User menu

A Recursive Procedure To Generate All Cuts for 0-1 Mixed Integer Programs

Bibliographic reference Nemhauser, GL. ; Wolsey, Laurence. A Recursive Procedure To Generate All Cuts for 0-1 Mixed Integer Programs. In: Mathematical Programming, Vol. 46, no. 3, p. 379-390 (1990)
Permanent URL http://hdl.handle.net/2078.1/51778
  1. E. Balas, “Disjunctive programming: Cutting planes from logical conditions,” in: O. L. Mangasarian et al., eds.,Nonlinear Programming, Vol. 2 (Academic Press, New York, 1975) pp. 279–312.
  2. C.E. Blair, “Two rules for deriving valid inequalities for 0–1 problems,”SIAM Journal of Applied Mathematics 31 (1976) 614–617.
  3. V. Chvátal, “Edmonds polytopes and a hierarchy of combinatorial problems,”Discrete Mathematics 4 (1973) 305–337.
  4. W. Cook, R. Kannan and A. Schrijver, “Chvátal closures for mixed integer programming problems,” Report No. 86444-OR, Institute for Econometrics and Operations Research, Bonn University (Bonn, 1987).
  5. R. E. Gomory, “An algorithm for integer solutions to linear programs,” in: R. Graves and P. Wolfe, eds.,Recent Advances in Mathematical Programming (McGraw-Hill, New York, 1963) pp 269–302.
  6. R.G. Jeroslow, “Cutting plane theory: Disjunctive methods,”Annals of Discrete Mathematics 1 (1972) 293–330.
  7. R.G. Jeroslow, “Cutting plane theory: Algebraic methods,”Discrete Mathematics 23 (1978) 121–150.
  8. E.L. Johnson, “On the group problem for mixed integer programming,”Mathematical Programming Study 2 (1974) 137–179.
  9. G.L. Nemhauser and L.A. Wolsey, “A recursive procedure for generating all cuts for 0–1 mixed integer programs,” CORE DP 8439, Université Catholique de Louvain, (Louvain-la-Neuve, 1984).
  10. A. Schrijver, “On cutting planes,”Annals of Discrete Mathematics 9 (1980) 291–296.