedrature. Foself-
diffusion ie the migration of a self-interstitial atom I, the coeféiots write a®,, g, w
andp,. By the conservation of these migrating self-atoms, thiusglién of | implies
the diffusion of its counterpart defect, the vacancy V, fdrieh Dy,gy, ws and py
symbols are used. Self-diffusion and the particular difusnechanisms involved at
the atomic scale are briefly described in Section 4.2.3.

4.2.2 General expression for the flux and the diffusion equatn

The flow of particles within the medium can, in fact, be dueto tauses: one is the
effect of a concentration gradient, and the other one is thieraof a driving force.
Under the influence of such an external force the particlegamath a certain average
velocity v, which gives rise to a fluxC. Thus the general expression for the flux is
(Philibert, 1988):

J=-DOC+VC, 4.2.2)

where the first term on the right-hand side is called the RicKlux and the second
term the drift (or mass flow). The general diffusion equat{aith respect to the
crystal) is a second-order partial differential equatieading as

(Z—?:—D-J:D-(DDC—\‘/C). (4.2.3)
The relation between drift and diffusion is provided by tlvecalledNerst-Einstein
equation

v F

D kT’
where F is a driving force, whose nature and analytical esgio& can only be de-
termined from an analysis governed by the thermodynamiasenersible processes
(Philibert, 1988). In bulk crystal growth, thermal diffesi turns out to be a non-
negligible phenomenon (see Section 4.7.2) modelled asvindrthermomigration
force given by

(4.2.4)

Q r L
F=—=0T=QTO= 4.2.
T QTHT (4.2.5)
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where the significance of the heat of transp@ttis not obvious at all (cf Section 4.7
and Philibert (1988)).

It should be noted that Fick's law appears as presenting siomits since it is writ-
ten for a continuous medium and hence neglects the disecanimstructure of real
materials (which include dislocations), and since, forrstimes or in the presence
of a large gradient, the linear equation seems to represgrdss oversimplification
(Philibert, 1988).

4.2.3 Basic features of bulk diffusion in silicon crystals

Diffusion of intrinsic point-defects in silicon has beent@xsively studied since it has
major influence on their aggregation into grown-in defebtsreover, self-interstitials
and vacancies control the diffusion of dopants which is goadrtant process in device
manufacturing. The conceptually simplest mechanisms t éhiffusion in crystals
are the so-calledirect mechanismflabeled “1”, “2” and “4” on Fig. 4.9), where
the interstitial mechanism (“4”) is presumably resporeifir the diffusion of for-
eign atoms (such as hydrogen for instance) in silicon, wihigetwo others have not
been observed so far (Frank and Gdsele, 1984.). By contrabiect diffusionof
self- or foreign-atoms requires intrinsic defects as diifun vehicles. The best known
indirect diffusion mechanisms are thracancy mechanisifiabeled “3” on Fig. 4.9)
which controls self-diffusion in silicon below about 127%)][ The counterpart of the
vacancy mechanism is the interstitialcy kick-out mechanishpwhich dominates self-
diffusion in silicon above about 1270 [K] and plays a prommitile in the diffusion
of several substitutional solutes (such as boron or gallianinstance) (Frank and
Gosele, 1984.). Notice thaelf-diffusions precisely the simultaneous combination of
these two mechanisms (cf Section 4.2.3). The general merhawof bulk diffusion in
crystals should include the formation of, and migrationtérom point-defects aggre-
gates such as “clusters” and “voids”. Since their formatocours at low temperature,
the preceding simple and isolated mechanisms can be coedide predominant near
and above the solid-liquid solidification interface.

For this reason, it should be remarked that microdefect kitimns should be per-
formed by employing time-dependent models, since trahsiethanisms play a key
role in the crystal upper part, where microdefects are fagcf Section 4.5).

Vacancy mechanism and vacancy diffusivity

J. Frenkel introduced the concept of lattice vacancy in #myel940s, which pro-
gressively became accepted as one of the most importans fofthermally induced



160 Dynamic prediction of point-defect formation in silicon crystals

1)8%8 ©,0,00 o) o@o o
B3OS n0_ 8.0 O 10 0®0
_ 0000 0000
0000 0000 0000
20O 20.8°C 0 5O oc@"o
Q000 o000 0000
elclole © 050 ©
IO 1O 0 ® OO0
Q®EO Q000
(@) (b)

Figure 4.3: Successive jumps for the vacancy (a) and ki¢kvmchanisms (b). In
the case of a tagged (tracer) atom (dashed point) these jamepsorrelated; from
Philibert, 1988.

equilibrium lattice defects in crystals (Glicksman, 2000) a lattice site is not oc-
cupied, a nearest-neighbour atom (ie a lattice or a subietitai impurity atom) can
jump onto this site, and the vacancy will appear on the sieatbm has just vacated
(Philibert, 1998). The vacancy itself diffuses by thi&cancy mechanisio the oppo-
site direction of the lattice atom (Figs. 4.3(a) and 4.2)rdeasize dopants (such as
antimony) in silicon diffuse predominantly via vacanci@o(nberger, 1998).

Lattice vacancies may be of thermal or stoichiometric origiee Section 4.1.1). The
interchange of a vacancy with one of its nearest-neighbtmmsa requires local dis-
tortion of the lattice (see Fig. 4.4), the activation voluf\g" of which is a measure
of the lattice dilation that accommodates the exchangedmivthe diffuser and the
vacancy. Note that activation volumes for vacancy-atorargitanges are typically
several percents of the atomic volume, in such a way thatigtertion energy is large
compared with the strain energy caused by interstitial amogf light atoms (Glicks-
man, 2000). On the other handHeImoltz free energfR)" is required for reaching
the activated state from the ground state, in such a way liledsibbs free energy of
activationreads (for a system at constant pressurd®} = PAW" + AR}" (Philib-
ert, 1998). In a crystal of a pure element, the vacancy campjtoward any of its
nearest-neighbour at any time; its successive jumps aeeththdependent of each
other, in such a way thgty=1 and hence Eq. (4.2.1) reads&g = gy wy, where
gv is a factor taking into account the lattice constant, the §laemetry of the lattice
structure and atomistic details of the diffusion procesaifk and Gosele, 1984) and
wherewy = w exp(—AG]/k,T) with w/, theDebye frequencyMore refined models
provide an additional activation entropic term taking imtcount the difference be-
tween the entropies of vibration of the ground- and activatates (Philibert, 1998).
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Figure 4.4: Local lattice distortion and activation volwrier vacancy-atom inter-
changes; from Glicksman (2000).

Kick-out mechanism and interstitial diffusivity

If an atom jumps from interstitial to interstitial site, shinterstitial point-defect is
said to diffuse by the direct interstitial mechanism (la&uEl4” in Fig. 4.2) (Philibert,
1998). If the atom may, as pictured in the “5” th mechanismigf B.2, jump either
to a substitutional or an interstitial position, the atorffudies by akick-out mecha-
nism Contrarily to the vacancy, this lattice defect is not weltdlised, but spreads
out among a number of align atoms (cf Fig. 4.2) (Glicksma®®0The interchange
guasi-chemical reaction involving self-interstitialg goforeign atom such as Au in a
silicon for instance, cf Frank and Goésele (1984) reads as

As+1 = A, (4.2.6)

where A and A denote the self- (or foreign-) interstitial in substitutad and inter-
stitial position, respectively. From left to right and rigio left, reaction Eq. 4.2.6
corresponds to the filled and to the dashed arrow of mechatt$wn Fig. 4.2, re-
spectively. Notice that the real situation is somewhat nmemeaplex than what the
drawing of Fig. 4.2 suggests because the jumps of the twosatymnot necessar-
ily collinear (Philibert, 1988). The activation energd|" for an interstitial is higher
that for a vacancy since it requires the same energy as faneggamigration (by Eq.
(4.1.2)) plus an additional amount accounting for the wtigtal to “kick-out” a lattice
atom by the kick-out reaction (4.2.6). In a crystal of a pussreent, the probability
for a self-interstitial with enough free energy to kick-aune of its neighbours ip;=1,
while w = v, exp(—AG["/ky T) with the Debye frequency;.
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Non-dimensional expression of point-defects diffusivités

Let the temperature-dependent migration (or activatiorihapies and entropies be
given by the linear expression, = H'C +HYT and S, = ky (S“S +S‘}}T),
respectively. Define the effective enthalpies and entopie
—m
Hyv = H™Y -+ kaﬂ%Tr%,
Sy = SVTm,
in such a way that in a non-dimensional form, these diffligigiwrite as
ﬁm
Div = DH]V EXp[—ﬁ(Tr_m_l)]v (4.2.7)

where the different parameters are given in a comparisda talsection 4.4 compiled
with data from the crystal-growth literature.

Coupled dissociative mechanism

The typical coupled mechanism for self- or foreign- diffusiin silicon is the so-
calleddissociative mechanismvolving substitutional, interstitial and vacant la#ic
sites according to the law

As=A+V, (4.2.8)

which in the case of self-diffusion in silicon is nothingethan the Frenkel reaction
Eq. (4.1.2).

