

Université catholique de Louvain

Faculté des Sciences Appliqués

Département d'Ingénierie Informatique

Constructivist Learning: An Operational Approach for Designing
Adaptive Learning Environments Supporting Cognitive Flexibility

Vu Minh Chieu

Thèse présentée en vue de l'obtention

du grade de Docteur en Sciences Appliquées

Membres du jury :

Prof. Y. Deville
 Université catholique de Louvain, Département d'Ingénierie Informatique

Prof. M. Frenay (co-promotrice)
 Université catholique de Louvain, Département de Psychologie de l'Education et du Développement

Prof. J. D. Legat (président)
 Université catholique de Louvain, Département d'Electricité
Prof. E. Milgrom (co-promoteur)
 Université catholique de Louvain, Département d'Ingénierie Informatique

Prof. C. Vander Borght
 Université catholique de Louvain, Département de Biologie

Prof. W. van Joolingen
 Universiteit Twente, Faculté des Sciences de Comportement

Septembre, 2005

Page ii

Abstract

Constructivism is a learning theory that states that people learn by actively constructing their
own knowledge, based on prior knowledge. Many different perspectives exist on constructiv-
ist pedagogical principles and on how to apply them to instructional design. It is thus not only
difficult to evaluate the conformity of existing learning systems with constructivist principles,
it is also quite hard to ensure that a new learning system being designed will ultimately facili-
tate and stimulate constructivist learning.

A critical characteristic often mentioned in learning systems is adaptability. That is, the
ability to provide a learning experience that is continuously tailored to the needs of the indi-
vidual learner.

The present research aims to help designing truly constructivist and adaptive learning sys-
tems. For that purpose, it is necessary to clarify what constructivism entails in an operational
manner: I propose a set of criteria for certain aspects of constructivism and use it both as
guidelines for designing learning systems and for evaluating the conformity of learning sys-
tems with these constructivist principles.

One facet often mentioned as being strongly relevant to constructivism is cognitive flexi-
bility, meaning the ability to spontaneously restructure one’s knowledge, in many ways, in
adaptive response to radically changing situational demands.

The claim I make in the present thesis is that the operational approach I proposed makes
the design and use of adaptive learning environments supporting cognitive flexibility
straightforward and effective. More specifically, the dissertation makes four main contribu-
tions to the interdisciplinary field of learning and e-Learning technology.

Firstly, the thesis proposes operational criteria for cognitive flexibility and presents both
justifications and examples of their use. The set of criteria may be used in different instruc-
tional situations for designing and evaluating conditions of learning.

Secondly, on the basis of the criteria for cognitive flexibility, the thesis proposes an op-
erational instructional design process and shows an example of its use. The process may also
be applied in a variety of instructional situations for the design and use of learning systems
fostering cognitive flexibility.

Thirdly, the thesis introduces a new, open-source, domain-independent, Web-based adap-
tive e-Learning platform, named COFALE, and illustrates an example of its use. The plat-
form may be used for designing adaptive learning systems supporting cognitive flexibility in
various domains.

And fourthly, the thesis reports on a preliminary evaluation of the example handled by
COFALE with actual learners. The study provides a certain number of encouraging results
for fostering cognitive flexibility by means of ICT-based learning conditions.

Page iv

Keywords

Constructivism

Cognitive flexibility

Instructional design

Operational criteria

Operational approach

Teaching recursion

E-Learning

Adaptive learning systems

Computer-based instruction

Distance learning

Learning objects

Open-source learning platform

Page vi

Acknowledgements

I would like to thank “Commissariat Général aux Relations Internationales de la Commun-
auté Wallonie-Bruxelles” (CGRI) for partly supporting the current research project.

I also would like to thank many people for their support, encouragement, and guidance
during my years as a PhD student here at the Department of Computing Science and Engi-
neering, Université catholique de Louvain (INGI).

First and foremost, this dissertation represents a great deal of time and effort not only of
my part, but on the part of my advisors, Elie Milgrom and Mariane Frenay. Without their in-
valuable assistance, this domain-interdisciplinary dissertation would not have finished.

On the one hand, as a specialist in the domains of computing science and e-Learning tech-
nology, Elie Milgrom has helped me frame my research from day one, pushed me to get
through the inevitable research setbacks, and encouraged me to achieve to the best of my
ability. He always tells me: “I am here to help you develop the best of your intellectual abil-
ity. It is you, not me, who are responsible for your research project: You should always think
about how to bring your research objectives about and how to convince people that you have
attained your research objectives.” I am really interested in this constructivist manner he has
exploited to help me in my research.

On the other hand, as a specialist in the domains of learning psychology and pedagogy,
Mariane Frenay has provided me with a lot of invaluable discussions so that I have been able
to finish my thesis successfully in an interdisciplinary domain. I really appreciate her because
of many detailed comments she has given to me during my PhD research.

