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Chapter 1

Introduction

Development of innovative materials has always been one of the most impor-
tant engineering tasks over the years. In this field, composite materials (i.e. an
heterogeneous material made of two or more different constituents) always had
an important position and have a much longer history than what we can firstly
think of. Wood as such can be considered as a composite material made of very
long fibers of cellulose held together by a much weaker substance. The very
first composite produced by man was cob: a plastic matrix made of earth is re-
inforced by plant fibers. More than 4000 years ago, Mongols already produced
a sophisticated composite material: a bow made of a wooden frame assembled
with horn and tendons. In more recent times, interest for composite materials
was permanently growing up. The main interest is to obtain thermo-mechanical
properties which are impossible to get with a single homogeneous material. A
good example is concrete. The mix of gravel and cement gives a good compres-
sive strength but is much less satisfying in tension. This can be improved by
adding metal rods in order to obtain reinforced concrete.

There are two main ways for assembling the different constituents. Several
layers made of different materials can be superposed in order to produce a lam-
inated composite. Another possibility is to consider a matrix in which particles
are added in order to get a particle-reinforced composite. This work will be
limited to the latter type. However, this include a wide range of materials,
from fiber-reinforced composites to nanocomposites, from random to perfectly
arranged microstructures. An homogeneous material containing holes can also
be considered as this type of composite. Even if material properties of all
the constituents are well established, predicting the effective response by tak-
ing into account geometrical, mechanical and thermal properties is certainly
not an easy task. Logically, this strongly depends on the constitutive behav-
ior of each constituent so that different subdivisions can be considered: linear
(thermo-)elastic composites, linear viscoelastic composites, elasto-plastic com-
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posites, elasto-viscoplastic composites,. . . In this work, we will concentrate our
efforts to predict the behavior of materials made of at least one plastic phase.
Main applications of such materials include:

• Polymer matrix reinforced with ceramic, glass or Kevlar fibers in order
to improve stiffness and strength. Some applications include boat hulls,
aircraft wings, sport equipments, car parts,. . .

• Polymer matrix with low modulus rubber particles in order to improve
toughness and impact resistance (e.g.: car bumper).

• Metal matrix with ceramic particles or short fibers mainly for high tem-
perature applications.

• Concrete matrix reinforced by elasto-plastic metallic fibers (for better
strength in tension or bending) or polymeric fibers (for better ductility,
lower density).

Furthermore, rate-dependent plastic effects occur in several types of matrix
(e.g.: metallic (aluminum alloy, titanium,. . . ), polymer), especially at high tem-
peratures where such effects cannot be neglected. Typical applications include
aeronautics (e.g.: aeropropulsion systems). Such composites can be reinforced
by elastic inclusions or even elasto-viscoplastic ones.

The range of materials concerned by this study is thus really wide and
we are concerned with the prediction of their effective behavior. In order to
shorten a long and costly experimental campaign, numerical simulations are of
great help. Numerical predictions of such materials represent an extraordinary
tool in order to speed up the development of new materials. The main goal
of this thesis is to develop efficient numerical methods based on robust algo-
rithms for the prediction of the behavior of elasto-(visco)plastic composites by
taking into account geometrical and mechanical aspects. More especially, two
approaches will be used throughout this work: finite element simulations and
mean-field homogenization schemes. No damage will be considered and all the
developments are made in the context of small perturbations.

The structure of the thesis does not rigorously follow the historical develop-
ments of the research. This is done in order to get a more logical and readable
structure of the text. The first section deals with the scale transition problem
from a macroscopic structure to the definition of a representative volume ele-
ment (RVE) of the heterogeneous microstructure. A boundary value problem
is defined over this RVE and several solution methods are suggested. One of
these methods, the finite element (FE) one, is presented in chapter 3. Since
this technique gives the most accurate predictions, it will be used later as val-
idation tool of other solution methods. This chapter has been the subject of
the following publication:
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• Pierard, O., González, C., Segurado, J., LLorca, J. and Doghri, I. Mi-
cromechanics of elasto-plastic materials reinforced with ellipsoidal inclu-
sions. Mechanics of Materials, Submitted for publication, 2006.

Subsequent chapters are devoted to the development of mean-field homogeniza-
tion schemes for a wide range of material constitutive behaviors. This technique
relies on simplifying hypotheses so that an approximate solution is found at a
much lower computational cost than a corresponding FE simulation. These
are introduced in chapter 4 for linear behaviors (isothermal elasticity, thermo-
elasticity, viscoelasticity) where analytical solutions are available in most cases.
This chapter has been the subject of the following publication:

• Pierard, O., Friebel, C. and Doghri, I. Mean-field homogenization of
multi-phase thermo-elastic composites: a general framework and its vali-
dation. Composites Science and Technology, 64 (2004), 1587-1603.

Mean-field homogenization schemes are later extended to elasto-plastic be-
haviors where a linearization of the local constitutive laws is required in order
to apply homogenization schemes valid in linear elasticity. More precisely, an
incremental formulation is introduced in chapter 5 which links at each state
of deformation the strain rate to the stress rate. This chapter has been the
subject of the following publications:

• Pierard, O. and Doghri, I. A study of various estimates of the macroscopic
tangent operator in the incremental homogenization of elasto-plastic com-
posites. International Journal for Multiscale Computational Engineering,
Accepted for publication, 2006.

• Pierard, O., González, C., Segurado, J., LLorca, J. and Doghri, I. Mi-
cromechanics of elasto-plastic materials reinforced with ellipsoidal inclu-
sions. Mechanics of Materials, Submitted for publication, 2006.

Finally, one of the main goals of this work is to predict the behavior of
heterogeneous elasto-viscoplastic materials, which is introduced in chapter 6.
For this, an affine type formulation of the constitutive laws is used to reduce
the problem to a linear thermo-viscoelastic one. This chapter has been the
subject of the following publications:

• Pierard, O. and Doghri, I. An enhanced affine formulation and the cor-
responding numerical algorithms for the mean-field homogenization of
elasto-viscoplastic composites. International Journal of Plasticity, 22
(2006), 131-157.

• Pierard, O., Segurado, J., LLorca, J. and Doghri, I. Micromechanics of
particle-reinforced elasto-viscoplastic composites: finite element simula-
tions versus affine homogenization. International Journal of Plasticity,
Submitted for publication, 2006.
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In each chapter, an important part is devoted to the validation of the de-
veloped methods.



Chapter 2

Scale transition methods

2.1 Scale separation

Consider a structure made of a composite material. At the level of this structure
(macroscopic level), the material is seen as homogeneous. Imposed loads on
the structure with prescribed displacements on a part ΓU of the boundary
and prescribed tractions on the remaining part ΓF induce strain and stress
fields in the material. At each macroscopic point, the relation linking local
strain and stress depends on the heterogeneous microstructure, which can be
seen at a smaller scale only. In order to take into account this heterogeneous
microstructure, a representative volume element (RVE) of it is defined at each
macroscopic point (see figure 2.1)1. When linking these scales, several problems
arise. Among them: how to load the RVE from the applied macroscopic strain
or stress at the corresponding macroscopic point, solve the boundary value
problem on the RVE and compute the corresponding macroscopic response.
First of all, precisions on the scale separation must be given. For this, following
Zaoui [110], let’s define various length scales in an ascending order:

• d0: lower length bound under which continuum mechanics is no more
valid.

• d: characteristic size of the heterogeneities.

• l: size of the RVE.

• λ: fluctuation length of the prescribed mechanical loading over the struc-
ture.

1A simple definition of the RVE was given by Drugan and Willis [28]: “It is the smallest
material volume element of the composite for which the usual spatially constant (overall
modulus) macroscopic constitutive representation is a sufficiently accurate model to represent
mean constitutive response”.



6 Scale transition methods

Γ0

l

d

Figure 2.1: Scale separation and characteristic length scales: the material is
viewed as homogeneous at the macroscopic level while heterogeneities can be
seen at the level of the RVE.

• L: characteristic size of the structure.

In order to consider the structure as a continuum medium, the size of the RVE
must be much smaller than the one of the structure (i.e.: l � L). Furthermore,
as a macroscopic point is viewed as the center of the RVE and the response
of the boundary value problem is macroscopically homogeneous, characteristic
size of the heterogeneities must be much smaller than the size of the RVE (i.e.:
d � l). Moreover, continuum mechanics remains valid at the scale of the RVE
so that d0 � d. Finally, the size of the RVE must be much smaller than the
fluctuation length of the prescribed mechanical loading of the whole body (i.e.:
l � λ) so that the use of the classical integral and differential tools of structural
analysis remains valid.

Defining the RVE is not an easy task since the microstructure is not nec-
essary known a priori. In the case of random microstructure (figure 2.2a), the
property d � l is taken into account so that a fictitious random microstructure
of the RVE might be generated in order to give a significant response from a
statistical point of view. Evidently, when generating a geometry, all the avail-
able information of the microstructure must be taken into account (volume
fraction of each phase, orientations and shape of the inclusions,...). Periodic
microstructures (figure 2.2b) are particularly suitable for numerical simulations
on a unit cell. With the help of the geometrical periodicity, one can define a
unit cell on which a well-posed problem is solved. In the case of random mi-
crostructure, defining the minimum size of the RVE is a crucial problem. Many
papers discuss this subject and the minimum required size depends on several
factors including the observed property, the geometry, the volume fraction and
the mechanical (and thermal) behavior (see Povirk [88] and Kanit et al. [50]
who define mathematical criteria to fix the cell size). Sometimes, microstruc-
tural arrangements (figure 2.2c) enable to strongly reduce the size of the unit
cell. If assumptions are required to define such unit cell, different arrangements
can sometimes be considered which lead to different predictions of the behavior.
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(a) RVE with a random mi-
crostructure.

(b) Periodic unit cell with
random microstructure.

(c) Periodic unit cell and
microstructural arrange-
ments.

Figure 2.2: Periodicity of the unit cell and the microstructural arrangements.

Also, either on the RVE or the periodic unit cell, various boundary conditions
might apply which will also influence the predictions.

2.2 Linking macroscopic and microscopic scales

This section explains how to perform the scale transition between macroscopic
and microscopic levels. More precisely, from the load (strain or stress) defined
at each point of the macroscopic level (e.g. at integration points of a finite
element mesh of the structure), which boundary conditions must be applied to
the corresponding RVE. For this, averaging theorems are required and recalled
hereafter.

2.2.1 On averages

A macroscopic property can be defined as the volume average of that property
over the whole RVE. Mathematically, this reads:

f̄ =< f(x) >ω=
1
V

∫
ω

f(x)dV, (2.1)

where x is the position vector in a local frame attached to the RVE ω of volume
V .

Strain averages

Let’s define the macroscopic strain as the volume average of the microscopic
strain:

ε̄ =< ε(x) >ω=
1
V

∫
ω

ε(x)dV. (2.2)
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By definition of a strain tensor and using the divergence theorem, the last
expression can be rewritten in a Cartesian frame as (dependence of the local
fields with respect to x is omitted for clarity):

ε̄ij =
1

2V

∫
ω

(
∂ui

∂xj
+

∂uj

∂xi

)
dV =

1
2V

∫
∂ω

(uinj + ujni)dA. (2.3)

Stress averages

Let’s define the macroscopic stress as the volume average of the microscopic
stress:

σ̄ =< σ(x) >ω=
1
V

∫
ω

σ(x)dV. (2.4)

Equilibrium equations without body forces (i.e. the stress field is equilibrated,
∇.σ = 0) combined to the divergence theorem enable to rewrite the last ex-
pression in a Cartesian frame as (dependence of the local fields with respect to
x is omitted for clarity):

σ̄ij =
1
V

∫
ω

∂(σikxj)
∂xk

dV =
1
V

∫
∂ω

tixjdA. (2.5)

2.2.2 Imposition of the boundary conditions

In this section, a coherent scale transition with the averaging theorems is pro-
posed for several boundary conditions imposed on the RVE. Three of them are
presented: prescribed displacements, prescribed tractions and periodic bound-
ary conditions which are valid for periodic unit cells (figure 2.2b).

Linear displacements. In the case of prescribed displacement boundary
conditions, displacement of each point on the boundary ∂ω of the RVE is given
by:

ui(x) = Gijxj with x on ∂ω, (2.6)

where G is the displacement gradient tensor so that the strain tensor ε is
its symmetric part: ε = 1

2

(
G + GT

)
. If a uniform displacement gradient

G0 corresponding to a strain tensor ε0 is used to impose the displacements,
equation (2.3) reads:

ε̄ij =
1

2V

[
G0

ik

∫
∂ω

xknjdA + G0
jk

∫
∂ω

xknidA

]
(2.7)

=
1

2V

[
G0

ik

∫
ω

∂xk

∂xj
dV + G0

jk

∫
ω

∂xk

∂xi
dV

]
= ε0

ij . (2.8)
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t

(a) Prescribed uniaxial tractions.

ωB

ωT

ωRωL

u
u

R

L

(b) Periodic boundary conditions.

Figure 2.3: Imposition of boundary conditions to a 2D rectangular RVE. Initial
configuration is in dots and final one in continuous lines.

Imposing linear displacements indeed satisfies the strain averaging relation (2.2)
if ε̄ is used to compute the prescribed displacements.

Uniform tractions. For prescribed traction boundary conditions, imposed
traction at each point on the boundary of the RVE is given by (see figure 2.3a):

t(x) = σT .n(x) with x on ∂ω, (2.9)

where superscript T stands for transposition and n for the outer normal at point
x. If a uniform stress tensor σ0 is used to impose the tractions, expression (2.5)
reads:

σ̄ij =
1
V

σ0
ik

∫
∂ω

nkxjdA =
1
V

σ0
ik

∫
ω

∂xj

∂xk
dV = σ0

ij . (2.10)

Imposing uniform tractions indeed satisfies the stress averaging relation (2.4) if
σ̄ is used to compute the prescribed tractions. If the finite element method is
used to solve the problem on the macroscopic structure, prescribed tractions on
the boundary of the RVE cannot apply directly since finite element codes are
generally strain driven. Furthermore, one has to be careful when using both
finite strains and prescribed traction boundary conditions since rotations must
be taken into account in order to determine uniquely the corresponding strain
(Kouznetsova [51]).

Periodic boundary conditions. A third possibility is to consider periodic
boundary conditions. In this case, due to the repetition of the cell in all di-
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rections before and after application of the load, periodic deformations and
anti-periodic tractions are applied at each corresponding pair of nodes lying on
opposite faces of the RVE boundary (see figure 2.3b):

uR − uL = G.(xR − xL), (2.11)
tR = −tL. (2.12)

Imposing periodic boundary condition also satisfies (2.2) if the displacement
gradient G is computed from ε = ε̄. The proof is similar to (2.7-2.8) excepted
that the integrals must be split into two parts corresponding to the opposite
faces.

Solving the RVE boundary value problem with given macroscopic strain or
stress does not necessarily give the same response but generally surrounds the
correct response. The larger the dimension of the cell is with respect to the
size of its constituents, the closest these two responses are. Periodic bound-
ary conditions generally lead to an intermediate and more accurate response,
which means that a smaller cell size can be considered. This result is repre-
sented schematically on figure 2.4. This is even more true during an analysis of
the microscopic fields. Prescribed displacements or tractions on the boundary
give an inaccurate response close to the boundaries (e.g.: if uniform tractions
are prescribed, the stress will be uniform on the faces which is obviously not
correct). On the contrary, when imposing periodic boundary conditions, the
treatment of the lateral faces is exactly the same as the one of a section in the
middle of the RVE. These facts have been observed numerically in numerous
studies, including Kanit et al. [50] in linear elasticity, Jiang et al. [46, 47]
in elasto-plasticity and Ostoja-Starzewski [73] for a wide range of constitutive
behaviors.

2.2.3 Hill’s Lemma

Given an equilibrated stress field σ, compatible deformations ε (i.e.: ε = ε(u))
and either the stress field, either the strain field satisfies one of the three bound-
ary conditions defined in section 2.2.2, Hill’s lemma reads:

< σ : ε >ω=< σ >ω:< ε >ω . (2.13)

Up to now, no hypothesis has been made on an eventual link between stresses
and strains. If they are coupled through a constitutive law, the lemma insures
the equality between the average of the microscopic work σ : ε and the macro-
scopic work σ̄ : ε̄. This result is commonly called Hill-Mandel condition or
macrohomogeneity condition.
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Figure 2.4: Accuracy of the predictions with respect to the RVE size for
different boundary conditions (Displ.: prescribed displacements, PBC:
periodic boundary conditions, Tract.: prescribed tractions).

2.2.4 Prediction of the macroscopic response

Solving the boundary value problem over the RVE is the core of this work. Sev-
eral solution methods are proposed in section 2.3. Once this problem is solved,
the macroscopic response still must be computed. A coherent manner to pre-
dict it is through a volume-average over the RVE so that Hill-Mandel condition
is satisfied. If prescribed displacements or periodic boundary conditions are
applied, this reads:

σ̄ =
1
V

∫
ω

σ(x)dV. (2.14)

If prescribed traction boundary conditions are applied, the macroscopic strain
is computed as:

ε̄ =
1
V

∫
ω

ε(x)dV. (2.15)

2.3 Various approaches to solve the scale tran-
sition problem

The micro/macro problem being defined, the boundary value problem over the
RVE must still be solved. For this, several approaches have been proposed over
the years, some of them being reported hereafter. Several criteria must be taken
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into account when choosing a solution method: arrangement and periodicity of
the microstructure, computational cost, desired information on the local fields,
accuracy of the predictions,. . . A comparison of all the presented methods is
given at the end of this section.

2.3.1 Finite element methods

Solving the boundary value problem on a RVE can be done by a classical finite
element approach. If periodic microstructure is assumed, unit cells are con-
sidered and periodic boundary conditions can apply. This method gives good
results for both the global response and the local fields but has several disad-
vantages. One of them is, as most methods, the impossibility of taking into
account of size effects. Also, generating good meshes for complex microstruc-
tures is difficult and its computational cost, especially if this problem is coupled
to another one on the macroscopic structure, can be very high. Simplifications
are sometimes required. One of them is to reduce the real three dimensional
(3D) RVE to a simplified two dimensional (2D) axisymmetric or planar one.
Since this method is the most accurate one, it has been adopted as validation
tool in this work so that an entire chapter is dedicated to it (chapter 3). An
alternative if difficulties in modeling the microstructure arise is the Voronoi
cell finite element method. This approach initiated by Ghosh [35] is based
on a Dirichlet tessellation of the microstructure into a network of multi-sided
Voronoi polygons (see figure 2.5). This method is frequently used to represent
the microstructure of polycrystals and sometimes for the one of two-phase ma-
terials (Kanit et al. [50]). In both cases, either regular or irregular meshes
can be used, the latter being far better. Formulations in linear and some non-
linear regimes have been developed for these elements and applied to various
constitutive behaviors. Another approach is the extended finite element ap-
proach (XFEM) for which shape functions are enriched so that it enables to
deal with discontinuities of the displacement field. Main advantage is the gen-
eration of a more structured mesh since it does not have to fit boundaries of
the heterogeneities.

2.3.2 Asymptotic homogenization method

The asymptotic homogenization method is an elegant technique for predicting
both microscopic and macroscopic properties of heterogeneous media and was
developed by Bensoussan et al. [6] and Sanchez-Palencia [89]. This method
relies on a distinction between a characteristic length of the RVE (l) and the
one of the real structure (L) so that the ratio of these lengths gives a very small
number ε = l/L. Starting from the fact that a high level of heterogeneity in a
periodic microstructure causes rapid variation of strains and stresses in a small
neighborhood ε of a macroscopic point x̄, all variables are assumed to exhibit
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Figure 2.5: Tessellation of the microstructure into Voronoi cells.

dependence on both length scales of coordinates x̄ at the macroscopic level and
x̄/ε at the microscopic one (Ghosh et al. [36]). Asymptotical expansions of
displacement and stress fields with respect to ε are introduced into equilibrium
and constitutive relations. This leads to a set of partial differential equations
with periodic boundary conditions which must be solved numerically (e.g. by
Finite Element algorithms). This method has been applied successfully on
linear elastic materials and is still under investigation for inelastic materials
and damage. For a historical review of the method, see Chung et al. [21]
and references therein. Notice that a combination of Voronoi cell tessellation
and asymptotic homogenization methods has also been developed (Ghosh et al.
[36]).

2.3.3 Generalized method of cells

The generalized method of cells enables to compute both microscopic and
macroscopic properties of heterogeneous inelastic materials undergoing multi-
axial mechanical loading as well as a spatially constant thermal loading. Fol-
lowing the review of Bednarcyk et al. [5], this method introduced by Aboudi
[2], Paley and Aboudi [74] and Dvorak [29] (called the transformation field
analysis) divides a repeating unit cell into an arbitrary number of generic cells,
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Subcell

Generic cell

Figure 2.6: Typical discretization of a repeating unit cell, generic cell
and subcell of the generalized method of cells.

themselves being divided into 4 (or 8) rectangular (or parallelepipedal) subcells
and each one may contain a distinct homogeneous material (see figure 2.6). Ba-
sic assumption is that the displacement vector in each subcell varies linearly
with the local subcell coordinates. Continuity of displacements and tractions
between adjacent subcells and repeating unit cells is imposed. Global response
is computed by a classical volume average. This method is very efficient in
an algorithmic point of view and present a very good accuracy for the global
response. However, due to the linear assumption of the displacement fields,
quality of the local fields is not that high. In order to better capture the non-
linearities, the high-fidelity general method of cells (Aboudi et al. [3, 4]) has
been developed. Higher order displacement fields are used so that additional
equations are needed to solve the system: the zeroth, first and second moments
of the local (subcell) equilibrium equations must be satisfied in a volumetric
sense. This induces a much higher computational cost than the original cell
method but still lower than an equivalent finite element simulation. However,
due to the imposed rectangular shape of the subcells, finite element methods
generally still give a better accuracy of the microfields.

2.3.4 Fast Fourrier transform method

This meshless method introduced by Moulinec and Suquet [70, 71] makes use
of the fast Fourrier transform to solve the problem at the microscopic level.
Periodic boundary conditions are applied to the RVE so that the method is
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limited to periodic microstructure. The RVE is digitalized into a given number
of pixels (2D) or voxels (3D), different mechanical properties can be given to
each of them. The method is thus particularly suitable for analyses of digital
images of the real and eventually complex microstructure (clustering, percola-
tion, ...). Constitutive and equilibrium equations can be written as an integral
equation in which the Green tensor is introduced. Fourrier transform of this
expression is easily obtained so that an iterative process over the stress tensor
(if macroscopic strain is prescribed) to solve a nonlinear periodic equation (the
Lippmann-Schwinger equation) in the Fourrier space is used. The adopted
discretization is appropriate for the use of fast Fourrier transform packages.
Solution is obtained at each pixel (or voxel) of the microstructure at a lower
computational cost than a corresponding finite element simulation. Extensions
to nonlinear behaviors require additional hypotheses. One possibility if the use
of the generalized method of cells. This induces an additional subdivision of
the phases and increases significantly the computational cost.

2.3.5 Mean-field homogenization schemes

Semi-analytical mean-field homogenization methods started several decades ago
when computational cost was a real challenge. Based on assumptions of the
interaction laws between the different phases (which define the homogenization
scheme), they enable to give a macroscopic response as well as basic information
on the state of deformation within the phases (i.e.: mean-field information).
However, they are unable to predict any strain or stress localization on the
contrary to other numerical approaches. Also, clustering, percolation and size
effects cannot be taken into account. Most of these homogenization schemes
are based on the Eshelby result [30], which is valid for ellipsoidal inclusions only
and assume a perfect bonding between the constituents. Mean-field homoge-
nization schemes were first developed for linear constituents and later extended
to inelastic materials. They enable to get predictions of the macroscopic be-
havior as well as derivation of bounds. For nonlinear materials, a linearization
of the local constitutive laws is required (formulation of the problem) in or-
der to apply homogenization schemes valid in linear (thermo-)elasticity. The
method is very efficient on a computational point of view and some models
have a good accuracy in the linear elastic regime for both inclusion-reinforced
materials and polycrystals. Extension of mean-field homogenization schemes to
rate independent and dependent elasto-plastic behaviors is the main challenge
of this work.

2.3.6 Comparison of the various methods

Here is a summary of the different capabilities and levels of accuracy offered
by the homogenization methods presented above. Comparison is made over
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several criteria, among them:

• Complex geometries: possibility of the method to deal with complex mi-
crostructures.

• Ease of discretization: most methods require a discretization of the RVE,
which can be tricky in some cases.

• Accuracy of the macroscopic response: this is the main goal of the ho-
mogenization methods, so its accuracy is of first importance.

• Accuracy of the microfields: some methods, in addition to the predic-
tion of the macroscopic response can give an accurate information about
microfields as well.

• Computational cost: varies from a fraction of second to several hours
on a multiprocessor computer so that it might be a huge limitation for
applications of the method in practice.

• Nonlinear behaviors: the difficulty of extensions to nonlinear behavior
greatly depend on the method.

An overview of the different methods is reported in table 2.1. Notice that by no
way the list of the methods is exhaustive. Even if a lot of care has been taken to
complete this table, some evaluations are still the subject of debate, especially
when a method offers several variants. Furthermore, these evaluations are
somehow subjective, a better solution would be to compare them on several
benchmarks.



Homogenization method 2DFE 3DFE 2DVCFE AHM
Complex geometries + + + +
Ease of discretization ++ + +++ ++
Accuracy macro response ++ +++ ++ ++
Accuracy microfields +/++ +++ + ++
Computational cost ++ + ++ +
Nonlinear behaviors +++ +++ +++ ++
Homogenization method GMC HFGMC FFTM MFHM
Complex geometries ++ ++ +++ ++
Ease of discretization ++ ++ +++ +++
Accuracy macro response +++ +++ ++ ++
Accuracy microfields + ++ ++ +
Computational cost ++ + + +++
Nonlinear behaviors +++ +++ ++ ++

Table 2.1: Comparison of different homogenization methods over var-
ious criteria. 2DFE: two-Dimensional Finite Element method, 3DFE:
three-Dimensional Finite Element method, 2DVCFE: two-Dimensional
Voronoi Cell Finite Element method, AHM: Asymptotic Homogeniza-
tion Method, FFTM: Fast Fourrier Transform Method, GMC: Gener-
alized Method of Cells, HFGC: High Fidelity Generalized Method of
Cells and MFHM: Mean-Field Homogenization Method. Evaluations
are: +: weak, ++: fair, +++: good.





Chapter 3

Finite element simulations
at the microscopic level

1 Finite element simulations are an efficient homogenization method in terms
of accuracy. For this, a RVE or unit cell must be defined, meshed and loaded
so that the final response can be computed. All these aspects are examined in
this chapter for different unit cells: 2D, 2D axisymmetric and 3D ones.

3.1 Two-dimensional unit cells

In some cases, three-dimensional geometries can be represented by two-dimen-
sional unit cells. Two possibilities are considered here: composite reinforced by
aligned fibers and axisymmetric geometries.

3.1.1 Composites reinforced by long fibers

For composites reinforced by aligned long fibers, the knowledge of the geometry
of a cross section perpendicular to the fibers is enough. This geometry is
described by the arrangements of the fibers within the matrix. Two possibilities
will be examined in the numerical section: square and hexagonal array of fibers
(see figure 3.1). Of course, in order to model the long fibers, plane strain
(i.e. deformation in the longitudinal direction is zero) or generalized plane
strain (i.e. deformation in the longitudinal direction is constant) elements are
used. With the help of the symmetries, the dashed unit cell can be reduced
to only one quarter of it (continuous lines of figure 3.1). If the cell periodicity

1Some developments of this chapter led to the publication “Micromechanics of elasto-
plastic materials reinforced with ellipsoidal inclusions”, Pierard O., González C., Segurado
J., LLorca J. and Doghri I., Mechanics of Materials, submitted for publication [81].
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(a) Square arrangement of
fibers.

(b) Hexagonal arrangement
of fibers.

Figure 3.1: Unit cells with different arrangements of fibers.

is required (e.g.: asymptotic homogenization or prescribed periodic boundary
conditions over the unit cell), symmetries cannot be taken into account and
only the entire unit cell can be considered. A main limitation of using 2D
unit cells to represent 3D geometries is that it is not possible to simulate all
the loading possibilities (e.g.: shear in the longitudinal direction). It is well
known that the considered unit cell might have a significant impact on the
global response, especially in the non-linear regime (see Hom [44], Doghri and
Friebel [25]). Several authors have already discussed this subject, e.g. Böhm
and Han [9] for two-phase isothermal composites and Weissenbek et al. [104]
for two-phase thermo-elastic(-plastic) composites. Tucker and Liang [100] also
made various FE calculations based on different unit cells. This is illustrated
on several examples in the different numerical simulation sections of this work
(e.g.: section 5.4.1).

3.1.2 Two-dimensional axisymmetric unit cells

As done in several works (e.g.: Christman et al. [20], LLorca and Segurado
[64]), a classical approach is an approximation of the 3D microstructure by
a 2D axisymmetric unit cell as illustrated on figure 3.2. Space is supposed
filled by prisms with a hexagonal basis which represent the matrix, each prism
being reinforced by a spherical inclusion in its middle. To take advantage of
symmetry of the unit cell, the prism is approximated by a cylinder. The unit
cell can then be reduced to a 2D axisymmetric one.

Boundary conditions for a uniaxial tension test are the following. For sym-
metry reasons, no vertical (axial) displacement is allowed on bottom side (1 on
figure 3.2) and no horizontal (radial) one on the left side (3). Also, the right
side (4) must remain vertical, so that all the horizontal displacements are the
same. Displacements are imposed gradually on the top side (2) to reach the
required strain at the end of the simulation. Three-node linear axisymmetric
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Figure 3.2: Reduction to a 2D axisymmetric unit cell of a sphere-
reinforced composite material.

triangles (CAX3 in ABAQUS [1]) or six-node quadratic axisymmetric trian-
gles (CAX6) are used to mesh the surface and about 10000 elements give a
sufficiently refined mesh.