Self-diffusion

Self-diffusion means the diffusion of an Si self-atom in kcen lattice both by the
kick-out mechanism

| +Si= Si+1, (4.2.9)
and by the Frenkel reaction
Si= 14V, (4.2.10)

which shows that supersaturation of self-interstitiaisreat be maintained without the
undersaturation of vacancies, and vice-versa. If the Frerdaction were instanta-
neous (which is not the case, even at high temperature, wm ofethe presence of
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a barrier against self-interstitial-vacancy recombimratnd a high activation barrier
against the spontaneous formation of Frenkel pairs in thlke @trank and Gosele,
1984), reaction Eq. (4.2.10) would maintain the local eftiiim:

GGy =CCH. (4.2.11)

Note that high recombination rates, leading Eq. (4.2.11)dovery approximately
satisfied, are enhanced by the presence of dislocations emd-defects. Moreover,
in experiments involving high dislocation densities, kimkt and Frenkel reactions can
hardly be distinguished (Frank and Gésele, 1984). By iremiicustom the diffusion of
an isotope Si, usually, but not necessarily radioactive, is referredasalf-diffusion
(Philibert, 1988). In this case however, the probabilifsor p; for vacancy- or
interstitial-assisted diffusion to occur are equal to thebability that Egs. (4.2.6) or
(4.2.8) take place, respectively, and hence thafiBds a vacancy or an interstitial as
neighbour, in such a way that, = exp(—AG! ) (k,T) and pf = exp(—AG/ )/ (ko T).
Therefore the tracer self-diffusion coefficient under that equilibrium writes as

D' = Z fk Ok Vk eXp(—AGP/kpT) = Z fk Dk CRY, (4.2.12)
K=T.V K=T.V

whereAGSP = AG,f< +AGPR while fc with K = 1,V denotes the correlation factors,
allowing for the fact that successive vacancy or integdtjtimps are not independent
(cf Fig. 4.2.3), noting in passing that correlation facttosinterstitials are slightly
more intricate to compute than for vacancies (Philiber88)9 Following Frank and
Gosele (1984), Bracht et al. (1995), and Lerner and Stold®05), by carefully
analysing available data for diffusion of foreign atomsiiiten, it is possible to sep-
arate the contributionByC{® andD,C’ but not to split the factors dbxCy” (Frank
and Gosele, 1984).

This remark will appear as crucial in Section 4.7.2, whereesy material data set
with higher equilibrium concentrations and lower diffusies will be confronted to
the classical values used in the crystal growth community.

4.2.4 The physics of thermo-diffusion

In Section 4.2.2 the Fick’s law of diffusion was introduceddapostulate, while the
drift terms where added without justifying the nature of tidving forces. Since
diffusion is by nature an irreversible process, it is the fimedynamics of Irreversible
Processes that should provide a complete and general ajytmtne problem (Philib-
ert, 1988; Degroot and Masur, 1984). Let us here analyseabe af the diffusion of
vacancies and self-interstitials in a pure silicon crystéle rate of entropy creation in
this case writes ag = JqXq+ J X + Iy Xv, whereJ, v are the interstitial and vacancy
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fluxes [ 2s 1] (expressed in a frame of reference moving with an averagaiatve-
locity (Philibert, 1988)), verifying, by Frenkel reactipthe relation), +J, = 0. The
termJq denotes the heat flux whib§ \, andXy are the thermodynamic forces associ-
ated to the interstitial, vacancy and heat fluxes. It resbli$ for a vacancy-assisted
diffusion of interstitials,c = JqXq+ J; (X —Xv) and hence that the fluxes are written
in terms of the assumed linear Onsager relations (cf eg é¢grad Masur (1984)) as

J o= V7L (X —Xv) +LigXq) (4.2.13)
o= VI Lvi(X —X) +LvgXg) (4.2.14)
J = VHLg (X —Xv)+LagXq), (4.2.15)

wherel ag are called the “phenomenological coefficients”, whose olied terms have
the meaning of defect mobility and thermal conductivityjietthe off-diagonal terms
describe interaction phenomena such as thermomigrattahit{&rt, 1988) and V here
denotes the volume of the crystal (not to be confused witrstimee symbol used to
denote vacancies). Moreover, the forces are classicaltyenras

lll_.v:_DTlll.v 1

Xy = -0 T T —h|,VD? (4.2.16)
Xg = D%, (4.2.17)

_ @umy/oT)T—py
T2

wherehy = , and with the chemical potentiads

Hsity = Ui v + Ko T I0gNsj v,

whereny represents the number of vacancies contained in the crygtdk the total
number of atoms is = ngj+ N + ny with ng;, the number of lattice atoms, amgly

the number of interstitial and vacancies, respectivelyrédoerNs;, v will denote the
densitynS‘%. Let us now briefly analyse the case of thermo diffusion odiistitials

by the vacancy mechanism. Therefore we introduce the clemitential of lattice
atoms, denoted gss; with Nsj~ 1 and consider a region of oversaturation of intersti-
tials, in such a way thgtd; andu can be assumed as independent of the concentration
and hence such thatr psj ~ Or p& = Or uP = 0, while

DTUI = %DTNL (4.2.18)
|

On the other hand, if the density of vacancy sources and srkigh enough, that is,
under the assumption of instantaneous equilibrium, itlte sat

t=0=DOrpy. (4.2.19)

2The chemical potential of a thermodynamic system is the arfmpwhich the Gibbs free-energy of the

system would change if an additional particle were intre@ajovith temperature and pressure held fixed,
i -ic
e py = g o
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Then, for a vacancy-assisted diffusion of interstitiatsd from the linear assumption
(Philibert, 1984) that

L|q =Ly Qik and qu = vaQ\*/, (4.2.20)

where the “heats of transpoi;,, are introduced, ie, the contribution of the heat flux
to the I- and V fluxes, respectively, it results from Eqgs. (46)-(4.2.20) that

J = \%(Ln (Xi —Xv) +LigXq) = \% <—%DT(IJI — pv)Lu +D%(qu —h +hv>

L 1
= % (—%Dm +0+(Q —h +m)) :

It can be shown (Philibert, 1984) that the diffusion coeffits write as

n
L”:EiDI and LVV:%DV;

in such a way that
ok 1
J =-D,07C +C Dy Q| D?, (4.2.21)

where thereduced heat of transportQfor interstitials has been defined.

For the diffusion of vacancies, the roles are inverted wétspect to the previous anal-
ysis, in the sense that now self-interstitial and latticarad in thermodynamic equi-
librium are associated with for (oversaturated) vacandfusion. The vacancy flux

writes as

== (—%DTW+D%(Q{*/—W+M|)>,

and hence
1
Jv:—DVDchJrcVDVQ@*D?. (4.2.22)

Following (Philibert, 1984) very little is known either abiothe theoretical or about
the experimental values of the reduced heats of tran€gjgt

Altough in the crystal growth literature (cf eg Sinno et d1998), Ebe (1999), Voronkov
and Falster (2002)) controversial values and signs arefos€yfy,, it is however gen-
erally accepted that, in absolute value, the reduced héatsport should not exceed
the formation enthalpies. Most often these quantities aglatted in point-defect
models.



166 Dynamic prediction of point-defect formation in silicon crystals

4.3 Model equations and asymptotic analysis

Since the equilibrium concentrations, point-defect diffities and recombination rates
depend on temperature, the simulation model has two aspefitst key issue relates
to the thermal modelling of the crystal, including the effeEmelt convection in the
liquid phase and radiation in overall the furnace, as brigdyalled in Section 4.3.1.
On the other hand, the model equations for point-defectspart, diffusion and re-
combination follow the discussion of Sections 4.1 and 4®\witl be given in Section
4.3.1, while time-dependent simulations will be perfornaed discussed in Section
4.5. Let us recall that, as the concentrations of intrinsimpdefects are lower than
10-6/m?, the equilibrium concentrations, diffusivities and redzination rates can be
assumed as independent of concentration. Therefore, asyg effects are neglected,
and point-defect and thermal simulations can be decoupisdch a way the€™, CJ
andKjy are calculated (cf Tables 4.2 & 4.3) by using the temperatisteibutions ob-
tained from the thermal simulations (Dornberger, 1998) rébwer, let us remark that
thermodiffusion of intrinsic point-defects has been netgd in the thermal model, but
is not a priori negligible in the point-defect model, as shaw Section 4.7.

4.3.1 Thermal and point-defect models

A key role is played by the thermal modelling of the crystabwth process, devel-
oped by N. Van den Bogaert and F. Dupret (1997) and furtheudised by Dornberger
(1998). Using the FEMAG simulation software, fully timep#sdent numerical sim-
ulations have been performed in order to predict the glokat transfer in the furnace,
the solid-liquid interface shape, and the resulting distiion of self-interstitials and

vacancies in the crystal. All the system transients have beeurately taken into ac-
countincluding the effects of crystal and crucible veftioation, of the heat capacity
of the furnace constituents, of the solidification frontrthal inertia, and of the in-

herently time-dependent defect governing laws. In ordexcielerate the simulation
computing time, the effect of the melt flow on the heat trankes been modelled by
means of an equivalent thermal conductivity, which is degddb sum up in a sim-

plified way the contributions of (i) heat convection, (ii)ra@ctive heat mixing, and
(i) heat diffusion (cf Section 4.6). More accurate resudbuld be obtained by using
a detailed turbulent flow model provided good model tuningpbgormed. Global

time-dependent simulations have been performed to caécthia heat transfer on this
basis. However only the results obtained inside the crgsgashown on Fig. 4.5. The
following parameters were used:

e Pull rate: 0.53 mm/min
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e Crystal diameter: 150 mm (6”)

e Melt equivalent thermal conductivity: 110 W/mK.

Figure 4.5: Temperature field in the crystal at several ghastages.