I also thank my other three committee members, Yves Deville, Cécile Vander Borght, and
Wouter van Joolingen, for valuable discussions and comments regarding my research, and
my committee president, Jean-Didier Legat, for his organization of my PhD defenses.

I am indebted to many other people at INGI who have helped me finishing the present
dissertation. Marc Lobelle, the former president of INGI, has provided me with much help in
my everyday life and in my participation in international scientific conferences. Yves Deville,
the president of INGI, also has encouraged and helped me to participate in international sci-
entific conferences. Christine Jacqmot has encouraged me, especially in the early states of my
research. Claude Daubies, Francis Degey, Viviane Dehut, Fabienne Delbrouck, Chantal Pon-
cin, Pierre Reinbold, Stéphanie Remacle-Landrain, Phan Manh Tien, Marie-France Decler-
fayt, Freddy Gridelet, and Michèle Piquart have provided me with much support for adminis-
trative and technique issues regarding not only my research but also my everyday life.

On a more personal note, I have been lucky to have many close friends who have helped
to make my time as a PhD student enjoyable. Because of limited space, I could not list here
the name of those friends.

Page vii

Finally, I thank my family for their continual support: My parents, Vu Tien Nam and Vu
Thi Cham, my brothers Quang and Vinh, and my sister Anh have always been, and continue
to be, there for me at all times. And most of all, I wish to express thanks forever to my wife
Lien and my son Duc for enduring so many lonely evenings and weekends while I was pre-
occupied with my research. It is my privilege to dedicate this dissertation to my wife and my
son, with love.