3.1.3 Boundary conditions

In section 2.2.2, various boundary conditions to the boundary value problem
over the RVE have been presented which include uniform traction, linear dis-
placement and periodic boundary conditions. This section explains how to use
these boundary conditions with the FE method. Also, prediction of the macro-
scopic response can be done in a more efficient way than from a volume average
of the fields as in (2.2) or (2.4).

Linear displacement boundary conditions

If linear displacements are applied on the boundary, the macroscopic stress
response can be computed from a volume average of the stress tensor given at
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each integration point over the volume:

σ̄ =
1
V

k=Nk∑
k=1

σk Vk, (3.1)

where σk is the stress acting at the integration point k, Vk is the representative
volume of the integration point k and Nk is the number of integration points
within the volume.

More simply, with the help of (2.5), this can be computed by an average of
the resulting tractions acting on the boundary:

σ̄ =
1
V

p=Np∑
p=1

tp ⊗ xp, (3.2)

where Np is the number of nodes over the boundary of the RVE, tp are the
resulting tractions at node p and xp is the position vector at this node.

In the case of a uniaxial tensile test in direction 1, the macroscopic normal
stress component in this direction becomes:

σ̄11 =
1
S

p=Np1∑
p=1

t1, (3.3)

where S is the area of the surface on which tractions are imposed and Np1 is
the number of nodes lying on that surface.

Uniform traction boundary conditions

If uniform tractions are applied, the macroscopic strain response can also be
computed either from a volume average of the strain tensor given at all the
integration points over the volume:

ε̄ =
1
V

k=Nk∑
k=1

εkVk. (3.4)

Equivalently, with the help of (2.3), this can be computed by an an average of
the resulting displacements on the boundary:

ε̄ =
1

2V

p=Np∑
p=1

(up ⊗ np + np ⊗ up), (3.5)

where up is the resulting displacement at the boundary node p and np is the
normal vector to the boundary at this node.
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Figure 3.3: Definition of the boundaries, master node (node 1) and
slave nodes (nodes 2 and 4) for periodic boundary conditions used in
the FE method.

Periodic boundary conditions

Application of the conditions In addition to the microstructural period-
icity, meshes are supposed to be the same on opposite faces so that initial
positions of every corresponding pair of nodes are related through (see figure
3.3 for notations):

xR − xL = x2 − x1,

xT − xB = x4 − x1, (3.6)

where xs lies on ∂ωs, s = R, L, T , B. x1 is the master node and x2 and x4 are
the slave nodes. With the help of equation (2.11) and for a given macroscopic
strain ε̄ (ε̄ = 1

2 (Ḡ + Ḡ
T )), this can be rewritten in term of displacements as:

uR − uL = Ḡ.(xR − xL) = Ḡ.(x2 − x1),
uT − uB = Ḡ.(xT − xB) = Ḡ.(x4 − x1). (3.7)

If following displacements are applied to the master and slave nodes:

u1 = Ḡ.x1, (3.8)
u2 = Ḡ.x2, (3.9)
u4 = Ḡ.x4, (3.10)

periodic boundary conditions may be rewritten as:

uR − uL = u2 − u1, (3.11)
uT − uB = u4 − u1. (3.12)



24 Finite element simulations at the microscopic level

The set of equations (3.11-3.12) completely defines the application of periodic
boundary displacements. Equation (2.12) still requires anti-periodic tractions
on the boundary. Imposition of the displacements (3.8-3.10) at master and
slave nodes induces resulting external forces at these nodes. Furthermore, ty-
ing conditions (3.11-3.12) induce tying tractions at the nodes on the boundary.
Imposing a zero virtual work at the tied nodes enables to prove that the re-
sulting tying tractions are opposite to each others at every pair of nodes on
the boundary (detailed proof in Kouznetsova [51]). Condition (2.12) is thus
trivially satisfied.

It should be kept in mind that imposing equations (3.11-3.12) can strongly
increase the bandwidth of the system. If a direct solver is used, a much higher
computational cost can be expected. On the other hand, using periodic bound-
ary conditions gives better microscopic fields, especially in the surroundings of
the inclusions close to the sides of the RVE.

Computation of the macroscopic response Computation of the macro-
scopic stress tensor from the external and tying tractions on the boundary
(equation (2.5)) enable to strongly simplify the result (details in Kouznetsova
[51]):

σ̄ij =
1
V

(t1i
x1j

+ t2i
x2j

+ t4i
x4j

), (3.13)

where t1, t2 and t4 are the resulting external tractions at the master and slave
nodes.

This approach is limited to moderate strain/stress gradients otherwise the
scale separation hypotheses (d � l, see figure 2.1) does no apply anymore. In
this case, highly localized deformation might occur and precision of the classical
FE method cannot be guaranteed. This led to the development of the second-
order computational homogenization method which takes into account of the
gradient of the macroscopic deformation gradient tensor into the scale transition
procedure (Kouznetsova et al. [52, 53]). This approach gives an higher-order
constitutive response without additional assumptions at the macroscopic level.

3.2 Three-dimensional unit cells

In this section, generation of three-dimensional unit cells reinforced by similarly-
shaped, non-overlapping and randomly dispersed ellipsoids of revolution is ex-
amined. At first, generation of the geometry and the mesh as well as the appli-
cation of the boundary conditions are presented and followed by an analysis of
the unit cell (homogeneity, isotropy, required minimum number of inclusions).
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3.2.1 Generation of the geometry

For inclusions aligned with their revolution axis and a constant aspect ratio
Ar, the considered unit cell is a parallelepiped of size (ArL × L × L) in order
to have the same number of inclusions in all directions. If they are randomly
oriented, a cubic unit cell is considered.

At first, the size of the inclusions must be defined (same size is considered
for all of them). For a given volume fraction of inclusions v1 and a number
of aligned inclusions N within the cell (see in section 3.2.4 how to fix N),
dimensions of all the ellipsoids’ semi-axes can be easily found. Semi-axis length
along the revolution axis is r × Ar, while the other two semi-axes have the
same length r = L(3v1/4πN)1/3. For randomly oriented inclusions, the semi-
axis length is: r = L(3v1/4πNAr)1/3.

The final particle arrangement must be non-overlapping and suitable for fi-
nite element discretization. Similarly to unit cells filled with spheres, the Ran-
dom Sequential Adsorption (RSA) algorithm (Widom [106]) is used to generate
sequentially the coordinates of the particle centers. For this, consider a new
particle Ei with a randomly generated center (and orientation if needed). Geo-
metric and discretization conditions that Ei must verify in order to be accepted
are:

1. Minimum distance between ellipsoid Ei and all the previously generated
ellipsoids.

2. Surface of particle Ei should not be too close to the unit cell faces, edges
or corners to prevent the presence of distorted finite elements during
meshing.

The minimal distance between two ellipsoids is computed with an iterative
algorithm proposed by Lin and Han [63]. As illustrated in 2D on figure 3.4,
consider that the minimal distance between ellipsoids E1 and E2 must be de-
termined. At the kth iteration, the two closest points are: x(k) ∈ ∂E1 and
y(k) ∈ ∂E2, where ∂E means ’the boundary of E’. A ball B(c1, r1) is con-
structed completely inside the ellipsoid E1 and tangent to E1 at x(k), and a
ball B(c2, r2) completely inside the ellipsoid E2 and tangent to E2 at y(k). If
the line segment [c1, c2] between the two centers is entirely contained in E1

U E2, then the two ellipsoids have a nonempty intersection and the distance
d(E1, E2) = 0; otherwise, the new point x(k + 1) is found as the intersection
of the line segment [c1, c2] with the boundary ∂E1, and the new point y(k + 1)
as the intersection of the same segment with the boundary ∂E2. Convergence
is achieved once the angle between the segment [x(k + 1), y(k + 1)] and the
segment [c1(k + 1), x(k + 1)] is smaller than a given tolerance (c1(k + 1) is the
center of the new ball tangent to the ellipsoid at x(k +1)). A similar test holds
for the second ellipsoid. Convergence of the method is guaranteed to the unique
solution of the problem. If the minimal distance between the two ellipsoids is
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Figure 3.4: One iteration of the algorithm to find the minimal distance
between two ellipsoids.

smaller than a given value (typically 3.5 10−2 × Ar × r), this ellipsoid must be
rejected.

The second condition is the imposition of a minimal distance between the
ellipsoid and faces, edges and corners of the parallelepiped; i.e., the distance has
to be checked with respect to planes, lines and points. For the distance between
an ellipsoid and a plane, an analytical formula is available ([91]). The other two
tests are checked by a modification of the iterative algorithm presented above. If
the ellipsoid is too close to a face (or an edge, or a corner) or just slightly crosses
it, it must be rejected. Commonly used tolerance for this minimal distance is
5 10−2×Ar× r. An example of such unit cell generation is illustrated on figure
3.5 for aligned inclusions.

The main limitation of this approach is that only moderate volume fractions
of inclusions can be reached. These are reported in table 3.1 for typical values
of N and tolerances. For higher volume fractions, Segurado and LLorca [92]
proposed an algorithm for sphere reinforced unit cells which enables to reach
up to 50% of inclusions. This can be easily extended to ellipsoid-reinforced unit
cells. Anyway, for the composites studied in this work, such extension is not
required.

3.2.2 Mesh generation

If periodic boundary conditions are applied (section 3.1.3), the microstructure
must also be periodic so that particles which cut faces of the unit cell are
split into the appropriate number of parts (two parts if across one face, four if
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Figure 3.5: Unit cell containing 25% of aligned inclusions (N=5, Ar=3).

v1 max. [%]
Ar aligned 2D random v1 3D random
1 36 36 36
3 28 28 26
5 26 20 18
10 20 12 10

Table 3.1: Maximum volume fraction of inclusions (v1) reached with
the RSA algorithm for various aspect ratios of 30 aligned, 2D randomly
dispersed and 3D randomly dispersed inclusions. Typical tolerances on
the minimal distances are used.

across two, eight if across three) and copied on the opposite side. The unit cell
is meshed with second-order tetrahedra by the software NETGEN [72]. This
mesher has very good optimizing properties so that the number of distorted
elements is reduced to only a few (less than 5). It also enables to deal with
periodic boundary conditions. If the distance between two inclusions is close
to the imposed limit, the mesh is refined in this region in order to generally
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Figure 3.6: Unit cell containing 25% of meshed inclusions.

have a minimum of two elements between these two heterogeneities. Resolution
of the problem is done with ABAQUS [1] and 10-node modified tetrahedron
(C3D10M) elements are used. Additional degrees of freedom offered by this
modified element capture the deformation gradients better than the classical
one. For cells reinforced with 30 spheres, a sufficiently refined mesh contains
about 90000 nodes and for the same number of ellipsoids (Ar=3), about 110000
nodes are required. A typical mesh for ellipsoidal inclusions can be seen on
figure 3.6.

3.2.3 Boundary conditions

Application of boundary conditions and resulting simplifications to compute
the response of the material have already been examined in section 3.1.3 for 2D
unit cells. This can be easily extended to 3D and will not be developed here.

3.2.4 Validation of the unit cell

Three validations of the cells containing ellipsoids (Ar = 3) generated by
the proposed method are examined. As geometrical tests, homogeneity and
isotropy of the cell are analyzed. Determination of the minimal required num-
ber of inclusions is also done.
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Figure 3.7: Average position and standard deviation of the center of
mass of 100 unit cells generated at various volume fractions.

Geometrical analysis

The first test checks the homogeneity of the generated cells. For several volume
fractions of inclusions, 100 cells containing 30 ellipsoids are generated for each
of them. For each cell, the position of the center of mass is computed (it is
supposed that only inclusions have non-zero density) as well as the average
position and standard deviation for a given volume fraction. This is illustrated
on figure 3.7. Of course, for a perfectly homogeneous distribution of inclusions,
the center of mass should be at the half-length of the cell in each direction.
On the figure, the average position always coincides with the reference result
while the standard deviation remains very small and logically decreases as the
volume fraction of inclusions increases.

In order to check the transverse isotropy of the cell, three moments of inertia
with respect to the three perpendicular axes at the center of the cell are com-
puted numerically. For this, the cell is decomposed into many small cubes which
have a non-zero mass if they mainly contain part of an ellipsoid. Average and
standard deviations with respect to a direction parallel to the revolution axis of
the inclusions are plotted on figure 3.8. Theoretical moment of inertia obtained
with a homogeneous prism whose mass is equal to the one of the ellipsoids in
the random arrangements is given in the direction x by: v1V (L2

y + L2
z)ρ/12,
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Figure 3.8: Average and standard deviation of the longitudinal (dir.
x) and transverse (dir. y and z) moments of inertia for 100 unit cells
generated at various volume fractions v1. V is the volume of the RVE,
Ly and Lz the lengths in directions y and z of the RVE and Iyy and
Izz the moments of inertia with respect to axes y and z.

where ρ is the density of the inclusions (considered as equal to one). This result
is also reported on the figure and a good agreement is found with numerical
results. In addition, for each cell, the moments of inertia with respect to the
two others axes should be the same. Their difference in absolute value is also
plotted on the figure and remains very small.

These two tests thus show that our method used to generate unit cells
containing ellipsoids gives homogeneous and transversely isotropic cells for a
wide range of volume fractions of inclusions.

Numerical analysis

A crucial issue for the accuracy of the FE predictions is to determine the
required minimum number of inclusions N within the unit cell. Advantage
of small N is that a lower number of elements is required during meshing so
that simulations are faster. On the other hand, as we will see, a too small N
does not lead to accurate enough predictions. In order to find a compromise,
two tests are made. For these, an elasto-plastic matrix (J2 constitutive model
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Figure 3.9: FE average response of 4 unit cells for a various number
of inclusions within the unit cell. The loading direction is aligned with
the ellipsoids.

(see section 5.1), E = 70 GPa, ν = 0.33, σY = 1.5924 MPa, k = 400 MPa
and n = 0.05) is reinforced by elastic inclusions (E = 400 GPa and ν = 0.2).
All cells contain 25 % of randomly located aligned ellipsoids (Ar = 3) and the
uniaxial tension direction is along the revolution axis of the ellipsoids.

A first test illustrated on figure 3.9 checks the accuracy of the FE average
response obtained for several values of N (5, 15, 30 or 40 inclusions), 4 cells
being generated for each N . Of course, even for a small N , the average response
on dozens of different cells would increase the accuracy of the average response
but an excessive computation time would be needed. Clearly, 5 inclusions
within each cell are not enough since the obtained response is quite far from the
reference value (the one corresponding to 40 inclusions). Logically, increasing
N reduces this error, the response obtained with 15 inclusions being already
very good.

A second test, and maybe even more crucial, is to check the standard devi-
ation of the responses obtained for the different values of N . Again, 4 unit cells
are generated for each N and results are reported on figure 3.10. As expected,
a high scattering is observed (up to 5% of the average value) for a low number
of inclusions while this reduces as N increases, the standard deviation for 30
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Figure 3.10: FE standard deviation of the average response of 4 unit
cells for a various number of inclusions within the cell. The loading
direction is aligned with the ellipsoids.

inclusions being already very low.
The analysis of average and standard deviations of FE responses shows that

a low number of inclusions leads to an inaccurate average response and a too
high standard deviation. For these reasons, we advise to use 30 inclusions within
each cell. For such value, corresponding meshes have about 110.000 nodes and
75.000 elements. Mesh refinement has also been successfully checked against a
refined one containing more than 200.000 nodes.

3.3 Conclusions

In this chapter, we used the finite element method to solve the boundary value
problem defined on a representative volume element of heterogeneous materi-
als. For this, various unit cells are proposed, including 2D, 2D axisymmetric
and 3D ones. For random distribution of the inclusions, 3D cells with randomly
dispersed ellipsoids are generated and meshed with second order tetrahedron.
Homogeneity and isotropy of these cells have been checked. Finally, the appli-
cation of different boundary conditions has been examined. Periodic boundary
conditions are studied in depth since they are known to give the most accurate
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macroscopic and microscopic predictions. In addition, imposition of these con-
ditions to parallelipipedic cells and computation of the macroscopic response
can be done in a simplified way. When using 3D cells and periodic bound-
ary conditions, a minimum of 30 ellipsoidal inclusions (Ar=3.) within the cell
has been adopted in order to limit the standard deviation of the macroscopic
response obtained with different cells.





Chapter 4

Homogenization of linear
composites

1 Mean-field homogenization schemes are an efficient way to predict the be-
havior of heterogeneous materials. Based on assumptions of the interaction
laws between the different phases, they enable to get a prediction of the macro-
scopic response as well as some information on the per-phase state of deforma-
tion and stress. In comparison with the FE method, this approach is infinitely
much faster. Various mean-field homogenization schemes are presented in this
section and their application to linear (visco)elastic composites is examined.
Furthermore, some theoretical bounds of the real response can be developed
which enable to check some approximations made by the predictive methods.
At first, constitutive models of the homogeneous materials are presented.

4.1 Constitutive equations

4.1.1 Linear thermo-elasticity

Consider a homogeneous linear thermo-elastic material of elastic stiffness C
and thermal expansion α. At each point x of the material, for a given total
strain ε and a change in temperature ∆T , the stress is given by:

σ(x) = C : (ε(x) − εth(x)), εth(x) = α∆T (x) (4.1)
= C : ε(x) + β∆T (x), β = −C : α, (4.2)

1Some developments of this chapter led to the publication “Mean-field homogenization of
multi-phase thermo-elastic composites: a general framework and its validation”, Pierard O.,
Friebel C. and Doghri I., Composites, Science and Technology, 64 (2004), pp. 1587-1603 [80].
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or equivalently,
ε(x) = C−1 : σ(x) + εth(x), (4.3)

where εth is the thermal strain tensor and the double dot (:) designates a
tensor product contracted over two indices. The total strain ε is the sum of
the mechanical and thermal strains. The latter is thus a stress free eigenstrain
since a variation in temperature does not induce a stress variation. For a
general material with no particular symmetry and since the conservation laws
must be satisfied, the fourth-order stiffness tensor and the second-order tensor
of thermal expansion have only 21 and 6 degrees of freedom, respectively.

For some materials, physical symmetries can be taken into account. A
widely encountered material symmetry is transverse isotropy (the material has
an axis of isotropy around which any rotation is indistinguishable). In this case,
respectively 5 and 2 scalars are necessary to define the stiffness and thermal
expansion tensors.

In the particular case of isotropic materials (no preferential direction), stiff-
ness and thermal expansion tensors are depending of only two and one scalars,
respectively. Equations (4.1-4.3) are then simplified to:

σ(x) = λ[tr(ε(x) − εth(x))]1 + 2µ(ε(x) − εth(x)), (4.4)
where εth(x) = α∆T (x)1,

or equivalently,

ε(x) =
1 + ν

E
σ(x) − ν

E
[tr(σ(x))]1 + εth(x), (4.5)

where 1 is the second-order unit tensor, tr is the trace of a tensor, λ and µ are
the Lamé coefficients and α is the coefficient of thermal expansion (CTE). Of
course, these are related to the other coefficients classically used in isotropic
linear elasticity, i.e. the Young’s modulus E, the Poisson’s ratio ν, the bulk
modulus κ and the shear modulus G = µ.

4.1.2 Linear viscoelasticity

Linear viscoelasticity is another class of linear behavior. A main difference
with linear thermo-elasticity is the presence in the response of the material of
an explicit time dependence due to a fading memory effect so that it is the
sum of an instantaneous initial response and a time-dependent integral. If the
initial state is defined at t = 0, the constitutive model of linear viscoelasticity
reads at each point x of the homogeneous material:

σ(x, t) = G(t) : ε(x, 0) +
∫ t

0

G(t − τ) : ε̇(x, τ)dτ

= G(t) : ε(x, 0) + ε̇(x) ⊗ G, (4.6)
where ε(x, 0) = lim

t→0+
ε(x, t)
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Figure 4.1: Response to a given strain loading path for a linear viscoelastic
material.

or equivalently,

ε(x, t) = J(t) : σ(x, 0) +
∫ t

0

J(t − τ) : σ̇(x, τ)dτ

= J(t) : σ(x, 0) + σ̇(x) ⊗ J , (4.7)
where σ(x, 0) = lim

t→0+
σ(x, t)

where G is the fourth order relaxation tensor, J the fourth-order creep tensor
and ⊗ is the classical convolution product which for two scalar functions f and
g is defined by:

f ⊗ g =
∫ t

0

f(τ)g(t − τ)dτ. (4.8)

Once again, simplified expressions of the relaxation and creep tensors exist for
isotropic materials (Friebel et al. [33]). One-dimensional linear viscoelastic
constitutive law and influence of the strain rate are illustrated on figure 4.1 for
two different loading paths.

The correspondence principle is a classical way to solve expressions of the
form (4.6/4.7) by making use of the Laplace-Carson transform (see appendix
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Figure 4.2: Illustration of the results of Eshelby and Hill.

B.1). This enables to eliminate the dependence with respect to ε(0) and to
rewrite these expressions under a linear elastic formalism:

σ∗(s) = G∗(s) : ε∗(s),
ε∗(s) = J∗(s) : σ∗(s), (4.9)

where f∗ is the Laplace-Carson transform of the function f and s is the Laplace
variable. If not singular, tensors G∗ and J∗ are inverse of each other.

4.2 Homogenization of isothermal elastic com-
posites

In order to take into account some important geometrical properties (e.g.: shape
and orientation of inclusions), several useful homogenization schemes are based
on the solution of the Eshelby problem. From this result, the symmetric Hill’s
tensor is introduced which enables to guarantee some important properties
of other tensors. Localization tensors are presented afterwards, from which
various homogenization schemes are defined.

4.2.1 Results of Eshelby and Hill

Let us consider a homogeneous linear elastic material of stiffness C in which
an embedded ellipsoidal inclusion made of the same material undergoes an
eigenstrain ε∗ (figure 4.2a). Eshelby [30] proved that the resulting strain field
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inside the inclusion (ε1) is uniform and related to the eigenstrain through the
fourth-order Eshelby’s tensor E :

ε1 = E : ε∗. (4.10)

In general, E possesses the minor but not the major symmetries (Eijkl = Ejikl =
Eijlk; Eijkl �= Eklij). Analytical formulae of the Eshelby’s tensor were introduced
by Eshelby [30] for isotropic materials and spheroids (expressions can be found
in appendix A.1). Later, Withers [108] extended this result to transversely
isotropic medium, with the restriction that the direction of anisotropy is aligned
with the revolution direction of the spheroid (see appendix A.2). In all other
cases, a numerical evaluation of the tensor is necessary and was implemented
by Gavazzi and Lagoudas [34].

The homogeneous stress field σ1 inside the inclusion is given by:

σ1 = C : ε1 + τ , τ = −C : ε∗. (4.11)

The second-order tensor τ is called the polarization tensor and is symmetric
by construction. Introducing this new tensor into (4.10) gives:

ε1 = −P : τ , P = E : C−1. (4.12)

The fourth-order tensor P is called Hill’s tensor and relates the eigenstress due
to ε∗ to the strain in the inclusions.

Let’s now consider a single inclusion of stiffness C1 undergoing an eigen-
strain embedded in a matrix with a different stiffness (C0 = C1 − ∆C), see
figure 4.2b. Stress and strain are still related through the classical relations:

σ0 = C0 : ε0 in the matrix,

σ1 = C1 : ε1 + τ 1 in the inclusion.

= C0 : ε1 + τ 0, (4.13)

where τ 0 = ∆C : ε1 + τ 1. Following the hypothesis of Hill that ε1 is uniform
in the inclusions, this relation is form similar to the homogeneous Eshelby’s
one so that the solution of this inhomogeneous problem is given by:

ε1 = −P (C0) : τ 0 ⇒ −τ 1 = (C∗ + C1) : ε1; C∗ = P−1 − C0. (4.14)

This new fourth-order tensor C∗ is called Hill’s constraint tensor and charac-
terizes the stress acting on an inclusion by the infinite medium independently of
the properties of the inclusion: σ1 = −C∗ : ε1. Tensor C∗ possesses the minor
symmetries by construction. In order to prove the major symmetries of this
tensor, let’s consider two different systems of loads (forces by unit of area) F

(1)
i

and F
(2)
i acting of the interface inclusion/matrix of the single inclusion prob-

lem (figure 4.2b). These loads induce two different displacement fields, u
(1)
i and
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u
(2)
i , respectively. The Maxwell-Betti theorem gives the following equivalence

of works: ∫
∂ω

F
(1)
i u

(2)
i dS =

∫
∂ω

F
(2)
i u

(1)
i dS, (4.15)

where ∂ω is the interface surface. By using the definition of the constraint
tensor, expression (4.15) can be rewritten as:∫

∂ω

−C∗
ijklε

(1)
lk nju

(2)
i dS =

∫
∂ω

−C∗
ijklε

(2)
lk nju

(1)
i dS. (4.16)

Since C∗ has the minor symmetries, following relations hold:∫
∂ω

−C∗
ijklε

(1)
lk nju

(2)
i dS =

∫
ω

−C∗
ijklε

(1)
lk

∂u
(2)
i

∂xj
dV

=
∫

ω

−C∗
jiklε

(1)
lk

∂u
(2)
j

∂xi
dV. (4.17)

Expression (4.16) can be rewritten as:∫
ω

C∗
ijklε

(1)
lk ε

(2)
ij dV =

∫
ω

C∗
ijklε

(2)
lk ε

(1)
ij

=
∫

ω

C∗
klijε

(1)
lk ε

(2)
ij dV. (4.18)

Last relation is true for any load system F (1) and F (2). So, in order to satisfy
this last relation, major symmetries are required:

C∗
ijkl = C∗

klij . (4.19)

Consequently, P is also fully symmetric.

4.2.2 Expressions of localization tensors

In sections 2.1 and 2.2, the definition of a representative volume element has
been given as well as a presentation of various boundary conditions to apply if
either macroscopic stress or macroscopic strain is given. Localization expres-
sions in linear elasticity are examined and resulting macroscopic relations are
obtained accordingly. Developments in this section follow Zaoui [110].

Concentration tensors enable to link a local property to the corresponding
macroscopic one. For example, given a macroscopic strain, the corresponding
macroscopic stress writes:

σ̄(ε̄) =< σ(ε(x)) >=< σ(Dε(x) : ε̄) >, (4.20)
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where the strain concentration tensor Dε relates the local strain at any point
of the RVE to the macroscopic one:

ε(x) = Dε(x) : ε̄. (4.21)

Each point of the RVE belongs to phase r whose behavior is given by a
linear elastic relation as:

σ(x) = Cr : ε(x), (4.22)

where point x belongs to phase r of uniform stiffness Cr.
For any heterogeneous material made of linear elastic constituents, the fol-

lowing macroscopic relation holds (proved by using the Hill’s Lemma):

σ̄ = Ceff : ε̄, (4.23)

where Ceff is the effective stiffness tensor. The macroscopic stress computed
from the volume average of the stress microfield becomes:

σ̄ =< σ(x) >=< Cr : ε(x) >=< Cr : Dε(x) >: ε̄ = C̄ : ε̄. (4.24)

Hypothesis on the strain concentration tensors Dε give a C̄ which is either an
estimation or a bound of the effective stiffness Ceff and represents a macro-
scopically homogeneous material with an equivalent behavior to the one of the
heterogeneous RVE.

4.2.3 Various homogenization schemes

In this section, a two-phase isothermal linear elastic composite with a uniform
stiffness C0 for the matrix and C1 for the inclusions (subscript 0 always refers
to the matrix and 1 to the inclusions) is considered . The RVE is subjected to
linear boundary displacements corresponding to a macroscopic strain ε̄ so that
per phase strain averages are related between each others and to ε̄ through a
(still unknown) strain concentration tensor Bε:

< ε >ω1= Bε :< ε >ω0 , < ε >ω1= Aε : ε̄,

Aε = Bε : (v1B
ε + (1 − v1)I)−1, Bε = (1 − v1)Aε : (I − v1A

ε)−1, (4.25)

where I designates the fourth-order symmetric identity tensor and Aε is the
strain concentration tensor linking the average strain in the inclusions to the
macroscopic one. For any homogenization model defined by Bε, the macro-
scopic stiffness is given by:

C̄ = [v1C1 : Bε + (1 − v1)C0] : [v1B
ε + (1 − v1)I]−1 (4.26)

= [v1(C∗ + C1)−1 + (1 − v1)(C∗ + C0)−1]−1 − C∗, (4.27)
= C0 + v1(C1 − C0) : Aε. (4.28)
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Since the Hill’s constraint tensor C∗ is fully symmetric, expression (4.27) im-
poses that the macroscopic tangent operator is also fully symmetric. This is
a very important property since, as we will see in elasto-plastic simulations,
some approximations of the matrix modulus might lead to the loss of major
symmetries and finally give non physical results. Hypothesis on the strain
concentration tensor defines an homogenization scheme so that the composite
behavior can be predicted. On the contrary to basic models of Voigt and Reuss,
more elaborated mean-field homogenization schemes rely on the solution of the
Eshelby’s problem. In addition to the volume fraction of each phase, they take
into account of the shape and the orientation of the RVE constituents. However,
due to the Eshelby’s hypothesis, the inclusions must have an ellipsoidal shape
as well as the same aspect ratio and orientation2. Otherwise, the composite is
considered as a multi phase material (Pierard et al. [80]).

Voigt and Reuss models

Assuming a uniform strain within the RVE, the following results are immedi-
ately found:

Bε = I, C̄ = v1C1 + (1 − v1)C0. (4.29)

This is known as the Voigt homogenization model and the effective moduli
are thus the volume average of the per phase uniform local stiffnesses. Even
with such a big approximation, the Voigt model gives good predictions in the
longitudinal direction of materials reinforced by long fibers.

Another obvious hypothesis is to consider uniform stress within the RVE.
Consequently, the following expressions are found:

Bε = C−1
1 : C0, C̄ =

[
v1C

−1
1 + (1 − v1)C−1

0

]−1
. (4.30)

This result is known as the Reuss homogenization model and the effective
compliance is thus simply the volume average of the per phase uniform ones.