On the other hand, a systemtodinsport-diffusion-reactio®DE’s (henceforth called
theSinno-Dornberger modébr point-defect simulation) has been shown to be adapted
for our purpose. Details for the construction of this modaldibeen discussed in Sec-
tions 4.1 and 4.2. The model writes as

DC =D

Ttl — D-<D|DC|+%C|DT)—K|V(C|O\/—C|e°qu), (4.3.1)
DGy 5D

ot D.<DVDCV+ kaZVc\,DT>—K|v(c|cv—cf°c\‘3q) (4.3.2)

where subscripts | and V indicate self-interstitials oraacies, respectively, whi[qeq
andCSq denote the corresponding equilibrium concentrations. usetecall that the
kinetic coefficientk, associated with the Frenkel recombination mechanism svrite

as
D + Dy H Tw

_kgm . (—
Kiv =Kjy DM+ D7 xp|[ kam( T 1)], (4.3.3)
the Fickian diffusivities as
HY T,
Dy = D\ DAy | 43.4
Y, v exp| kam( T )] (4.3.4)
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and the equilibrium concentrations (where referring todbeeral expression of Sec-
tion 4.1.1, the entropic term has here been dropped) as

—f

H T,
CY =Cl expl— = (F ~ 1] (4.3.5)
Moreover, symbol§] and
D 7} 7}
ot ot 'V oz

denote the gradient and material derivation operatordi(mihdicating the vertical di-
rection), andk, the Boltzmann constaritf = 8.61 10°° [eV/K]), while QY stands for
the reduced heats of transport associated with intetstitigacancy thermo-diffusion
(or thermal drift) whose precise meaning has been discuss&gkction 4.7. The
boundary conditions are of two kinds. Along the solidificatinterface, equilibrium
concentrations are imposed, while the concentration nidimas are set to zero along
the crystal wall (equilibrium concentrations should nolinbe imposed in this latter
case in order to account for the Schottky defect generatiechanism; however this
will generate unacceptably thin and sharp concentratiambdary layers along the
crystal wall, and hence this effect is here neglected witlsignificant loss of accu-
racy in the remaining domain). To facilitate model compamis, it is of the utmost
importance to use unambiguous expressions of the coelﬁkﬁé@, Div, andKy as a
function of temperature. This is the role of the materiabdaimpilation of Tables 4.2
& 4.3.

4.3.2 Matched asymptotic analysis

The following sections aim at rewriting the model equatiam& non-dimensional
form in order to determine by means of matched asymptotityaiza(cf eg Bender
& Orzac) three regions in the crystal, each of which beinget#d by particular PD
evolution mechanisms. The original idea for this developnagise from the work of
Voronkov (1982).

To this end, Egs. (4.3.1) & (4.3.2) will be analysed in a 1D sarfinite simplified
geometry (< z < «) and under the quasi-steady assumption. Therefore we set

D 0
5 =V (4.3.6)

while from the 1D assumption,

0=4, (4.3.7)
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Non dimensional variables and numbers

Define the variables

A = C-C (4.3.8)
n = GGy >0 (4.3.9)
nee = >0 (4.3.10)
and the constant
ned = "Gy >0, (4.3.11)

and introduce the dimensionless variables
Cyv

/ .
Cy = n?nql/2>0 (4.3.12)
' C'y
e . s
¢V = —gp>0 (4.3.13)
m
N = C-C, (4.3.14)
n := cc, >0, (4.3.15)
in such a way that
C = NJ2+(0%/44+1)Y? (4.3.16)
C, = —N/24(8?/4+11)Y2 (4.3.17)
C/+C, = (A?+4n")Y2 (4.3.18)

In view of the forthcoming developments, introduce alsotthe dimensionless vari-
ables

—A
of | of
. Hy+Hy [ Tm
T = T <T 1), (4.3.20)
in such a way that
cy = que™? (4.3.21)
ned = n%’>0. (4.3.22)

It will be firstly assumed that € [0;[, while this hypothesis will be discussed at a
later stage. MoreoveD,y = D{f‘ve—pu,vr' while the following definitions introduce
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non-dimensional material numbérs

Hiv
pv = ﬁ >0, (4.3.23)
H, +Hy
ﬁr
p' = ———=¢ hereassumedO0, (4.3.24)
H, +Hy
_Q** ~
v = —r =flvpy, (4.3.25)
H, +Hy
Dl
d| Vv = m > 0, W|th d| + d\/ = 1 (4326)
| v

Moreover, G denotes the norm of the axial temerature gradigihe interface, with

| Refs/ [ LV ]| piv | p’ |
Sinno et al. (1998)| | 0121 | 0<p'<1
Sinno et al. (1998)| V | 0.059
Kulkarnietal. (2004) | I | 0112|0<p' <1
Kulkarni et al. (2004) | V 0.05

Table 4.1: Non-dimensional coefficients.

_ d(/T)
VD) =—4 (4.3.27)
wherey(0) = G/TZ2 > 0, while j(1) is defined from the relation
1dT . .G
y(2) = 124 V(T)T_n%’ (4.3.28)

and is assumed to be regular, bounded between 2 positivéaotsisand such that
IimOV: Vo, while its asymptotic behaviour far— oo will be discussed later.
T—

The characteristic distance L is introduced as

kam Tm

L= —4——+F—,
A +Hy G

(4.3.29)

which using the the current SD model parameter, is estimadduking of the order 1
[cm]. It can be observed on Fig.4.5 that the “effective” @weristic length is about 5

3The value ofp" can be negative together wilh at melting temperature if a second-degree expression
of the recombination rate of the form Eq. (4.1.4) is assumstéad of Eq. (4.3.3). However the higher-order
terms will force the average exponent in Eq. (4.3.3) to bezoryative in the range of about 200K-400K
below the melting temperature. This is why, to simplify timakysis without loosing any significant effect,
it is here assumed thaf is positive while the higher-order terms are set to zero.
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[cm]. Moreover, it results that

9 _yr)o
=’ 4.3.30
0, L o ( )
Finally, smce— - %z, let us note that the physical meaning of L can be under-
stood by observmg that
| eg~eq
L1 _%;C\/). (4.3.31)

4.3.3 Non dimensional equations

Transportterm. From Egs. (4.3.1)-(4.3.2), (4.3.6), (4.3.22), and (4.3.84s term
writes as

V
Vo.Cv = TV eql/zarq vV

Self-diffusion term. From Egs. (4.3.1)-(4.3.2), (4.3.7), (4.3.22), (4.3.23)3(26),
and (4.3.30) this term writes as

y

G “diy (D] + DY) or [je PviarCly ]

0;(DivoLCiv) =

Thermo-diffusion term. From Egs. (4.3.1)-(4.3.2),(4.3.7), (4.3.22), (4.3.28)3(26),
(4.3.25) and (4.3.30) this term writes as

T T2 Lk v
v (D" + DJ) N5 20; [yexp(—pvT)Cly ]

ﬁQT*D|,vC|,v|:|T y G ( |+Hv)

Recombination term. From Egs. (4.3.1)-(4.3.2), (4.3.26), (4.3.22), (4.3.21%) &.3.30)
this term writes as
D + DV
KV S am Dt exp( p'1) (GO —CFCYY) = —KY

(die” p'=Vr+dve W) Me%ePT(C/C) —e 7).

m m
After simplification by yl‘leql/2 and division byM, with use of Eq. (4.3.29)
and after introduction of the previous non-dimensionabpagters, key dimensionless
numbers are defined as follows:



172 Dynamic prediction of point-defect formation in silicon crystals

The thermal Peclet number represents the ratio of transport over diffusion of | or V,
as measured in/T scale, and writes as

\Y} 1 kp T2 VL
o~ G2D" DY) Hy  DP+ DY (4.3.32)
A
whereH)y := ———Y With the current parameters, Pe is estimated as being
o).

The Damkohler number represents the ratio of recombination over diffusion effec
and writes as

B Kln\} LGﬁqql/z

Da:= 4333
&= "ppyop (4.3.33)

With the current parameters, it is estimated as being of tder@(1000).
Finally, the complete non-dimensional equations writeclieds.

Non dimensional equations.The complete non dimensional equations write as

Perd:Cly = divo: [fe PV (0:Cy +aivCly)]
D—f‘(d.e*p'r+dve*p”)e*prr(C{C(,—ef’). (4.3.34)

Itis also interesting for the forthcoming analysis to exgsréhe evolution equations in
terms of’ andr’.

General Y equation. Without any limiting assumption on the recombination rate,
Eq. (4.3.34) provides by a simple substraction of the | andguations, the
so-calledd'-equation

Pe]' drA/ = d| ﬁr Ve7 Pt I:dTC( + Q|Cﬂ
— dvoye PVt [drq/ +QVC\//} ) (4.3.35)

where the concentratior@,C|, are given in terms of\" andM’ by means of
Egs. (4.3.16) & (4.3.17).
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General " equation. Multiplying the | equation by, and the V equation b@;, the
summation of the two resulting equations provides the diedfl’-equation

Perd.M" = dC\d:ye P'[0:C/ +aC]+dvCa e ™7
[0:Cy +avCy] - D—;‘ (de PT+dve ™)
e PN —e") (¢ +C), (4.3.36)
where the concentrations are given in termsAdfand M’ by means of Eqs.
(4.3.16)-(4.3.18).

Boundary conditions. Since the problem is 1D, the melting interface boundary con-
ditions write as:

Cly(t=0=CT
(4.3.37)

In theory, since Egs. (4.3.34) or Egs. (4.3.35)-(4.3.36)woth of the second-
order, an additional pair of boundary conditions should ey at the other
extremity of the 1D domain. However, as an infinite domairssuaned, infinite
limits of C{, for T — c might be considered, as associated with non-physical
but mathematically consistant defect distributions. Toiéthese situations, it
is simply imposed that

lim C{y (4.3.38)

T—0

exists, while the value of the limits will be discussed in fbbowing section.