Page viii

Contents

Abstract ii

Keywords iv

Acknowledgements vi

Contents viii

List of Figures xiv

List of Tables xvi

Introduction 1

PART ONE: CONSTRUCTIVISM, COGNITIVE FLEXIBILITY, AND
INSTRUCTIONAL DESIGN 7

1 Constructivism 9
1.1 Constructivism: Multiple paradigms 10

1.2 Constructivism and knowledge 11

1.3 Constructivism and learning 13

1.4 Constructivism and conditions of learning 15

1.4.1 Complex, realistic, and relevant learning environments 17

1.4.2 Social interactions in groups 17

1.4.3 Multiple modes of learning and multiple perspectives 18

1.4.4 Ownership in learning 18

1.4.5 Self-awareness of knowledge construction 19

1.5 Discussion 20

1.5.1 Definition of a constructivist learning environment 20

1.5.2 Need of an operational approach 20

1.5.3 Characteristics of the learner 21

1.5.4 Adaptation support 22

1.6 Conclusion 23

2 Operational criteria for cognitive flexibility 25

2.1 Introduction 26

2.2 Cognitive flexibility 27

2.3 Learning conditions for cognitive flexibility 29

Page ix

2.4 Operational criteria for cognitive flexibility 30

2.4.1 Operational criteria for learning contents 31

2.4.2 Operational criteria for pedagogical devices 33

2.4.3 Operational criteria for human interactions 35

2.4.4 Operational criteria for assessment 36

2.4.5 Discussion 38

2.5 Criteria proposed by Jonnaert and Vander Borght 39

2.5.1 Socio-constructivist and interactive paradigm 39

2.5.2 Operational definition of learning and its application 40

2.5.3 Discussion 41

2.6 Conclusion 42

3 Instructional design with cognitive flexibility 43
3.1 Introduction 44

3.2 Recursion and learning context 45

3.2.1 Recursion 45

3.2.2 Learning context 47

3.3 Instructional design process for cognitive flexibility 48

3.3.1 Pre-active phase 49

3.3.2 Interactive phase 52

3.3.3 Post-active phase 56

3.4 Discussion 59

PART TWO: CONSTRUCTIVISM, ADAPTABILITY, AND ICT-BASED LEARNING
ENVIRONMENTS 61

4 Background 63
4.1 Learning content management systems 64

4.2 Learning objects 66

4.2.1 Why are learning objects important? 66

4.2.2 Why and how do we specify metadata for learning objects? 68

4.2.3 Discussion 69

4.3 Adaptive learning systems 70

4.4 Conclusion 70

5 State of the art 71
5.1 Introduction 72

5.2 "Constructivist" learning systems 72

Page x

5.2.1 SimQuest: Scientific discovery learning 73

5.2.2 Moodle: Constructionist pedagogy 76

5.2.3 KBS: Constructivism in distance learning 79

5.2.4 ATutor: A learning content management system 81

5.2.5 Discussion of "constructivist" learning systems 83

5.3 Adaptive learning systems 85

5.3.1 AHA: An open adaptive hypermedia architecture 85

5.3.2 KBS: An open adaptive corpus hypermedia 87

5.3.3 ELM-ART: A Web-based adaptive versatile system 89

5.3.4 PHelpS: Adaptive peer help and collaboration 93

5.3.5 Discussion of adaptive learning systems 95

5.4 Conclusion 95

PART THREE: COFALE: AN ADAPTIVE LEARNING ENVIRONMENT
SUPPORTING COGNITIVE FLEXIBILITY 97

6 COFALE: Conditions of learning 99
6.1 Introduction 100

6.2 Mental models of recursion and adaptability 100

6.2.1 Mental models of recursion 100

6.2.2 Adaptability 101

6.3 COFALE as a learning environment 102

6.3.1 Learning with support for cognitive flexibility 102

6.3.2 Learning with support for adaptability 111

6.3.3 Other learner tools 114

6.4 COFALE and criteria of Jonnaert and Vander Borght 115

6.5 Discussion 116

7 COFALE: Instructional design tools 119
7.1 Introduction 120

7.2 Authoring tools for supporting cognitive flexibility 121

7.2.1 Tools for the pre-active phase 122

7.2.2 Tools for the interactive phase 128

7.2.3 Tools for the post-active phase 131

7.3 Authoring tools for supporting adaptability 132

7.3.1 General tools for managing learner models 132

7.3.2 Tools for implementing adaptation support 134

Page xi

7.4 Discussion 137

8 COFALE: Implementation 141
8.1 Introduction 142

8.2 Implementation of ATutor 142

8.3 Implementation of COFALE 143

8.4 Discussion 146

PART FOUR: EVALUATION 147

9 A preliminary evaluation of COFALE 149
9.1 Introduction 150

9.2 Method 151

9.2.1 Selecting the learners 152

9.2.2 Design of the study 152

9.3 Result 154

9.3.1 Cognitive development 154

9.3.2 Exploration of learning materials 162

9.4 Discussion 166

9.4.1 Why did students learn recursion to a significant degree? 166

9.4.2 Why was there no significant difference between the two groups? 167

9.4.3 Findings for improving COFALE and the book chapter 168

9.4.4 Findings for teaching and learning recursion 169

9.4.5 Examples for constructivism 170

9.5 Conclusion 171

Conclusions and future work 173

Aim of the thesis 174

Contributions 174

Future directions 176

More completely constructivist learning environments 176

More completely adaptive learning systems 177

More experiments for COFALE 178

More learning facilities: Towards a learning engine 178

Concluding remarks 181

APPENDIX A: Implementation for the collection of compact discs 183

APPENDIX B: Teaching recursion 187

Page xii

Appendix B1: Basic concepts related to recursion 188

Appendix B2: Learning situations for recursion 191

Appendix B3: Basic concepts related to linked lists 201

Appendix B4: Learning situations for linked lists 205

Appendix B5: Discussion questions 213

Appendix B6: Teaching recursion in the literature 214

APPENDIX C: Materials and evidences of the evaluation of COFALE 217

APPENDIX D: Development of COFALE 231

Glossary 239

Bibliography 243

Page xiv

List of Figures
Figure 1.1. The vase of Rubin (1915)... 11
Figure 1.2. Laying out 12 beans in completed rows and columns ... 14
Figure 1.3. 11 beans cannot be laid out in a “multiple” table... 14
Figure 1.4. An example of mental models and cognitive development 22
Figure 2.1. Deriving the meanings of the same word in different contexts............................ 27
Figure 2.2. Introduction to variables .. 32
Figure 2.3. Librarian situation .. 32
Figure 2.4. IT company situation.. 33
Figure 3.1. A development model of learning systems .. 44
Figure 3.2. Dividing the line in half ... 45
Figure 3.3. A solution to the three-disk Towers of Hanoi puzzle .. 46
Figure 4.1. Traditional course model (adapted from Masie Center, 2003) 67
Figure 4.2. Learning object model (adapted from Masie Center, 2003) 67
Figure 5.1. A part of the student's learning space in SimQuest.. 74
Figure 5.2. A part of the student's learning space in Moodle ... 77
Figure 5.3. A page with a programming problem in ELM-ART ... 91
Figure 5.4. A diagnosis of an incorrect solution in ELM-ART.. 92
Figure 5.5. Peer helper suggestions for Bob by PHelpS .. 94
Figure 6.1. A part of Bob's learning hyperspace in COFALE.. 103
Figure 6.1a. A textual definition of arithmetic expressions ... 103
Figure 6.1b. A textual simulation for arithmetic expressions .. 104
Figure 6.2. Bob's learning hyperspace about linked lists in COFALE................................. 105
Figure 6.3. Learning activities proposed to Bob by COFALE... 106
Figure 6.4. Tool provided by COFALE for Bob to add his own examples.......................... 106
Figure 6.5. Tool provided by COFALE for Bob to produce summaries.............................. 107
Figure 6.6a. A learning forum created by the course designer in COFALE........................ 108
Figure 6.6b. Tool provided by COFALE for Bob to reply peers' messages 108
Figure 6.7. Individual tests proposed to Bob by COFALE .. 109
Figure 6.8. Collaboration hyperspace proposed to Bob and his peers by COFALE............ 110
Figure 6.9. Bob's navigation history registered by COFALE... 111
Figure 6.10. Part of the learning content proposed to Bob (left) and Alice (right) by

