User menu

Simple Variational-methods for Unbounded Potentials

Bibliographic reference Fournier, G. ; Willem, Michel. Simple Variational-methods for Unbounded Potentials. In: Lecture Notes in Mathematics, Vol. 1411, p. 75-82 (1989)
Permanent URL http://hdl.handle.net/2078.1/51888
  1. Ambrosetti Antonio, Rabinowitz Paul H, Dual variational methods in critical point theory and applications, 10.1016/0022-1236(73)90051-7
  2. K.-C. Chang, Infinite Dimentional Morse Theory and its Applications, S.M.S. les presses de l'Université de Montréal, (1985).
  3. Clark David, A Variant of the Lusternik-Schnirelman Theory, 10.1512/iumj.1973.22.22008
  4. Ni Wei-Ming, Some minimax principles and their applications in nonlinear elliptic equations, 10.1007/bf02797687
  5. E. Fadell, Cohomological methods in non-free G-spaces with applications to general Borsuk-Ulam theorems and critical point theorems for invariant functionals, Nonlinear Functional Analisis and its Applications, S.P. Singh (ed.) D. Reidel Publishing Company, (1986), 1–45.
  6. G. Fournier and M. Willem, Multiple Solutions of the Forced Double Pendulum Equation, Analyse non linéaire, Contributions en l'honneur de J.-J. Moreau, eds. H. Attouch, J.-P. Aubin, F. Clarke, I. Ekeland, CRM — Gauthier-Villars, Paris (1989), 259–281.
  7. Palais Richard S., Lusternik-Schnirelman theory on Banach manifolds, 10.1016/0040-9383(66)90013-9
  8. Palais Richard S., Critical point theory and the minimax principle, 10.1090/pspum/015/0264712
  9. G. Tian, On the mountain pass theorem, Kexue Tongbao 29(1984),1150–1154.