4.3.4 Alternative temperature gradient assumptions.

Write

G= Tm_T“, (4.3.39)
V4y)

in Eqg. (4.3.28) in such a way that

T2z dT

yim -

Bounded and decreasing temperature field.Consider, as an example, the following
temperature distribution

T=Tot+2-0 =

Tm—Te
=+1

b2
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which satisfies Eq. (4.3.39) and exhibits a horizontal agptepyvhenz — oo,
From Eq. (4.3.20), it results that

z TThm

o K(Tm—To) =TT’

-
H +H
with K = % The general formula
m
rogim-T (4.3.41)
T
defines
K (Ti— Ten
Trmax= K(Tm — Te) "‘T ) (4.3.42)

in such a way that

” T \?
p=(1-—]) .
Tmax
exhibits a second-order zero= Tmax.

Radiative flux. Consider a simplified radiative flux outside the crystal withdiffu-

sion, i.e.
daT 4 4
— =—AT*-T,
5 = AT,
such that, from Eq. (4.3.27),
Ta
y=A(T?— ﬁ)

which by Eq. (4.3.41) rewrites as

2 4
V:A<<T/Im+1> —I—;(r/KH)Z),

and, by Eq. (4.3.42), is normalised as
Tma/K+1) 2 /K1 \?
T/K+1 T\ Tmay/K+1
27
(tma/K + 1) ~ ()

which exhibits a first-order zero @t= 1nax The related problem is quite com-
plex without bringing up additional interesting featur&s.obtain some relevant
information, the simpler expression:

j=1- - (4.3.43)

Tmax

V:

will be investigated.
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4.3.5 Outer solution

Theouter equationgSinno et al., 1998) for vacancy and interstitial convettiiffu-
sion and recombination is considered in a region descrilgélddovariabler comprised
between two transition values where the lower bound is VvémgsasDa — o, while
the upper bound tends to infinity &a — «. Using a superscript “(0)” to indicate
outer variables, the expansion

Cv(®) = C¥o(1)+eC 04 (1) +or(e) (4.3.44)
NI = A1) +en (1) +o(e) (4.3.45)
n'(r) = A°(0)+en9) +oc(e) (4.3.46)

is assumed to hold for given wheres = Da~# with 8 > 0 has to be determined.
Introducing this decomposition in Egs. (4.3.35) and (463.8 results, at order 0, that
the outer equations reduce, by dividing Eq. (4.3.36) by Daé @aissing to the limit
Da — oo, to the following pair of equations:

Perais® = dorfe T [aCy +aC ]
~ dvarfe ™[00 + ey (4.3.47)
ne = ev. (4.3.48)
The limit conditions are
COh(r=0 = C¥ (4.3.49)
AY(T=0) = Ny:=gMm-C (4.3.50)

while the limit lim A'©) (1) is assumed to exist and will be call&g’. Eq. (4.3.47) is
integrated as:

Outer equation at order O.

P;-r ( NG Afgo)

de P 0Cf +acy|
— dePTlocd o] (4351
ne = e, (4.3.52)
with
G = 80772+ /a+e V2 (4.3.53)
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4.3.6 Inner solution

The inner region is described by the variabecorresponding to small values of In
fact, 7 is defined front as the re-scaled variable:

" = Dafr=¢11, (4.3.54)
in such a way that
Or =€ 1o, (4.3.55)

Moreover, using a superscript “(i)” to indicate inner vdnlies, the following expan-
sions are assumed, for fixetl and variables := Da#:

cler) = c,’“V)o( ")+ GO (1) + 0 ) (4.3.56)
Nt = (T”)+£A1 ( ") + 0y (€) (4.3.57)
n'er”) = o(l (r”)+e|‘l V(1) + op(e), (4.3.58)
where
g = s
) = Gl vl
while
V=t+et"#+o(t"). (4.3.59)

wheref is the derivative off w.r.t. T atT = 0.

Inner C/, equations at order 0. Theinner G, equations rewrite as

P ~ ”
%aT”Cl/,V = d|.varu yeigpl VT [e’zdr//cl’vv =+ q|~V£71C|/,V]

; (d. g ent dve—fpvf") g (Lrp)er” (rl’ - e‘”") . (4.3.60)
vy
Inner A" and M’ equations at order 0. Theinner A’ equation rewrites as

P ~ "
er T"A/ = d aru ye’gp' T [gizar//C( +q gilC{]

— O et [e720.C) +ave IC)], (4.3.61)
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while thel’ equation rewrites as

di C\I/dr//e_gpl v [5_2(91//0{ +q S_lC{]

Per g
&

+ de{drwe*EWT" [£7zaruc|/ + QVeilCH
(d| e7£p|1.// —|—dveigp\/rll)

1
Py
e (Lrp)er” (I‘I’ - e’””) (C +C,). (4.3.62)
Inserting Egs. (4.3.57)-(4.3.59) in Egs. (4.3.61) & (423,@nultiplying by ¢# and

passing to the limiDa — o, the principle of least degenerescence sh@w® be
equal to 2, resulting in equations at order 0 writing as

|
o

617,Cg — Vg Cyo
AiCyg05Cy +dCIoiC)e = To2(Mg” ~1)(C +Cyg):

|

Matching. Matching is imposed at some for exampler = /2 and henca” =
£~1/2 (since the matching location must be large wa.while small w.r.t. 1)

This system rewrites as

3Gy

T//
/

%o

] 2 —1). (4.3.63)

Clo(T"=0) = qT. (4.3.64)
Jim o) = limGP(r) =Y. (4.3.65)

Inner solution at order 0. From Egs. (4.3.21), (4.3.49) and (4.3.63)-(4.3.65) the in-
ner solution at order O writes as

Clo=C =™ /2 = %+ 0 (1) (e — 0) (4.3.66)
for all values oft”.
It result from this analysis that inner solution in fact does exist, since the above

defined region is simply an “expanded solid-liquid integawhere a boundary con-
dition is imposed.
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4.3.7 Far-field solution

Since the temperature distribution in the far-field is n@&qisely defined, several vari-
ants of this problem are developed. The three attempts éotittee assumptions on
the temperature field will be here tested, with the supgrstyff;i)” meaning far field
solution,ith attempt.

First attempt.

Thefar-field regionis described by the variabig corresponding to large values com-
pared tor € [0, o[

Far-field variable. Let us define
T :=17—alnDa. (4.3.67)

Assumption on the temperature gradient. It is here assumed that
lim V= Ve, (4.3.68)

T—

wherei, is a positive constant.

The recombination term of Eq. (4.3.36) now writes as

Dalic{pr ’ ’ (]
_ V (dIDafapleprT _|_d\/D37‘”:)\/67F:)\/.1-)efp.r

(m-pa e ™) (cj+C)),

while all others terms on the right-hand side of Eqs. (4.B&% (4.3.36) exhibit
decreasing exponentials. In view of theast degenerescence principlee expo-
nent 1— a(p" — 1) should be set to a value such that recombination is not com-
pletely vanishing in the limiDa — o (or € — 0). Therefore, it results from Table
4.3.2 that for silicon if the S-D parameters are used togetlith a positive average

p', a=(min{p,pv}+ Pt = (pv+p) tin such a way that, after dividing Eq.
(4.3.35) and (4.3.36) by Da and passing to the libdt— oo, thefar-field equations
write as

Perdynl™ = 0 (4.3.69)
"(ff;1)2

1/2
’ . N . A ! .
Pera, '™ = Zdye (v <°T+no<”'1>> (4.3.70)
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where superscriptf f;1) indicates the first variant of the far-field solution. From.Eq
(4.3.69) it results that

NS

By Eq. (4.3.48), the boundary conditions for the far-fieltlbson writes as

Matching.

K = limal21)=a

T—

lim I'I(”l>( ) = I|mI'I(>():O.

T ——00 T—o

Far-field solution at order 0. Having in mind that O< py + p" < 1, the solution of
Eq. (4.3.70) verifies, mo 7é0andﬂ (1) ;AO the relation

AF2 | /(6D ) Ag? vz
>+ +|Ao|<no %)

(ffi1
mg"™|
| 0| d\/ 7( I,/
= Arex e (vEP)T ) 4.3.71
p( (pv +p') Per ( )
whereA; > 0 is an integration constant. Fmb =0 andl‘l (ff52) 7& 0, the
solution of
2dy 132 N
Perdy My = ——— M/ %e (Pvp)T 4.3.72
erorlly Per o 0 ( )
writes as
(FH1)-1/2 20y —(pyrp)T
-2Nn =MA+—F———¢€ , (4.3.73)
0 Per & (pv + p")
while ﬂo(ff V_0is always a solution of Eq. (4.3.70). We remark that match-

ing with the outer solution is achieved faf — —o if the solution is simply

I‘IE)(”;l> = 0. By unicity, the far-field solution is found to be

AV = ap =gl or —citY (4.3.74)

nd M = o (4.3.75)
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This solution, however, is not satisfactory from a pradtidgawpoint, as soon as the
first-order is seeked. The reason for this is absence ofipacheaning for assump-
tion Eq. (4.3.68), which involves that — 0 [K] whenz — co.

Note that Eqg. (4.3.75) does not imply that the recombinaadnfinite, since as one
species has been completely annihilated, recombinatismbghysical meaning in
the far field.

Second attempt.

In this case, it is assumed that

2
j— (1_ L) _ TZLT’ZSZG, (4.3.76)

Tmax max
with T € [0, Tmax| Which results in a bounded temperature field in an unbounded d

main.

Far-field variable.