COFALE.. 112
Figure 6.11. Learning activities proposed to Alice and Ted by COFALE........................... 112
Figure 6.12. Appropriate peers proposed to Bob by COFALE .. 113
Figure 6.13. Learner model manager proposed to Bob by COFALE................................... 114
Figure 6.14. A subset of learner tools proposed to Bob by COFALE.................................. 115

Page xv

Figure 6.15. Syntactic PET proposed to learners by PETAL. .. 118
Figure 7.1. Subset of instructor tools proposed to the course designer by COFALE 121
Figure 7.2. A Web tool provided by COFALE for the course designer to create learning

contents.. 123
Figure 7.3. A Web tool supported by COFALE for the course designer to define relationships

among content objects ... 125
Figure 7.4. Test manager proposed to the course designer by COFALE............................. 126
Figure 7.5. A Web tool provided by COFALE for the course designer to create collaboration

hyperspaces.. 126
Figure 7.6. A Web tool provided by COFALE for the course designer to add a forum 127
Figure 7.7. Discussion questions manager proposed to the course designer by COFALE .. 127
Figure 7.8. External resources manager proposed to the course designer by COFALE 128
Figure 7.9. Predefined learning activities proposed to the course designer by COFALE.... 129
Figure 7.10. A Web tool provided by COFALE for the course designer to define, for the

students with the loop model on recursion, the content objects to which the learning
activity "Examples & Summaries" is related .. 129

Figure 7.11. Learner model manager proposed to the course designer by COFALE 133
Figure 7.12. A Web tool provided by COFALE for the course designer to add a new

component of learner models .. 133
Figure 7.13. A Web tool supported by COFALE for the course designer to define the

exclusion relations among components of learner models .. 134
Figure 7.14. A Web tool provided by COFALE for the course designer to define the logic

expression for the automatic diagnosis of the loop model on recursion 134
Figure 7.15. A Web tool provided by COFALE for the course designer to define appropriate

learning contents for a particular kind of learners... 135
Figure 7.16. A Web tool supported by COFALE for the course designer to define appropriate

peers for a particular kind of learners.. 136
Figure 8.1. General architecture of ATutor .. 142
Figure 10.1. Search results provided for Alice by Google ... 179
Figure 10.2. A learning engine proposed for Alice .. 179

Page xvi

List of Tables
Table 2.1. Operational criteria for cognitive flexibility.. 31
Assessment 2.1. Exchanging the value of two variables .. 36
Assessment 2.2. Collection of compact discs ... 37
Table 2.2. A main part of criteria proposed by Jonnaert and Vander Borght for the concept of

constructivist learning in the school context ... 40
Table 2.3. Analysis of a constructivist definition of learning... 41
Table 3.1. Operational criteria for cognitive flexibility (MM = multiple modes, MP =

multiple perspectives).. 49
Table 3.2. Design activities for cognitive flexibility in the pre-active phase 52
Table 3.3. A checklist for evaluating students' learning behavior with respect to cognitive

flexibility ... 55
Table 3.4. Teaching activities for cognitive flexibility in the interactive phase..................... 56
Table 3.5. A checklist for evaluating the teaching behavior with respect to cognitive

flexibility ... 58
Table 3.6. Evaluation activities for cognitive flexibility in the post-active phase.................. 58
Table 3.7. Pertinence of the instructional design process to cognitive flexibility 59
Table 4.1. A part of LOM proposed by IEEE (URI = Universal Resource Identifier)........... 69
Table 5.1. Existing learning systems examples and support for cognitive flexibility 84
Table 5.2. Existing learning systems examples and support for adaptability......................... 95
Table 6.1. Conformity of the definition of learning in COFALE with Jonnaert and Vander

Borght's criteria ... 116
Table 7.1. Instructional design process for cognitive flexibility .. 122
Table 9.1. The grade of the final exam of the selected students in the introductory course on

object-oriented programming and Java ... 152
Table 9.2. Pretest analysis... 155
Table 9.3. Interview analysis on learners' mental models on recursion before the learning

session.. 155
Table 9.4. Learners' mental models on recursion before the learning session...................... 156
Table 9.5. Homework analysis ... 156
Table 9.6a. Posttest grade (SD = Standard Deviation) ... 157
Table 9.6b. Analysis on students' solutions.. 158
Table 9.7. Interview analysis on the mental approaches learners used in the posttest 159
Table 9.8. Interview analysis on learners' mental models on recursion after the learning

session.. 160
Table 9.9. Some evidences for different levels of mental models on recursion 161
Table 9.10. Learners' mental models on recursion after the learning session 161