Mori-Tanaka model

The Mori-Tanaka model tries to take into account interactions between the
inclusions. Since this model is intensively used in the numerical simulations of
this work, derivation of the strain concentration tensor is briefly recalled.

Let’s define a companion problem to the original one over the RVE in which
the inclusions are made of the same material as the one of the matrix and
undergo an eigenstrain ε∗ (figure 4.3b). This fictitious material, as in the
original problem, is subjected to linear displacements imposed at infinity which

2Note that we consider the same inclusion geometry in the original material and the asso-
ciated single inclusion problem without taking into account the inclusions spatial distribution
(see Bornert [11] and Ponte Castañeda and Willis [87] for more details).
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Figure 4.3: The two problems of the Mori-Tanaka homogenization scheme.

induce a uniform strain within both matrix and inclusions. With the help of the
Eshelby’s result and superposition principle, strain and stress in the inclusions
of the companion problem are given by:

ε1 = ε∞ + E : ε∗ + ε
′
(x), σ1 = C0 : (ε∞ + E : ε∗ + ε

′
(x) − ε∗), (4.31)

where ε
′
(x) is the sum of all the strain fields caused by the presence of each

inclusion. Strain and stress equivalence in both phases between the companion
and the original problem (inclusion’s stiffness C1 and no eigenstrain, figure
4.3a) is satisfied if the same strain in the inclusions of both problems is imposed
and:

C0 : (ε∞ + E : ε∗ + ε
′
(x) − ε∗) = C1 : (ε∞ + E : ε∗ + ε

′
(x)). (4.32)

Such condition cannot be fulfilled at each point of the material. However, a
solution exists if an average over all the inclusions is considered:

C0 : (ε∞ + E : ε∗+ < ε
′
(x) >ω1 −ε∗) = C1 : (ε∞ + E : ε∗+ < ε

′
(x) >ω1).

Equivalence is fulfilled for the following expression of the eigenstrain:

ε∗ = − [(C−1
0 : C1 − I)−1 + E]−1

: (ε∞+ < ε
′
(x) >ω1). (4.33)

Combining this expression with the one of the average strain in the inclusions
gives:

< ε >ω1=
[
I − E :

(
(C−1

0 : C1 − I)−1 + E)−1
]

: (ε∞+ < ε
′
(x) >ω1). (4.34)
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This expression is valid if Eshelby’s tensor is the same for all the inclusions, i.e.
all the inclusions are similarly shaped and aligned. Due to the infinite number
of inclusions randomly dispersed in the RVE, we can say that the disturbance
field ε

′
(x) is, on average, the same in the inclusions and in the matrix so that

average strain in the matrix can be rewritten as:

< ε >ω0= ε∞+ < ε
′
(x) >ω0= ε∞+ < ε

′
(x) >ω1 . (4.35)

Inserting this result into (4.34), expression of the strain concentration tensor
linking the average strain in the inclusion to the one in the matrix is given by:

Bε = [I + E : (C−1
0 : C1 − I)]−1 = BM-T(C0,C1)

= [I + P : (C1 − C0)]−1 (4.36)
= (C∗ + C1)−1 : (C∗ + C0). (4.37)

This is the same result as the one obtained for a matrix reinforced by a single
inclusion undergoing uniform strain at infinity. Consequently, Benveniste [7]
proposed the following interpretation: “each inclusion behaves like an isolated
inclusion in the matrix seeing < ε >ω0 as a far-field strain”. The Mori-Tanaka
model is particularly suitable for particle reinforced composite materials up to
moderate volume fractions (25-30%).

For higher volume fractions, Lielens [62] proposed an extension of this model
which combines a nonlinear interpolation between the original Mori-Tanaka
model and the one considering reverse material properties (which corresponds
to the second Hashin-Shtrikman-Willis bound [107], see section 4.2.4). The
strain concentration tensor then reads:

Bε =
[
(1 − f(v1))B−1

M-T(C0,C1) + f(v1)BM-T(C1,C0)
]−1

. (4.38)

The proposed interpolative function is f(v1) = (v1 + v2
1)/2. This homogeniza-

tion scheme is called Lielens’ interpolative model.

Self-consistent model

The self-consistent model (S-C) assumes that each inclusion is isolated and em-
bedded in a fictitious homogeneous matrix possessing the composite’s unknown
stiffness C̄ seeing ε̄ as a far-field strain. This problem thus becomes similar to
the one of the single inclusion problem and the strain concentration reads:

< ε >ω1= BM-T(C̄,C1) : ε̄ = Aε(C̄,C1) : ε̄. (4.39)

The localization problem becomes implicit (C̄ is computed from the strain
concentration tensor Aε, see (4.28)) and requires an additional iterative loop
in order to determine C̄. Strain concentration tensors are given by:

Bε = (1−v1)Aε : (I−v1A
ε)−1, Aε =

[
I + E : (C̄−1 : C1 − I)

]−1

. (4.40)
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The self-consistent model generally gives good predictions for polycrystals but
is less satisfying in the case of two-phase composites.

4.2.4 Some bounds

All the previous models give estimates for the effective moduli of the equiva-
lent homogeneous material. However, given information on the phase modulus
and geometry of the microstructure, bounds can be derived from the minimum
principle for elastic media. Following Zaoui [110], if linear displacement bound-
ary conditions are imposed, among all the strain fields ε∗ which satisfy these
conditions, the average microscopic work of the real solution ε to the boundary
value problem is always smaller (position dependence is omitted for clarity):

< ε∗ : C : ε∗ >≥< ε : C : ε > . (4.41)

Similarly, if uniform tractions are imposed, this reads:

< σ∗ : S : σ∗ >≥< σ : S : σ > . (4.42)

Making use of Hill’s lemma and introducing the strain concentration tensor Dε

(ε∗(x) = Dε(x) : ε̄) and the stress concentration tensor Dσ (σ∗(x) = Dσ(x) :
σ̄), these two equations can be rewritten as:

ε̄ : (< DεT

: C : Dε > −Ceff ) : ε̄ ≥ 0 ∀ε̄,

σ̄ : (< DσT

: S : Dσ > −Seff ) : σ̄ ≥ 0 ∀σ̄. (4.43)

From these expressions, bounds can be derived. A basic hypothesis is to con-
sider a uniform strain field which respects linear displacement boundary con-
ditions. This leads to the Voigt bound on the effective moduli:

ε̄ : (< C > −Ceff ) : ε̄ ≥ 0 ∀ε̄. (4.44)

Similarly, for a uniform stress field which respects uniform traction boundary
conditions, the Reuss bound is found:

σ̄ : (< S > −Seff ) : σ̄ ≥ 0 ∀σ̄. (4.45)

If materials are isotropic, these relations can be reduced to much more inter-
esting bounds on the effective shear (µeff ) and bulk (κeff ) moduli:

< µ−1 >−1≤ µeff ≤< µ >, < κ−1 >−1≤ κeff ≤< κ > . (4.46)

Voigt/Reuss bounds can be improved, as shown in Hashin and Shtrikman
[38] for overall isotropic materials. This was later extended to anisotropic
constituents, anisotropic phase arrangements and/or aligned non spherical ar-
rangements (Walpole [102], Willis [107]). In general, the Mori-Tanaka estimate
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correspond to one of the extended Hashin-Shtrikman bounds for two-phase
materials (Weng [105]). The other one can be obtained with a Mori-Tanaka
estimate of a fictitious material with reverse material properties. Better bounds
have been developed, but this requires additional hypotheses on the geometry
(Bornert et al. [12], Hervé and Zaoui [39, 40]). A more recent work which gives
very close bounds is the second-order method of Torquato [99].

4.3 Homogenization of thermo-elastic
composites

4.3.1 Homogenization technique

Consider a two-phase composite, where the matrix has uniform properties C0

and α0, and the inclusions have the same aspect ratio, orientation and prop-
erties C1 and α1. Relations (4.1-4.3) hold for each phase; our aim is to write
similar macroscopic relations for the whole composite. In order to determine
the macroscopic properties C̄ and ᾱ, one can re-derive a homogenization model
taking into account thermo-elastic behavior instead of isothermal elasticity.
A better alternative is proposed in Lielens [61]. Its major interest is that
given any homogenization model which is defined in the isothermal case by
its strain concentration tensor Bε (or Aε), general expressions of the macro-
scopic thermo-elastic properties can be found 3. For this, linear displacement
boundary conditions corresponding to a macroscopic total strain ε̄ =< ε >
and uniform temperature change ∆T are assumed. The proof is based on the
following three-step approach.

First step

In this step, the composite is subjected to linear boundary displacements cor-
responding to the final total strain εs1 = ε̄ and to zero change in temperature
∆T s1 = 0. This step corresponds to a classical isothermal transformation whose
solution is given in section 4.2.3. The per phase strain averages are found as
follows:

< εs1 >ω1= Aε : ε̄, v1 < εs1 >ω1 +(1 − v1) < εs1 >ω0= ε̄, (4.47)

where Aε is given by equation (4.25) and its expression depends on the chosen
homogenization model. The stress averages are given by:

< σs1 >ω1= C1 :< εs1 >ω1 , < σs1 >ω0= C0 :< εs1 >ω0 . (4.48)

3An alternative if the macroscopic stiffness is known consists of using the Levin’s theorem
[55]: β̄ = ((1 − v1)β0 + v1β1) + (C̄ − (1 − v1)β0 − v1β1) : (C1 − C0)−1 : (β1 − β0).
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Second step

In this step, the RVE witnesses a uniform temperature increment equal to the
final temperature change ∆T s2 = ∆T , and incremental boundary linear dis-
placements corresponding to a macroscopic strain increment ∆ε̄s2 are imposed
so that uniform strain and stress increments are obtained:

∆σs2 = C0 : ∆ε̄s2 + β0∆T = C1 : ∆ε̄s2 + β1∆T. (4.49)

This allows to compute the uniform total strain increment:

∆ε̄s2 = −(C1 − C0)−1 : (β1 − β0)∆T. (4.50)

Third step

In this step, the composite is subjected to linear boundary displacements corre-
sponding to a macroscopic total strain increment ∆ε̄s3 and to zero temperature
increment ∆T s3 = 0. This is a classical isothermal transformation whose solu-
tion is given in section 4.2.3 as follows:

< ∆εs3 >ω1= Aε : ∆ε̄s3, v1 < ∆εs3 >ω1 +(1 − v1) < ∆εs3 >ω0= ∆ε̄s3,

where Aε is given by equation (4.25). The per-phase stress averages are given
by:

< ∆σs3 >ω1= C1 :< ∆εs3 >ω1 , < ∆σs3 >ω0= C0 :< ∆εs3 >ω0 . (4.51)

Superposition

Using the superposition theorem, it is seen that at the end of the three steps,
the per-phase strain averages are given by:

< ε >ω1 = Aε : (ε̄ + ∆ε̄s3) + ∆ε̄s2 (4.52)
v1 < ε >ω1 +(1 − v1) < ε >ω0 = ε̄ + ∆ε̄s2 + ∆ε̄s3, (4.53)

where ∆ε̄s2 is given by equation (4.50). At the end of the three steps, the
RVE is subjected to a uniform temperature change ∆T and linear boundary
displacements corresponding to a macroscopic total strain ε̄ + ∆ε̄s2 + ∆ε̄s3.
However, the latter value should be equal to ε̄, therefore we have:

∆ε̄s3 = −∆ε̄s2. (4.54)

Consequently, the per-phase strain averages can be computed from equations
(4.50) and (4.52-4.53), the per-phase stress averages from equations (4.48 -
4.49) and (4.51), and the stress average over the RVE by superposition,

< σ > = ∆σs2 + (1 − v1)
(
< σs1 >ω0 + < ∆σs3 >ω0

)
,

+ v1

(
< σs1 >ω1 + < ∆σs3 >ω1

)
.

(4.55)
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Final expressions

Carrying out the computations and rearranging terms, the following expressions
for the total strain averages are found:

< ε >ω1= Aε : ε̄ + aε∆T,

aε = (Aε − I) : (C1 − C0)−1 : (β1 − β0), (4.56)
v1 < ε >ω1 +(1 − v1) < ε >ω0= ε̄, (4.57)

where Aε is defined in equation (4.25). Similarly to (4.2), it is found that the
macroscopic thermo-elastic response is written under the following format:

< σ >= C̄ : ε̄ + β̄ ∆T ; β̄ = (1− v1)β0 + v1β1 + v1(C1 −C0) : aε, (4.58)

where the macroscopic stiffness C̄ is given by the isothermal expression (4.26),
aε by equation (4.56) and the macroscopic thermal expansion ᾱ is defined as
follows:

ᾱ = −C̄
−1 : β̄. (4.59)

In conclusion, generic expressions for thermo-elastic properties are obtained for
any homogenization model defined in the isothermal case by its strain concen-
tration tensor Bε (or equivalently Aε).

Special case.

When the two phases have identical stiffness operators (C0 = C1 ≡ C), equa-
tions (4.56) and (4.58) become invalid. Lielens [61] suggests the following solu-
tion. In the previous three-step method, step 1 remains unchanged and steps
2 and 3 are replaced by one single step in which the RVE is subjected to a
uniform temperature change ∆T s2 = ∆T and zero boundary displacements
corresponding to zero macroscopic total strain ∆ε̄s2 = 0. The average stress is
then:

< ∆σs2 > = (1 − v1) < C : ∆εs2 + β0∆T >ω0

+v1 < C : ∆εs2 + β1∆T >ω1

= C : ∆ε̄s2 + [(1 − v1)β0 + v1β1]∆T

= ((1 − v1)β0 + v1β1)∆T. (4.60)

Superposition of steps 1 and 2 shows then that:

< σ >= C̄ : ε̄ + β̄ ∆T ; β̄ = (1 − v1)β0 + v1β1. (4.61)

where the macroscopic stiffness C̄ is given by the isothermal expression (4.26).
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4.3.2 Numerical simulations

In this section, macroscopic predictions are compared with experimental data
and FE results obtained either on a RVE or a unit cell.

Influence of the inclusion’s shape

Consider a thermo-elastic composite made of a polymer matrix (E0 = 3.0
GPa, ν0 = 0.35 and α0 = 70 × 10−6 K−1) reinforced with aligned inclusions
(E1 = 172.0 GPa, ν1 = 0.2 and α1 = 10−6 K−1). Notice the high contrast
between Young’s moduli and CTEs. A uniaxial traction test is simulated in
the direction of the revolution axis of the inclusions.

M-T predictions of the CTE are confronted with those of van Es [101]. The
latter model is based on a simplified two-phase composite which is a super-
position of a layer made of the matrix material and another one made of the
inclusions material. The interaction between the inclusions is thus not directly
taken into account. However, in this formulation appears the homogenized stiff-
ness tensor of linear elasticity which might be calculated previously through a
classical M-T approach. Results of the predictions of the macroscopic CTE in
the longitudinal direction are reported on figure 4.4 for various volume fractions
of the inclusions and various aspect ratios. Both methods give very similar re-
sults. Logically, since the matrix has a higher CTE than the inclusions, the
longitudinal CTE will be higher for platelets (i.e. small Ar) than for fibers (i.e.
high Ar).

Comparison of various predictive methods

Short glass fiber reinforced composite is now considered (E1 = 72.5 GPa, ν1 =
0.2, α1 = 4.9×10−6 K−1, Ar = 35.58 and v1 = 8%). The matrix characteristics
are: E0 = 1.57 GPa, ν0 = 0.335 and α0 = 108.3 × 10−6 K−1.

A uniaxial tension test is performed in a direction aligned with the fibers.
Predictions with the M-T and interpolative models of the macroscopic longitu-
dinal and transverse Young’s moduli and CTE are confronted with experimental
data found in Lusti et al. [65]. In that paper, several simplified methods are
also used and recalled hereafter. McCullough’s model predicts the macroscopic
characteristics directly. Two microscopic approaches were proposed by Takao
and Taya [98]. The first one is a simple second order average of the longitudi-
nal and transverse CTE (noted hereafter Takao-Taya/aggregate). The second
one, proposed by Tandon and Weng tried to include elastic constraints. This
approach is noted Tandon-Weng/laminate hereafter. Comparison of all these
approaches with our mean-field homogenization predictions of the macroscopic
properties is reported in table 4.1. Note that for the predictions made with
homogenization schemes, aspect ratios of the fibers are multiplied by 1.25 in
order to try to model the cylinders by spheroids, as proposed by Li and Ponte
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Figure 4.4: Influence of the aspect ratio on the macroscopic thermal
expansion coefficient for different volume fractions of a linear thermo-
elastic composite.

Castañeda [57]. Table 4.1 shows that our predictions with both homogeniza-
tion models are very close to experimental results and this generally leads to
slightly better predictions than with simplified models. These predictions also
agree with Palmyra [75] 3D FE results (using first-order tetrahedra and periodic
boundary conditions) while our procedure is much less time-consuming.

Transversely isotropic inclusions

A graphite fiber-reinforced composite is now considered. The main difference
with the previous cases is that the inclusion’s material is not isotropic anymore
but transversely isotropic (subscript L denotes the longitudinal direction -the
one of anisotropy- and T a transverse one). A slight modification of the method
in order to take into account this particularity is proposed hereafter.

Since Eshelby’s tensor only depends on the matrix properties and the shape
of the inclusions, it will not be modified when used in M-T. However, when
storing the tensors (accordingly with the traditional storage of strain and stress
tensors4), stiffness matrix and the thermal expansion vector must be written

4[σ] = [σ11 σ22 σ33 σ23 σ13 σ12]T , [ε] = [ε11 ε22 ε33 2ε23 2ε13 2ε12]T
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Model ĒL ĒT ᾱL ᾱT

[GPa] [GPa] [10−6K−1] [10−6K−1]
Experiment [65] 5.99 27.7 ± 1.7 121 ± 1
M-T 6.097 1.929 30.1 120.6
M-T(Ar × 1.25) 6.401 1.932 28.9 121.0
Interpol. model 6.136 1.938 30.0 120.1
Interpol. model (Ar × 1.25) 6.432 1.941 28.8 120.5
FE [65] 29.3 ± 0.1 119 ± 0.1
Takao-Taya/aggregate [65] 32.0 120
Tandon-Weng/laminate [65] 29.4 119
McCullough [65] < 5.89 31.4 121

Table 4.1: Short glass fiber reinforced composite: predictions of the
macroscopic thermo-mechanical properties by using various homoge-
nization schemes and comparison with several predictive formulae [65].

under the following form, using the direction 1 as the direction of the aligned
fibers:

C1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
EL

−νLT

ET
−νLT

EL
0 0 0

−νLT

ET

1
ET

− νT

ET
0 0 0

−νLT

EL
− νT

ET

1
ET

0 0 0
0 0 0 2(1+νT )

ET
0 0

0 0 0 0 1
µLT

0
0 0 0 0 0 1

µLT

⎞⎟⎟⎟⎟⎟⎟⎟⎠

−1

,

α1 =
(

αL αT αT 0 0 0
)T

.

For this test, two materials are considered for the matrix: 930/934 epoxy
(E0 = 0.63 GPa, ν0 = 0.37 and α0 = 24.4 × 10−6 K−1) and PMR15 poly-
imide (E0 = 0.50 GPa, ν0 = 0.35 and α0 = 20.0 × 10−6 K−1), and two kinds
of graphite fibers: C6000 (E1,L = 33.8 GPa, E1,T = 3.35 GPa, µ1,LT = 1.30
GPa, ν1,LT = 0.20, ν1,T = 0.40 and Ar1 = ∞) and P75 (E1,L = 79.8 GPa,
E1,T = 1.38 GPa, µ1,LT = 1.00 GPa, ν1,LT = 0.20, ν1,T = 0.40 and Ar1 = ∞)
where −νLT represents the ratio of the strain in the transverse direction over
the strain in the longitudinal direction in a uniaxial tension test along the fibers.
Predictions by using the M-T homogenization scheme are confronted to several
experimental results, some well-known analytical predictions for the CTE and
FE results assuming generalized plane strain on square and hexagonal arrays
of fibers (Bowles and Tompkins [13]). These are reported in table 4.2. Note
that the Schapery’s predictive formula, which exists for the longitudinal and
transverse directions, is only valid for isotropic constituents and so it does not
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Composite - CTE Exp. FE FE M-T SH RH
(Hex) (Sq)

P75/934 - ᾱL -0.584 -0.512 -0.512 -0.512 -0.537 -0.512
P75/934 - ᾱT 19.18 19.07 19.06 18.92 19.70 18.90
P75/930 - ᾱL -0.598 -0.627 -0.625 -0.627 -0.644 -0.627
P75/930 - ᾱT 17.62 14.04 14.00 13.90 14.80 13.90
C6000/PMR15 - ᾱL -0.118 -0.104 -0.099 -0.104 -0.125 -0.104
C6000/PMR15 - ᾱT 12.46 12.56 12.36 12.54 14.30 12.40

Table 4.2: Transversely isotropic graphite fibers-reinforced compos-
ites: prediction of the longitudinal and transverse macroscopic CTE
([10−6K−1]) with direct predictive formulae [13] (Shapery (SH), Rosen
and Hashin (RH)), FE on a hexagonal (Hex) or square (Sq) fibers ar-
rangement [13], homogenization scheme (M-T) and experimental re-
sults (Exp.). Volume fraction of fibers are: 0.48 for P75/934, 0.65 for
P75/930 and 0.63 for C6000/PMR15.

account for the different values of the CTE of the inclusions in different direc-
tions. Good predictions are observed with mean-field homogenization schemes,
especially for the transverse macroscopic CTE which is much more dependent
on the predictive technique used.

4.4 Homogenization of viscoelastic composites

4.4.1 Homogenization technique

Consider a two-phase linear viscoelastic composite, each phase obeying a con-
stitutive law of the form (4.6/4.7). By using the Laplace-Carson transform (see
appendix B.1), the convolution product becomes a single contraction without
rate dependence anymore so that constitutive laws can be rewritten in the
Laplace domain as:

σ∗(s) = G∗(s) : ε∗(s),
or equivalently ε∗(s) = J∗(s) : σ∗(s),

with G∗(s) = [J∗(s)]−1
. (4.62)

These equations are similar to those of linear isothermal elasticity. Of course,
they are fictitious constitutive equations since they are defined in the Laplace-
Carson domain. However, one can apply the homogenization schemes valid in
linear isothermal elasticity in order to obtain the homogenized modulus Ḡ

∗ or
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J̄
∗:

σ̄∗(s) = Ḡ
∗(s) : ε̄∗(s),

or equivalently ε̄∗(s) = J̄
∗(s) : σ̄∗(s),

with Ḡ
∗(s) =

[
J̄

∗(s)
]−1

. (4.63)

Using a numerical inversion of the Laplace-Carson transform (see appendix B.2)
to find the corresponding time dependent operators, the following expressions
enable to compute the macroscopic response:

σ̄(t) = Ḡ(t) : ε̄(0) +
∫ t

0

Ḡ(t − τ) : ˙̄ε(τ)dτ, (4.64)

ε̄(t) = J̄(t) : σ̄(0) +
∫ t

0

J̄(t − τ) : ˙̄σ(τ)dτ.

For the numerical inversion, the use of 20 collocation points is recommended.
Those are chosen as equispaced on a logarithmic scale containing at least all the
relaxation times of the homogeneous materials. If the relaxation functions of
the phases are particularly simple, a lower number of points may be considered
(5 to 10).

4.4.2 Numerical simulations

As seen later in this work, homogenization of linear viscoelastic composites is
a subproblem of the affine formulation developed for homogenization of elasto-
viscoplastic composites. Accuracy of this subproblem is thus of first impor-
tance. As basic validation for homogenization of linear viscoelastic composites,
the following material defined by Prony series is considered. Time dependent
Young’s modulus of the matrix is E0 = 3 + 17e−t and its Poisson’s ratio is
ν0 = 0.38. For the long fibers, these parameters are: E1 = 3 + 17e−t/10 and
ν1 = 0.38. Given the high volume fraction of inclusions (50%), the interpola-
tive homogenization scheme is used. This composite was studied numerically
by asymptotic homogenization in the Laplace domain (asymptotic homogeniza-
tion method and 2D plane strain FE simulations are used as numerical method,
square arrangement of the fibers is considered) in Yeong-Moo Yi et al. [109]
and the time response is obtained by a Laplace numerical inversion method
similar to the one used in this work (see appendix B.2). Predictions by mean-
field homogenization schemes are available in Friebel et al. [33]. Our goal here
is to reproduce homogenization results and check their accuracy against FE.

Prediction of the homogenized transverse plane strain tensile modulus is
illustrated on figure 4.5. Plane strain tensile modulus (EPE

T ) is computed from
a tensile test in a transverse direction with respect to the fibers so that the
stress in the other transverse direction and deformation in the longitudinal
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Figure 4.5: Prediction of the homogenized transverse plane strain ten-
sile modulus of a two-phase linear viscoelastic composite.

direction are prevented. This can be computed from the components of the
relaxation modulus in the Laplace-Carson domain as (direction 1 is aligned
with the fibers):

EPE∗
T = G∗

3333 −
G∗

3322G
∗
3322

G∗
2222

, σ∗
33 = EPE∗

T ε∗
33. (4.65)

Our predictions are compared to the available results. Almost no difference
can be seen between the two results obtained by mean-field homogenization (in
both cases, 10 collocation points are used for the numerical Laplace inversion).
Furthermore, a very good agreement is observed between homogenization and
FE results.

Macroscopic response to a loading test can be computed with the help of
equation (4.64). On figure 4.6, mean-field homogenization results for a uniaxial
displacement test in the transverse direction to the fibers is illustrated. These
results are confronted to 2D plane strain finite element simulations. For this,
a quarter of unit cell corresponding to hexagonal array fibers arrangement is
considered (see section 3.1). A very good agreement is observed for various
strain rates. This means that the numerical inversion of the Laplace transform
is done correctly as well as the computation of the convolution product. For a
given loading path, evaluation of this convolution product is done incrementally
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in time from only the solution at the last time-step and given data over the
increment, see appendix C for more details.

4.5 Conclusions

In this chapter, we focused on three subjects and presented their theory in de-
tail. Firstly, major mean-field homogenization schemes for two-phase isother-
mal linear elastic composites are presented. Secondly, a general method allows
to formulate the thermo-elastic version of any homogenization model defined by
its isothermal strain concentration tensors. Thirdly, the problem of linear elas-
tic composites is examined. All these homogenization schemes must be highly
accurate since they are used as subproblems in the homogenization of nonlin-
ear materials. For this reason, the predictions have been extensively validated
against experimental data or FE results for numerous composite systems.

For thermo-elastic composites, we compared our predictions of the CTE
with experimental data, either when each phase is isotropic or when the fibers
present a transversely isotropic behavior. In both cases, the longitudinal and
transverse values of the CTE were in excellent agreement with target results.

For linear viscoelastic composites, validations are done in both Laplace and
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time domains. Predictions of a composite whose behavior is defined by Prony
series are in excellent agreement with FE results. This guarantees the quality
of the adopted homogenization scheme and of the numerical calculus (Laplace
inversion, incremental evaluation of a convolution product).



Chapter 5

Homogenization of
elasto-plastic composites

1 Mean-field homogenization schemes previously developed in the context of
linear elasticity are now extended to nonlinear behaviors and firstly to elasto-
plasticity. After a brief review of the constitutive equations, these are linearized
so that homogenization schemes apply and allow the computation of the effec-
tive response.

5.1 Constitutive equations

The J2 elasto-plastic model described hereafter is presented in Doghri [24] and
relies on the von Mises equivalent stress which is the second invariant of the
deviatoric stress tensor. In elasto-plasticity, the Hookean law and the additive
decomposition of the total strain are given by:

σ = C : εe, ε = εe + εp, (5.1)

where C is the Hookean elastic stiffness tensor, ε is the total strain tensor, εe

is the elastic part and εp the plastic one. A yield function f defines an elastic
region (f ≤ 0) and a yield surface (f = 0) as:

f(σ, p) = σeq − σY − R(p), (5.2)

1Some developments of this chapter led to two publications: “A study of various esti-
mates of the macroscopic tangent operator in the incremental homogenization of elasto-plastic
composites”, Pierard O. and Doghri I., International Journal for Multiscale Computational
Engineering, accepted for publication [79] and “Micromechanics of elasto-plastic materials
reinforced with ellipsoidal inclusions”, Pierard O., González C., Segurado J., LLorca J. and
Doghri I., Mechanics of Materials, submitted for publication [81].
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where σY is the initial yield stress and R(p) the hardening function. It is com-
monly written as a power law function: R(p) = kpn, where k is the hardening
modulus and n is the hardening exponent. The plastic flow rule governs the
evolution of the plastic strain as:

ε̇p = γ̇
∂f

∂σ
, (5.3)

where the scalar γ̇ ≥ 0 is the plastic multiplier. Its sign is positive if f = 0 and
ḟ = 0 (yielding in plasticity) or nil if f < 0 (elasticity) or f = 0 and ḟ < 0
(unloading).

The accumulated plasticity p is an internal variable of the model which
keeps track of the past history undergone by the material and is linked to the
viscoplastic law as:

p(t) =
∫ t

0

ṗdτ, ṗ =
(

2
3
ε̇p : ε̇p

)1/2

= γ̇, (5.4)

where ε̇p is the plastic strain rate.

5.2 Homogenization of elasto-plastic composites

Homogenization models developed for non-linear composite materials rely on
the definition of a linear comparison composite (LCC). This fictitious composite
has the same geometry as the original one but the non-linear constitutive laws of
its various phases are linearized in such a way that mean-field homogenization
schemes valid in linear (thermo-)elasticity apply. The different linearizations
lead to various formulations of the local behavior.