/. T~ Tmax
v (4.3.77)

whereq is a positive parameter to be determined, and in such a way tha

a'[ 287(1 T’ (4378)

Far-field equations for A’. From Eq. (4.3.35) it follows that

d ! a4/
PerdyA' = TZ—'(?T/T 2gPi(Tmaxke%T) [£0 5, C/ 4 £29q,C]]

max

dv 0,17 2P (maxteT) [e0 g, 0, 4 £29,Cl ] (4.3.79)

max

in such a way that, letting — 0,

Perdyny ' = 0. (4.3.80)
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Far-field equations for M’. From Eq. (4.3.36), it follows thata > 0
£ 2Perop N’ =

_ %C\’,dr/rlze_pl(rmwgaﬂ) [82(a+1)0r/c|' +£3G+ZQ|C|'}
Tmax
i ;icl,arlr/ze—p\/(rmaﬁgdw) [52(a+1)0r/c<, _|_€3a+2qvc\//}
Tmax
T2 aq! a./
pgx (dle*pl(TmaX‘H—‘ ) 4 dy e Pv(tmaxte r))
.eipr(rmax‘FsUr/) (n/ _ e*(Tmax“rEGr’)) (Cll _|_C</) , (4381)
in such a way that, letting — 0,
My — g tmax (4.3.82)
Matching. The boundary conditions write as:
"(££;2 L )
K = ag "= lim 86” (1) = &5
; "(t6:1) _ ; '(0) — o Tmax
TI;TOI'IO () = Tﬂrrr:naxl'lo (1) = e max,

Far-field solution. Therefore the far-field concentrations are constants aiite &s:

ag| | (D62 v
c,fvff52>:i—§ +<%+e—fmax> : (4.3.83)

Third attempt.

In this third case, it is assumed that
o 1

Tmax Tmax

with T € [0, Tmay], resulting again in a bounded temperature field in an unbednd
domain.

Far-field variable.

s . T— Tmax
T .= —a (4.3.85)

wherea > 0 and in such a way that
O =€ %09,. (4.3.86)
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Far-field equations for A’. From Eq. (4.3.35), it follows that
Per aT'A/ = — iar, e P (Tmaxt€9T') [ar’cl/ + gaql Cll]

Tmax

+

d\/ dT/T/97W(TmaX+8uT/> [dr/c\//+£aq\/c</]a (4387)

Tmax

in such a way that, letting — 0,

/ . d / .
Peraty' ¥ = — e Pmmag, g,
Tmax
+ ﬂe—wfmaxar,r’aﬂc(}gm), (4.3.88)
Tmax
or, equivalently, that
Per (83" —K) = ~ 9 e, Ll
Tmax
+ ﬂe*pvfmaxr’ar,c\',(g“), (4.3.89)
Tmax
whereK is an integration constant, notéé]"’.
Far-field equations for M’. From Eq. (4.3.36), it follows that
d a4/
e?Perd M’ = —T—'C\’,ar,r’e*P'“mWf ") [e20,/C| + €9+2q/C]]
max
_ W Cl 0T Pv(maxcte?T) [25,C)) 4+ £9+2q, G|
Tmax
Tm

Tlax (dl e P (Tmax-9T) dve—p\/(rmme"r’))
o P (Tmaxt£9T') (n’ _ ef<rmaﬁf“r’>) (C/+C), (4.3.90)
in such a way that, letting — 0,
My = g tmax (4.3.91)
Far-field equations at order 0. The far-field equations write as

Per (Agff:@ _ A;)w) — (4.3.92)

(F1:3) (F1:3)2 2
d By A _
— = e hmaxg/g, 0 0 g Tmax
Tmax ! ( 2 +< a

(F1:3) (F1:3)2 12
T iefp\ﬂmax-[’ar, _AO _|_<A0 +eTmax>

Tm ax 2 4
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My — g tmax, (4.3.93)
whose solution must comply the following conditions.

Matching. The boundary conditions are:

'(££;3) '

lim 4] NS (4.3.94)
Tl/iTwaT,AgffB) ) (4.3.95)
verifying
A’O(ff;B) — A
ng'™ = e tma (4.3.96)

with constant concentrations as in the second attempt ¢£8.70)).

Our conclusionis that far field is not correctly treated wifik sole Damkohler number.
In fact, it is not clear how the transition from the outer- be tfar field region, where
recombination has been damped together with diffusionjlshdepend on Da, which
accounts for the ratio between recombination and diffusigathanisms. However,
appart from pointing this paradox, it has not been possibleropose an alternative
approach. Moreover, even in a 1D simplified geometry, a coramalysis should
include the treatment of the lateral boundary conditioneretthe mechanisms are 2D:
radial diffusion, vertical transport and high recombipatirate above the interface.
The difficulty resides in the fact that the boundary layer Bjet thinner whileT
decreases and all mechanisms get frozen. Moreover, trerispmiform in the whole
crystal and the impact of the thick BL above the interfacedaagported in the crystal
core. This issue, too, has not found a positive answer.

4.4 A compilation of material data from the literature

The values presented below are taken from the recent literatn defect prediction
in silicon. As shown by Tables 4.2 & 4.3, they differ sometsri®y several orders
of magnitude and, at a first glance, seem to lead to contragliconclusions. These
discrepancies might be explained by several reasons, @sstance the choice of the
experimental technique and set-up quality (as eg the oigm@&nhanced diffusion
studied by Wijaranakula (1993), while most of the otherskeos considered metal
diffusion experiments), the progress made in experimeagpltoaches in a period of
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20 years, or the temperature range at which experimentsiieamrealised. Let us in-
sist on this last point, as experimental devices are nottalbii@easure material values
at melting temperatures and as the theoretical laws (aghegArrhenius tempera-
ture dependence) fail in the range of high temperature gsecto the melting point).
However, the aim is not here to discuss all these possibtorea but rather to high-
light the many uncertainties in the material data nowadayerefore, in view of the
comprehension of the global physics of point-defect fofareand evolution in single
crystal growth, according to the values of Tables 4.2 & 4 @raferring to the physical
description and the scaling analysis of previous sectisoisie undiscutable remarks
can be made:

e The vacancy dominates the interstitial concentrationestiid-liquid interface,
showing two extreme cases

— following Kulkarni et al. (2002)C{' = C", while
— following Bracht et al. (19950 > C".

The first case seems to rely on some underlying thermodynproferty, jus-
tifying the equality between the two inseparable specighatformation in-
terface, while the second would rather mean that for somsipalreason the
formation of vacancies at the solid/liquid interface is byruch easier than the
formation of interstitials. Anyhow, this point still rentgs an open question.

e The interstitial dominates the vacancy diffusivity at tlwic-liquid interface,
with an agreement on a magnitude for their ratio of about aderof magni-
tude, with the exceptions of Bracht & Stolwijk (1995) whictoposes three or-
der of magnitude, and of Wijaranakula (1993) which prop@ssituation where
they are almost equal with a slight domination of the vacatiffysion.

o Interstitial dominate by one order of magnitude vacancy-difusion. The
self-diffusion coefficienC/,, D[}, are in very good agreement (except for Wi-

jaranakula (1993)) as the experimental methods for estigébe sunﬁf,v +

H'V and the produdE’y Dy v are much more accurate than for these quantities
separately.

e There is relatively good agreement for interstitial forioatenthalpies, con-
trary to the vacancy formation enthalpies, which, in corguar, are always
smaller. This implies that equilibrium interstitial comteation decreases faster
than equilibrium vacancy concentration.

Let us also mention some discutable facts:
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o Altought it is generally accepted the" > H\, (Sinno et al., 1998; Kulkarni et
al., 2002), and hence that interstitial diffusivity de@edaster than vacancy dif-
fusivity, some authors proposed the reverse relation (Bratal. 1995; Falster
et al., 2000; Zimmermann & Ryssel, 1992; Wijarankula, 1993)

e Because of a lack of research made for this purpose, there tonvincing
data for the recombination coefficieif},, the recombination enthalpy’ and

entropyg. However, it is believed that in most of the defect modelirayky
K%, is not an important parameter. A finite value &R, will be chosen to give
a diffusion-limited situation.

e Nothing is known about thermo-diffusion and there is notresgreement on its
sign, that is, wether a positi@y, will increase or decrease the global diffusion
of point-defects (see further discussion at Section 4.7).

Refs][ LV Y DY Y K,
m-3 m?s1 DY m-3s1
Sinnoetal. (199§)] | [9.711CG° [ 3.7910°% [ 3.6810° [ 29910 %
Sinnoetal. (1998)| V | 1.181C¢*! | 42910° | 5.06 10"
Kulkarnietal. (2002) | T | 656 1G° | 39410° | 25910° | 20710 %
Kulkarni et al. (2002) | V | 8.071¢° | 3.9710° | 3.18 10"
Falsteretal. (200Q)) I | 8310%° | 3610° | 298107 1017
Falster etal. (2000)| V | 1.08 1 | 410° | 4.32107
Brachtetal. (1995)| | | 87710° | 25610° | 2.2810° —
Brachtetal. (1995)| V | 14416 | 1.231011 | 1.8110°
Lerner & Stolwijk (2005 I — — 1.37 10° —
Lerner & Stolwijk (2005) | V | 6.951¢2 — 2.58 102
Zimmermann & Ryssel (1992) | | 6.421CG1 | 3.3310° | 214107 | 561107
Zimmermann & Ryssel (1992) V | 6.08 1! | 3.4810710 | 2.12 102
Tan & Gosele (1985)| | | 337163 | 6.3510 1 | 214107 | 89710%%
Tan & Gosele (1985)| V | 2.06 1% | 1.031011 | 2.12 102
Wijarankula (1993) | 1 | 1.1416° | 9.06 1011 | 1.08 10° —
Wijarankula (1993) | V | 1.831¢% | 8.091011 | 1.48 103
Larsenetal. (2001)] I | 97110V | 3.7910° | 3.6810 | 1.6910
Larsenetal. (2001)| V | 1.181¢ | 42910° | 5.06 10"

Table 4.2: Comparison table for material data (1).
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Refs| [ LV [Ay | AV | A | Sy s
eV eV eV eV/IK | eV/IK
Sinno et al. (1999)| | 4.4 | 0937 | —1.19| 6.48 | —1243
Sinno et al. (1998)| V | 3.34 | 0.457 5.94
Kulkarni et al. (2002 I 4.0 09 | —-1.80 0 —1243
Kulkarni et al. (2002) | V 4.0 0.4 0
Falster et al. (2000Q)| | 48 | 0.25 — 0 —
Falster et al. (2000)| V | 46 | 0.35 0
Brachtetal. (1995)| | | 3.18 | 1.77 — 0 —
Brachtetal. (1995)| V | 2.0 18 0
Lerner & Stolwijk (2005 I — — — — —
Lerner & Stolwijk (2005) | V | 2.44 — —
Zimmermann & Ryssel (1992) | 3.83| 097 — — —
Zimmermann & Ryssel (1992) V | 1.16 | 2.83 —
Tan & Gosele (1985)| | 4.4 04 — — —
Tan & Gosele (1985)| V 2.0 2 —
Wijarankula (1993 I 31 | 186 — — —
Wijarankula (1993) | V | 1.56 | 2.84 —
Larsen etal. (2001)| | 44 | 0937 — — —
Larsenetal. (2001)| VvV | 3.34 | 0.457 -

Table 4.3: Comparison table for material data (2).