Page xvii

Table 9.11. Learners' difficulties about learning recursion .. 162
Table 9.12. COFALE group learners' exploration of COFALE with respect to criteria for

cognitive flexibility.. 163
Table 9.13. Traditional group learners' exploration of the chapter of the reference book.... 164
Table 9.14. Learners' feedback on the provided learning materials 165

Page 1

Introduction

I had lived in the countryside until my adolescence. The first time I came to Hanoi, the capi-
tal of Vietnam, I wanted to buy a new book in which I was very interested. I asked my uncle
to accompany me to a bookstore because I knew nothing about the very complex transporta-
tion system of Hanoi. Instead of satisfying my desire, he gave me a street map of Hanoi and
several bookshop addresses, and told me to find out my way around by myself. It was very
hard for me to get to the right bookshop where I bought the book. The result, however, was
great: I learned not only how to get to several bookstores but also how to use a map, how to
ask people in the street about transportation, and so on; I was able to get to any place in Ha-
noi with the techniques I learned; in other words, I knew what it is to know my way around.
My experience is a kind of active learning (Perkins, 1996).

I concern myself with learning. I must therefore first know what learning is. To know
what learning is, I must rely on a learning theory. There are, however, many theories of learn-
ing (Kearsley, 2003). I see that various forms of constructivism have emerged during the past
fifteen years (Driscoll, 2000). Constructivism, as defined by Santrock (2001), is a learning
theory that “emphasizes that individuals learn best when they actively construct their knowl-
edge and understanding” (p. 318). Bourgeois and Nizet (1999) stated that constructivist learn-
ing is a process of active construction and transformation of knowledge. Many researchers in
science education, educational psychology, and instructional technology accept constructiv-
ism (Driscoll, 2000; Santrock, 2001). Personally, I also like the model provided by construc-
tivism describing how people learn, for example my learning experience presented in the pre-
vious paragraph. Therefore, I decided to do research on constructivism, and particularly, I
want to know how to design constructivist learning environments.

Constructivist researchers (e.g., Driscoll, 2000; Santrock, 2001; Wilson, 1996) have
claimed that information and communication technology (ICT) could provide significant help
in implementing constructivist learning conditions. This claim has been also evidenced by the
appearance of a significant number of ICT-based "constructivist" learning systems (Kinshuk
et al., 2004). I wanted to know how ICT could facilitate and stimulate constructivist learning.
So, I decided to investigate on how to design ICT-based constructivist learning environments.

I also concern myself with adaptive learning systems. Adaptation is a technique of pro-
viding a particular student with the most appropriate learning conditions such as learning
contents and activities to facilitate his or her process of knowledge construction and trans-
formation (Bourgeois & Nizet, 1999; Santrock, 2001). Adaptation support is useful because
most learners within a learning environment have different personal characteristics such as
prior knowledge, learning preferences, and learning progress (Brusilovsky, 1999; Milgrom et
al., 1997; Stoyanov & Kirschner, 2004). The main goal of my research is thus to help design-
ing ICT-based constructivist and adaptive learning environments.

Page 2

The question addressed by my thesis:

How to exploit ICT effectively to design constructivist
and adaptive learning environments?

More specifically:

• How to exploit ICT to provide the individual learner with appropriate learning con-
ditions that truly facilitate and stimulate constructivist learning?

• How to help the teacher design ICT-based adaptive learning environments from a
constructivist point of view?

A major problem to answer the previous thesis question has been that, while many de-
scriptions and pedagogical principles for constructivism exist, there is little practical advice
on how to design constructivist learning environments and on how to evaluate the conformity
of learning environments with constructivist principles (Driscoll, 2000; Jonassen & Rohrer-
Murphy, 1999). Indeed, educational theorists tend to accept the central assumption of con-
structivism presented previously; they derive, however, many different pedagogical implica-
tions from the same basic principles. Driscoll (2000), for instance, examined multiple per-
spectives on constructivism and identified at least five major facets of constructivism related
to instructional design:

1. Reasoning, critical thinking, and problem solving (Cognition and Technology Group at
Vanderbilt, 1991a; Perkins, 1991a).