First attempt of homogenization for elasto-plastic composites was made by
Kröner [54] (and followed in the same time by Budiansky and Wu [16]) who
proposed a self-consistent model for polycrystals in which interactions between
the phases are only elastic. This led to too stiff responses. Another approach
was proposed by Hill [42] who linearized the local constitutive laws written in
rate form and introduced an instantaneous elasto-plastic tangent modulus to
compute the mechanical response of elasto-plastic materials through a step-
by-step iterative procedure. However, when dealing with high non-linearities,
predictions become very close to a far upper bound. Berveiller and Zaoui [8]
proposed an isotropic interaction law instead of the anisotropic one used by
Hill.

Four different formulations are presented here. The secant one relates di-
rectly the total strain to the total stress. The version used in this work has
been implemented by González and LLorca [37]. The incremental formulation,
which will be studied in-depth theoretically and numerically, is written in a
rate form. For exhaustiveness purpose, a short introduction is given to the



Homogenization of elasto-plastic composites 59

variational formulation which is based on energy concepts and involves an opti-
mization step. However, this formulation is limited to constitutive laws which
derive from a single potential. A last linearization, the affine formulation, will
be presented in the elasto-viscoplastic section (chapter 6) since we use it only
for this class of composites.

For linear homogeneous materials, stiffness and compliance tensors remain
uniform within a phase, even if strain and stress fields are not. This is not true
anymore with non-linear materials for which instantaneous (secant or tangent)
stiffness and compliance tensors are defined at each point of a phase. This fact
leads to a crucial problem when solving the homogenization step of the LCC
since an infinity of phases is present. One way to circumvent it is to define a
reference state for each constituent which enables to have representative moduli
of this phase. Generally, the average stress or strain in the phase are considered
as the reference state. However, especially when strong gradients occur, such
definition of the reference state is not that accurate. Another one based on the
second order moment of the stress tensor is presented for the secant formulation
in section 5.2.1.

5.2.1 Secant formulation

The secant formulation determines for each phase a secant operator which links
the total strain to the total stress. Implementation of the present version is
due to González and LLorca [37] for two-phase elasto-plastic material. For a
better coherence with subsequent sections, the algorithm described hereafter
is written in a strain driven way even if its dual form has been implemented.
However, these two approaches are rigorously equivalent (Suquet [95]).

Strains and stresses of an elasto-plastic phase r are related through a secant
stiffness tensor Cs

r as:

σr = Cs
r : εr with Cs

r = 3κrI
vol + 2µs

r(ε̃
eq
r )Idev, (5.5)

where µs
r is the secant shear modulus, which is a function of the per phase

reference equivalent strain ε̃eq
r .

The equivalent macroscopic relation makes use of the effective stiffness ten-
sor C̄ as:

σ̄ = C̄(ε̃eq
0 , ε̃eq

1 ) : ε̄, (5.6)

where ε̃eq
0 and ε̃eq

1 are the reference equivalent strains in the matrix and in-
clusions, respectively. These have to be computed from either the first or the
second order moment of the strain tensor in each phase as indicated below.

C̄ can be determined assuming any linear homogenization scheme defined
by its strain concentration tensor (equation (4.28) for two-phase materials).
Homogenization of elasto-plastic composites is thus reduced to solving a set of
non-linear algebraic equations in ε̃eq

0 . For each value of the applied strain ε̄,
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a secant effective stiffness tensor of the composite is determined so that the
effective response of the composite can be computed through equation (5.6).
From the practical viewpoint, this set is solved using a fixed point algorithm,
which begins with a trial value of the secant stiffness tensor of the matrix (the
one computed in the previous loading step).

In order to define the reference state of each phase, two methods are pro-
posed. In the classical approach (or first order method), the reference equivalent
strain in phase r is determined from the deviatoric part of the average strain
tensor < ε >dev

r of that phase:

ε̃eq
r =

[
2
3

< ε >dev
ωr

:< ε >dev
ωr

]1/2

, (5.7)

while in the modified (or second order method) it is computed from the second
order moment of the effective strain in the phase as in Ponte Castañeda [83]
and Suquet [94]:

ε̃eq
r =

[
2
3
Idev ::< ε ⊗ ε >ωr

]1/2

, (5.8)

and an analytical expression of < ε⊗ ε >ωr
was proposed by Buryachenko [17]

and given in Suquet [95] for sphere-reinforced composite. This is valid in linear
elasticity for a given homogenization scheme. However, when dealing with
non linear behaviors, it can be used on the LCC. The extension to ellipsoidal
inclusions is done at a higher computational cost and requires the computation
of the derivatives of the Eshelby’s tensor with respect to the Poisson’s ratio
(details in Pierard et al. [81]).

5.2.2 Incremental formulation

The incremental approach is another option to predict both macroscopic and
per-phase responses of non-linear materials. This is done incrementally over
several time-steps. The implementation of this formulation is more involved
than the secant first-order one but enables to deal with any elasto-plastic model
in any phase and a wider range of loading paths (e.g.: non-proportional and
cyclic loadings) since it follows the deformation history.

The rate form of the elasto-plastic behavior of phase r reads:

σ̇r = Cep
r : ε̇r, (5.9)

where Cep
r is the so-called continuum elasto-plastic tangent operator. When

considering finite time increments for numerical implementation, a discretiza-
tion in time over each time interval gives:

∆σr ≈ Calg
r : ∆εr, (5.10)
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where ∆σr and ∆εr are stress and strain increments of phase r over the time
interval and Calg

r is the algorithmic tangent operator. It is emphasized that the
two tangent operators are different in general and become close for vanishingly
small plastic strain increments.

Both continuum and consistent tangent operators can be computed analyt-
ically for most constitutive models. For the J2 elasto-plastic model considered
in this study, they read:

Calg
r = Cep

r − (2µr)2
∆pr

σeq,tr
r

(
3
2
Idev − N r ⊗ N r

)
, (5.11)

Cep
r = Cr − (2µr)2

3µr + dσeq
r

dpr

N r ⊗ N r, N r =
3
2

σdev
r

σeq
r

, (5.12)

where σeq,tr
r is an elastic predictor of the equivalent stress of phase r at the

end of the considered time step and N r is the normal to the yield surface in
stress space of phase r. Both tangent operators are anisotropic during a plastic
increment even for isotropic materials.

Equation (5.10-5.12) written for each phase thus define a set of linearized
constitutive equations over the time step. Given the state of deformation at
the beginning of the time step, homogenization models valid in linear elasticity
can apply over this time interval so that the effective relation reads:

∆σ̄ = C̄(σ̃eq
0 , σ̃eq

1 ) : ∆ε̄, (5.13)

where C̄ is the macroscopic tangent operator. In this approach, the considered
reference equivalent stresses in the phases are computed from the average stress
tensor. Extension of the incremental approach by taking into account the
second order moment of the stress tensor is still an open subject. Similarly
to developments valid for the secant approaches, the effective tangent operator
C̄ can be evaluated once a homogenization scheme is assumed and is given
by (4.28). The strain concentration tensors are the ones used in the context of
linear elasticity (section 4.2.3) but their arguments are the elasto-plastic tangent
operators in each phase. This set of equations is solved in a strain driven
way. Given a macroscopic strain increment over the time step, a trial value
of the average strain increment in the inclusions is computed. A fixed point
iterative scheme converges to average strain values in the phases from which
the effective stiffness and the macroscopic response can be computed. Various
results obtained with this formulation are presented in Doghri and Ouaar [26]
for spherical reinforcements and in Doghri and Friebel [25] for other inclusion
shapes. As presented in section 5.3, various computations of the macroscopic
tangent stiffness are possible by considering isotropic or transversely isotropic
extraction of the tangent modulus of the matrix.
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5.2.3 Variational formulation

Developments presented hereafter follow the review paper of Ponte Castañeda
[86], who made the major developments of this formulation. This approach
is valid for heterogeneous hyperelastic materials for which, at each point, the
local constitutive law derives from a single potential:

σ =
∂w

∂ε
(ε). (5.14)

For a strain tensor field ε within the set of kinematically admissible ones K, the
macroscopic stress can be determined from the effective energy function W̄ (ε̄)
as (Hill [41]):

σ̄ =
∂W̄

∂ε̄
, W̄ (ε̄) = min

ε∈K
[(1 − v1) < w0(ε) >ω0 +v1 < w1(ε) >ω1 ] . (5.15)

A dual form exists and both are exactly equivalent.
Similarly to the other formulations, the effective energy function cannot be

determined easily and approximations must be made. The local potential can
be approximated by the sum of a Taylor expansion wT

r of wr around a reference
strain ε̃r and a per phase constant corrector function Vr

2:

wr(ε) ≈ wT
r (ε) + Vr(ε̃r,L

0
r),

wT
r (ε) = wr(ε̃r) +

∂wr

∂ε
(ε̃r) : (ε − ε̃r) +

1
2
(ε − ε̃r) : L0

r : (ε − ε̃r),

Vr(ε̃r,L
0
r) = stat

ε̂r

[
wr(ε̂r) − wT

r (ε̂r)
]
, (5.16)

where L0
r is a uniform modulus tensor and stat means optimizing with respect

to the relevant variable. A volume average over the composite enables to get
an approximation of the effective potential:

W̄ (ε̄) ≈ W̄T (ε̄; ε̃s,L
0
s) +

N∑
r=1

vrVr(ε̃r,L
0
r),

W̄T (ε̄, ε̃s,L
0
s) = min

ε∈K
< wT (ε) >, (5.17)

where wT is the volume average of the approximated local potentials wT
r . An

optimization process over the variables εr and L0
r which depends on the choice

of the corrector function enables to derive various estimates and bounds.
A first choice reduces the stationary condition in (5.16) to finding a max-

imum (Ponte Castañeda [83]) which leads to a linear elastic comparison com-
posite so that a secant effective constitutive relation can be written (deBotton

2Such approximation of the potential corresponds to a fictitious linear thermo-elastic

material since σr(ε) ≈ ∂wr
∂ε

(ε̃r) + L0
r : (ε− ε̃r) = L0

r : ε +
“

∂wr
∂ε

(ε̃r) − L0
r : ε̃r

”
.
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and Ponte Castañeda [22]). Bounds and estimates can be found for non-linear
materials by using the models developed for linear ones on the linear compar-
ison composite. This method takes into account the second-order moment of
the fields.

Another approach consists of choosing ε̂r = ε̃r, which cancels the corrector
function Vr in equation (5.16) (Ponte Castañeda [84]). This method makes use
of the tangent moduli of the phases and is called accordingly the tangent second-
order estimates because it reproduces exactly to the second-order terms of the
asymptotic expansions of Suquet and Ponte Castañeda [97]. The optimizing
process lead to per phase reference strains ε̃r equal to the average strain in
that phase. This method has the drawback of a duality gap (i.e.: the dual
formulation does not lead to the same linear comparison composite and thus
a different prediction) and cannot provide bounds. The affine formulation (see
section 6.3) is a particular case of this formulation.

A recent improvement of this second-order method takes into account the
second-order moment of the stress tensor so that its accuracy is much higher
when strong heterogeneities of the fields occur (Ponte Castañeda [85]). This
method is called the generalized secant one since it leads to intermediate mod-
ulus between the tangent and secant ones.

5.3 Computation of the macroscopic tangent
operator

In this section, different computations of the macroscopic tangent modulus are
examined. These evaluations have a great impact on the final prediction of
the incremental formulation. A theoretical study will first determine relations
between the different operators thus computed. This will be later analyzed
numerically for various composite materials.

5.3.1 Motivation for a stiffness reduction of the macro-
scopic
tangent operator

Predictions of the classical incremental formulation are known to be too stiff and
this is illustrated on the following example. Consider a longitudinal uniaxial
tension test performed on an elasto-plastic aluminum matrix (E=71.3 GPa,
ν=0.3, σY =246.9 MPa, k=133 MPa and m=0.37) reinforced by elastic SiC
whiskers (E=485 GPa, ν=0.2, v1=22 % and Ar=4.1). Experimental results
and 3D FE simulations are taken from Levy and Papazian [56]. Results of the
incremental formulation implemented as in section 5.2.2 are also reported on
figure 5.1 and are effectively very stiff.
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Figure 5.1: Aluminum matrix with SiC whiskers. Longitudinal macro-
scopic tension test. Illustration of the too stiff response of the incre-
mental formulation.

In the subsequent sections, various attempts to soften the response are
presented. The key idea is to consider tensors other than C0 in the computation
of the Eshelby, Hill and effective tensors. This can be done by modifying the
tensor C0 and extracting its isotropic or transversely isotropic part (C0 is
anisotropic during plastic yielding even if the matrix is isotropic). Comparisons
between all these tensors are made and their influence on the final response is
examined.

5.3.2 Influence of the matrix modulus

A fourth-order tensor C is positive definite (noted C > 0) if for all non-nil
symmetric second-order tensors ε,

ε : C : ε > 0. (5.18)

By using this quadratic form, two fourth-order tensors can be compared. Nota-
tion C > D means that for all non-nil second-order tensors ε, ε : C : ε > ε : D : ε.

An important application of positive definite tensors is when C represents
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a macroscopic stiffness C̄ and ε̄ a strain tensor. If C̄
(1)

> C̄
(2), it means that:

∀ ε̄ �= 0, ε̄ : C̄
(1) : ε̄︸ ︷︷ ︸
σ̄(1)

> ε̄ : C̄
(2) : ε̄︸ ︷︷ ︸
σ̄(2)

. (5.19)

So, during a uniaxial test, following relations are guarantee σ̄
(1)
11 > σ̄

(2)
11 if ε̄11 > 0

and σ̄
(1)
11 < σ̄

(2)
11 otherwise.

In this section the dependence of the macroscopic tangent, the Hill’s and
the Hill’s constraint tensors with respect to C0 is analyzed. Our main goal is
the following. If C

(1)
0 > C

(2)
0 , does the relation C̄

(1)
> C̄

(2) hold?
Let C0 > 0 and ∆C > 0. Bornert [10] proved the following relations:

P (C0 + ∆C) < P (C0),
C∗(C0) < C∗(C0 + ∆C). (5.20)

Hill’s tensor P is thus decreasing with C0 for a given geometry of inclusions
on the contrary to Hill’s constraint tensor C∗ which is an increasing function
of C0.

Given a fourth-order tensorial variable A, one can prove that the following
function f is increasing with A (Bornert [10]):

f : A → [
v1(A + C1)−1 + (1 − v1)(A + C0)−1

]−1 − A. (5.21)

Expression (4.27) of the macroscopic tangent operator is form-similar to (5.21).
C̄ is thus increasing with C∗ and therefore with C0:

C̄(C0 + ∆C) > C̄(C0), ∆C > 0. (5.22)

Furthermore, the dependence of C̄ with respect to P is analyzed. By using
relations (4.26) and (4.36), the macroscopic tangent operator can be rewritten
as:

C̄ = (v1C1 : Bε + (1 − v1)C0) : (v1B
ε + (1 − v1)I)−1

= C0 + v1(C1 − C0) : Bε : (v1B
ε + (1 − v1)I)−1

= C0 + v1(C1 − C0) : (v1I + (1 − v1)Bε−1)−1

= C0 + v1[(C1 − C0)−1 + (1 − v1)P ]−1. (5.23)

Since P is decreasing with C0 and, if in this last expression, P is computed
either with C0 or C0 + ∆C, and the rest of C̄ is computed with C0, the
following relation holds:

C̄(P (C0 + ∆C),C0) > C̄(P (C0),C0), ∆C > 0. (5.24)
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5.3.3 Isotropic parts of an anisotropic modulus tensor

Any fourth-order isotropic tensor can always be written under the form (Suquet
and Bornert et al. [96]):

Ciso = 3κIvol + 2µIdev = (Ivol :: Ciso)Ivol +
1
5
(Idev :: Ciso)Idev, (5.25)

where κ and µ are the bulk and shear moduli, respectively, Ivol = 1
31 ⊗ 1 and

Idev = I−Ivol are the spherical and deviatoric operators, respectively, 1 is the
second-order identity tensor and ′ ::′ is a tensor product contracted over four
indices.

Extracting an isotropic part Ciso from an anisotropic modulus tensor Cani

consists in finding two scalars κt and µt so that the isotropic tensor is written
as:

Ciso = 3κtI
vol + 2µtI

dev. (5.26)

Two extraction methods are proposed hereafter: a general one valid for any
anisotropic tensor and a special one.

General method This method proposed by Bornert [11] consists of a pro-
jection of the anisotropic tangent operator Cani onto the subspace of isotropic
ones so that we get:

3κt = Ivol :: Cani, 10µt = Idev :: Cani. (5.27)

In all the simulations, the J2 elasto-plastic model is used. It is thus inter-
esting to apply this projection method in this particular case. An application
of equation (5.27) to Calg gives an isotropic projection CIsoGen defined by

κt = κ, µt = µ − 3
5
µ2

(
1
h

+ 4
∆p

σtr
eq

)
. (5.28)

Special method Another method was proposed by Ponte Castañeda [84].
It is applicable when the anisotropic tangent operator can be cast under the
form:

Cani = 3k1I
vol + 2k2(Idev − 2

3
N ⊗ N) + 2k3

(
2
3
N ⊗ N

)
, (5.29)

with Nii = 0 and N : N = 3
2 . The method is based on the following funda-

mental assumption:
dev(ε̇)//N , (5.30)

where ′//′ means ′is collinear with′. It then follows that:

σ̇ = Cani : ε̇ = CIsoSpe : ε̇, (5.31)
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where CIsoSpe is a special isotropic operator defined by:

κt = k1, µt = k3. (5.32)

Chaboche et al. [18, 19] made the interesting observation that the special
isotropic extraction corresponds to a stiffness reduction of Cani in a direction
orthogonal to N . Indeed, since (Idev − 2

3N ⊗ N) : N = 0, and using (5.30),
we have:

σ̇ = Cani : ε̇ =
[
Cani + α(Idev − 2

3
N ⊗ N)

]
: ε̇ = CIsoSpe : ε̇. (5.33)

With the conditions 2k3 − 2k2 − α = 0 and 2µt = 2k2 + α, we do retrieve
µt = k3.

For J2 elasto-plastic model, both anisotropic tangent operators follow equa-
tion (5.29) and assumption (5.30) is always valid if Ṅ = 0. An application of
equation (5.32) gives:

κt = κ, µt = µ

(
1 − 3µ

h

)
. (5.34)

Chaboche et al. [18, 19] also note that µt thus obtained is softer than with the
general projection when Cep is considered. We generalize this observation and
prove that CIsoGen is stiffer than CIsoSpe for both Cep and Calg:

CIsoGen − CIsoSpe =
12µ2

5

(
1
h
− ∆p

σtr
eq

)
Idev > 0, (5.35)

the scalar factor between brackets being positive (Doghri and Ouaar [26]).

5.3.4 Transversely isotropic parts of an anisotropic
modulus tensor

Similarly to the general method for isotropic extraction, a projection is pro-
posed for extracting the transversely isotropic part of an anisotropic fourth-
order tensor. The method presented here was first proposed by Walpole [103]
and described in Frederico et al. [31].

Any transversely isotropic second-order tensor c can be written as a com-
bination of two basis tensors a and b:

c = caa + cbb, (5.36)

where:
a = w ⊗ w, b = 1 − a,
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w being the direction of anisotropy. Any fourth-order transversely isotropic
tensor T with a direction of anisotropy w can be written as (Bornert [10]):

T = (B1 :: T )B1 + (B2 :: T )B2 +
1
2
(B3 :: T )B3

+
1
2
(B4 :: T )B4 +

1
2
(B5 :: T )B6 +

1
2
(B6 :: T )B5, (5.37)

where the six fourth-order basis tensors Bi are constructed as follows:

(B1)ijkl =
1
2
bijbkl, (5.38)

(B2)ijkl = aijakl,

(B3)ijkl =
1
2
(bikbjl + bjkbil − bijbkl),

(B4)ijkl =
1
2
(bikajl + bilajk + bjlaik + bjkail),

(B5)ijkl = aijbkl,

(B6)ijkl = bijakl. (5.39)

The first four tensors have minor and major symmetries while the last two ones
have only the minor symmetries. One can notice that if T5 = T6 (Ti = Bi :: T ),
the tensor T is fully symmetric (B5ijkl = B6klij). In this particular case, the
problem is reduced to finding five independent components as expected in the
case of transversely isotropic modulus operators. If the first four components
Ti are positive, then the tensor T is positive definite.

Let’s now consider an arbitrary anisotropic fourth-order tensor Cani which
has the minor symmetries. In this case, application of the double contractions
in (5.37) on Cani instead of T give the projection of Cani onto the subspace
generated by Bi, to obtain a transversely isotropic tensor with a direction of
anisotropy w:

CTrIso = (B1 :: Cani)B1 + (B2 :: Cani)B2 +
1
2
(B3 :: Cani)B3 (5.40)

+
1
2
(B4 :: Cani)B4 +

1
2
(B5 :: Cani)B6 +

1
2
(B6 :: Cani)B5

Application of this method to the tangent operator Cep (equation (5.12))
of the J2 elasto-plastic model gives (direction of anisotropy is along axis 1 and
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Ti = Bi :: Cani):

T1 = 2κ +
2
3
µ − 1

2
(N2

22 + N2
33 + 2N22N33)

(2µ)2

h
,

T2 = κ +
4
3
µ − N2

11

(2µ)2

h
,

T3 = 2µ − 1
4
(N2

22 + N2
33 − 2N22N33 + 2N2

23)
(2µ)2

h
,

T4 = 2µ − 1
2
(2N2

12 + 2N2
13)

(2µ)2

h
,

T5 = κ − 2
3
µ − 1

2
(N11N22 + N11N33)

(2µ)2

h
,

T6 = T5, (5.41)

where h = 3µ + dσeq

dp . With these notations, engineering moduli are given by:

EL = T2 − T 2
5

2T1
, (5.42)

νLT =
T5

2T1
, νT =

T 2
5 − (2T1 − T3)T2

T 2
6 − (2T1 + T3)T2

, (5.43)

µLT =
T3

4
, µT =

T4

4
, (5.44)

where EL is the Young’s modulus in the longitudinal direction (the one of
anisotropy), νLT is the Poisson’s ratio for a traction test in the longitudinal
direction, νT is the Poisson’s ratio in the transverse plane, µLT is the shear
modulus along the longitudinal direction and µT is the shear modulus in the
transverse plane.

For the J2 elasto-plastic model under monotonic loading, assumption (5.30)
is verified and therefore equation (5.31) always holds and gives an isotropic
tangent operator. Nevertheless, based on the fact that the special method for
extracting the isotropic part of a tensor gives a softer tangent, we propose the
following more compliant approximation of the anisotropic tangent:

CAniSpe = Cani − K
(2µ)2

h
N ⊗ N , (5.45)

where K > 1 is a softening factor. Applying the general transversely isotropic
extraction on this modified tensor will give a new transversely isotropic tensor.
This approach will be called the special transversely isotropic method. The
particular case of K = 1 (no softening added) is called the general transversely
isotropic method.
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5.3.5 Comparison of various local tangent operators

In this section, the various local tangent operators of the J2 plasticity model
are compared in the meaning of the quadratic forms. Doghri and Ouaar [26]
already proved that

Cep ≥ Calg ≥ CIsoSpe. (5.46)
Our next goal is to find similar relations involving CIsoGen. The results here-
after hold for both Calg (∆p > 0) and Cep (by setting ∆p → 0) so that the
anisotropic tangent operator is denoted Cani. Results of section 5.3.3 give:

CIsoGen − Cani = −H

[
Idev − 10

3
N ⊗ N

]
, H =

6
5
µ2

(
1
h
− ∆p

σtr
eq

)
> 0.

(5.47)
The proof for H > 0 is given in Doghri and Ouaar [26]. Unfortunately, the
tensor might be not positive definite. However, some interesting relations are
found in the following case:

σ =
[

a b b 0 0 0
]T

, (5.48)

where the scalars a and b are of opposite signs. Under these conditions and
if fourth-order tensors are stored under the usual engineering way, following
result is obtained:

CIsoGen − Cani = H

⎛⎜⎜⎜⎜⎜⎜⎝
8/3 −4/3 −4/3 0 0 0
−4/3 1/6 7/6 0 0 0
−4/3 7/6 1/6 0 0 0

0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.49)

For stresses given by equation (5.48), the strains have the following form:

ε =
[

ε11 ε22 ε33 0 0 0
]T

, (5.50)

where sign(ε11) = sign(a); sign(ε22) = sign(ε33) = −sign(a). For these
strains, we obtain:

ε : (CIsoGen − Cani) : ε = H
(8

3
ε2
11 +

1
6
ε2
22 +

1
6
ε2
33 −

8
3
ε11ε22

+
7
3
ε22ε33 − 8

3
ε11ε33

)
> 0. (5.51)

In this particular case, following relation holds:

CIsoGen > Cani, Cani = Cep or Calg. (5.52)

It is rather surprising and unexpected to find that CIsoGen is stiffer than Cani.
Given the form of the stress tensor (5.48), this result is valid for each plastic
phase of the composite if a macroscopic tension test is applied. The particular
case b = 0 corresponds to uniaxial tension in a phase.



Computation of the macroscopic tangent operator 71

5.3.6 Various estimates of the macroscopic tangent
operator

Hill’s tensor (P ), the strain concentration tensor (Bε) and the macroscopic tan-
gent operator (C̄) make use of C0 as indicated in section 4.2.1 for Mori-Tanaka
homogenization scheme. In order to extend the latter model to elasto-plasticity,
tangent operators Cr(t) which are homogeneous per phase and defined at a ref-
erence equivalent stress σ̃eq are needed:

σ̇(x, t) = Cr(t, σ̃eq) : ε̇(x, t), ∀x ∈ ωr. (5.53)

For simplicity, subsequent developments focus on the matrix phase and assume
that it obeys J2 elasto-plastic model. A reference tangent operator Cani

0 (t)
is computed by sending average matrix strain and strain increments to the
J2 elasto-plastic model. If all computations are made with Cani

0 which is
anisotropic, this is known to lead to too stiff predictions (see section 5.1). Vari-
ations may include evaluation of Eshelby’s tensor E , Hill’s tensor P or all the
macroscopic operator C̄ with different approximations of Cani

0 . In the previous
sections, the following instantaneous matrix operators have been defined:

1. Anisotropic operators Cani
0 , either ”continuum” (Cep

0 , equation (5.12))
or ”algorithmic” (Calg

0 , equation (5.11)).

2. Isotropic part CIsoGen
0 using a general projection method - equation

(5.27).

3. Isotropic part CIsoSpe
0 using a special method - equation (5.32).

4. Transversely isotropic part CTrIsoGen
0 using a general projection method

(obtained by setting Cani = Cep
0 in equation (5.40)).

5. Transversely isotropic part CTrIsoSpe
0 using a special method (obtained

by computing CAniSpe
0 from equation (5.45) and setting Cani = CAniSpe

0

in equation (5.40)).

For the computation of various estimates of the macroscopic tangent, the fol-
lowing procedure is proposed.

P = E(E0) : D−1
0 , (5.54)

Bε = [I + P : (C1 − C0)]−1, (5.55)
C̄ = (v1C1 : Bε + (1 − v1)C0) : (v1B

ε + (1 − v1)I)−1. (5.56)

C0, D0 and E0 are various instantaneous operators for the reference matrix
discussed above. The classical (but too stiff) case corresponds to the following
choice:

E0 = D0 = C0 = Cani
0 = Cep

0 . (5.57)
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Softer and better predictions were obtained by Doghri and Ouaar [26] and
Doghri and Friebel [25] by taking:

E0 = CIsoGen
0 or CIsoSpe

0 ; D0 = C0 = Cani
0 = Calg

0 . (5.58)

Chaboche et al. [18, 19] obtained good predictions with the following case:

E0 = D0 = CIsoSpe
0 ; C0 = Cani

0 = Cep
0 . (5.59)

Several other variants will be tested in the numerical section.
Notice that evaluation of the Eshelby’s tensor is analytical only if E0 is

isotropic or transversely isotropic with the restriction that the direction of
anisotropy is aligned with the direction of the reinforcements. Expressions in
these two cases are different and presented in appendix A. In all other cases, a
numerical evaluation is required (Gavazzi and Lagoudas [34]).

5.4 Numerical simulations

5.4.1 Effect of the macroscopic tangent operator’s com-
putation

Throughout this section, comparisons are made between the different predic-
tions obtained with various versions of the macroscopic tangent operator of the
incremental formulation. Table 5.1 explains which operator is used to compute
Eshelby’s tensor, Hill’s tensor and finally the macroscopic tangent operator.

For all the simulations, the J2 plasticity model is used and notations of the
corresponding parameters were presented in section 5.1. Inclusion’s shape is
described by the aspect ratio Ar. Subscript 0 refers to the matrix and 1 to the
inclusions.

Aluminum matrix with SiC whiskers

Example of section 5.3.1 is picked up again. Confrontation of reference results
with different evaluations of Hill’s tensor P is reported on figure 5.2a. The
extracting method to get the isotropic part of C0 has a considerable impact
on the macroscopic prediction. In this case, the special method (P IsoSpe)
gives acceptable results, the general one being much too stiff (P IsoGen). This
fact has already been reported by Chaboche et al. [19]. Logically, in this test,
computing P with the transversely isotropic part or the anisotropic version
gives almost the same results, which are both too stiff.

Predictions obtained with a macroscopic tangent operator computed en-
tirely from the same tangent operator of the matrix are reported on figure
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Case Notations E0 (for E D0 (for P C0 (for C̄ in
in eq.(5.54)) in eq. (5.54)) eqs. (5.55-5.56))

1 Esh IsoGen CIsoGen
0 Cani

0 Cani
0

2 Esh IsoSpe CIsoSpe
0 Cani

0 Cani
0

3 P IsoGen CIsoGen
0 CIsoGen

0 Cani
0

4 P IsoSpe CIsoSpe
0 CIsoSpe

0 Cani
0

5 P TrIsoGen CTrIsoGen
0 CTrIsoGen

0 Cani
0

6 P TrIsoSpe CTrIsoSpe
0 CTrIsoSpe

0 Cani
0

7 all IsoGen CIsoGen
0 CIsoGen

0 CIsoGen
0

8 all IsoSpe CIsoSpe
0 CIsoSpe

0 CIsoSpe
0

9 all TrIsoGen CTrIsoGen
0 CTrIsoGen

0 CTrIsoGen
0

10 all Ani Cani
0 Cani

0 Cani
0

Table 5.1: Notations for the various computations of the macroscopic
tangent operator.