4.5 Comparison of time-dependent and quasi-steady pre-
dictions

Our simulations show that dynamic effects deeply influeheedefect distribution in
CZ Si crystals for two reasons. On the one hand, the intedafermation caused by
any change of the operating conditions (pull rate, heatergpo.) and in particular
the rapid change of interface shape experienced duringdddog directly affect the
thermal gradient above the interface and the resultingstitel and vacancy densities
through the well-known V/G ratio (cf Section 4.6). On theatihand, since point-
defects are transported while diffusing and reacting, #fect distribution inside the
crystal is a picture of the past history of defect generatiod cannot be correctly pre-
dicted by means of a quasi-steady model.

In the present section, various simulation results ardlédteo compare time-dependent
and quasi-steady predictions and to illustrate the systensitvity to the above-
mentioned dynamic effects. In addition, the influence ofrttaterial parameters gov-
erning point-defect diffusion and recombination are itigeged. Defect calculations
were carried out using the model developed by Sinno and ogap without thermo-
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diffusion effects. Various numerical experiments have destrated the high sensitiv-
ity of the predicted defect distribution to model paramgtddefect results are shown
in Figs. 4.7 to 4.8, depicting the interstitial and vacanisyributions obtained together
with their difference f = C; — Gy) as resulting from quasi-steady (Figs. 4.6(a), 4.7(a),
4.8(a)) and time-dependent (Figs. 4.6(b), 4.7(b), 4.8&{b}¢ct simulations. A signifi-
cant difference between quasi-steady and time-depene&uts is observed from the
crystal shoulder to about 1.5 to 2 crystal diameters fronstieulder. This difference
is a consequence of a quickly varying heat transfer durinkediter shouldering, which
directly affects defect formation during these stages.s8ghbently the defect distribu-
tion in the top of the crystal is transported upwards withmajor changes when the
crystal grows.

4.6 OSF-ring equilibrium of point-defects

Letusreferto E. Dornberger (1998) thesis for a completeldision about the physical
and computational aspects of this crucial phenomenon tf@8F"-ring (Oxydation
Stacking Fault) occurring in single crystal growth. Badlicghe OSF-ring separates
an interstitial- from a vacancy rich region and its locatisf the utmost importance
from a technological viewpoint. In fact, the location of ttieg at the crystal rim and
symmetry axis means a crystal filled with vacancies andsiitels only, respectively,
whereas its location at the crystal half radius means twezaevell separated by a ring
of a certain radius such that in its interior no point-degettrvive anymore. Moreover,
it is observed that its location is only dependent on thera&tween V, the pulling
rate, and G, the interface thermal gradient. In fact, the $pvgtotic analysis, as
presented in Section 4.3.2, is precisely aimed at the datation of V/G as a function
of the material physical data (such as formation enthalpieg. We will propose a
contribution to this question in Section 4.6.2 & 4.6.3.

i. As equilibrium interstitial and vacancy concentratiadecrease exponentially
with temperature, recombination will be enhanced in regiaere the tem-
perature gradient is steep. Due to heat lost (predominagthadiation), high
temperature gradient are found near the solidificatiorriate at the crystal ex-
ternal surface. Moreover, since recombination balandssithn in this “inner
region” (see Section 4.3.6), it results that

Dy — Dy =D"—D{'+ 0(1)#(¢ — 0) > 0,

and hence interstitials are expected to be the dominatiagep near the exter-
nal boundary, whereas vacancy domination is expected ior{fstal centre.
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ii. Moreover,increasing the pulling rate will increase tetive effect of transport
w.r.t. diffusion and hence create favorable conditionsviazancy domination.
Moreover, the growth speed (ie the axial velocity of a malepbint w.r.t. the
solidification front) is higher at the crystal center, sirtbe interface is curved,
creating a vacancy-rich region.

4.6.1 The Sinno-Dornberger model

Let us recall that all point-defect models can be writterhi@ form of a pair of evolu-
tion equations,

DCk /Dt = —0- J¢ —Kiv (GG —CFCy?), (4.6.1)

where subscripK stands ford orV to indicate self-interstitials or vacancies, respec-
tively, Cﬁq denotes the corresponding equilibrium concentratiéfg, is the kinetic
coefficient associated with the Frenkel recombination raatgm, symbold] and
D/DT = d/dt +Vd/dzdenote the gradient and material derivation operator(avit
indicating the vertical direction), antj; stands for the interstitial or vacancy diffusion
flux:

Jx = —DkOCk — (CkDk QK /Ko T2)0T, (4.6.2)

with Dk, T, andk, denoting the Fickian diffusion coefficients, absolute tenap
ture, and Boltzmann constant.6d 10-%eV/K), respectively, whileQg* stands for
the so-called reduced heats of transport associated wétstitial or vacancy thermo-
diffusion (or thermal drift as introduced in Section 4.7)ouhdary conditions are of
two kinds. Along the solidification interface, equilibriutnncentrations are imposed,
while the concentration normal fluxes are set to zero aloegctiistal wall (equilib-
rium concentrations should normally be imposed in thilathse in order to account
for the Schottky defect generation mechanism; howeventfliggenerate unaccept-
ably thin and sharp concentration boundary layers alongtystal wall, and hence
this effect is here neglected without significant loss ofuaacy in the remaining do-
main). To facilitate model comparisons, it is of the utmagportance to use an unam-
biguous expression of the coefficierﬂ%q, Dk, andKy as a function of temperature.
Therefore, we write

—f
—CMexpl_ Kk (Im v g Ty Tm
HY T
DKZD?GXP[—kb—-Fm(?m— )], (4.6.4)
D, + Dy Hi Tm T Tm

Kiv =k|v;TmmeXp[—m?— )+§<(1—T—m)(?—1)]a (4.6.5)
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whereHy, Hy, andHy are effective formation, migration, or recombination en-

thalpiesSL andS, denote 2nd-order effective formation or recombinationr@pies,
while C', D, andkyy -7, stand for the values &", Dk, andKjy at the melting tem-
peraturely, (1685 [K]). Both entropic and enthalpic effects are taketo eccount in
the definition of these coefficients. This approach is deltiepossibly provide 2nd-
order expansions (ﬂﬁq andK), aroundTy, in such a way that most available models
can be exactly expressed. In particular, the S-D model svéte

H =44ev, A = 3.34eV,

S = 6.48eV/kyTm, S = 5.94eV/kyTn,

C"=9.7110"cm 3, C'=1.1810°cm 3,

H"=0.937eV, Hy = 0.457eV,

D" =3.79 10 * cnt/s, DI’ = 4.28 10 ° cnt/s,

H = -1194eV, S = —1243eV/ky T,
" =0, Qyf=0.

A key reason for the success of the S-D model is that it prevgleod estimates of
the Oxygen Stacking Fault (OSF) ring location in Si crystdlke latter is generally
assumed to be adjacent to the surface separating intrstitid vacancy-rich regions
(Tan and Gosele, 1985; von Ammon et al., 1995; Dornberger &Ammon, 1996;
Dornberger, 1998) and plays a major role to grow defect-fmystals (Falster et al.,
2000; Voronkov & Falster, 2002). In fact, the good predietiyuality of the S-D
model can be explained by its agreement with the V/G criternitially proposed by
Voronkov (1982), which states that tBe= G, surface is approximately located at the
radial distance from the axis where the ratio of the pulliatgrover the thermal gradi-
ent G (as measured just above the solidification front) haiiead value (V /G)crit

V/G=(V/G)cii- (4.6.6)

Estimations ofV /G)¢rit were provided by Dornberger and co-authors (von Ammon et
al., 1995; Dornberger & von Ammon, 1996; Dornberger, 1998)n a combination

of experimental measurements and numerical simulationst Was further explained
by Sinno et al. (1998) by means of an asymptotic analysiseobgthaviour of point-
defects just after solidificatiorf)/ /G)crit can be linked to the point-defect governing
parameters by the following relationship:

—f Kok —f Kk
CG"D"(H; — Q) —G/DY(Hy — Q)
ST . (4.6.7)
ko T2 (&' = C1)
Variants of the S-D model have been proposed by Voronkost&iahnd co-authors

(Voronkov & Falster, 2002; Falster et al., 2000), all redjpperthe V/G criterion with
a slight modification of Eq. (4.6.7).