2. Retention, understanding, and use (Edelson et al., 1996).

3. Cognitive flexibility (Feltovich et al., 1996; Spiro et al., 1991).

4. Self-regulation (Duffy & Cunningham, 1996).

5. Mindful reflection and epistemic flexibility (Language Development and Hypermedia
Group, 1992).

To help educators design and evaluate constructivist learning conditions, educational
theorists have suggested various guidelines and criteria. For example, both the Cognition and
Technology Group at Vanderbilt (1991a) and Jonassen (1999) argued that learners must cope
with complex situations for problem-solving skills to be maximally facilitated. Regarding
cognitive flexibility, Spiro and colleagues (1991) advocated: “Revisiting the same material, at
different times, in rearranged contexts, for different purposes, and from different conceptual
perspectives is essential for attaining the goals of advanced knowledge acquisition” (p. 28).
Bourgeois and Nizet (1999) stressed that social negotiation is required for students to come to
understand another’s point of view. Reeves and Okey (1996) and Shepard (1991) argued for
methods of assessment such as interviewing, observations, and holistic task performance
(e.g., to ask students to write an essay, conduct an experiment, or carry out a project).

From these indications, I deduce that course designers should examine constructivist
learning conditions in four key components of learning systems:

1. Learning contents (e.g., concept introductions, examples, exercises, and case studies).

Page 3

2. Pedagogical devices (e.g., methods and tools provided for learners for exploring learning
contents).

3. Human interactions (e.g., means and techniques for engaging tutors and learners in ex-
changes).

4. Assessment (e.g., problems and tools for determining whether learners have achieved the
objectives of the instruction).

I believe, however, that the previous indications are still too general for educators to be
able to imagine concrete steps when they want to design or evaluate constructivist learning
environments in specific situations. This is why I propose operational criteria (stressing the
qualifier “operational”). And I decided to choose cognitive flexibility among many facets of
constructivism previously presented for proposing criteria.

According to Spiro and Jehng (1990), cognitive flexibility is “the ability to spontaneously
restructure one’s knowledge, in many ways, in adaptive response to radically changing situ-
ational demands” (p. 165). Driscoll (2000) examined the assumptions proposed by Spiro and
Jehng and identified two principal learning conditions fostering cognitive flexibility:

1. Multiple modes of learning (i.e., multiple representations of contents, multiple ways and
methods for exploring contents).

2. Multiple perspectives on learning (i.e., expression, confrontation, and treatment of multi-
ple points of view).

I chose cognitive flexibility because of three main reasons. Firstly, I see that the peda-
gogical principles underlying cognitive flexibility reflect the basic characteristics of construc-
tivism (Spiro et al., 1988, 1990, 1991). Secondly, I see that cognitive flexibility is a major
common point among many constructivist researchers (e.g., Bourgeois & Nizet, 1999; Dris-
coll, 2000; Spiro & Jehng, 1990). And thirdly, I believe that ICT may facilitate the imple-
mentation of learning situations supporting cognitive flexibility, as Driscoll (2000) and Wil-
son (1996) showed with several hypermedia examples.

My operational approach:

To facilitate instructional design, I transform the pedagogical principles underlying
cognitive flexibility into operational criteria. An operational criterion for cognitive
flexibility is a test that allows a straightforward decision about whether or not a learn-
ing situation reflects the pedagogical principles underlying cognitive flexibility. The
way I propose criteria for cognitive flexibility is to examine each of the two learning
conditions fostering cognitive flexibility in each of the four components of learning en-
vironments identified earlier. For example, regarding multiple modes and learning con-
tents, I propose a criterion to determine whether a learning content is represented in
different forms such as text, images, and simulations.

I argue in this thesis that such criteria provide a useful framework both for designing and
for evaluating learning environments supporting cognitive flexibility. My thesis makes the

Page 4

following four main contributions to the interdisciplinary field of learning and e-Learning
technology.

Thesis contributions:

• A set of operational criteria. The set of criteria for cognitive flexibility may be used
to devise and evaluate learning conditions easily in different instructional situations
such as traditional instruction, computer-based instruction, and distance education.
The way I have proposed criteria for cognitive flexibility may be reused to propose
criteria for other facets of constructivism.

• An operational instructional design process. The process consists of a number of
instructional design activities. The process ensures the design of a course satisfies
all the criteria for cognitive flexibility.

• A domain-independent e-Learning platform. COFALE is an open-source, Web-
based adaptive learning environment supporting cognitive flexibility. One can use
many instructor tools and guidelines provided by COFALE to design online courses
with support both for cognitive flexibility and for adaptability. One may also mod-
ify COFALE's source code to exhibit other pedagogical principles than cognitive
flexibility.

• A preliminary evaluation of COFALE. A short-term study was performed with a
small number of first-year engineering students in FSA/UCL to formatively evalu-
ate the COFALE learning environment. Several encouraging results were reported.
For example, students were satisfied with and interested in learning with the assis-
tance of COFALE.

