User menu

Linearity of Multibody Systems With Respect To Barycentric Parameters - Dynamics and Identification Models Obtained By Symbolic Generation

Bibliographic reference Maes, Pascal ; Samin, Jean-Claude ; Willems, PY.. Linearity of Multibody Systems With Respect To Barycentric Parameters - Dynamics and Identification Models Obtained By Symbolic Generation. In: Mechanics of Structures and Machines, Vol. 17, no. 2, p. 219-237 (1989)
Permanent URL http://hdl.handle.net/2078.1/51954
  1. Armstrong, B. 1987. On finding “exciting” trajectories for identification experiments involving systems with non-linear dynamics. Proceedings, 1987 IEEE International Conference on Robotics and Automation. March-April1987, Raleigh, North Carolina. pp.1131–1139.
  2. Raucent, B., Bastin, G., Campion, G. and Samin, J. C. 1988. “Identification of Barycentric Parameters of Robotic Manipulators from External Measurements.”. Presented at the 8th IFAC Symposium on Identification and System Parameter Estimation. August27–311988, Beijing, China.
  3. Ferreira E., Contribution a I'identification de paramètres et à la commande dynamique adaptative des robots manipulateurs (1984)
  4. Maes, P. and Samin, J. C. 1988. “Symbolic Generation of Dynamic and Identification Models for Robots: Linearity with Respect to Barycentric Parameters,”. Presented at the 12th IMACS World Congress on Scientific Computation. July1988, Paris.
  5. Maes, P., Samin, J. C., Schmitz, G. and Willems, P. Y. 1985. “Multibody Formalism Applied to Non-Conventional Railway Systems,”. IUTAM/IFToMM Symposium on Dynamics and Multibody Systems. September1985, Udine, Italy.
  6. Samin J. Cl., A multibody approach for dynamic investigation of rolling systems, 10.1007/bf00533167
  7. P. BOLAND J.C. SAMIN, WILLEMST P.Y., Stability Analysis of Interconnected Deformable Bodies in a Topological Tree, 10.2514/3.49405
  8. Renaud, M. 1987. Quasi-minimal computation of the dynamic model of a robot manipulator utilizing the Newton-Euler formalism and the notion of augmented body. Proceedings, 1987 IEEE International Conference on Robotics and Automation. March-April1987, Raleigh, North Carolina. pp.1677–1682.
  9. Roberson, R. E. and Wittenburg, J. A dynamical formalism for an arbitrary number of interconnected bodies, with reference to the problem of satellite attitude control. Proceedings, 3rd International Congress of Automatic Control. London: Butterworth.
  10. Wittenburg J., Dynamics of Systems with Rigid Bodies (1977)
  11. Luh J. Y. S., Walker M. W., Paul R. P. C., On-Line Computational Scheme for Mechanical Manipulators, 10.1115/1.3149599
  12. Tremblay J. P., An Introduction to Data Structures with Applications (1984)
  13. Wirth N., Pascal User Manual and Report (1974)