User menu

Numerical-simulation of Delayed Die Swell

Bibliographic reference Delvaux, V. ; Crochet, Marcel. Numerical-simulation of Delayed Die Swell. In: Rheologica Acta : an international journal of rheology, Vol. 29, no. 1, p. 1-10 (1990)
Permanent URL http://hdl.handle.net/2078.1/51849
  1. Joseph DD, Matta JE, Chen K (1987) Delayed die swell. J Non-Newtonian Fluid Mech 24:31?65
  2. Giesekus H (1968) Verschiedene Phänomene in Strömungen viskoelastischer Flüssigkeiten durch Düsen. Rheol Acta 8:411?421
  3. Coleman BD, Gurtin ME (1968) On the stability against shear waves of steady flows of non-linear viscoelastic fluids. J Fluid Mech 33:165?181
  4. Regirer SA, Rutkevich IM (1968) Certain singularities of the hydrodynamic equations of non-Newtonian media. J Appl Math Mech 32:962?966
  5. Rutkevich IM (1970) The propagation of small perturbations in a viscoelastic fluid. J Appl Math Mech 34:35?50
  6. Joseph DD, Renardy M, Saut JC (1985) Hyperbolicity and change of type in the flow of viscoelastic fluids. Arch Ration Mech Anal 87:213?251
  7. Keunings R (1988) Simulation of viscoelastic flow. In: Tucker CL III (ed) Fundamentals of computer modeling for polymer processing
  8. Crochet MJ (1989) Numerical simulation of viscoelastic flow: A review. Rubber Chemistry and Technology ? Rubber Reviews 62:426?455
  9. Crochet MJ, Delvaux V, Marchal JM (1989) On the convergence of the streamline-upwind mixed finite element. J Non-Newtonian Fluid Mech, submitted
  10. Yoo JY, Joseph DD (1985) Hyperbolicity and change of type in the flow of viscoelastic fluids through channels. J Non-Newtonian Fluid Mech 19:15?41
  11. Brown RA, Armstrong RC, Beris AN, Yeh PW (1986) Galerkin finite element analysis of complex viscoelastic flows. Comp Meth Appl Mech Eng 58:201?226
  12. Song JH, Yoo JY (1987) Numerical simulation of viscoelastic flow through sudden contraction using type dependent difference method. J Non-Newtonian Fluid Mech 24:221?243
  13. Marchal JM, Crochet MJ (1987) A new mixed finite element for calculating viscoelastic flow. J Non-Newtonian Fluid Mech 26:77?114
  14. Delvaux V, Dupret F, Crochet MJ (in preparation) Numerical prediction of change of type in perturbed viscometric flow of a Maxwell fluid
  15. Crochet MJ, Delvaux V (to appear 1990) Numerical simulation of inertial viscoelastic flow with change of type. In: Keyfitz BL, Shearer M (eds) Non-linear evolution equations that change type, Springer
  16. Ruschak KJ (1980) A method for incorporating free boundaries with surface tension in finite element fluid-flow simulations. Int J for Num Meth in Eng 15:639?648
  17. Kistler SF, Scriven LE (1983) Coating flows. In: Pearson JRA, Richardson SM (eds) Computational analysis of polymer processing. Applied Science Publisher, London, pp 243?299
  18. Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility. J Non-Newtonian Fluid Mech 11:69?109
  19. Crochet MJ, Keunings R (1982) Finite element analysis of die swell of a highly elastic fluid. J Non-Newtonian Fluid Mech 10:339?356
  20. Renardy M (1988) Recent advances in the mathematical theory of steady flow of viscoelastic fluids. J Non-Newtonian Fluid Mech 29:11?24