In what follows, I shortly describe the content and objectives of each chapter of the thesis.
I have organized the thesis into four parts. The first part, regrouping the first three chapters,
explains the pedagogical framework I propose for designing and evaluating learning systems.
The second part, regrouping chapters 4 and 5, presents some background and related work.
The third part, regrouping the next three chapters, describes the COFALE learning environ-
ment. And the fourth part presents the last chapter concerning a preliminary evaluation of my
approach.

Chapter 1 describes the assumptions of constructivism and multiple facets of constructiv-
ism related to instructional design. This chapter does not contribute anything new; it simply
explains the educational paradigm I follow in this thesis. Reading this chapter is important for
understanding the main contributions of the thesis presented in the next chapters.

Chapter 2 proposes criteria for cognitive flexibility and presents both justifications and
examples of their use. After examining this chapter, one can use the criteria to design or
evaluate one's own instructional situations. One can also propose one's own criteria for any
pedagogical principle in the same way I have proposed such criteria for cognitive flexibility.

Chapter 3 presents an operational instructional design process taking into account all the
criteria presented in chapter 2, together with an example about teaching recursion in comput-

Page 5

ing science. The design process helps clarifying how I have devised learning conditions to
satisfy all the criteria for cognitive flexibility. It is neither final, neither normative, nor pre-
scriptive. After reading this chapter, the practitioner should be able to find out his or her own
way to exhibit the desired characteristics of cognitive flexibility.

Chapter 4 explains several key concepts related to ICT-based learning systems: learning
content management systems, learning objects, and adaptive learning systems.

Chapter 5 provides an analysis of work related to ICT-based constructivist and adaptive
learning systems. Firstly, I use the set of criteria for cognitive flexibility introduced in chapter
2 to analyze the conformity of several "constructivist" learning systems with cognitive flexi-
bility. Secondly, I analyze adaptation support of several adaptive learning systems. The pur-
pose of those analyses is to show the new features that COFALE (presented in the next chap-
ters) adds on to the state of the art.

Chapter 6 illustrates the learning conditions presented in chapter 3 in a new adaptive e-
Learning platform (COFALE). COFALE is based on ATutor, an open-source, Web-based
learning content management system provided by the Adaptive Technology Resource Center
(2004). The demonstration aims to show that it is possible to create ICT-based adaptive learn-
ing conditions satisfying all the criteria for cognitive flexibility identified in chapter 2.

Chapter 7 presents COFALE's authoring tools and guidelines allowing the course de-
signer to create learning environments such as the one presented in chapter 6. Chapters 6 and
7 argue that the operational approach of the thesis is useful for exploiting ICT and the peda-
gogical principles underlying cognitive flexibility.

Chapter 8 gives an overview of the implementation of the COFALE system.

Chapter 9 reports on a preliminary study carried out to formatively evaluate COFALE.
The 2-week-long experiment was performed with nine first-year engineering students in
FSA/UCL. Several encouraging results were reported for learning with the help of COFALE.
Feedback was also analyzed to ameliorate the design and use of the COFALE system.

To conclude, I look again at the thesis question: “How to exploit ICT effectively to design
constructivist and adaptive learning environments?” I give my following answer with the ar-
guments presented in the previous chapters. I also outline several promising directions for
future work.

My affirmation in this thesis:

The operational approach used in this thesis makes the design and use of adaptive
learning environments supporting cognitive flexibility straightforward and effective.

Page 6

A schematic diagram of the structure of the thesis

: Logical links across the structure

: Possible shortcuts across the structure

Page 7

PART ONE: CONSTRUCTIVISM, COGNITIVE
FLEXIBILITY, AND INSTRUCTIONAL DESIGN

This part presents the extended work of the following paper:

Chieu, V.M., Milgrom, E., & Frenay, M. (2004). Constructivist learning: Operational
criteria for cognitive flexibility. The Fourth IEEE International Conference on Ad-
vanced Learning Technology, Joensuu, Finland, 221–225 (full paper).

Page 9

CHAPTER 1

1 Constructivism

“The world, as we perceive it, is our own invention.”

Heinz von Foerster (1988, p. 45–46), Austrian Constructivist, 1911 – 2002

In this chapter, I first give an overview of a variety of perspectives on constructivism: a cog-
nitive constructivist approach stemming from the views of Piagetian theorists and social con-
structivist approaches stemming from the views of Vygotsky, Bruner, Doise, Mugny, …
Then, following the cognitive constructivist approach, I examine three main issues of any
theory of learning and instruction: (a) what knowledge is, (b) what learning is, and (c) what
conditions that facilitate and stimulate learning are. The main objective of the chapter is to
clarify my position in those constructivist variations. Reading this chapter is important for
understanding my contributions presented in the next chapters of the thesis. After reading this
chapter, one should construct one's own perspective on constructivism.