5.2b. In this case only the predictions obtained with the special isotropic tan-
gent operator give realistic results. The three other predictions are too stiff,
especially with the general isotropic operator !

One can note that it is has been proven that C̄ is a monotonic function of
the tangent operator of the matrix used for the computation of P (see equation
(5.24)), which is well in accordance with figure 5.2a. On the other hand, C̄
is also a monotonic function of C0 if E0 = D0 = C0, as observed on figure
5.2b. Finally, figure 5.2a shows that Esh IsoGen and Esh IsoSpe give almost
the same results. This is almost always observed and is due to the property of
homogeneity of degree zero of E with respect to C0 (Suquet and Bornert [96]).

Aluminum alloy matrix with long stiff aluminum fibers

Once again, a ductile aluminum alloy matrix (E=68.9 GPa, ν=0.32, σY =94
MPa, k=578.25 MPa and m=0.53) reinforced this time by long stiff alumna
fibers (E=344.5 GPa, ν=0.26, v1=55 % and Ar=1000) is considered.

Figure 5.3 illustrates the various predictions in a longitudinal macroscopic
tension test and are compared to 2D FE simulations with an hexagonal ar-
rangement of fibers (Jansson [45]). All the predictions which compute P with
different matrix operators (E0 �= D0) give non physical results. In fact, this in-
consistency gives a non symmetric P , which is unacceptable (see section 4.2.1).
The overall stiffness is not symmetric either and the transverse response in
terms of strains and stresses was found to lose its symmetry.

However, all other predictions (with E0 = D0) give almost the same results
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Figure 5.2: Aluminum matrix with SiC whiskers. Longitudinal macroscopic
tension test.

as the finite element simulations, excepted all IsoGen which is a little bit too
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Figure 5.3: Aluminum alloy matrix with long stiff aluminum fibers. Longitu-
dinal macroscopic tension test.

stiff.
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Aluminum matrix with fibers

In this simulation, an aluminum alloy matrix (E=70 GPa, ν=0.33, σY =200
MPa, k=2000 MPa and m=1) is reinforced with δ−Al2O3 fibers (E=300 GPa,
ν=0.2, v1=10 % and Ar=20). The behavior of such a material was simulated
with FE by Kang and Gao [49]. In a tension test in the longitudinal direc-
tion, figures 5.4a and 5.4b illustrate the predictions obtained with different
evaluations of P and C̄, respectively. Note that even if Esh IsoGen gives the
smallest error, the hardening rate is not predicted accurately so that the most
accurate predictions are obtained when making use of the special isotropisation
technique. The general transversely isotropic and anisotropic predictions are
almost superposed and also too stiff. However, making use of the special trans-
versely isotropic extraction -equations (5.40) and (5.45)- such as illustrated on
figure 5.5 softens the response and can even give the best predictions with a
relatively small value of the softening coefficient K.

Predictions for a tension test in the transverse direction are reported on
figures 5.6a and 5.6b. Interpretation given for the longitudinal case remains
valid except that all TrIsoGen is much stiffer than all Ani. The last one being
quite close to the reference solution. Again, with a well chosen value of the
softening coefficient, one can get very reliable predictions (see figure 5.7). This
is even lower than for longitudinal traction.

MMC under cyclic strain

Different predictions of a metal matrix composite (MMC) (matrix: E=75
GPa, ν=0.30, σY =75 MPa, k=416 MPa and m=0.39; inclusions: E=400 GPa,
ν=0.20, v1=30 % and Ar=1) under cyclic strain are illustrated on figure 5.8
and compared to FE predictions (2D axisymmetric unit cell) of Doghri and
Ouaar [26]. Once again this test shows large differences between the different
evaluations of the macroscopic tangent operator. Only Esh Iso (general and
special), P IsoSpe and all IsoSpe give acceptable results. But once use of the
general isotropic extraction of C0 or the anisotropic tangent operator is made
in P or C̄, results are much stiffer.

MMC under transverse shear

The response of the same MMC (but with 15% of long fibers) undergoing a
transverse shear test is confronted to 2D plane strain FE simulations and il-
lustrated on figure 5.9a. As in tensile tests, predictions which make use of the
general isotropic extraction (excepted Esh IsoGen) or only the anisotropic tan-
gent operator are too stiff while the special methods give much more realistic
results. Several predictions with the transversely isotropic extraction are illus-
trated on figure 5.9b. The too stiff general transversely isotropic prediction can
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Figure 5.4: Aluminum matrix with fibers. Longitudinal macroscopic tension
test.

be corrected with the help of the softening coefficient so that predictions be-
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Figure 5.5: Aluminum matrix with fibers. Longitudinal macroscopic
tension test. Various computations of P with the general and special
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come much more realistic and can even give the best one among all the different
computations.

5.4.2 Microscopic fields analysis

This section focuses on the accuracy of the microscopic fields and their influence
on the macroscopic predictions. For this, three models are compared: first order
secant formulation, second order secant formulation (results of these two models
are provided by González and LLorca [81]) and the incremental formulation
(obtained with DIGIMAT [23]). The latter always uses an isotropic extraction
of the matrix modulus to compute the Eshelby’s tensor only in order to soften
the effective tangent operator (section 5.3). Throughout this section, the same
composite is considered and consists of an elasto-plastic matrix (Em = 70 GPa,
νm = 0.33, σY = 0 MPa, hardening power law and k = 400 MPa) reinforced
with ellipsoidal elastic inclusions (Ei = 400 GPa and νi = 0.20) with small
aspect ratio (Ar = 3). Two different values of the hardening exponent of
the matrix are used: n = 0.05 and n = 0.40. Uniaxial traction tests are
performed in both longitudinal and transverse directions. Such analysis enables
to better evaluate homogenization schemes. Also, knowing the accuracy of
the microscopic fields is a crucial issue since these govern damage initiation.
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Figure 5.6: Aluminum alloy with fibers. Transverse macroscopic tension test.

For validation purpose, predictions of mean-field homogenization schemes are
confronted with FE simulations on 3D periodic unit cells (section 3.2).
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Figure 5.7: Aluminum alloy with fibers. Transverse macroscopic ten-
sion test. Various computations of P with the general and special
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To check the accuracy of the FE simulations, four cells were generated
and for each value of n, four traction tests were simulated in the longitudinal
direction and eight in the transverse one. The scattering between these curves
was generally very low, from a fraction of percent to a few percent. This being
higher in the transverse direction and for n = 0.05. The quasi-exact reference
prediction is obtained by averaging the four (or eight) curves.

Macroscopic results of mean-field homogenization and FE simulations are
plotted on figures 5.10 and 5.11 for tension tests in both directions and for the
two values of the hardening exponent. First-order secant method is generally
the stiffest prediction while the second-order secant is the softest among the
three homogenization schemes. The incremental formulation has intermediate
predictions. It is interesting to notice that accuracy depends on the direction
and the hardening. Differences being more pronounced for the longitudinal
traction test and the low value of the hardening exponent. For the traction
direction, this result was expected since curvature edges of the ellipsoids are
higher in the longitudinal direction than the transverse one, where reinforce-
ments behaves much more like spheres. This fact is illustrated on figure 5.12
where the accumulated plastic strain field is illustrated for both traction tests
for a corresponding macro strain of 5% and n = 0.05. Heterogeneities are clearly
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Figure 5.8: MMC under cyclic strain.

more pronounced in the case of a longitudinal traction test. Furthermore, high
levels of plasticity are found along the loading direction and especially between
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Figure 5.9: MMC under transverse shear.

ellipsoids closely packed to each others. In order to measure the heterogeneity



Numerical simulations 83

 0

 100

 200

 300

 400

 500

 600

 700

 0  0.01  0.02  0.03  0.04  0.05

M
a
c
r
o
 
s
t
r
e
s
s
 
[
M
P
a
]

Macro strain [-]

n=0.05

n=0.40

Secant (first order)
Secant (second order)
Incremental
FE (avg 4 curves)

Figure 5.10: Predictions of the tensile stress-strain curves in the lon-
gitudinal direction for the composite reinforced with 25% of aligned
ellipsoids.

of the accumulated plastic strain field, curves on figure 5.13 show the cumula-
tive probability that the plastic strain is smaller than a given value. In order to
compute it, magnitude of the plastic strain at each Gauss point of the matrix
is considered as well as the corresponding volumes of these points. A perfectly
homogeneous field would give a step function. The widest distribution is found
for the longitudinal traction test and n = 0.05 while the field is much more
homogeneous for the transverse traction test and a high value of the matrix
hardening exponent. Such analysis is important in order to understand the
behavior of homogenization schemes. Effectively, these rely on the definition
of a per phase reference state (see section 5.2.1 for the secant formulation and
section 5.2.2 for the incremental one) so that the average equivalent stress can
be evaluated in an approximate way only. First order secant and incremen-
tal methods compute it from the per phase average stress tensor and this is
known for being less accurate when high heterogeneity of the fields occur. The
second order secant homogenization scheme relies on the second order moment
of the stress tensor. However, all these values can be computed from the FE
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Figure 5.11: Predictions of the tensile stress-strain curves in the trans-
verse direction for the composite reinforced with 25% of aligned ellip-
soids.

simulations as (González et al. [37]):

< σeq >ω0 =

[∑
k

σeq
k Vk

]
/
∑

k

Vk, (5.60)

< σ >ω0 =

[∑
k

σkVk

]
/
∑

k

Vk, (5.61)

< σ ⊗ σ >ω0 =

[∑
k

(σk ⊗ σk)Vk

]
/
∑

k

Vk, (5.62)

where σk is the stress tensor at the Gauss point k and Vk is its correspond-
ing volume. Equation (5.60) gives the average equivalent stress and equations
(5.61-5.62) give first and second order moments. These enable to compute the
reference equivalent stress used in the first order and second order secant meth-
ods (equations (5.7-5.8)). Average of the equivalent stress and the two reference
values obtained by FE at a macroscopic deformation state of 5% are plotted on
figure 5.14. Equivalent stresses computed from the second order moment of the
stress tensor are extremely close to the reference result while the one computed
from the average stress tensor is always lower. This fact being more pronounced
for low hardening exponent and in the longitudinal direction. These lower ref-
erence equivalent stresses of the matrix for the first order secant approach lead
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(b) Transverse traction.

Figure 5.12: Contour plot of the accumulated plastic strain in the matrix after
tensile deformation up to 5% in the composite with n = 0.05.

to much higher equivalent stresses in the inclusions than ones obtained by the
second order method and finally give too stiff macroscopic predictions as shown



86 Homogenization of elasto-plastic composites

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25

C
u
m
u
l
a
t
i
v
e
 
p
r
o
b
a
b
i
l
i
t
y
 
[
-
]

Plastic strain in the matrix [-]

Longitudinal, n=0.05
Transverse, n=0.05
Longitudinal, n=0.40
Transverse, n=0.40
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on figures 5.10 and 5.11. After the study of the influence of the reference state
on the macroscopic predictions, let’s now examine the accuracy of the different
homogenization schemes at the microscopic level. Effectively, even if a model
provides a good estimation of the macroscopic behavior, this is not necessary
true for the microscopic fields. This is illustrated on figure 5.15 for a traction
test in the longitudinal direction and a high hardening exponent. Evolution
of the matrix plastic strain is plotted with respect to the macroscopic strain
(figure 5.15a). Plastic strain in the matrix is always underestimated by the
mean-field homogenization schemes so that elastic effects dominate and the
matrix hardening rate will be overestimated. This can be corrected either by
using the second order secant method or the incremental one with a stiffness
reduction of the matrix tangent operator. However, such approach decreases
the accuracy of the von Mises equivalent stress in the inclusions (figure 5.15b),
best prediction being then obtained with first order secant method. When
looking at the components of the stress tensor in the phases, some surprises
appear. For example, in the same simulation, the incremental method predicts
a triaxial tension state in the inclusions and a compression in the direction of
traction in the matrix even if the equivalent stress in both phases is not that
far from the reference value. This illustrates the need for improvements in the
per phase predictions of homogenization schemes, especially for modeling dam-
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age by either inclusions fracture or interface debonding. For such tests, FE
simulations are, by far, the best predictive method. FE simulations to model
damage modeling are given by LLorca and Segurado [64] and Segurado and
LLorca [93].

5.5 Conclusions

In this chapter, various formulations of the local elasto-plastic constitutive laws
were reviewed. The incremental formulation, which links over a time step the
strain increment to the stress increment through a tangent operator has been
studied in depth. For simplicity, we focused on the matrix phase, assumed that
it obeys classical J2 elasto-plasticity and considered the Mori-Tanaka homoge-
nization scheme. A key issue in Eshelby-based nonlinear homogenization is to
define a homogeneous tangent operator C0(t) for a fictitious reference matrix.
The tangent operator is anisotropic (and designated by Cani

0 ) and computing
the overall tangent operator C̄ with Cani

0 leads to predictions which are too
stiff and unacceptable. A known workaround is to compute the tensors of Es-
helby (E) or Hill (P ) with an isotropic part Ciso

0 of Cani
0 and the rest of C̄ with

Cani
0 , but this method has been criticized as being unjustified or even wrong.

Our opinion is that ideally C̄ should be computed with a given reference matrix
tangent C0. The fact that Cani

0 leads to bad predictions means that it is a bad
approximation to C0. In the absence of an appropriate expression for C0, the
workaround consisting of computing part of C̄ (e.g. E or P ) with Ciso

0 and the
rest with Cani

0 is acceptable as long as it leads to good predictions and is no
less legitimate than computing all of C̄ with Cani

0 . In this work, we chose to
examine different variants for the computation of C̄ and understand why some
work better than others by studying some of their mathematical properties.
Some key points are recalled and discussed hereafter.

Hill’s tensor (P ) and the overall tangent (C̄) are decreasing and increasing
functions of C0, respectively:

P (C0 + ∆C) < P (C0), C̄(C0 + ∆C) > C̄(C0), ∆C > 0. (5.63)

A similar result for C̄ holds when only the argument of P is changing:

C̄(P (C0 + ∆C),C0) > C̄(P (C0),C0), ∆C > 0. (5.64)

Two isotropic extractions of Cani
0 exist: a general projection method (giving

CIsoGen
0 ) and a special method (CIsoSpe

0 ). The following relations hold:

C > Cani
0 ≥ CIsoSpe

0 . (5.65)

Therefore C̄ computed with the isotropic operator CIsoSpe
0 is softer than the

one computed with anisotropic operators Cani
0 , i.e.

C̄(CIsoSpe
0 ) < C̄(Cani

0 ), C̄(P (CIsoSpe
0 ),C0) < C̄(P (Cani

0 ),C0). (5.66)
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However, we found that in some cases (e.g., macro tension) the following result
holds:

CIsoGen
0 > Cani

0 , (5.67)

which means that the isotropic operator CIsoGen
0 is stiffer than the anisotropic

one, and this implies that:

C̄(CIsoGen
0 ) > C̄(Cani

0 ), C̄(P (CIsoGen
0 ),C0) > C̄(P (Cani

0 ),C0). (5.68)

This surprising and unexpected result may be interpreted physically following
Chaboche et al. [18], [19]. Indeed, the special method (at least under pro-
portional loading) corresponds to a stiffness reduction of Cani

0 in a direction
orthogonal to that of the reference flow direction (N). Moreover the stiffness
reduction effect is much more important with the special method than with the
general one.

In this chapter, we also extracted transversely isotropic parts of Cani
0 using a

general projection method (giving CTrIsoGen
0 ) or a special one (CTrIsoSpe

0 ). In
summary, in addition to Cani

0 , we considered two isotropic projections (CIsoGen
0

and CIsoSpe
0 ) and two transversely isotropic ones (CTrIsoGen

0 and CTrIsoSpe
0 ).

Designating anyone of these five operators by C0, D0 or E0, we studied differ-
ent variants of the incremental formulation by computing Hill’s tensor as:

P = E(E0) : D−1
0 (5.69)

and the rest of C̄ with C0. We conducted a series of validated numerical
simulations for a variety of composites with different types of inclusions (long or
short fibers, spherical particles) under various loads (longitudinal or transverse
tension, transverse shear). The main conclusions are listed hereafter.

The sets which work best in most cases are the following:

E0 = CIsoGen
0 or CIsoSpe

0 , D0 = C0 = Cani
0 . (5.70)

In some cases, they fail and give physically unacceptable results, which is es-
pecially noticeable for materials reinforced with long fibers. This corresponds
to P losing diagonal (major) symmetry. When this happens, the following set
gives good results:

E0 = D0 = CIsoSpe
0 , i.e. P (CIsoSpe

0 ), C0 = Cani
0 . (5.71)

It also leads to good predictions in most cases. However the choice P (CIsoGen
0 )

leads to bad (too stiff) predictions. Another set which works in many cases is
the following:

E0 = D0 = C0 = CIsoSpe
0 , i.e. P (CIsoSpe

0 ) and C̄(CIsoSpe
0 ). (5.72)

Unfortunately, the use of CIsoSpe
0 is limited to constitutive models for which

the anisotropic tangent operator can be cast under the particular form (5.29).
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If this is not the case and if the use of CIsoGen
0 in (5.70) gives bad results, we

advice to use the special method of the transversely isotropic projection with
the following set:

E0 = D0 = CTrIsoSpe
0 , i.e. P (CTrIsoSpe

0 ), C0 = Cani
0 . (5.73)

The case P (CTrIsoGen
0 ) gives extremely stiff predictions. This means that

CTrIsoGen
0 is too stiff. Similarly to isotropic projections, this might be explained

by the fact that the general transversely isotropic projection is a mathematical
definition with no physical basis. Other sets studied, namely C̄(CIsoGen

0 ),
C̄(CTrIsoGen

0 ) and C̄(Cani
0 ) all lead in general to unacceptably stiff predictions.

In the future, one could improve some points. For instance, in the trans-
versely isotropic projection, try an anisotropy direction other than the ellip-
soids’ revolution axis or find a better special stiffness reduction method with no
arbitrary coefficient K. Real progress in Eshelby-based nonlinear homogeniza-
tion is possible only with new approaches in computing reference matrix tan-
gent operator C0(t), for instance with phase-averaged second-order moments
of stress or strain. However, extending the latter approach to an incremental
formulation and to sophisticated micro constitutive models remains an open
question.

In order to analyze the influence of the per phase reference state and com-
pare different formulations of the constitutive laws, the first order incremental
formulation was confronted to both first and second order secant formulations
and to FE simulations. The considered composite for this analysis was made
of a matrix reinforced by 25% of aligned and randomly distributed ellipsoidal
inclusions (Ar=3) and the Mori-Tanaka homogenization scheme was used. Dif-
ferent matrix strain hardening were considered and uniaxial traction tests were
performed in both longitudinal and transverse directions.

For the overall predictions, best ones were obtained by the incremental and
the second order secant formulations while the first order secant method gave
generally too stiff results. The incremental tended to overestimate the com-
posite flow stress when the localization of the plastic strain in the matrix was
maximum, which occurred for the longitudinal tension test and a low matrix
hardening exponent. Comparison of the volumetric-average fields in each phase
showed that accurate predictions of the effective properties by the homogeniza-
tion methods did not guarantee the same accuracy at the phase level.
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Figure 5.14: Evolution of the actual volume-averaged reference stress in the
matrix (σ̄eq

m ) as a function of the applied strain and of the estimation based on
the volume-averaged first (σ̂eq

m ) and second-order (ˆ̂σeq
m ) moment of the matrix

stress tensor.
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Figure 5.15: The composite is loaded in the longitudinal direction (matrix
strain hardening exponent is 0.40).





Chapter 6

Homogenization of
elasto-viscoplastic
composites

1 In this section, another type of behavior for the constitutive phases of the
composite is examined. More precisely, in addition to the elasto-plastic nature
of the phases, the plastic regime exhibits a dependence with the loading rate.
Such phenomena appear especially at high temperatures.

6.1 Constitutive equations

The Perzyna-type elasto-viscoplastic constitutive model is used for all the sim-
ulations presented in this work. However, the proposed homogenization tech-
nique for elasto-viscoplastic composites is not restricted to this single model.
The following developments are limited to isotropic hardening in each phase.

The Perzyna-type constitutive model

The additive decomposition of the total strain gives an elastic part and an
inelastic one, so that the time derivative of the Hookean’s law can be rewritten

1Some developments of this chapter led to two publications “An enhanced affine for-
mulation and the corresponding numerical algorithms for the mean-field homogenization of
elasto-viscoplastic composites”, Pierard O. and Doghri I., International Journal of Plastic-
ity, 22 (2006), pp.131-157 [78] and “Micromechanics of particle-reinforced elasto-viscoplastic
composites: finite element simulations versus affine homogenization”, Pierard O., LLorca J.,
Segurado J. and Doghri I., International Journal of Plasticity, submitted for publication [82].
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as:
σ̇ = C : (ε̇ − ε̇in). (6.1)

As in elasto-plasticity, the inelastic strain rate is governed by a plastic flow
rule:

ε̇in = gv
∂f

∂σ
=

3
2

gv

σeq
σdev, (6.2)

where gv(σeq, p) is a viscoplastic function (see hereafter) which is equal to
the plastic multiplier γ̇ introduced for elasto-plasticity, f is the yield func-
tion (f(σeq, p) = σeq − σY −R(p)) and is positive during plastic loading in the
case of rate-dependent materials, σeq is the von Mises equivalent stress, σY is
the initial yield stress, R(p) is the hardening stress (see hereafter), σdev is the
deviatoric part of the stress tensor and p is the accumulated plasticity defined
by (5.4). Combining these two relations leads to an equation linking stress and
strain rates:

σ̇ = C :
(

ε̇ − gv(σeq, p)
∂f

∂σ

)
. (6.3)

Given this constitutive elasto-viscoplastic model, it is possible, for a ho-
mogeneous material, to predict the elasto-viscoplastic response. In order to
compute the response of that material over a time step (the problem is sup-
posed solved until the beginning of this time step) given either strain or stress
increment, an algorithm is needed (e.g., (Doghri [24])) to solve two scalar equa-
tions by a Newton-Raphson scheme.

Hardening function

As in elasto-plasticity, the only hardening function considered in the subsequent
simulations is a power-law model which is defined as:

R(p) = kpn if p > 0, 0 otherwise, (6.4)

where k [Pa] is the hardening modulus and n [−] the hardening exponent.

Viscoplastic function

The two viscoplastic functions defined hereafter require two parameters: the
viscoplastic modulus (η [Pa.s] or κ [1/s]) and the viscoplastic exponent m [-].

• Norton’s viscoplastic power law:

gv(σeq, p) =
σY

η

(
σeq − σY − R(p)

σY

)m

if f > 0, 0 otherwise. (6.5)
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• Viscoplastic power law as defined in ABAQUS [1]:
This law is obtained by a slight modification of Norton’s power law. Im-
plementation of this law is useful for validation purposes.

gv(σeq, p) = κ

(
σeq − σY − R(p)

σY + R(p)

)m

if f > 0, 0 otherwise. (6.6)

6.2 Homogenization of elasto-viscoplastic com-
posites

In elasto-viscoplasticity, there is no one-to-one correspondence between stress
and strain rates through a so-called continuum tangent operator Cep such as it
exists in elasto-plasticity. It results that the incremental formulation of elasto-
plastic composites (Hill [43]) cannot rigorously be used. However, when con-
sidering finite strain and stress increments instead of infinitesimal ones, an
algorithmic tangent operator Calg derived from a consistent linearization of
the time-discretized constitutive equations exists in elasto-viscoplasticity (Ju
[48], Doghri [24]):

σ̇ �= Cin : ε̇, Calg =
∂(∆σ)
∂(∆ε)

. (6.7)

It is thus tempting to use a Hill-type incremental formulation nevertheless, but
based on Calg. Unfortunately, as observed in various simulations, such an ap-
proach gives too stiff responses. Such as done nowadays in elasto-plasticity,
some adjustments should be done in order to get accurate predictions with
an incremental formulation (e.g.: Doghri and Ouaar [26], Doghri and Friebel
[25], Doghri and Tinel [27]). In some cases, using the latter formulation in
elasto-viscoplasticity with algorithmic tangent operators Calg gives acceptable
predictions (an example is given in section 6.4.1). Another widely used formu-
lation is the secant one. Li and Weng [58, 59, 60] performed various interesting
simulations by making use of a secant viscosity in the local constitutive laws.
However, the secant formulation cannot handle some important cases such as
unloading, cyclic loading and otherwise non-proportional loading histories. A
non-classical formulation is thus needed and the so-called affine formulation
adopted in this work transforms the problem into a fictitious linear thermo-
elastic one which can be homogenized according to classical homogenization
schemes. This approach was introduced by Molinari et al. [69] and improved
by Masson [66].

In order to predict the overall behavior, a homogenization scheme is used.
Such an approach is much faster than a purely numerical method (e.g.: finite
elements), especially when dealing with real structures for which two meshes
are needed at different scales. However, in order to validate this model, FE
simulations performed on unit cells are also carried out.
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6.3 The affine formulation

In this section, the affine homogenization introduced by Masson [66] is pre-
sented. Main steps of the linearization, predictions of the final response as
well as an algorithm are detailed. Finally, a special attention is paid to the
differences with previous implementations of this method.

The affine formulation relies on a linearization in time of the constitutive
equations of the strain rate and the rate of internal variables. For clarity of the
development, a single scalar internal variable p, not yet specified, is considered.
When dealing with hereditary behaviors (such as in elasto-viscoplasticity), a
direct prediction of the response is impossible and a discretization into time
steps is required. During all the linearization procedure described hereafter,
the problem is considered over a time step, for which the solution is supposed
already found up to the beginning of the time step (tn). For this, the constitu-
tive model has to be written under the general form:

ε̇(t) = S : σ̇(t)︸ ︷︷ ︸
ε̇el(t)

+ε̇in(σ(t), p(t)), (6.8)

ṗ(t) = ṗ(σ(t), p(t)), (6.9)

with ε̇(t) the total strain rate, σ̇(t) the Cauchy stress rate, ε̇el and ε̇in the
elastic and inelastic strain rates, respectively, and S the elastic compliance
tensor.

6.3.1 From elasto-viscoplasticity to linear thermo-
viscoelasticity

The first step in the theory is a linearization of equations (6.8-6.9) around time
tn:

ε̇in(t) = ε̇in(tn) + m(τ) : [σ(t) − σ(tn)] + n(τ)[p(t) − p(tn)], (6.10)
ṗ(t) = ṗ(tn) + l(τ) : [σ(t) − σ(tn)] + q(τ)[p(t) − p(tn)], (6.11)

in which four derivatives are introduced:

mijkl =
∂ε̇in

ij

∂σkl
, nij =

∂ε̇in
ij

∂p
, lkl =

∂ṗ

∂σkl
, q =

∂ṗ

∂p
. (6.12)

These derivatives are evaluated at time τ , which belongs to the time inter-
val [tn; t]. Analytical expressions of these derivatives are available once the
constitutive model is defined.

For the Perzyna-type constitutive model (section 6.1), these derivatives are



The affine formulation 97

nil if the yield function is negative or nil. If f > 0, they are given by:

mijkl =
∂gv

∂σeq
NklNij + gv

∂Nij

∂σkl
, nij =

∂gv

∂p
Nij ,

lkl =
∂gv

∂σeq
Nkl , q =

∂gv

∂p
, (6.13)

where:
∂Nij

∂σkl
=

1
σeq

[
3
2
Idev
ijkl − NijNkl

]
. (6.14)

Derivative q is always negative, which is logical. If p increases, R(p) in-
creases also and since the stress is considered constant in this partial derivative,
f(σeq, p) decreases. Thus, the viscoplastic function gv(σeq, p) and ṗ decrease
so that q = ∂ṗ

∂p is negative.
As shown in appendix D.1, the solution of equation (6.11) can be given

under the integral form:

p(t) − p(tn) = p̂(τ, t) +
∫ t

0

e(t−u)q(τ)l(τ) : σ(u)du, (6.15)

where:

p̂(τ, t) = q−1(τ)[e(t−tn)q(τ) − 1][ṗ(tn) − l(τ) : σ(tn)]

−
∫ tn

0

e(t−u)q(τ)l(τ) : σ(u)du. (6.16)

By inserting result (6.15) in equation (6.10) and after some mathematical ma-
nipulations (detailed proof in appendix D.2), the problem (6.10-6.11) is rewrit-
ten as:

ε̇(t) =
d

dt

[∫ t

0

Sτ (τ, t − u) : σ̇(u)du

]
+ε̇0(τ, t) = [Sτ � σ̇](τ,t)+ε̇0(τ, t), (6.17)

in which the Stieljes-type convolution product denoted by � is introduced.
Semi-analytical expressions of tensors Sτ (τ, t) and ε̇0(τ, t) are reported in ap-
pendix D.2.

Rewriting local constitutive equations as (6.17) is remarkable as they be-
come similar to linear viscoelastic ones, with an additive eigenstrain rate term.
Classically, this problem is solved with the help of the Laplace-Carson trans-
form as presented in the next section.