(V/Gerit =
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4.6.2 The Voronkov and Sinno simplified models

Voronkov formula. After showing how the type and concentration of the remajnin
defect (interstitials or vacancies) depend on the ratidveffull rate V and the
temperature gradient at the solidification interface G pviiov (1982) proposed
in the beginning of the 80ies a criterion to determine thealedcritical pull
rate at which the type of the dominating defect will change. Inidd to the
two basic assumptions of infinite recombination rate andlibgum concentra-
tions at the solidification fronig = C[" andGy = C}"), Voronkov also assumes
thatC, andCy are proportional t@ %" and thatD, andDy are constant. Then,
by Egs. (4.3.1)-(4.3.2),

1
VA=D,0,C; —Dyd.Cy = L (DIC —DvGy),

it immediately follows (Voronkov, 1982) from Eq. (4.3.2 %t

(¥ iy = Pv DG Dyl
G keTd  CJo—Clo

(4.6.8)

A variant of this formula includes thermodiffusion and westas (Voronkov &
Falster, 2002)

[!]crit _ DICIrT(]) (HW - QI**> - DVC\r/no (HIV - QV)
Ger ko2 (Cllb — Cip) '

(4.6.9)

The authors here postulate tl@atandCy are proportional to the square root of
Coy =CrCt

Sinno-Dornberger formula. In this paper (Sinno et al, 1998), a 0-order matched
asymptotic analysis is done for the inner and outer regibnshere, contrar-
ily to Section 4.3.2 it is assumed thiat= 1, and it is postulated th&; andGCy
are proportional tee PIT ande M7, respectively, where the effective dimen-
sionless enthalpies of formation for the actual conceionatprofilesp; andp,

o o
are unknown in general and usually approximated_b.f;,[_''_f and_fHV_f ,
in such a way that the resulting formula writes as

v g _ (F-a)ores - (A} - ay) oge

— 4.6.10
G T2 (Ch—C) (4640
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4.6.3 Computation of the V/G criterion

Referring to Section 4.3.2, the V/G criterion involves aigaimg value ofAE)°°. There-
fore by the preceding analysis the inner solution does reatera significant first-order
correction of the outer solution, and neither does the &d®olution, which consists,
up to the first-order, of frozen values of the interstitialslaacancies concentratidns
Eq. (4.3.51) will be rewritten in terms of the variakfe as given by Eq. (4.3.19) and
by the relation

d . d 2 1/2
2-Cyv = o (+8+ (@2+4m)"?)
1 .
2n$f/2(¢5+(52+e*)1/2) (—§¢(Ez+ef) 1/2%).

Therefore, Eq. (4.3.51) with?® = 0 is written as

aper o _ 2 1\1/2 2 dé
TE = d|exp(—p|r)(—€+(€ +e7") )<1_ZQI+WE>
2 1\1/2 2 dé
- s @) (o gty
(4.6.11)

Exact value by means of a numerical integration of the V/G eqation

With no restrictive assumption on the concentrations gnaidi at the solid-liquid in-
terface (in fact only the mass action law Eq. (4.2.11) iss§iatil above the interface),
and in terms of the non-dimensional variable u defined as sinhu, Eq. (4.6.11)
re-writes as

du

0:—%sinhu + diexp(—piT)exp(—u) (1—2q|+25> (4.6.12)

— dyexp(—pvT)expu (1— 20y — 2%") ,

or, written as an ODE, as

du )
3 = [(T.u0), (4.6.13)

4The first and second order analysis have been performed obugported in Section 4.3.2, since they
did not bring any relevant information.
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where

_ € sinhu— (di exp(—pi 7) exp(—u) (1 — 2q;) — c exp(—pv T) expu(1—2qv))
f(r,uC) = 2(di exp(—pi T) exp(—U) + dy exp(—py T) eXpu) '

Since its denominator vanishes as~ 0, while its numerator tends tg sinhu, Eg.
(4.6.13) has no solution except u=0 for some critical v&lgg of C which turns out to

determine the sign OS—T By a numerical resolution of this ODE with a relative error

limited to 10-* and values taken from the test model computed in Sectio@ 4lve
following critical value estimate is found (let us recalaththe V/G ratio is expressed
in [cm2/Kmin]):

V...
1.28110° < [a]gdiTM <1.28210°73, (4.6.14)

while using the values taken from Sinno and Dornberger m@@degiven in Tables 4.2
& 4.3 and recalled in Section 4.6.1) would rather give théeste:

V...
1.39510°3% < [aléﬂéaso <1.40010°3 (4.6.15)

Approximation formula for the V/G criterion

The slope of the solution at the origin writes as

du ;) _ Cém+ dv expun(1— 2qy) — dr expl—Um)(1— 20:)
dr "’ 2(d exp(—Uum) + dv expum) 7

(4.6.16)

while the particular = T,s for which u(Tas) = (d/dT)u(Tas) = O reads

e 2sinh 1 & (d exp(—um) + dv expum)
& C&m+ dv expum(1—2qv) — d exp(—um)(1—2q;)’

in such a way thad, exp(—pj Tas) (1 — 29;) = dv exp(— pv Tas) (1 — 2gv) and hence that

In c?\lgiggl/)) = (pr — pv)Tasand

ZH%{Z [dv expum(1—2qv) — di exp(—um)(1—2q)] . 2I'I%1/2/\(p| —pv)
d(1-2q)
Bm BmIn g, (T20,)
where the subscriphindicates thal = T, and where\ := 2 (d; exp(—&m) + dv expém)
sinhi t&n. According to the data values tables, = 2.41 102 << 1 for the test

C:
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model andé, = 9.76 102 << 1 for the Sinno-Dornberger model in such a way that
Um =~ sinh~* &, andA will hence be approximated bi,and Z,, respectively. There-
fore, the approximate formula brought by our scaling arialysites as

Vi _ Hyy (DD expém(1—2qy) — D"exp(—&m) (1 — 2) ,
G approx — ZkaZEm m

where the correction termg, writes as

A(pi — pv)H ) (D"+ D)

d (12
Emln ll 221/ ka2

Sm:

According to the data values table, we find the approximaligeva

V i
[a]gfg}pmxm =1310°+1.6910%=1.4691073,
for the test model and
V .
[a]g};tpmxs,j =1410°%-21610%=1.1841073

for the Sinno-Dornberger model. We recall that the "sengezimental” (the tempera-
ture gradient is given by simulations) critical value readg§Dornberger, 1998; Sinno
etal., 1998)

\%
[G]E)rslteud&exp 134 10_3 (Cﬁ‘?/Kmln)

while, according to an “improved formula” of Sinno et al. @8,

7 f 7 f
[!](S:rg — C|mD{nH| _C\r}nD\r}]HV
G kTR (G- C)

the related theoretical value ree{% gt — 1381073,

4.7 The influence of thermo-diffusion

4.7.1 Discussion and modification of the S-D model

A major drawback of the S-D model and its variants comes froenstrong discrep-
ancy between the model diffusion coefficients and their erpental counterparts as
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proposed in the literature by Stolwijk, Bracht, and othethaus (Lerner and Solwijk,
2005; Bracht et al., 1995; Zimmermann & Ryssel, 1992; Tan &&, 1985). In
fact these values are between one and two orders of magrhitgder than in the S-D
model. Therefore a major objective should be to reconcith bpproaches. To achieve
this goal, let us first remark that the S-D model assumes @&gdhr the reduced heats

of transporQi" (K =1,V) as a consequence of complete lack of experimental data for
these material parameters. However it is clear that thedifiosion can significantly
affect the point-defect evolution. Indeed, puttiQg in the form

Q= rxHy, (4.7.1)

whererk stands for positive or negative dimensionless coefficiaritese absolute
value is normally strictly lower than 1 for physical reasdPsilibert, 1988; Schall,
1983), Fig. 4.10 shows how modifyin@* throughr, will affect the S-D model
predictions. Starting from this model, the influence@jf shows to be much lower
sinceC\/'DY} is one order of magnitude lower th@T'D" in Eq. (4.6.7).

4.7.2 An attempt to reconcile experimental defect diffusio coeffi-
cients with the V/G criterion

Now the following path has been followed to test the effeat@iv diffusion and equi-
librium concentration coefficients for the modelling of def evolution in Si crystals:

e With r; =1 andry = —1 the numerator of Eq. (4.6.7) reaches its highest value
without requiring any change of the experimentally welblum self-diffusion
coefficientsC"D" andC{'D{} (Bracht et al.,1995).

e The coefficienH|" is taken from Sinno et al. (1998), Whiﬁ,f is adapted to
agree with the maximal experimental Valud'_qtf—‘rﬁ:n (Bracht et al.,1995).

e The coefficienC" is selected as the maximal experimental value proposed by
Bracht et al. (1995).

¢ The coefficienC]' is adapted to keep the right-hand side of Eq. (4.6.7) equal to
the effective value provided by the S-D mod@l (G)crit = 1.71 10'3%).

e The coefficienﬂ\f, is adapted to agree with the experimental values of Lerner
and Stolwijk (2005) foC".

e All the other parameters of the S-D model are kept unchanged.
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Accordingly the test-model writes as follows:

H =4.283ev, Ay = 1576V,

Sf _ 0, =f _ 0,
C"=9.5210"cm 3, C'=9.99 10° cm 3,
H"=0.937eV, Hy =2.23eV,

D" =3.92 10 ° cnt/s, DI =5.06 10 ° cnt/s,
H =—-1.194eV, S = -1243 eV/kyTm,
Q* = 4.283eV, Q) = —157eV.