6.3.2 From linear thermo-viscoelasticity to linear thermo-
elasticity

Similarly to the solution method proposed for linear viscoelastic materials (sec-
tion 4.4.1), the Laplace-Carson transform (appendix B.1) is used to write equa-
tion (6.17) in a linear elastic form. Under this transformation, the Stieljes-type
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convolution product becomes a single contraction so that the linearized consti-
tutive law reads:

ε̇∗(s) = S∗
τ (τ, s) : σ̇∗(s) + ε̇0∗(τ, s), (6.18)

or equivalently σ̇∗(s) = C∗
τ (τ, s) : (ε̇∗(s) − ε̇0∗(τ, s)), (6.19)

with C∗
τ (τ, s) = [S∗

τ (τ, s)]−1
,

where an asterisk in exponent means the Laplace-Carson transform and s is
the Laplace variable. S∗

τ and ε̇0∗ are given by (proof in appendix D.3):

S∗
τ (τ, s) = S +

m(τ)
s

+
n(τ) ⊗ l(τ)
s(s − q(τ))

, (6.20)

ε̇0∗(τ, s) = ε̇in(tn)e−sτ + s

∫ tn

0

ε̇in(t)e−stdt

−sm(τ) :
∫ tn

0

σ(t)e−stdt − m(τ) : σ(tn)e−stn

−q−1(τ)ṗ(tn)
se−stn

q(τ) − s
n(τ)

+q−1(τ)
[

s

q(τ) − s
+ 1

]
l(τ) : σ(tn)e−stnn(τ)

+q−1(τ)l(τ) : σ(tn)e−stnn(τ)
−q−1(τ)ṗ(tn)e−stnn(τ)

+
s

q(τ) − s
n(τ) : l(τ)

∫ tn

0

σ(t)e−stdt

+ε̂0∗(τ, s,σ(0)), (6.21)

ε̂0∗(τ, s,σ(0)) = m(τ) : σ(0) − n(τ)q−1(τ)
(

1 − s

s − q(τ)

)
l(τ) : σ(0).

A proof of these expressions is given in appendix D.3. A special attention
is paid to the computation at a low memory cost of these integrals so that
they are always evaluated from variables at the end of the previous time step,
which requires to decompose the integrals. Some details are given in appendices
C and D. These equations are similar to those of linear thermo-elasticity.
Of course, they are fictitious constitutive equations since they are defined in
the Laplace-Carson domain. Classical homogenization schemes valid in linear
thermo-elasticity can thus apply.

6.3.3 Algorithm

Consider now a two-phase elasto-viscoplastic composite for which constitutive
equations of each phase can be linearized over a time interval as (6.19). Simi-
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Figure 6.1: Iterative procedure to find the correct strain increments in
the phases. Labels 1,. . . ,11 refer to the step numbers in the algorithm
of section 6.3.3.

larly to linear thermo-elasticity, localization equation can be written as:

< ε̇∗(s) >ω1= Aε∗(τ, s) : ˙̄ε∗(s) + aε∗(τ, s), (6.22)

Corresponding relation in the time domain writes:

< ε(t) >ω1=< ε(0) >ω1 + [Aε ⊗ ˙̄ε](τ,t) +
∫ t

0

aε(τ, u)du, (6.23)

where Aε and aε are the strain localization tensors defined for the homogeniza-
tion of two-phase linear thermo-elastic composites. In this section, an iterative
procedure to determine strain increments in each phase over a time step is
proposed. For this, consider the problem solved until the beginning of this
time step, all local variables being known at that time. Over the time step
[tn, tn+1], a macro strain increment ∆ε̄ is given. The algorithm is illustrated
schematically on figure 6.1, main steps being described hereafter.

1. Initialization of the average strain increment ∆ε1 in the inclusions with
the converged value at the previous time step weighted by a possible
variation of the time increment: ∆ε1 = tn+1−tn

tn−tn−1
(ε1(tn) − ε1(tn−1)).

2. Computation of the affine stiffness modulus C∗
1(τ, s) and the eigenstrain

tensor ε̇0∗
1 (τ, s) in (6.19) in the reference inclusions’ phase. For this, the

response of the phase has first to be computed according to the consti-
tutive model of the inclusions with ∆ε1 as input. Secondly, one has to
compute the derivatives of the evolution laws of inelastic strain rates and
rate of plasticity with respect to their parameters (6.12). These are eval-
uated at time τ = tn+1. The discretization is done implicitly so that the
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derivatives are evaluated at tn+1. Finally, the required C∗
1(τ, s) is com-

puted by taking the inverse of expression (6.20) and ε̇0∗
1 (τ, s) by using

(6.21).

3. Evaluation of the corresponding strain increment in the matrix:
∆ε0 = 1

v0
(∆ε̄ − v1∆ε1).

4. As in step 2, computation of the tensors C∗
0(τ, s) and ε̇0∗

0 (τ, s) for the
matrix phase.

5. Extraction of the special isotropic part of C∗
0(τ, s) as done for the incre-

mental formulation in elasto-plasticity (section 5.3.3) - noted C∗ IsoSpe
0 (τ, s).

6. Computation of Eshelby’s tensor E(I,C∗ IsoSpe
0 (τ, s)) with C∗ IsoSpe

0 (τ, s)
and the inclusions shape (I) (appendix A.1).

7. Computation of the strain concentration tensors Aε∗(τ, s) and aε∗(τ, s) in
the Laplace domain (equations (4.25, 4.56b), Bε is given by the adopted
homogenization scheme - see section 4.2.3).

8. Numerical Laplace inversion (see appendix B.2) of Aε∗(τ, s) and aε∗(τ, s).
To perform this operation, the strain concentration tensors of step 7 must
be evaluated at several collocation points si in the Laplace-Carson do-
main. Limit values of these functions are needed for the inversion and
are given in appendix D.4.

9. Evaluation of a new value of the average strain in the inclusions at t =
tn+1 according to relation (6.23). When using a collocation method as
advocated for the numerical Laplace inversion, the corresponding time
function is under a serial decomposition form so that the convolution
product and the integral can be evaluated analytically (not too difficult
for the integral and see appendix C for the incremental computation of
the convolution product).

10. Computation of the average strain increment in the inclusions.

11. Comparison of this new value with the one at the beginning of this itera-
tion. If it deviates too much, a new iteration is performed with this new
value. Otherwise, the estimates per phase are accepted and the overall
macroscopic response is computed as explained in section 6.3.4.

This algorithm is the core of the “Affinistan” software developed in the
context of this thesis. A short presentation is given in appendix F.
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6.3.4 Prediction of the macroscopic response

Once the average strain increments in each phase are found by the algorithm
presented in section 6.3.3, there are two different ways to compute the macro-
scopic stress response corresponding to a macro strain increment.

The first method considers that the macroscopic stress is the spatial average
of the local stresses, i.e. sum of the average stresses in the phases weighted by
the corresponding volume fraction of that phase. This is easily done at a low
computation cost.

The second method is based on a macroscopic linear viscoelastic relation.
Indeed, in the linearization procedure, linear viscoelastic constitutive relations
exist for each phase at each time step so that the macroscopic one at a given
time step is form-similar:

σ̄(tn+1) = σ̄(0) +
∫ tn+1

0

C̄τ (τ, tn+1 − u) : ( ˙̄ε(u) − ˙̄ε0(tn+1, u))du. (6.24)

At first, computation of the homogenized tensors (C̄∗(τ, s) and ˙̄ε0∗(τ, s)) in
thermo-elasticity are needed. The numerical Laplace inversion back to the
time domain (see appendix B.2) of these tensors give serial decompositions so
that the convolution product can be computed analytically, and finally, the
macroscopic stress response is computable.

This second approach is more time-consuming and requires two additional
numerical inversions of the Laplace-Carson transform. Since some numerical
errors appear in this inversion and the method is sensitive to the choice of the
collocation points (see appendix B.2), the quality of the final prediction might
be better with the first method. For example, using (6.24) introduces some
fictitious plasticity during elastic unloading or reloading. The two methods
have been implemented and with a minimum of care with the numerical Laplace
inversions, no significant differences on the predictions have been observed.
Logically, for performance reasons, the first option is the default one.

If there are constraints on the corresponding macroscopic stress tensor (e.g.:
uniaxial tension, biaxial tension, shear,. . . ), an additive iterative loop is neces-
sary and is described in appendix E. For this purpose, several components of
the macroscopic tangent operator are needed. This is done with a perturbation
method.

6.3.5 Main differences with previous implementations

The major differences in our implementation with previous ones (Brenner et
al. [15], Masson and Zaoui [68], Masson et al. [67]) are the following:

• A full treatment of the evolution laws of internal variables, e.g.: accumu-
lated plasticity for composite materials or resistances of the slip systems
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for polycrystals. This consideration adds a great deal of complexity to
the mathematical developments of the affine formulation.

• This work is focused on two-phase composites, on the contrary to Masson
[66] who studied various crystalline symmetries and especially Zirconium’s
alloys modeled as polycrystals. The fact that we consider a different mi-
crostructure does not have an impact on the development of the affine
formulation itself, but on the constitutive models of the phases and most
importantly on the numerical algorithms which have to be robust in or-
der to handle different constitutive models and contrasts between phase
materials.

• An extensive validation of the method. Up to now, very few validations
were available.

• Simulations are performed under various loading cases. To our knowl-
edge, no one has performed cyclic loading tests with an affine formulation
before.

It should be noted that two extensions of the affine formulation have been
developed by Brenner et al. [14]. First one deals with a simplified numerical
Laplace-Carson transform. Such approach enables to reduce the required com-
putation time for this operation and is especially useful for polycrystals due
to the numerous different grains. The other extension takes into account the
second order moment of the stress tensor in the definition of the reference state.
This is done for polycrystals which exhibit a power law constitutive law. In
this case, the secant and affine moduli are linked in a simple way so that the
evaluation of the second order moment of the stress tensor can be obtained in
a semi analytical fashion.

6.4 Numerical simulations

6.4.1 General simulations

In this first part of the numerical simulations of the affine formulation, a wide
range of loading paths, homogenization methods and comparisons with an-
other formulation are presented. In the description of the material properties,
subscript 0 refers to the matrix and 1 to the inclusions.

Effect of the homogenization formulation In the past, the incremental
formulation has been criticized for giving too stiff predictions. Extracting the
isotropic part of the algorithmic tangent modulus leads to much more realistic
predictions in the elasto-plastic regime (Doghri and Ouaar [26]). As mentioned
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Figure 6.2: Uniaxial tension test. Comparison of the affine and incre-
mental formulations.

in section 6.2, the incremental formulation cannot rigorously be used in the rate-
dependent case because of the absence of continuum tangent operators relating
strain and stress rates. Nevertheless, since an algorithmic tangent operator
Calg -equation (6.7b)- can be defined, the idea in this section is to run the
incremental formulation in elasto-viscoplasticity with Calg although there is
no constitutive justification for Calg. The predictions will be compared to
those of the affine formulation.

Material properties of the considered two-phase composite are the following
(Norton’s viscoplastic power law is used): E0 = 50 GPa, ν0 = 0.3, σY0 = 100
MPa, k0 = 50 GPa, n0 = 1.0, η0 = 30.0 GPa.s and m0 = 1.0 for the matrix
which is reinforced by 30% of spherical inclusions with the following properties:
E1 = 500 GPa, ν1 = 0.3, σY1 = 100 MPa, k1 = 100 GPa, n1 = 0.85, η1 = 10.0
GPa.s and m1 = 1.0. This composite undergoes a uniaxial tension test at a
constant strain rate of 10−3 s−1.

Predictions obtained with the two formulations are reported on figure 6.2, as
well as responses of individual phases alone. As expected, this test shows that
the prediction of the affine formulation is softer than that of the incremental
one, although in this example the difference is not too pronounced.

Effect of the inclusions shape A major advantage of Eshelby-based ho-
mogenization schemes is that they can predict the influence of the shape of
the inclusions. In this test, predictions of two composites made of the same
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Figure 6.3: Uniaxial tension test in the longitudinal and transverse
directions. Influence of the reinforcements shape.

materials are compared, one being reinforced with spheres, the other by long
fibers. These results are confronted to the bounds of Reuss and Voigt (which
are independent of the reinforcements shape).

In this test, the contrast between the phases is more pronounced : E0 = 100
GPa, ν0 = 0.3, σY0 = 100 MPa, E1 = 1000 GPa, ν1 = 0.3 and σY1 = 1000 MPa.
Both phases obey a power law hardening function and Norton’s viscoplastic law
(k = 10 GPa, n = 1, η = 300 GPa.s and m = 1). The uniaxial tension test
is performed at a constant strain rate of 10−3 s−1. For both composites, the
volume fraction of the inclusions is 30%.

Logically, as illustrated on figure 6.3, the composite made with fibers has,
in the longitudinal direction, a much better resistance to this traction test than
the composite reinforced by spheres. On the contrary, the response in the
transverse direction of the composite reinforced by fibers is softer than the one
of the composite made with spheres. One can note that the response of the
long fiber composite predicted with Mori-Tanaka in the direction of the fibers
is slightly stiffer than with Voigt! This is due to some small numerical errors
occurring in the Laplace inversion as explained in appendix B.2. The Reuss
and Voigt schemes avoid these problems since inversions of the constant strain
concentration tensors are obvious.
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Figure 6.4: Uniaxial relaxation test of a long fiber reinforced composite
in the longitudinal direction. Illustration of the viscous effects.

Relaxation test In this relaxation test, the influence of the viscous effects
is illustrated. Transient viscous effects of the studied composite is compared to
the rate independent response of this composite.

The properties of this composite are the following: E0 = 100 GPa, ν0 = 0.2
and σY0 = 100 MPa for the matrix, E1 = 500 GPa, ν1 = 0.3 and σY1 = 500 MPa
for the inclusions. For both phases, the power law hardening model is defined
by k = 10 GPa and n = 1. The Norton’s viscoplastic laws have different
parameters for each phase: η0 = 300 GPa.s, n0 = 1.1 for the matrix and
η1 = 500 GPa.s, n1 = 1.8 for the long fibers. The composite is reinforced
by long fibers (20% of volume fraction) aligned with the direction of uniaxial
relaxation.

On figure 6.4, initial stress response of the rate-dependent composite is the
homogenized elastic one. Furthermore, it is observed at long times that the
response of the composite tends to the instantaneous elasto-plastic one, which
is obtained by the commercial software DIGIMAT [23]. This result is also
obtained with homogenization methods but with an incremental formulation
in elasto-plasticity.

Effect of the loading strain rate This simulation illustrates the influence
of the loading strain rate in a shear test. For decreasing strain rates, responses
become softer and should tend to the rate independent one.
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Figure 6.5: Sphere-reinforced composite under a shear test. Influence
of the loading strain rate.

The two phases of this composite obey to power law hardening model and
Norton’s viscoplastic law. Mechanical properties are the following: E0 = 100
GPa, E1 = 200 GPa, ν0 = ν1 = 0.3, σY0 = 100 MPa, σY1 = 200 MPa,
k0 = k1 = 10 GPa, n0 = n1 = 1, η0 = η1 = 300 GPa.s and m0 = m1 = 1. The
volume fraction of spherical inclusions is 20 %.

Responses of the rate-dependent composite at various strain rates are plot-
ted on figure 6.5. For comparison, the rate independent response computed
with the commercial program DIGIMAT [23] is also reported. Simulation at
the lowest strain rate (10−5 s−1) is almost identical to the elasto-plastic response
since hardening introduced by the strain rate is negligible while at higher strain
rates, the response becomes logically stiffer. At low strain rates, the prediction
doesn’t drop below this rate independent limit, even if these two responses are
obtained with two completely different approaches. However, at very low strain
rates (order of 10−10 s−1), numerical instabilities arise and a lack of precision
is observed in the affine formulations.

6.4.2 Validation against 3D finite element simulations

As second part of the numerical validations of the affine formulation, confronta-
tions are made against 3D FE simulations. Per phase analysis is also performed
in order to better understand the limits of the method.

Throughout this section, only one material is considered in order to get more
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relevant interpretations. This is a two-phase elasto-viscoplastic composite with
a hardening power law (section 6.1) and the rate-dependent power law defined in
ABAQUS (section 6.1). According to the notations previously introduced, the
parameters are the following: E0 = 70 GPa, ν0 = 0.33, σY 0 = 70 MPa, k0 = 4
GPa, n0 = 0.4, κ0 = 310−4 s−1 and m0 = 1.5 for the matrix and E1 = 400
GPa, ν1 = 0.286, σY 1 = 400 MPa, k1 = 8 GPa, n1 = 0.4, κ1 = 210−4 s−1 and
m1 = 1.5 for the spherical inclusions.

Finite element simulations are performed on 3D unit cells reinforced by
several dozens of spheres. These are randomly distributed in the unit cell
and periodic boundary conditions are enforced. Isotropy of the cells and low
scattering between predictions obtained on several cells have been checked.
Computation time was much higher than for an elasto-plastic matrix reinforced
by elastic inclusions: about six hours on a HP RX-4640 with four processors
and 8 Gb of RAM instead of one and an half hour.

Effect of the volume fraction and strain rate Predictions at different
strain rates on a cell containing 15% of reinforcements are illustrated on figure
6.6a. For this, 6 FE simulations are performed at an average strain rate and
conditions (cell and tension direction) of the closest response to the average
one are used at the other strain rates. The response obtained by the incremen-
tal formulation for rate independent elasto-plastic materials is also reported.
As previously, simulation at the lowest strain rate (10−6 s−1) is almost iden-
tical to the elasto-plastic response. One can observe that at low strain rates,
predictions with the affine formulation coincide almost perfectly with the FE
simulations. At higher strain rates, the final response diverges a little bit from
the reference results, predictions with the homogenization scheme being a little
bit softer. This underestimation, which is unusual for homogenization schemes,
is partly due to the use of the isotropic extraction of the affine modulus of the
matrix (S∗−1

τ ) to compute the Eshelby’s tensor. As illustrated on figure 6.6b,
comments for cells containing twice more reinforcements (30%) are similar, the
difference at high strain rates being more pronounced while predictions at low
strain rates remain very good. Increasing the volume fraction or the strain
rate thus decreases the accuracy of the predictions by the affine formulation of
homogenization.

Effect of triaxiality In this section, the influence of the triaxiality level is
examined: shear, uniaxial tension or biaxial tension test. Since the affine ho-
mogenization scheme considers only average strain and stress fields to define
the state of each phase, these will always be isotropic under a triaxial tension
test on a cell reinforced by spheres (if the same tension is applied in the three
directions). Since the Perzyna-type constitutive model considered here is based
on the von Mises equivalent stress, no plasticity will appear. Obviously, this
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Figure 6.6: Uniaxial tension test. Comparison between direct 3D FE analysis
(points) and affine homogenization formulation (straight lines) for various strain
rates.

is not correct. Indeed, some stress concentration will occur in the surrounding
of the inclusions which will not be under a triaxial tension, so that plasticity
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Figure 6.7: Shear test - cell reinforced by 30% of stiff elasto-viscoplastic
spherical inclusions. Comparison between direct 3D FE analysis of RVE
(points) and affine homogenization formulation (straight lines).

might develop. A good way to improve the model would be to take into account
the second-order moment of the stress tensor which gives additional informa-
tion on the heterogeneity of the stress field. For the other loading cases, it is
interesting to know the triaxiality levels at which homogenization schemes give
good predictions.

Let’s consider at first shear tests at different strain rates. Results are re-
ported on figure 6.7 for a cell reinforced by 30% of spheres. As in previous
observations, good predictions are obtained at low strain rates and the relative
difference between homogenization and reference FE results reaches about 5%
as the strain rate increases. Similar results and interpretation are obtained for
biaxial tension tests as illustrated on figure 6.8.

In order to check the accuracy of the triaxiality effect, von Mises equivalent
stress versus equivalent strain is plotted for the different loading cases. These
are computed as:

σeq =
(

3
2
σdev : σdev

)1/2

, εeq =
(

2
3
εdev : εdev

)1/2

, (6.25)

where εdev is the deviatoric strain tensor. In FE, these values are computed
from the volume average of the equivalent strain and equivalent stress fields.
The comparison is reported on figure 6.9 for the different loading cases at
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Figure 6.8: Biaxial tension test - cell reinforced by 30% of stiff
elasto-viscoplastic spherical inclusions. Comparison between direct 3D
FE analysis of RVE (points) and affine homogenization formulation
(straight lines).

the highest strain rate (10−3 s−1). Results do not have to be compared in
a quantitative way but only the relative errors at the end of the simulations,
which are at the last FE result of each curve: shear: 6.1%, uniaxial tension:
6.3% and biaxial tension: 3.9%. All these values are quite similar and by no
way a deterioration of the predictions is observed as the level of triaxiality
increases.

Effect of Cyclic loading In this section, strain rate effect is studied over
a complete cycle of uniaxial loading/unloading/compression/reloading. The
maximum macro strain at the end of loading, compression and reloading is ±
5%. On the contrary to homogenization schemes based on the secant formula-
tion, the affine one enables such a non-monotonic loading.

Figure 6.10 reports simulations at two different strain rates over a complete
cycle. The first loading path is exactly the same as the previously studied
monotonic uniaxial loading case. During unloading and reloading, results at
low strain rate of homogenization schemes and FE are almost identical, which
is a pretty impressive result for such a high volume fraction of inclusions (30%).
On the contrary, at high strain rates, the difference already observed at the end
of the first loading path continues to increase during unloading and reloading.
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Figure 6.9: Influence of triaxiality - comparison of various loading tests
(30% of inclusions).

One can observe that this difference does increase only during plastic increments
but not during the elastic transitions.

Per phase analysis Even if a very good accuracy is observed for wide range
of simulations, it has been observed that there is a systematic worsening of the
predictions at high strain rates, the response becoming too soft under these
conditions. Even if this is not a catastrophic effect, it is interesting to go
deeper and understand the reasons of such a behavior. This will be done with
the help of the numerical FE simulations. Effectively, these enable to get helpful
information of the microscopic fields within each constituent of the composite.

A first source of error could come from the adopted homogenization scheme
(Mori-Tanaka). This is known for giving good predictions at low volume frac-
tions of the reinforcement phase but is less satisfying at higher ones. Effectively,
an effect of the volume fraction of particles has been observed (figures 6.6a -
6.6b). However, differences between FE and mean-field predictions are notice-
able only at high volume fractions so that this cannot explain the strain rate
effect.

Another source of error might come from the definition of per phase refer-
ence states for homogenization schemes. In our implementation of the affine
formulation, the reference equivalent stress is evaluated from the average stress
tensor instead of the volume average of the equivalent stress field. Significative



112 Homogenization of elasto-viscoplastic composites

-80

-60

-40

-20

 0

 20

 40

 60

 80

-0.04 -0.02  0  0.02  0.04

M
a
c
r
o
 
s
t
r
e
s
s
 

/ σ
Y
0
 
[
-
]

Macro strain [-]

Strain rate: 10-3 s-1

Strain rate: 10-6 s-1

Figure 6.10: Cyclic uniaxial tension - compression test on a cell rein-
forced by 30% of stiff elasto-viscoplastic spherical inclusions. Compar-
ison between direct 3D FE analysis of RVE and affine homogenization
formulation. Specified strain rates are for the two loading paths while
their opposites are used for unloading.

differences between these two evaluations exist for high levels of heterogeneity
of the fields. This is illustrated on figure 6.11 for the accumulated plasticity for
a cross section of the RVE at the end of one cycle of uniaxial loading. Espe-
cially in the matrix, the non uniformity is evident and is particularly high along
the direction of traction (direction 1) where inclusions are close to each others.
With the help of the local fields obtained by FE, the volumetric cumulative
probability of accumulated plastic strain (volume fraction of a phase where the
local accumulated plastic strain is smaller than a given value) enables to give
a qualitative measure of the heterogeneity level. This is plotted at the end of
the first cycle on figure 6.12a for the matrix and 6.12b for the inclusions. In
both phases, the accumulated plastic strain is lower at high strain rates due
to the stiffer response as the strain rate increases. Also, accumulated plastic
strain is much more homogeneous at high strain rates than at lower ones. This
would suggest that deterioration of the quality of the predictions at high strain
rates is not linked to heterogeneity effects. Since precision is much better in the
matrix, extending the affine formulation by taking into account second-order
moments of the stress tensor would not increase significantly the quality of the
predictions.
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Figure 6.11: Cyclic uniaxial tension - compression test - cell reinforced
by 30% of stiff elasto-viscoplastic spherical inclusions. Contour plot of
the accumulated plastic strain field.



114 Homogenization of elasto-viscoplastic composites

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

C
u
m
u
l
a
t
i
v
e
 
p
r
o
b
a
b
i
l
i
t
y
 
[
-
]

Accumulated plastic strain in matrix [-]

FE, 10-3 s-1

FE, 10-6 s-1

Average values

(a) Cumulative probability in the matrix.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

C
u
m
u
l
a
t
i
v
e
 
p
r
o
b
a
b
i
l
i
t
y
 
[
-
]

Accumulated plastic strain in inclusions [-]

FE, 10-3 s-1

FE, 10-6 s-1

Average values

(b) Cumulative probability in the inclusions.

Figure 6.12: Measurement of the heterogeneity of the accumulated plastic strain
field at the end of one cycle of uniaxial tension-compression.

An analysis of the per phase reference stresses is now performed. For the
affine formulation, these are given from the average stress in the phase. For the
FE simulations, relation (5.60) enables to compute the volume average of the
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ε̇ [s−1] Predictive method p [-] in matrix p [-] in incl.
10−6 FE 0.1892 0.0980

Homogenization 0.1949 0.0653
10−3 FE 0.0823 0.0508

Homogenization 0.0818 0.0394

Table 6.1: Accumulated plastic strain in the matrix and the inclusions at low
and high strain rates obtained by homogenization and FE (volume average of
the local field) at the end of one cycle.

equivalent stress in matrix. Similarly, this can be computed in the inclusions.
These are plotted on figure 6.13 for a matrix reinforced by 30% of inclusions.
This shows that the reference stress in the inclusions is underestimated while the
ones in the matrix are acceptable. This observation is even more pronounced at
high strain rates (figure 6.13b). Consequently, the accumulated plastic strain in
the spherical inclusions given by the affine model is also underestimated (table
6.1). This result is surprising because it should lead to an overestimation of the
stiffness of inclusions, which should lead to the same result for the composite.
However, the effective composite behavior given by the affine model follows
the opposite trend, so the differences between the model and the simulations
cannot be attributed to this factor.

As explained in sections 5.3.1 and 6.3.3, a general implementation of the
incremental and affine formulation gives too stiff macroscopic predictions. In
order to solve this problem, various methods to reduce the matrix stiffness have
been proposed (5.3.6). The one adopted for the affine formulation was to use an
isotropic extraction of the matrix modulus for the computation of the Eshelby’s
tensor only while all the other computations are made with the anisotropic ten-
sor. This technique is denoted EshIso in the following. Other stiffness reduc-
tion methods which gave satisfying results in elasto-plasticity (section 5.4.1)
are to use this isotropic tensor for the computation of the Hill’s tensor (PIso)
only or for all the computations (AllIso). Such isotropisation techniques might
have a considerable impact on the final prediction. Effective responses of these
three methods are reported on figure 6.14a (volume fraction: 30%, strain rate:
10−3 s−1). This shows that the adopted isotropisation (EshIso) underestimates
the macroscopic predictions (as observed on figure (6.6b)) and the two other
methods (PIso and AllIso) give slightly better results. The differences in the
predictions are closely related to the evaluation of the reference stress in each
phase as illustrated on figures 6.14b-6.14c. Very good accuracy of the pre-
dictions in the matrix are preserved whatever isotropisation technique is used
while this is strongly improved in the inclusions by using either PIso or All Iso.
Once again, this shows the crucial issue of a good choice of the affine modulus
(isotropic or not) of the matrix to obtain accurate predictions of the effective
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(b) Strain rate: 10−3 s−1.

Figure 6.13: Evolution of the von Mises equivalent stress in both phases.

properties.
Finally, it should be noted that the collocation points needed for the numeri-

cal inversion of the Laplace transform in the simulations presented in figure 6.14
are slightly different than those used in all previous simulations in this chapter
in order to better take into account the interaction law. This numerical modifi-
cation (which only has a small influence if the isotropic part of the affine moduli
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is only used to compute Eshelby’s tensor) is necessary to obtain accurate results
when Hill’s tensor is computed with these isotropic moduli. Unfortunately, the
mixture of very large times and very low collocation points leads to numerical
problems at low strain rates and the non-linear localization tensorial equation
(6.22) cannot be solved. Thus, for practical purposes, the affine homogeniza-
tion model based on the isotropic projection of the affine modulus to compute
only Eshelby’s tensor has to be used to simulate the mechanical response of
elasto-viscoplastic composites.

6.5 Conclusions

This chapter dealt with the affine formulation in the context of elasto-visco-
plasticity. This formulation linearizes each phase’s elasto-viscoplastic con-
stitutive model into a fictitious linear thermo-elastic relation defined in the
Laplace-Carson domain. At this stage, classical homogenization schemes valid
in thermo-elasticity can be applied, from which the macroscopic response can be
computed at the end of the time step. Our implementation includes a complete
treatment of the internal variables.

The method enables to deal with various loadings, including cyclic, shear
and relaxation tests. Influence of the shape of the reinforcements, the way
to compute the macroscopic response and the influence of the homogenization
scheme were also presented. Other simulations illustrate the viscous effects and
when these become negligible, the elasto-plastic response is well retrieved.

The accuracy of the affine homogenization method was assessed by compar-
ison with results obtained by the numerical simulation of a three-dimensional
representative volume element of the composite microstructure. Macroscopic
predictions of the affine homogenization model were excellent in composites
with different volume fraction of spheres, subjected to different loading condi-
tions as well as to monotonic and cyclic deformation, particularly at low strain
rates. However, accuracy of the predictions decreased systematically as the
strain rate increased, the homogenization scheme giving a slightly softer re-
sponse than the numerical simulations. The detailed information of the stress
and strain microfields given by the finite element simulations was used to an-
alyze the source of this error, which was traced to the use of an isotropic
extraction of the matrix affine modulus to compute Eshelby’s tensor. It was
found that better predictions at high strain rates could be obtained if the same
isotropic extraction was used to determine Hill’s tensor (instead of Eshelby’s
tensor) but the numerical problems associated with the numerical inversion of
the Laplace-Carson transform did not make advisable to use this latter ap-
proach.
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Figure 6.14: Comparison of various isotropisation methods.



Chapter 7

Conclusions

Throughout this thesis, we have investigated some important aspects of the nu-
merical prediction of elasto-plastic and elasto-viscoplastic inclusion-reinforced
composites and proposed some original improvements. To carry this out, two
techniques have been examined: mean-field homogenization schemes and finite
element simulations.

We first adapted the finite element technique for the analysis of composites.
The major advantage of such analysis is the accuracy of its predictions and the
possibility of knowing the state of deformation at any point of the representative
volume element, although this can only be done at a high computational cost.
Furthermore, on the contrary to other methods, it can deal easily with any
constitutive behavior for any phase. Based on existing developments for sphere
reinforced materials, we extended the technique to inclusions with a spheroidal
(ellipsoidal with an axis of revolution) shape which enables to deal with a much
wider category of composites. To do this, we first generated geometries with
randomly dispersed and non overlapping inclusions. Due to the imposition
of periodic boundary conditions, both the geometry and the mesh must also
be periodic. This guarantees a limited size of the RVE. A geometrical study
proved the required homogeneity and transverse isotropy of the cell in the case
of aligned inclusions. The numerical analysis showed that for inclusions with a
low aspect ratio, 30 of them were enough to reproduce correctly the behavior of
the material. High attention was devoted to the mesh quality so that precision
of the microscopic fields was guaranteed, which is of first importance when
taking damage into account. Finite element simulations are a fantastic tool for
validation purpose of other simplified but much faster homogenization schemes.

Main part of this work is devoted to development of mean-field homogeniza-
tion schemes for elasto-plastic and elasto-viscoplastic composites. First of all,
these are presented in the context of linear thermo-elastic or viscoelastic ma-
terials and relies on the Eshelby’s result. Accuracy of these models is checked
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against experimental results and finite element simulations and a good correla-
tion was found between these models. This has a great impact on subsequent
developments since this consists of a subproblem of homogenization schemes in
the nonlinear regime.

First extension to nonlinear materials is done in the context of two-phase
elasto-plastic composites. In order to apply homogenization schemes developed
for linear elastic materials, an incremental linearization of the local constitutive
equations is carried out. This is done over several time steps and has the ad-
vantage of following the loading path so that it can handle any loading history,
including cyclic and non proportional ones. However, this general approach is
known to be too stiff. In order to circumvent this problem, we suggested several
stiffness reduction methods. First of all, this was studied on a theoretical point
of view and the dependence of various tensors used during the homogenization
step (Hill, Hill’s constraint and the effective tangent operators) with respect
to the matrix tangent modulus was examined. Previous results have shown
that Hill’s tensor P decreases (in the meaning of quadratic forms) with the
matrix modulus while Hill’s constraint tensor C∗ and the effective operator C̄
are increasing with it. In order to make use of these properties, several ma-
trix modulus tensors are considered: the original anisotropic one Cani

0 and the
extraction of its isotropic or transverse isotropic parts. The softest modulus
is obtained with a special isotropisation technique in a direction orthogonal to
the normal to the yield surface in the stress space. Similarly, our proposed
transverse isotropisation technique relies on a projection on the subspace of
transversely isotropic tensors and a stiffness reduction in the same direction.
Dependence of the different tensors on the matrix modulus combined with all
the proposed stiffness reduction methods enable to perform various predictions.
It has been noted that the previously used evaluation of the Eshelby’s tensor
E with the special isotropisation technique CIsoSpe

0 can sometimes give non
physical predictions, which is due to the loss of major symmetries of the Hill’s
tensor P . After numerous validation tests, we recommend the computation of
the Hill’s tensor P with the special isotropic matrix modulus CIsoSpe

0 . Unfor-
tunately, this special method is not applicable to all constitutive models. Spec-
tacular improvements have also been obtained with the transversely isotropic
extraction method (CTrIsoSpe

0 ) but this still relies on a fitting parameter which
reduces its scope of applications.

Still in the context of elasto-plasticity, a comparison between the secant
formulation (per phase reference state defined from either first order or second
order moment of the stress tensor), the incremental formulation and finite ele-
ment simulations has been carried out. This showed that best predictions are
obtained with the second order secant homogenization schemes. Incremental
formulation also gives satisfying predictions and has the major advantage of
remaining valid with general plasticity models (e.g.: kinematic hardening) and
non-proportional loadings (e.g.: cyclic). Difference between first and second
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order methods are especially noticeable when high plastic strain localization
occurs and when uniaxial traction test is performed along the direction of the
aligned ellipsoids. However, several difficulties for capturing correctly the per
phase average strain and stress is still a major problem when dealing with
mean-field homogenization schemes. Some of these problems are due to the use
of isotropisation technique or the second order secant method.

Major developments of this thesis concern the affine formulation developed
for elasto-viscoplastic composites. The main improvement with previous imple-
mentations of the method is that it enables to deal with internal parameters.
Such formulation transforms the local elasto-viscoplastic constitutive laws into
form-similar linear thermo-viscoelastic relations. With the help of the Laplace-
Carson transform, these are reduced to linear thermo-elastic ones in the Laplace
domain where the homogenization procedure can be applied. In order to solve
the localization problem, some numerical inversions are required. Due to the
hereditary nature of the constitutive laws, an iterative process must be car-
ried out over several time steps. In order to limit the memory cost, a special
attention has been paid to the development of efficient algorithms. Our imple-
mentation enables to simulate several loadings including cyclic, relaxation and
creep tests, different hardening and viscoplastic laws and several homogeniza-
tion schemes. Finally, a confrontation with 3D finite element method showed a
good accuracy. However, a deterioration of the predictions has been observed
as the strain rate increases. This is mainly coming from the isotropisation
method.

This thesis showed the general efficiency of mean-field homogenization sche-
mes to capture correctly macroscopic behavior. This has been done for difficult
nonlinear behaviors such as elasto-plasticity and elasto-viscoplasticity. Among
the future improvements of homogenization methods are:

• Increasing the quality of the microscopic predictions obtained with mean-
field methods is a great challenge. This could be done by considering other
reference states for the phases of the linear comparison composite. For
example, making use of the second order moment of the stress tensor with
the incremental formulation is still an open subject.

• Solving some of the limitations of Eshelby-based mean-field homogeniza-
tion models such as the ellipsoidal shape of the inclusions, the availability
of information on the strain localization and the impossibility to model
percolation or clustering effects. The latter problem could maybe be
solved by considering a decomposition of the two-phase composite into
several regions, each one having a different volume fraction of inclusions.
Such material can be considered as a multi-phase composite in which each
region corresponds to a two-phase composite.

• Modeling size effects which are important when dealing with nanocom-
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posites and are not considered by finite element and mean-field homoge-
nization schemes. A solution could be the introduction of a characteristic
length in the model.

• Considering damage (inclusion fracture, interface decohesion,. . . ). This
firstly requires a good accuracy of the predictions at the microscopic
scale. Anyway, since detailed microscopic fields are not available with
these methods, it must be done in a statistical way. Using an additional
internal parameter in the affine formulation could be a solution.

• Dealing with the thermal coupling which is especially useful when per-
forming simulations of a complete process of elasto-viscoplastic compos-
ites.

Finally, it is stressed out that even if finite element simulations are realizable
on a representative volume element of the microstructure, this is far from being
possible if this problem is coupled to a simulation on the macroscopic structure.
So, even if computational power is increasing every day, the use of mean-field
homogenization schemes are the only way to solve such problems and guarantees
a bright future to these methods.



Appendix A

Expressions of the
Eshelby’s tensor

Analytical formulae of the Eshelby’s tensor were introduced by Eshelby [30] for
isotropic materials and spheroids. Later, Withers [108] extended the expres-
sions to transversely isotropic medium, with the restriction that the direction of
anisotropy has the same orientation as the aligned reinforcements. In all other
cases (ellipsoidal inclusions and/or anisotropic material), a numerical evalua-
tion of the tensor is necessary and was implemented by Gavazzi and Lagoudas
[34].

A.1 Isotropic matrix

Hereafter are given the non-nil components of the Eshelby’s tensor for spheroids
of aspect ratio Ar embedded in an isotropic matrix (expressions are picked up
from Friebel [32]). Reinforcements are aligned along the direction 1.

S1111 =
1

2(1 − ν)

[
2(1 − ν)(1 − g) + g − Ar2 3g − 2

Ar2 − 1

]
,

S2222 = S3333 =
1

4(1 − ν)

[
2(2 − ν)g − 1

2
− (Ar2 − 1

4
)

3g − 2
Ar2 − 1

]
,
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S1122 = S1133 =
1

4(1 − ν)

[
4ν(1 − g) − g + Ar2 3g − 2

Ar2 − 1

]
,

S2233 = S3322 =
1

4(1 − ν)

[
−(1 − 2ν)g +

1
2
− 1

4
3g − 2
Ar2 − 1

]
,

S2211 = S3311 =
1

4(1 − ν)

[
−(1 − 2ν)g + Ar2 3g − 2

Ar2 − 1

]
,

S1212 = S1313 =
1

4(1 − ν)

[
(1 − ν)(2 − g) − g + Ar2 3g − 2

Ar2 − 1

]
,

S2323 =
S2222 − S1122

2
, (A.1)

where:

g =
Ar

(Ar2 − 1)3/2

[
Ar(Ar2 − 1)1/2 − cos−1Ar

]
for 0 < Ar < 1,

g =
Ar

(1 − Ar2)3/2

[
cosh−1Ar − Ar(1 − Ar2)1/2

]
for 1 < Ar < ∞.(A.2)

Eshelby’s tensor has the minor symmetries (Sijkl = Sjikl = Sijlk = Sjilk) but
not the major ones (Sijkl = Sklij).

For the particular case of spherical inclusions, previous equations become
invalid and require a study of these functions around Ar = 1. This gives:

S1111 = S2222 = S3333 =
7 − 5ν

15(1 − ν)
,

S1122 = S1133 = S2233 =
5ν − 1

15(1 − ν)
,

S1212 = S1313 = S2323 =
4 − 5ν

15(1 − ν)
. (A.3)

A.2 Transversely isotropic matrix

Eshelby’s results are based on the solution of a point force applied inside an
infinite solid. Solution of this problem is given by the elastic Green’s func-
tions. An explicit solution of the Green’s function in a general anisotropic
medium is possible only if a sixth-order algebraic equation has six different
roots. For transversely isotropic materials this condition is reduced to (direc-
tion of anisotropy is 1):

(C1111C3333)1/2 − C1133 − C2323 �= 0. (A.4)

Analytical point force solution for an infinite transversely isotropic solid was
given by Pan and Chou [76].
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Starting from the solution of this problem, Withers [108] developed the
expression of Eshelby’s tensor for transversely isotropic medium under the con-
dition that the direction of anisotropy is the same as the aligned inclusions.
Components of this tensor are function of several constants and two integrals
over the volume of the ellipsoid. Developments of Withers remain valid only if
expression (A.4) is positive. However, when performing all the computations
with complex calculus, one can prove that the integrals in the two cases are
complex conjugate and equals. They are thus real as well as the final result of
the Eshelby’s tensor.
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Appendix B

Laplace-Carson transform
and its inversion

B.1 Laplace-Carson transform

The Laplace-Carson transform is defined by:

[L(f)](s) = f∗(s) = s

∫ ∞

0

f(t)e−stdt. (B.1)

It is thus the classical Laplace transform multiplied by the Laplace variable
s. Main advantages of this transform are that a constant remains a constant,
the time derivative of one of the members in a convolution product disappears
under this transform and the transform of a Stieljes type convolution product
is reduced to a single contraction between the transform of the two operands.
Some basic Laplace-Carson transforms are given in table B.1.

B.2 Laplace-Carson inversion

The collocation method proposed by Scharpery [90] for numerical inversion of
the Laplace-Carson transform is adopted. Main advantages of this method are
the ease of its implementation, its efficiency and the analytical form of the
result so that the time function can be evaluated at any time.

Consider an expression f∗(s) known in the Laplace domain. A development
of the unknown time function into a Dirichlet series for a particular choice of
basis functions gives:

f(t) = A + Bt +
k=M∑
k=1

bk (1 − e−t/θk)︸ ︷︷ ︸
Basis functions

. (B.2)
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f(t) f∗(s) Conditions
a a s > 0
at a/s s > 0
eat s

s−a s > a

cos(ωt) s2

s2+ω2 -
δ(t − c) se−cs -
H(t − c) e−cs -

af(t) + bg(t) af∗(s) + bg∗(s) -
A ⊗ B 1

sA∗(s) : B∗(s) -
A � B A∗(s) : B∗(s) -

Table B.1: Basic Laplace-Carson transforms.

Main advantage of this decomposition is that its Laplace-Carson transform is
known analytically:

f∗(s) = A +
B

s
+

k=M∑
k=1

bk
1

1 + sθk︸ ︷︷ ︸
Transf. basis funct.

, (B.3)

where θk are given relaxation times chosen equispaced on a logarithmic scale.
Bounds and length of this interval can have a considerable impact on the results.

In expression (B.3), A and B are limit values which can be evaluated from
the known function in the Laplace or time domain:

A = lim
s→+∞ f∗(s) = lim

t→0
f(t), (B.4)

B = lim
s→0

sf∗(s) = lim
t→+∞

f(t)
t

. (B.5)

The only unknowns in expression (B.3) are the factors bk. In order to cal-
culate them, the function in the Laplace domain is evaluated at M collocation
points sl = 1/θl:

f∗(sl) = A +
B

sl
+

k=M∑
k=1

bk
1

1 + slθk
, 1 ≤ l ≤ M. (B.6)

Typically, around 20 points are enough. Better precision can be obtained when
increasing the number of collocation points but the system then becomes larger
and can even get close to singular. For computing the factors bk, a linear system
of size M must be solved. Once the M unknowns bk are found, the time function
(B.2) can be evaluated at any time.
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(b) Time domain.

Figure B.1: Numerical inversion of the transform of a decreasing exponential -
20 collocation points.

A possible extension is to choose other basis functions from the proposed
ones, with the condition that their transform must be known analytically. Ide-
ally, the choice of basis functions should be such that their transform is as
form-similar as possible to the function in the Laplace domain. When inverting
tensorial functions, the evolution of each component is considered individually.
If polycrystals are modeled, a large amount of Laplace inversions has to be
carried out due to numerous individual crystals. In this case, Brenner et al.
[15] proposed a simplified direct inversion which can reduce considerably the
required CPU time. However, this technique is not used in this work since it
reduces also the precision of the inversion and the CPU time is not a critical
issue for two-phase materials.

Examples of numerical inversions As validation of the collocation me-
thod, several inversions of Laplace functions are made for which the transform
is known a priori.

• f(t) = e−t/2, f∗(s) = s
s+ 1

2

This function is quite regular and results of the inversion are reported on
figure B.1. For this first test, 20 collocation points are considered (noted
with the sign ′+′ on the figure B.1a). Continuous line is always the plot
of the analytical functions (known in the Laplace domain, unknown and
solution of this problem in the time domain). Crosses on figure B.1b are
obtained from the development in series evaluated at several times. For
such regular function, an excellent accuracy of this inversion is observed.

• f(t) = H(t − 2), f∗(s) = e−2s
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Figure B.2: Numerical inversion of the transform of the step function - 20
collocation points.

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

La
pl

ac
e−

C
ar

so
n 

tr
an

fo
rm

(a) Laplace domain.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

t

O
rig

in
al

 fu
nc

tio
n 

to
 r

et
rie

ve
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Figure B.3: Numerical inversion of the transform of the step function - 100
collocation points.

A step function is now considered. At first, 20 collocation points are used
for the inversion. Figure B.2b shows that the capture of the step isn’t
that good. When using 100 collocation points (figure B.3b) instead of 20,
much better results are obtained. However, even if it might be tempting
to consider as many collocation points as possible, several problems arise
in this case. First one is that when rising the number of points, this
increases the size of the linear system. Since solving a system of size n
has a cost of n3 operations, the complexity is growing up quickly. Another
one is that increasing the size of the system leads to a singular matrix.

• f(t) = cos(t), f∗(s) = s2

s2+1
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Figure B.4: Numerical inversion of the transform cosine function - 100 colloca-
tion points.

This last test considers the periodic cosine function. Figure B.4b shows
that 2 complete periods are correctly captured. However, it is impossible
to retrieve all the periods because basis functions considered in this case
are decreasing exponentials so that the cosine function is reconstructed
from balanced exponentials ! A much better choice would be to select
other basis functions.
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Appendix C

Incremental evaluation of a
convolution product

Consider a time-dependent fourth order tensor F (t) obtained after a numerical
inversion of its Laplace-Carson transform so that it is written under the form
(B.2). This tensor is convoluted with a second-order tensor written in rate form
ε̇. Such operation occurs in the computation of the macroscopic response at
various times of a linear viscoelastic composite and in the localization problem
of a heterogeneous elasto-viscoplastic material. Main goal of this section is to
compute the convolution product at a limited memory cost. For this, consider
a time interval [tn, tn+1]. The convolution product is already computed up
to tn and the strain history is known up to the end of the current time step
(tn+1 = tn + ∆t). Taking into account all this information, the development
hereafter enables to perform the computation of the convolution product at the
end of the time step.

[F ⊗ ˙̄ε](tn+1)
=

∫ tn+1

0

F (tn+1 − u) : ˙̄ε(u)du

= A :
∫ tn+1

0

˙̄ε(u)du + B :
∫ tn+1

0

(tn+1 − u) : ˙̄ε(u)du

+
∫ tn+1

0

M∑
k=1

bk(1 − e−(tn+1−u)sk) : ˙̄ε(u)du
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[F ⊗ ˙̄ε](tn+1)
=

(
A + tn+1B +

M∑
k=1

bk

)
: (ε̄(tn+1) − ε̄(0))

−B :
∫ tn+1

0

u ˙̄ε(u)du

−
M∑

k=1

bk :
∫ tn+1

0

e−(tn+1−u)sk ˙̄ε(u)du, (C.1)

where sk = 1
θk

. But:

∫ tn+1

0

u ˙̄ε(u)du = [uε̄(u)]tn+1
0 −

∫ tn+1

0

1ε̄(u)du

= tn+1ε̄(tn+1) −
∫ tn+1

0

ε̄(u)du

= tn+1ε̄(tn+1) −
∫ tn

0

ε̄(u)du

−∆t

2
(ε̄(tn) + ε̄(tn+1)), (C.2)

and: ∫ tn+1

0

e−(tn+1−u)sk ˙̄ε(u)du =
[
e−(tn+1−u)sk ε̄(u)

]tn+1

0

−sk

∫ tn+1

0

e−(tn+1−u)sk ε̄(u)du

= ε̄(tn+1) − e−tn+1sk ε̄(0)

−sk

∫ tn+1

0

e−(tn+1−u)sk ε̄(u)du. (C.3)

Rearranging these terms gives:

[F ⊗ ˙̄ε](tn+1)
= A : ε̄(tn+1) +

∆t

2
B : (ε̄(tn) + ε̄(tn+1)) (C.4)

+B :
∫ tn

0

ε̄(u)du

+
M∑

k=1

skbk :
∫ tn+1

0

e−(tn+1−u)sk ε̄(u)du

−
[
A + tn+1B +

M∑
k=1

bk −
M∑

k=1

bke−tn+1sk

]
: ε̄(0).
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Evolving parameters from one time-step to another one are: A,B, bk, tn+1.
A last term still must be evaluated:∫ tn+1

0

e−(tn+1−u)sk ε̄(u)du =
∫ tn

0

e−(tn+1−u)sk ε̄(u)︸ ︷︷ ︸
e−(tn+∆t−u)sk ε̄(u)

du

+
∫ tn+1

tn

e−(tn+1−u)sk ε̄(u)du

= e−∆tsk

∫ tn

0

e−(tn−u)sk ε̄(u)du

+
∫ tn+1

tn

e−(tn+1−u)sk ε̄(u)du. (C.5)

In this case, using again a trapezoidal integration rule is quite bad for large
values of sk. This is due to the linear approximation of the integral containing
the sharp exponential. This problem can be tackled if ˙̄ε(u) is considered as
constant on each time-step. On the considered time interval, this gives:

ε̄(u) = ε̄(tn) + (u − tn) ˙̄ε. (C.6)

Second integral in (C.5) can be rewritten as:∫ tn+1

tn

e−(tn+1−u)sk ε̄(u)du

=
∫ tn+1

tn

e−(tn+1−u)sk(ε̄(tn) + (u − tn) ˙̄ε)du

= (ε̄(tn) − tn ˙̄ε)e−tn+1sk

∫ tn+1

tn

euskdu + ˙̄εe−tn+1sk

∫ tn+1

tn

ueuskdu

= (ε̄(tn) − tn ˙̄ε)
e−tn+1sk

sk
(etn+1sk − etnsk) + ˙̄εe−tn+1sk

[
eusk

sk
(u − 1

sk
)
]tn+1

tn

= (ε̄(tn) − tn ˙̄ε)
1 − e(tn−tn+1)sk

sk

+ ˙̄εe−tn+1sk

(
etn+1sk

sk
(tn+1 − 1

sk
) − etnsk

sk
(tn − 1

sk
)
)

︸ ︷︷ ︸
˙̄ε

„
1

sk
(tn+1− 1

sk
)− e

(tn−tn+1)sk

sk
(tn− 1

sk
)

«

=
1
sk

[
ε̄(tn)(1 − e−∆tsk) + ˙̄ε(∆t +

e−∆tsk − 1
sk

)
]

=
1
sk

[
ε̄(tn+1) − ε̄(tn)e−∆tsk + (ε̄(tn+1) − ε̄(tn))

e−∆tsk − 1
sk∆t

]
. (C.7)
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Appendix D

Computation details of the
affine formulation

D.1 Solution of the internal variables’ constitu-
tive equation

The linearized equation of internal variables is given by (6.11):

ṗ(t) = ṗ(tn) + l(τ) : [σ(t) − σ(tn)] + q(τ)[p(t) − p(tn)]. (D.1)

Let’s prove that the following expression is a solution of (D.1):

p(t) − p(tn) = p̂(τ, t) +
∫ t

0

e(t−u)q(τ)l(τ) : σ(u)du, (D.2)

p̂(τ, t) = q−1(τ)[e(t−tn)q(τ) − 1][ṗ(tn) − l(τ) : σ(tn)]

−
∫ tn

0

e(t−u)q(τ)l(τ) : σ(u)du. (D.3)

Let’s first recall the theorem which allows to switch the derivative and the
integral of a function:

∂

∂t

∫ b(t)

a(t)

f(t, x)dx =
∫ b(t)

a(t)

∂

∂t
f(t, x)dx + f(t, b(t))

d

dt
b(t) − f(t, a(t))

d

dt
a(t).

(D.4)
With the help of (D.4), the derivative of (D.2) is given by:

ṗ(t) = [e(t−tn)q(τ)][ṗ(tn) − l(τ) : σ(tn)] + q(τ)
∫ t

tn

e(t−u)q(τ)l(τ) : σ(u)du

+l(τ) : σ(t). (D.5)
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Expression of the proposed solution (D.2) can be rearranged to get an expres-
sion of the integral in function of p:∫ t

tn

e(t−u)q(τ)l(τ) : σ(u)du

= p(t) − p(tn) − q−1(τ)[e(t−tn)q(τ) − 1][ṗ(tn) − l(τ) : σ(tn)]. (D.6)

Inserting this result in (D.5) gives:

ṗ(t) = [e(t−tn)q(τ)][ṗ(tn) − l(τ) : σ(tn)] + q(τ)(p(t) − p(tn))
−[e(t−tn)q(τ) − 1][ṗ(tn) − l(τ) : σ(tn)] + l(τ) : σ(t). (D.7)

Rearranging the terms gives:

ṗ(t) = l(τ) : σ(t) + ṗ(tn) − l(τ) : σ(tn) + q(τ)(p(t) − p(tn)). (D.8)

This result is the same as the differential equation (D.1), the proposed solution
is thus acceptable. Continuity conditions are also respected:

ṗ(t = tn) = ṗ(tn),
p(t = tn) = p(tn). (D.9)

D.2 Linear viscoelastic expressions

The solution in p̂(τ, t) of the integral equation (6.15) is inserted in equation
(6.10) and gives the initial expression reported hereafter. Main goal is to rewrite
such complex expression under one similar to a linear thermo-viscoelastic con-
stitutive law by introducing the Stieljes-type convolution product. The final
result is given below, a proof of the equivalence between the initial and final
result is given afterwards.

Initial expression:

∀t ≥ tn : ε̇(1)(t) = S : σ̇(t) + m(τ) : σ(t)

+n(τ)
∫ t

0

e(t−u)q(τ)l(τ) : σ(u)du + ε̇0(1)(τ, t),

ε̇0(1)(τ, t) = ε̇in(tn) − m(τ) : σ(tn) + p̂(τ, t)n(τ). (D.10)

Final expression:

ε̇(2)(t) = [Sτ � σ̇](τ,t) + ε̇0(2)(τ, t). (D.11)
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Expressions of the creep modulus Sτ and eigenstrain rate tensor ε̇0 are:

Sτ (τ, t) = S + m(τ)t

−q−1(τ) :
[
t + q−1(τ)

(
1 − et q(τ)

)]
n(τ) ⊗ l(τ), (D.12)

ε̇0(2)(τ, t) = ε̇in(tn) − m(τ) : σ(tn) + n(τ)p̂(τ, t)
+ė(τ, t)[1 − H(t − tn)] + ε̂0(τ, t,σ(0)), (D.13)

ė(τ, t) = ε̇in(t) − ε̇in(tn) − m(τ) : (σ(t) − σ(tn))

−n(τ)
[
p̂(τ, t) +

∫ t

0

e(t−u)q(τ)l(τ) : σ(u)du

]
, (D.14)

ε̂0(τ, t,σ(0)) =
[
m(τ) − n(τ)q−1(τ)l(τ) + n(τ)q−1(τ)etq(τ)l(τ)

]
: σ(0),

where H is the Heavyside step function. This expression is valid for any time
(later or prior to the linearization time tn). Note that if t ≤ tn, expression
(D.11) is reduced to:

ε̇(t) = S : σ̇(t)︸ ︷︷ ︸
ε̇el(t)

+ε̇in(t). (D.15)

Equivalence of the two expressions. In the final expression ε̇0(2), the
Stiljes-type convolution product � is defined as:

[Sτ � σ̇](τ,t) =
d

dt

[∫ t

0

Sτ (τ, t − u) : σ̇(u)du

]
=

∫ t

0

dSτ

du
(τ, u) : σ̇(t − u)du + Sτ (τ, 0) : σ̇(t), (D.16)

where the theorem (D.4) has been used to invert the derivative and the integral.
Compliance terms are given by:

dSτ

du
(τ, u) = m(τ) − q−1(τ)[1 − q−1(τ)q(τ)euq(τ)]n(τ) ⊗ l(τ)

= m(τ) − q−1(τ)n(τ) ⊗ l(τ)
+q−1(τ)euq(τ)n(τ) ⊗ l(τ), (D.17)

and:

Sτ (τ, 0) = S. (D.18)

Expression (D.17) enables to compute the integral in (D.16). Integrals of
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the three terms are evaluated separately:∫ t

0

m(τ) : σ̇(t − u)du =
y=t−u

−
∫ 0

t

m(τ) : σ̇(y)dy

=
∫ t

0

m(τ) : σ̇(y)dy

= m(τ) : [σ(y)]y=t
y=0

= m(τ) : (σ(t) − σ(0)), (D.19)∫ t

0

−q−1(τ)n(τ)l(τ) : σ̇(t − u)du = q−1(τ)n(τ)l(τ) : (σ(0) − σ(t)), (D.20)

∫ t

0

q−1(τ)euq(τ)n(τ)l(τ) : σ̇(t − u)du

=
by parts

[−q−1(τ)euq(τ)n(τ)l(τ) : σ(t − u)]u=t
u=0

−
∫ t

0

q−1(τ)q(τ)euq(τ)n(τ)l(τ) : (−σ(t − u))du

=
s≡t−u

−q−1(τ)etq(τ)n(τ)l(τ) : σ(0) + q−1(τ)e0.q(τ)n(τ)l(τ) : σ(t)

−
∫ 0

t

e(t−s)q(τ)n(τ)l(τ) : σ(s)ds. (D.21)

Inserting all these results in the final expression (D.11) gives:

ε̇(2)(t) = S : σ̇(t) + m(τ) : σ(t) − q−1(τ)n(τ)l(τ) : σ(t)

+q−1(τ)n(τ)l(τ) : σ(t) +
∫ t

0

e(t−u)q(τ)n(τ)l(τ) : σ(u)du

+ε̇in(tn) − m(τ) : σ(tn) + p̂(τ, t)n(τ)

+[1 − H(t − tn)]
[
ε̇in(t) − ε̇in(tn) − m(τ) : (σ(t) − σ(tn))

−
(

p̂(τ, t) +
∫ t

0

e(t−u)q(τ)l(τ) : σ(u)du

)
n(τ)

]
. (D.22)

This result is equivalent to the initial expression so that expressions (D.10) and
(D.11) are the same.

D.3 Linear thermo-elastic expressions

The linear viscoelastic formulation (6.17) with eigenstrain is given by:

ε̇(t) = [Sτ � σ̇](τ,t) + ε̇0(τ, t). (D.23)
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Its Laplace-Carson transform is:

ε̇∗(s) = S∗
τ (τ, s)︸ ︷︷ ︸
Term I

: σ̇∗(s) + ε̇0∗(τ, s)︸ ︷︷ ︸
Term II

. (D.24)

This expression is similar to the constitutive law of a linear thermo-elastic
material. Terms I and II still must be evaluated.

Term I Expression Sτ (τ, t) is given in equation (D.12). Its Laplace-Carson
transform is:

S∗
τ (τ, s) = S +

m(τ)
s

− q−1(τ)n(τ) ⊗ l(τ)
s

−q−1(τ)q−1(τ)n(τ) ⊗ l(τ) +
sq−1(τ)q−1(τ)n(τ) ⊗ l(τ)

s − q(τ)

= S +
m(τ)

s
+

n(τ) ⊗ l(τ)
s(s − q(τ))

. (D.25)

This is valid only if s > max(0, q(τ)) = 0.