Typical results are depicted in Fig. 4.11. Comparison betwbeC; — G, predictions
obtained from the test-model and the S-D model shows thtadh the OSF ring is
nearly located at the same radial position for both modebxaected, the test-model
exhibits a much stronger interstitial concentration geatinear the crystal wall and a
much more complex transient behaviour during and afteraamgrowth and shoul-
dering. Further numerical experiments are currently eargut in order to investigate
and improve the model behaviour.

4.8 Conclusive remarks

Much work remains necessary to determine the complete settdrial parameters
governing the formation, diffusion and transport of podefects in Si growth. For
the particular model here tested, extreme (and hence nlyrmah-physical (Philib-
ert, 1988; Ebe, 1999; Schaal, 1983; Sinno et al., 1998) gdiage been selected for
the reduced heats of transport in order to highlight theggilgly non-negligible role.
More realistic coefficients should be considered to achibeeconstruction of a def-
inite model. Nevertheless the present study shows thataheadiction between the
high experimental point-defect diffusion coefficientsitaale in the literature (Lerner
& Stolwijk, 2005; Bracht et al. 1995; Zimmermann & Ryssel 929 Tan & Gosele,
1985; Wijaranakula, 1983), on the one hand, and the key agdastionable V/G cri-
terion (Voronkov, 1982; Dornberger & von Ammon, 1996; Doenfper, 1998; Sinno
et al., 1998, 2000; Voronkov & Falster, 2002), on the otherchaan be removed or
at least strongly alleviated. It should also be observetighegorming accurate time-
dependent heat transfer simulations opens the door tozinglthe defect distribution
at the crystal extremities, as governed by the complex igatsacting in the begin-
ning or the end of the growth process, and hence can providgyaaccurate model
validation tool (see Figs. 4.8(a)-4.11).
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Figure 4.6: Predicted interstitial distribution with qirateady (a) and time-dependent
(b) defect simulations.
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Figure 4.7: Predicted vacancy distribution with quasasdte(a) and time-dependent
(b) defect simulations.
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Figure 4.8: Predicted defect differen€  C,) distribution with quasi-steady (a) and
time-dependent (b) defect simulations.
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Figure 4.10: Influence of the reduced heat of transfit= nﬁ,f on theC, —Cy
distribution. All the other material parameters are the sa@® in the S-D model. The
C; — Gy =0 isoline is in bold. Same growth conditions as in Fig. 4.8(a)
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Figure 4.11: Comparison of the test- and S-D model predistioDistributions of
C (left) of C; — Cy (right) under the same growth conditions as in Fig. 4.8(8)e T
C —Cy =0isolineis in bold. At the height H=2R the OSF ring locatioffiets in the
two solutions by 1 mm.
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The original scope of this thesis was the obtention of a cetelefect model for semi-
conductor single crystals, with a view to providing a detdipicture of the growth of
silicon and germanium crystals, for instance. In the ciygtawth community, it is
known for more than 40 years that silicon can be grown neaitlyomt dislocations.
In particular, if the growth speed is high enough, the precgsl rise to vacancy-
rich crystals where the dominating defect is formed by mienads. However, since
in comparison interstitial-rich crystals are of higher tityabut require to be grown
slower, there is a fundamental interest for dislocation etethecause interstitial-rich
conditions are known to cause the formation of dislocataopk in most of the crys-
tal. On the other hand, considering materials such as llbivigounds, halides, and in
particular gallium arsenide and indium phosphide, whichileix very undesirable and
resistant dislocations, there is a major need for the devedmnt of a complete defect
model that could be applied to a large variety of single-tzigs

By complete model it is here intended a model describingdtes Igoverning the cre-
ation, transport, diffusion and transformation of the eiént point defect species into
each other. These defect species are basically of four k{ijdatrinsic point-defects
including interstitials and vacancies, (ii) extrinsic pbdefects including dopants and
impurities, (i) micro-voids, and (iv) dislocations lospr lines. Let us emphasise that
all the mechanisms governing these defects are stronglyledwith the temperature
evolution in the crystal, as illustrated for instance by éx@onential Arrhenius-type
laws governing several types of material coefficients, othgyexistence of a thermal
contribution to self-diffusion. As a first key applicatidef us recall that, nowadays,
so-called “perfect silicon” is seeked, in the sense of aratpure, defect-free crystal.
To this end, the growth is performed by keeping the OSF-nirsigie the crystal, form-
ing an annulus which, since there is equilibrium betweearstitials and vacancies
in this zone, is therefore free of defects, while away froma ting the point-defect
densities remain low.

This thesis has provided several contributions to the the dieperfect silicon growth.
Firstly, a time-dependent point-defect model, that is, apted system of equations
governing the transport-diffusion-recombination of nstéials and vacancies, and re-
lying on a thermal model of the crystal solid and liquid pleabkas been developed.
This defect module is now part of the FEMAG software for caygirowth simula-
tion and is used by several research groups and customenscatioe world (Taiwan,
Japan, Korea, Germany, Czech Republic, USA...). In the tmeana model for mi-
crovoids has been developed by the FEMAG team, as an exteakithe previous
model and including nucleation and growth of vacancy aggi@te. Let us remark
that practical implementation of this additional modellwibt suffer from the diffi-
culties encountered for the PD model, since nucleationmscatia lower temperature
and the material data should be easier to determine. Intfaetsecond contribution
of this thesis in the field of PD modelling has been to pointthet present lack of
knowledge in the determination of silicon point-defect el parameters, especially
at high temperature, and to discuss the unclear role of thetiffusion which, when
considered as a non-negligible effect, facilitates theeotion of a material data set
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differing from the conventional one by 1 or 2 orders of magdé but agreeing much
better with experimental measurements. Finally, our lastribution has been to point
out that the conventional asymptotic analysis of the sifigalilD point-defect model
is not complete, for several reasons, including the treatroéthe far-field and the
crystal lateral boundary layer. A correct far-field anadyisi surely needed for the mi-
crodefect model, while the determination of an improvedraitboundary condition
is also needed (originally for accounting for thermo-dsifan, but also to provide par-
ticular conditions for inner, outer and far-field zones ie tirowing crystal when a 2D
analysis is performed). Moreover, an improved asymptatalysis should probably
include more than the sole Damkohler non-dimensional nupamel the related cru-
cial VIG formula, as devoted to determine the OSF-ring limceas a function of the
pulling rate, should accordingly be refined.

Our contribution to the field of dislocation modelling hasheestricted to the static,
geometric analysis of 2D and 3D dislocations, and has ciakis revisiting and re-
stating a theory which emerged in the 50ies and whose majaribator is in our
opinion Ekkehart Kroner. In fact, we have developed a 2D theand accordingly a
3D extension, to analyse dislocated single crystals at thgorscale by combining a
distributional approach with multivalued kinematic fieldghe distributions are basi-
cally concentrated along the defect lines, which in turmfdine branching lines of the
multivalued fields. As a consequence of this analysis, alihebrem relating the in-
compatibility tensor (as derived from the deformation f)etithe Frank and Burgers
vectors of the defect line has been established. This thmomides a framework for
the homogenisation of the medium properties from meso- wmscale. In particular
the macroscopic dislocation density is defined withoutséifing an a-priori distor-
sion decomposition into elastic an plastic parts (whichsdoat exist, actually). The
classical relationship between Bravais distortion antbdation densities, instead of
being a definition, now appears as a result taking its origimfthe meso-scale analy-
sis. Moreover, the 3D extension has provided new formulaada-rectilinear defect
lines, which remain to be homogenised from meso- to mactesca

It is very surprising to observe that this geometric analysis many conceptual links
to other fields of physics. Let us here as an example menteratialogy between
the presence of defects in an otherwise perfect latticex{icrg curvature by the pres-
ence of point-defects and torsion by the presence of distotaand disclinations) and
the gravitation of massive bodies in the universe. As a stesample the following
analogy between elastostatics in the presence of defedtsragnetostatics has been
pointed out by Kroner (1981):
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magnetostatics elastostatics
divB=0 diva=0
rotﬂ:i inc&=n
B=p-H g=cé
_1 last _~ 1, .
éamagn_zg,ﬂ geast_ﬁg_ﬁl

whereB andH are the magnetic induction and field, respectively, wipilandc are

the magnetic permeability and elastic tensor, respegtiiadt us emphasise that, al-
though the same kind of conservation laws and gauge steiptoperties are observed
in magneto- and elastostatics, the latter exhibits tensahigher tensorial order, and
hence a much higher number of independent variables. Imdébgect, some authors
(cf eg Kleinert (1989)) propose a theory of dislocationatiely to the theories of vor-

tex lines, using for instance the Ginsburgh & Landau model.

Let us now raise the question of the number of unknown fielda global defect
model (in the absence of disclinations), and verify thathsacsystem can be closed
by choosing appropriate constitutive laws. Let us recalt the Christoffel symbols,
whose various combinations define torsion and curvature h@mce the dislocation,
disclination, intrinsic and extrinsic point-defect deres, exhibit 27 independent com-
ponents, which are all function of position and time. On tkieeohand, a closed PD
model involves 2 defect densities. Moreover, a dislocatimdel will involve 6 un-
known strain (or stress) components and 9 dislocation tensmponents. Finally
the temperature field is the last unknown. The PD model ised@s explained in
Section 4 by 2 coupled evolution equations. The dislocatimiblem, in turn, shows
3 zero divergence conditions for the stress and the distotdensity, and 3 (differen-
tially independent) incompatibility conditions (i.e. thmcé = curlk” relations), to
which a constitutive law for the skew-symmetric part of thelatation density might
be added, in order to provide 15 equations. The energy equatiovides the last
equation. Therefore the system is apparently closed.

In a near future a first version of such a global model will bastaucted and tested,
but the lack of experimental data for the material paransetglt remain the hardest
obstacle for the obtention of a complete and indisputabldeho
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