Term II Expression of ε̇0(τ, t) is given in equation (D.13). It is separated in
four terms as follow:

ε̇0(τ, t) = ε̇in(tn) − m(τ) : σ(tn)︸ ︷︷ ︸
Term A

+ p̂(τ, t)n(τ)︸ ︷︷ ︸
Term B

+ ė(τ, t)[1 − H(1 − tn)]︸ ︷︷ ︸
Term C

+
[
m(τ) − n(τ)q−1(τ)l(τ) + n(τ)q−1(τ)etq(τ)l(τ)

]
: σ(0)︸ ︷︷ ︸

Term D

. (D.26)

Due to the linearity of the Laplace-Carson transform, transforms of terms A,
B, C and D are evaluated separately.

Term A[L(ε̇in(tn) − m(τ) : σ(tn))
]
(s)

= ε̇in(tn) − m(τ) : σ(tn). (D.27)

Term B

[L(p̂(τ, t)n(τ))](s) = p∗(τ, s)n(τ). (D.28)
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Expression of p̂(τ, t) is given by equation (6.16). Transform of the last term of
p̂(τ, t) is given by:

s

∫ ∞

0

∫ tn

0

e(t−u)q(τ)l(τ) : σ(u)due−stdt

=
∫ tn

0

s

∫ ∞

0

et(q(τ)−s)−uq(τ)dtl(τ) : σ(u)du

= − s

q(τ) − s
l(τ) :

∫ tn

0

e−uq(τ)σ(u)du. (D.29)

This is valid if s > q(τ). The transform of p̂(τ, t) is given by:

p̂∗(τ, s)n(τ) = q−1(τ)
s

s − q(τ)
e−tnq(τ)ṗ(tn)n(τ)

−q−1(τ)
s

s − q(τ)
e−tnq(τ)l(τ) : σ(tn)n(τ)

−q−1(τ)ṗ(tn)n(τ) + q−1(τ)l(τ) : σ(tn)n(τ)

+
s

q(tn) − s
l(τ) :

∫ tn

0

e−uq(τ)σ(u)dun(τ). (D.30)

Term C Laplace-Carson transform of term C is now examined. Expression
of ė(τ, t) is given by equation (D.14). Due to the Heavyside function, integral
of the Laplace-Carson transform is limited up to t = tn instead of t = ∞ and
will be denoted:

[L0→tn(ε̇in(t))
]
(s)

= s

∫ tn

0

ε̇in(t)e−stdt. (D.31)

Transform of several terms of ė(τ, t) can be easily evaluated:

[L0→tn(ε̇(tn))
]
(s)

= s

∫ tn

0

ε̇in(tn)e−stdt

= sε̇in(tn)
[−e−st

s

]tn

0

= ε̇in(tn)(1 − e−stn),[L0→tn(m(τ) : σ(t))
]
(s)

= sm(τ) :
∫ tn

0

σ(t)e−stdt,[L0→tn(m(τ) : σ(tn))
]
(s)

= m(τ) : σ(tn)(1 − e−stn),[L0→tn(n(τ)p̂(τ, t))
]
(s)

= n(τ)
[L0→tn(p̂(τ, t))

]
(s)

. (D.32)
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In this last equation, things are becoming a little bit more complex since p̂(τ, t)
is given by equation (6.16):

p̂(τ, t) = q−1(τ)
[
e(t−tn)q(τ) − 1

]
[ṗ(tn) − l(τ) : σ(tn)]

−
∫ tn

0

e(t−u)q(τ)l(τ) : σ(u)du. (D.33)

Firstly, let’s evaluate a preliminary integral:[
L0→tn(e(t−tn)q(τ))

]
(s)

= s

∫ tn

0

e(t−tn)q(τ)e−stdt

= s

∫ tn

0

e(q(τ)−s)te−tnq(τ)dt

= s

[
e(q(τ)−s)te−tnq(τ)

q(τ) − s

]tn

0

= s
e−stn − e−q(τ)tn

q(τ) − s
. (D.34)

This gives the transform of the last term of p̂(τ, t):

s

∫ tn

0

∫ tn

0

e(t−u)q(τ)l(τ) : σ(u)due−stdt

=
∫ tn

0

s

∫ tn

0

e(t−u)q(τ)e−stdtl(τ) : σ(u)du

=
∫ tn

0

s

[
et(q(τ)−s)−uq(τ)

q(τ) − s

]tn

0

l(τ) : σ(u)du

=
∫ tn

0

s

q(τ) − s
(etn(q(τ)−s)−uq(τ) − e−uq(τ))l(τ) : σ(u)du

=
s

q(τ) − s
l(τ) :

∫ tn

0

e−uq(τ)σ(u)du (etn(q(τ)−s) − 1). (D.35)

Finally, the modified Laplace-Carson transform of (D.32) is given by:

[L0→tn(p̂(τ, t)n(τ))
]
(s)

= q−1(τ)s
e−stn − e−q(τ)tn

q(τ) − s
ṗ(tn)n(τ)

−q−1(τ)s
e−stn − e−q(τ)tn

q(τ) − s
l(τ) : σ(tn)n(τ)

+
s

q(τ) − s
l(τ) :

∫ tn

0

e−uq(τ)σ(u)du (etn(q(τ)−s) − 1)n(τ).
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Last term of (D.14) can be transformed as:[
L0→tnl(τ) :

∫ t

0

e(t−u)q(τ)σ(u)dun(τ)
]
(s)

= s

∫ tn

0

l(τ) :
∫ t

0

e(t−u)q(τ)σ(u)du e−stdtn(τ). (D.36)

Regrouping all the partial transform, one get the one of ė(τ, t):

[L(ė(τ, t)[1 − H(t − tn)])](s)

= s

∫ tn

0

ε̇in(t)e−stdt − ε̇in(tn)(1 − e−stn) − sm(τ) :
∫ tn

0

σ(t)e−stdt

+m(τ) : σ(tn)(1 − e−stn)

−q−1(τ)s
e−stn − e−q(τ)tn

q(τ) − s
ṗ(tn)n(τ)

+q−1(τ)l(τ) : σ(tn)s
e−stn − e−q(τ)tn

q(τ) − s
n(τ)

+q−1(τ) [ṗ(tn) − l(τ) : σ(tn)] n(τ)(1 − e−stn)

+
s

q(τ) − s
l(τ) :

∫ tn

0

e−uq(τ)σ(u)du (etn(q(τ)−s) − 1)n(τ) (D.37)

−sn(τ) : l(τ)
∫ tn

0

∫ t

0

e(t−u)q(τ)σ(u)du e−stdt. (D.38)

Last term (D.37) can be rewritten as:

n(τ) : l(τ)
∫ tn

0

∫ t

0

e(t−u)q(τ)σ(u) du e−st dt (D.39)

=
sn(τ) : l(τ)

q(τ) − s

[
etn(q(τ)−s)

∫ tn

0

σ(u)e−uq(τ) du −
∫ tn

0

σ(u)e−su du

]
.

This enable to further simplify the sum of (D.37) and (D.38).

Term D Term D can be viewed as a function of σ(0). Its Laplace-Carson
transform is given by:

ε̂0∗(τ, s,σ(0)) = m(τ) : σ(0) − n(τ)q−1(τ)l(τ) : σ(0)

+ n(τ)q−1(τ)
s

s − q(τ)
l(τ) : σ(0). (D.40)

This is valid only if s > q(τ). Regrouping terms A, B, C and D enables to
compute ε̇0∗. Its final expression is reported in the main text (section 6.3.1).
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D.4 Limit values for the Laplace-Carson inver-
sion

For the numerical inversion of the Laplace-Carson transform with a collocation
method, two limits of the function are needed. For a function f(t) (denoted
f∗(s) in the Laplace domain), these can be evaluated equivalently in the Laplace
or time domain:

lim
s→∞ f∗(s) = lim

t→0
f(t),

lim
s→0

sf∗(s) = lim
t→∞

f(t)
t

. (D.41)

In the proposed algorithm to solve the localization problem for two-phase
elasto-viscoplastic plastic composite with an affine formulation, the two strain
concentration tensors of linear thermo-elasticity have to be inverted: Aε∗(τ, s)
and aε∗(τ, s). Expressions for the strain concentration tensors used in this
section correspond to the Mori-Tanaka homogenization scheme (section 4.2.3)
but limit values for other mean-field models can be obtained in a similar way.
If the final macroscopic response is computed via the macroscopic relation of
linear viscoelasticity (equation (6.24)), macroscopic stiffness and eigenstrain
must also be inverted. Limit values of these expressions are given in Pierard
[77].

D.4.1 The different functions

In the following, the subscript r refers to the matrix (r = 0) or the inclusions
(r = 1).

General case C∗
0(τ, s) �= C∗

1(τ, s)

S∗
r(τ, s) = Sr +

mr(τ)
s

+
nr(τ) ⊗ lr(τ)
s(s − qr(τ))

,

C∗
r(τ, s) = S∗−1

r (τ, s),
E∗(τ, s) : Eshelby’s tensor remains finite for any ν �= 0,

Bε∗(τ, s) =
[
I + E∗(τ, s) :

(
(C∗

0(τ, s))
−1 : C∗

1(τ, s) − I
)]−1

,

Aε∗(τ, s) = Bε∗(τ, s) : [(1 − v1)I + v1B
ε∗(τ, s)]−1

,

ε0∗
r (τ, s) : see equation (6.21),

aε∗(τ, s) = (Aε∗ − I) : (C∗
1(τ, s) − C∗

0(τ, s))
−1

: [C∗
0(τ, s) : ε0∗

0 (τ, s) − C∗
1(τ, s) : ε0∗

1 (τ, s)]. (D.42)
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Particular case Some of these expressions become invalid and have to be
reformulated if C∗

1(τ, s) = C∗
0(τ, s)

S∗
r(τ, s),C

∗
0(τ, s) and E(τ, s) remain valid and unchanged,

Bε∗(τ, s) = I,

Aε∗(τ, s) = I,

ε0∗(τ, s) remains valid and unchanged,
aε∗(τ, s) becomes invalid. (D.43)

In the last expression, when the inclusion’s parameters tend to the ones of the
matrix, first term of aε∗(τ, s) tends to I, second one to 0 and the contraction
of the third and fourth ones tends to ε0∗

1 (τ, s) − ε0∗
0 (τ, s). Thus, if C∗

0(τ, s) =
C∗

1(τ, s), aε∗(τ, s) = 0.

D.4.2 Limit values for s → ∞
General case lims→∞ C∗

0(τ, s) �= lims→∞ C∗
1(τ, s)

lim
s→∞S∗

r(τ, s) = Sr,

lim
s→∞C∗

r(τ, s) = S−1
r ,

lim
s→∞ E∗(τ, s) remains finite,

lim
s→∞Bε∗(τ, s) =

[
I + lim

s→∞ E∗ : (S0 : S−1
1 − I)

]−1

,

lim
s→∞Aε∗(τ, s) = lim

s→∞Bε∗(τ, s) : (v1 lim
s→∞Bε∗(τ, s) + (1 − v1)I)−1,

lim
s→∞ ε0∗

r (τ, s) = mr(τ) : σr(0),

lim
s→∞aε∗(τ, s) = (1 − v1)

(
v1 lim

s→∞Bε∗(τ, s) + (1 − v1)I
)−1

,

:
(

lim
s→∞Bε∗(τ, s) − I

)
: (S−1

1 − S−1
0 )−1,

:
(
S−1

0 : m0(τ) : σ0(0) − S−1
1 : m1(τ) : σ1(0)

)
.(D.44)

Limits of the strain concentration tensors can be evaluated just once for all
time-steps if σ0(0) = 0 and σ1(0) = 0. Otherwise, additional time-dependent
terms must be considered.

Particular case lims→∞ C∗
0(τ, s) = lims→∞ C∗

1(τ, s)
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lims→∞ S∗
r(τ, s) and lims→∞ C∗

r(τ, s) remains valid and unchanged.

lim
s→∞ E∗(τ, s) (remains finite),

lim
s→∞Bε∗(τ, s) = I (simplified),

lim
s→∞Aε∗(τ, s) = I (simplified),

lim
s→∞ ε0∗

r (τ, s) = mr(τ) : σr(0) (unchanged),

lim
s→∞aε∗(τ, s) = 0 (undetermined in the general case). (D.45)

D.4.3 Limit values for s → 0

General case lims→0 C∗
0(τ, s) �= lims→0 C∗

1(τ, s)

lim
s→0

S∗
r(τ, s) =

1
s(s − qr(τ))

[s(s − qr(τ))Sr

+(s − qr(τ))mr(τ) + nr(τ) ⊗ lr(τ)],

lim
s→0

C∗
r(τ, s) =

[
lim
s→0

S∗
r(τ, s)

]−1

= lim
s→0

−sqr(τ) [−qr(τ)m0(τ) + nr(τ) ⊗ lr(τ)]−1

= 0,

lim
s→0

E∗(τ, s) remains finite since lim
s→0

C∗
0 (τ, s) = 0,

lim
s→0

[
C∗−1

0 (τ, s) : C∗
1(τ, s) − I

]
= lim

s→0

q1(τ)
q0(τ)

[s(s − q0(τ))S0 + (s − q0(τ))m0(τ) + n0(τ) ⊗ l0(τ)] :

: [s(s − q1(τ))S1 + (s − q1(τ))m1(τ) + n1(τ) ⊗ l1(τ)]−1 − I

=
q1(τ)
q0(τ)

[n0(τ) ⊗ l0(τ) − q0(τ)m0(τ)] : [n1(τ) ⊗ l1(τ) − q1(τ)m1(τ)]−1

−I. (D.46)

lim
s→0

Bε∗(τ, s) = lim
s→0

⎡⎣I + S∗(I,C∗ iso(τ, s))︸ ︷︷ ︸
Finite

: (C∗−1
0 : C∗

1 − I)︸ ︷︷ ︸
Finite

⎤⎦−1

︸ ︷︷ ︸
Finite

.

lim
s→0

sAε∗(τ, s) = s lim
s→0

Hε ∗(τ, s)︸ ︷︷ ︸
Finite

: [v0I + v1 lim
s→0

Hε ∗(τ, s)︸ ︷︷ ︸
Finite

]−1

︸ ︷︷ ︸
Finite

= 0. (D.47)
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lim
s→0

ε0∗
r (τ, s) = ε̇in

r (τ) − q−1(τ)ṗ(τ)n(τ) + q−1(τ)l(τ) : σ(τ)n(τ)

−
(∫ τ

0

e(τ−t)q(τ)l(τ) : σ(t)dt

)
n(τ)

+ m(τ) : σ(0) − n(τ)q−1(τ)l(τ) : σ(0). (D.48)
Remains finite!

lim
s→0

[C∗
1(τ, s) − C∗

0(τ, s)]
−1 : [C∗

0(τ, s) : ε0∗
0 (τ, s) − C∗

1(τ, s) : ε0∗
1 (τ, s)]

= lim
s→0

s−1[−q1(τ) (−q1(τ)m1(τ) + n1(τ) ⊗ l1(τ))−1

+q0(τ) (−q0(τ)m0(τ) + n0(τ) ⊗ l0(τ))−1]−1

: s[−q0(τ) (−q0(τ)m0(τ) + n0(τ) ⊗ l0(τ))−1 : ε0∗
0

+q1(τ) (−q1(τ)m1(τ) + n1(τ) ⊗ l1(τ))−1 : ε0∗
1 ]. (D.49)

s−1 and s can be simplified each others and this limit is thus finite.

lim
s→0

saε∗(τ, s) = sv0

[
v1 lim

s→0
Bε∗(τ, s) + v0I

]−1

︸ ︷︷ ︸
Finite

:
[
lim
s→0

Bε∗(τ, s) − I
]

︸ ︷︷ ︸
Finite

: [C∗
1(τ, s) − C∗

0(τ, s)]
−1 : [C∗

0(τ, s) : ε0∗
0 (τ, s) − C∗

1(τ, s) : ε0∗
1 (τ, s)]︸ ︷︷ ︸

Finite

= 0. (D.50)

The two required limits are thus nil for all times.

Particular case lims→0 C∗
0(τ, s) = lims→0 C∗

1(τ, s).
lims→0 S∗

r(τ, s), lims→0 C∗
r(τ, s) and lims→0 E∗(I,C∗ iso(τ, s)) remain valid

and unchanged.

lim
s→0

Hε ∗(τ, s) = I,

lim
s→0

sF ∗(τ, s) = 0 (unchanged),

lim
s→0

ε0∗
r (τ, s) (unchanged),

lim
s→0

saε∗(τ, s) = 0 (unchanged) . (D.51)



Appendix E

Tensile tests

This appendix examines the required additional loop for tensile test. This is
necessary when considering loading cases such as uniaxial tension, biaxial ten-
sion, hydrostatic pressure, creep,. . . Only the two first cases are examined here.
The proposed algorithm is for a strain driven approach so that imposition of
the required conditions on the stress tensor is not trivial a priori. For example,
in the case of a tensile test, ∆ε11 is given over a time step (if traction is per-
formed along direction 1) but the other components of the strain increment are
unknown. This iterative procedure is required at each time step. Hereafter, C
designates the tangent modulus.

E.1 Uniaxial tensile test

At the end of a time-step, the system should be form similar to:⎛⎝ ∆σ11 0 0
0 0 0
0 0 0

⎞⎠ = C̄ :

⎛⎝ ∆ε11 0 0
0 ∆ε22 0
0 0 ∆ε33

⎞⎠ ,

∆σ22 and ∆σ33 are nil only for particular values of the unknowns ∆ε22 and
∆ε33. Starting form arbitrary values for these components, an iterate Newton-
Raphson scheme is used. The two functions to varnish are written as:

∆σ22 = C̄2211∆ε11 + C̄2222∆ε22 + C̄2233∆ε33 = 0,

∆σ33 = C̄3311∆ε11 + C̄3322∆ε22 + C̄3333∆ε33 = 0. (E.1)

The Newton-Raphson system can thus be written as:[
∆σ22

∆σ33

]it

+
[

C̄2222 C̄2233

C̄3322 C̄3333

]it

:
[

∆εit+1
22 − ∆εit

22

∆εit+1
33 − ∆εit

33

]
= 0.
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∆εit+1
33 can be isolated from the first equation:

∆εit+1
33 = ∆εit

33 −
1

C̄it
2233

∆σit
22 −

1
C̄it

2233

C̄it
2222(∆εit+1

22 − ∆εit
22). (E.2)

Inserting this result into the second one gives:

∆σit
33 + C̄it

3322(∆εit+1
22 − ∆εit

22) − Cit
3333

(
∆σit

22

Cit
2233

+
Cit

2222

Cit
2233

(∆εit+1
22 − ∆εit

22)
)

= 0,

which can be rewritten as:

(∆εit+1
22 − ∆εit

22)
(

C̄it
3322 −

Cit
3333C

it
2222

Cit
2233

)
+ ∆σit

33 −
Cit

3333

Cit
2233

∆σit
22 = 0. (E.3)

Final expression of the new iteration of the strain increments are given by:

∆εit+1
22 = ∆εit

22 +
(

C̄it
3322 −

Cit
3333C

it
2222

Cit
2233

)−1(
Cit

3333

Cit
2233

∆σit
22 − ∆σit

33

)
,

∆εit+1
33 = ∆εit

33 −
∆σit

22

C̄it
2233

− C̄it
2222

C̄it
2233

(∆εit+1
22 − ∆εit

22). (E.4)

Initialization of the strain increments can be given by:

∆ε1
11 given,

∆ε1
22 = −0.49∆ε1

11,

∆ε1
33 = −0.49∆ε1

11. (E.5)

E.2 Biaxial tensile test

At the end of a time-step, the system should be form similar to:⎛⎝ ∆σ11 0 0
0 ∆σ22 0
0 0 0

⎞⎠ = C̄ :

⎛⎝ ∆ε11 0 0
0 ∆ε22 0
0 0 ∆ε33

⎞⎠ .

Only the last component of the stress matrix is not trivially satisfied. In this
case, the problem is thus reduced to find the solution of a single equation:

∆σ33 = C̄3311 : ∆ε11 + C̄3322 : ∆ε22 + C̄3333 : ∆ε33. (E.6)

Solving this equation with the Newton-Raphson method gives:

∆σit
33 + C̄3333 : (∆εit+1

33 − ∆εit
33) = 0. (E.7)

The new iteration of the strain increment is finally given by:

∆εit+1
33 = ∆εit

33 −
∆σit

33

C̄3333
. (E.8)



Appendix F

A short introduction to
Affinistan

Affinistan is the main software developed during this thesis. It enables to
predict the behavior of two phase elasto-viscoplastic composites. This is done
with an affine linearization of the local constitutive law and predictions are
obtained with a mean-field homogenization scheme. Even if not mandatory,
Affinistan comes with its graphical user interface which enables to describe
easily both materials, the loading conditions and some numerical parameters.
Furthermore, a basic post processor handles with plots. Possibilities offered by
the software are briefly presented hereafter.

F.1 Input section

The input section is divided into four main windows (see figure F.1). First and
second ones describe both phases of the material. A third one is devoted to
the mean-field homogenization scheme and the loading parameters. The last
section specifies some optional parameters. Furthermore, a main toolbar offers
some global options.

F.1.1 Toolbar

Here is a basic description of the buttons of the main toolbar.

• New: Reinitialize all the fields as when launching the software.

• Load: Enable to load an input (.dat) file for a simulation with Affinistan.
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Figure F.1: Input section of Affinistan.

• Description: Give a description of both materials and of the simulation.
These fields appear in the input window of the graphical user interface
and in comments of the .dat file.

• Units: Define the global unit system (for stress, time and angles). A
modification induces an optional automatic correction of the already filled
fields.

• Save: Write the corresponding .dat file of the current simulation.

• Run: Run a simulation. If not done previously, the user is prompted to
save the simulation. Some checks are made if the fields are filled correctly
(each field label correctly filled is green if correct or red otherwise).

• Quit: Exit Affinistan.

• About: Give informations about the software.

F.1.2 Matrix and inclusions sections

• Const. model: Select the constitutive model: linear elastic, elasto-plastic
or elasto-viscoplastic. For linear elastic materials, the initial yield stress
is set very high and for elasto-plastic ones, the viscosity is set very low.
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• Young’s mod.: Young’s modulus (E).

• Poisson’s ratio: Poisson’s ratio (ν).

• Init. yld strs: Initial yield stress (σY ).

• Hard. model: Hardening model: power law, exponential law or Swift law.
The two first models are presented in section 6.1.

• Hard. modulus: Hardening modulus (k).

• Hard. exponent: Hardening exponent (n).

• Visc. model: Model for the viscoplastic function (gv): Norton (see Doghri
[24]), three-parameters creep model of ABAQUS [1], the viscous model
defined by Li and Weng ([58]) or the ABAQUS rate-dependent power law
[1]. Some of these models are presented in section 6.1.

• Visc. coef.: Viscoplastic coefficient.

• Visc. exp. 1: First viscoplastic exponent.

• Visc. exp. 2: Second viscoplastic exponent.

• Volume fraction: Volume fraction of each phase. If modified, volume
fraction of the other phase is corrected accordingly.

• Aspect ratio: Aspect ratio of the spheroidal inclusions.

• Phi, eta and xi: Euler angles to describe the orientation of the inclusions
with respect to the direction of traction. If aligned, all angles are nil.

• Load: Load a material properties file (.mat).

• Save: Save a material properties file (.mat).

F.1.3 Homogenization and loading section

• Homogenization: If checked, allows to define a heterogeneous material.
Otherwise, only simulations on the matrix can be performed.

• Homog. model: Select the homogenization model: Voigt, Reuss, Mori-
Tanaka, three-phases generalized self consistent (for spherical inclusions
only) and interpolative model.

• Macro stress: Computation of the macroscopic stress response: average
from local stress fields or from a linearized macroscopic constitutive law
(suspended in the last version of Affinistan).
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• History type: Monotonic, cyclic, relaxation or creep loading.

• Loading type: Prescribed strain, uniaxial traction along direction 1, bi-
axial traction along directions 1 and 2 or shear test in the plane 1/2.

• Nbr cycles: Specify the number of cycles if the loading history is cyclic.

• Init. tr. strain: Initial true strain if loading history is relaxation. Initial
true stress if loading history is creep.

• Strn11/strn22: Strain ratio between directions 1 and 2 if loading type is
biaxial.

• True strain rate: Constant true strain rate during all the simulation.

• Final strain.

• Final time: Computed from the two previous values.

F.1.4 Additional parameters section

• Macro operator: Select the way to compute the macroscopic operator
(see section 5.3): only Eshelby’s tensor is computed from an isotropic
extraction of the affine modulus of the matrix or only the Hill’s tensor P
or all the computations.

• Smallest colloc. point: Smallest collocation point. Used in the numerical
inversion of the Laplace-Carson transform.

• Highest colloc. point: Highest collocation point.

• Nbr colloc. points: Number of collocation points. These are equispaced
on a logarithmic scale between the smallest and highest value.

• Test time: Reference time at which debugging information is written in
several files. Inactive if nil.

• Min. nbr time-steps: Minimum number of time steps during the simula-
tion.

• Num. method for local. eq.: Numerical method to solve the localization
method: fixed point or Newton-Raphson.

• Default values: Reset all the fields of this section to their default values.
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F.2 Post processing section

This section is used to plot or save figures. In addition to a new toolbar, it
enables to add curves to the curves list (figure F.2) and to set some parameters
for the layout of the figure (figure F.3).

F.2.1 Toolbar

• New figure: Delete all the curves from the curve list.

• View figure: Plot the curves list and the specified parameters for the
layout. This figure is shown with the Gnuplot software for several seconds.

• Save figure: Save the current figure in a postscript format.

• Save script: Save the Gnuplot script corresponding to the current figure.

• Quit: Exit Affinistan.

• About: Give informations about the software.

F.2.2 Add curve section

A maximum of 20 curves can be plotted on the same figure.

• Select data source: Add a curve either from the last simulation or from a
selected data file. If ’From simulation’ is selected, the type of curve must
be selected (macroscopic, in the matrix, in the inclusions, matrix alone
or inclusions alone). Corresponding variables to be plotted must also be
selected. If ’From file’ option is selected the user is prompted to select
the corresponding file and the column numbers of this file to be plotted.

• Curve label: Give a label to the current curve.

• Select line style: Select the line style. This option is only valid when
saving the script.

• Select point style: Select the point style. This option is only valid when
saving the script.

F.2.3 Set figure layout section

Enable to fix the layout of the figure. All these fields are optional.

• Figure title: Give a title to the figure.

• X Axis label: Give a label to the X axis.
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Figure F.2: Add curve section of Affinistan.

• Y Axis label: Give a label to the Y axis.

• X range: Define a range for the X axis.

• Y range: Define a range for the Y axis.

• Legend position: Select a corner of the figure for the legend position.



Figure F.3: Set figure layout section of Affinistan.
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Notations and units

Fourth order tensors

Symbol Definition Units
m ∂ε̇in

∂σ
1

s.Pa
Aε Strain concentration tensor (ε1 = Aε : ε̄) -
Bε Strain concentration tensor (ε1 = Aε : ε0) -
C Elastic or tangent operator Pa
C∗ Hill’s constraint tensor Pa

Calg Algorithmic tangent operator Pa
Cep Continuum tangent operator (el.-pl.) Pa

Cin Continuum tangent operator (el.-visc.pl.) Pa
Cs Secant stiffness operator Pa
Dε Strain concentration tensor (ε(x) = Dε : ε̄) -
Dσ Stress concentration tensor (σ(x) = Dσ : σ̄) -
G Relaxation tensor Pa

Ivol Volumetric unit tensor -
Idev Deviatoric unit tensor -
I Unit tensor -
J Creep tensor 1/Pa
P Hill’s tensor 1/Pa
S Compliance 1/Pa
E Eshelby’s tensor -
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Second order tensors

Symbol Definition Units
l ∂gv

∂σ
1

s.Pa

n ∂ε̇in

∂p 1/s

G Displacement gradient -
N Normal to the yield surface in stress space -
α Thermal expansion 1/K
1 Unit tensor -
ε Strain -
εe Elastic strain -
εp Plastic strain -
εth Thermal strain -
ε∗ Eigenstrain -
ε∞ Far field strain -
σ Stress Pa
τ Polarization tensor Pa

Scalars

Symbol Definition Units
f Yield function Pa
gv Viscoplastic function 1/s
p Accumulated plastic strain -
q ∂gv

∂p 1/s

v1 Volume fraction of inclusions -
w Stress potential Pa
E Young’s modulus Pa
G Lamé Coefficient Pa

R(p) Hardening function Pa
S Surface m2

T Temperature K
V Volume m3

γ̇ Plastic multiplier -
κ Bulk modulus Pa
λ Lamé coefficient Pa
µ Shear modulus Pa
ν Poisson’s ratio -

σeq Equivalent stress Pa
σtr

eq Trial equivalent stress after an elastic time step Pa
σY Initial yield stress Pa
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Vectors

Symbol Definition Units
n Normal to a surface -
t Stress Pa
u Displacement m
x Position m

Symbols

Symbol Definition
x̃r Reference state in phase r

< x >ωr
Average value over phase r

< x >ω Average value over all the volume
x̄ Macroscopic value

C > 0 ε : C : ε > 0 for all ε
∆x Variation
⊗ Convolution product
� Stieljes-type convolution product
x∗ Laplace-Carson transform

[L(x)](s) Laplace-Carson transform of an expression
s Laplace variable
x0 Refers to the matrix
x1 Refers to the inclusions

xdev Deviatoric part of the tensor
xeff Effective value

ẋ Time derivative
⊗ Tensorial product
: Contraction over two indices
:: Contraction over four indices
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tocohérentes généralisées. Phd thesis, Ecole Nationale des Ponts et
Chaussées, 1996.
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[86] Ponte Castañeda, P. Variational methods in nonlinear homogeniza-
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