Page 10

Summary
1.1 Constructivism: Multiple paradigms

1.2 Constructivism and knowledge

1.3 Constructivism and learning

1.4 Constructivism and conditions of learning

1.5 Discussion

1.6 Conclusion

1.1 Constructivism: Multiple paradigms

Many educational theorists tend to accept that, from a constructivist point of view, people
learn best when they actively construct their own knowledge and understanding. There is,
however, no single constructivist theory of learning as well as of instruction (Driscoll, 2000).
Rather, researchers in fields from science education to educational psychology and instruc-
tional technology are articulating various aspects of constructivism. These constructivist
variations include generative learning (Cognition and Technology Group at Vanderbilt,
1991a, 1991b; Wittrock, 1985a, 1985b), discovery learning (Bruner, 1986), embodied cogni-
tion (Johnson, 1987; Lakoff, 1987), and cognitive flexibility theory (Spiro et al., 1991). Con-
structivism is only one of the labels used to describe those constructivist variations.

Key concept: Constructivism is a learning theory that emphasizes that individuals learn
best when they actively construct their own knowledge and understanding.

Constructivist researchers in the field of learning psychology (e.g., Bourgeois and Frenay,
2002; Santrock, 2001) have classified different constructivist approaches into two major
paradigms: (a) a cognitive constructivist approach supported by the view of Piaget (1975) and
(b) a number of social constructivist approaches supported by the views of Bruner (1996),
Doise and Mugny (1997), Vygotsky (1962), and so on. Researchers who follow the first
paradigm believe that learners construct knowledge by transforming, organizing, and reor-
ganizing previous knowledge and information. And researchers who follow the second one
believe that learners construct knowledge through social interactions with others. Moving
from the first paradigm to the second one, the conceptual shift is from the individual devel-
opment to collaboration and social interaction (Rogoff, 1998). This statement does not mean
that the first paradigm neglects social interaction or the second one ignores individual devel-
opment. Both of them take into account both aspects but with different emphases (Bourgeois
& Nizet, 1999). According to Bourgeois and Nizet, socio constructivism mainly tackles the
following question to which cognitive constructivism does not attach importance: In which
conditions and according to which methods social interactions foster learning?

Key concept: Cognitive constructivism underlines individual development whereas
social constructivism emphasizes collaboration and social interaction.

Page 11

Sometimes the distinctions among constructivist approaches are not clear-cut and ques-
tionable (Marshall, 1996). It seems to me that certain constructivist researchers, for instance,
Jonnaert and Vander Borght (2003) with the social constructivist and interactive approach,
emphasize both individual development and social negotiation. So, when the word "socio" is
present in an educational approach, it does not necessarily mean that the approach is social
constructivist. A number of resources (e.g., Bourgeois & Nizet, 1999, chapters 3 & 7; Dris-
coll, 2000, chapter 11; Santrock, 2001, chapter 9) provide further discussions on the debate of
constructivist variations.

Although the previous distinction of the two paradigms is debatable, I follow it because it
provides at least a mean to clarify my position in constructivist variations. In this thesis I de-
cided to choose the first paradigm: The cognitive constructivist approach stemming from the
views of Piagetian theorists (e.g., Bourgeois & Nizet, 1999; Driscoll, 2000). I chose the first
paradigm because several constructivist researchers (e.g., Kinshuk et al., 2004; Wilson, 1996)
have claimed that ICT is a very promising means for creating learning conditions exhibiting
the pedagogical principles underlying this paradigm. Hereafter when I use the term “con-
structivism”, I mean this cognitive constructivism.

Key concept: The paradigm the present thesis follows is cognitive constructivism.

To present constructivism, as any theory of learning and instruction, I first examine three
main issues: (a) what knowledge is, (b) what learning is, and (c) what constructivist learning
conditions are. Then, I clarify the position I follow in this thesis among a variety of perspec-
tives on constructivist learning conditions. Understanding this position is essential for under-
standing the thesis.

1.2 Constructivism and knowledge

What is knowledge in a constructivist point of view? I begin with examining several exam-
ples. Then, I give my own definition of knowledge on the basis of the views of Piagetian
theorists.

Looking at Figure 1.1, what can we see? Certain people could see a vase whereas other
people could see two faces. This example shows that when confronting the same information,
people construct different knowledge (or representations).
Figure 1.1. The vase of Rubin (1915)

Page 12

Now let me examine another example:

One day, King Tang Tai Zong (China, 626–649 AD) asks his high-ranking mandarin Xu Jing Sun:
– I can see that you are not a bad person. So why are there slanders about you and many people dislike
you?
Xu Jing Sun answers:
– Your Majesty, during spring time it rains very frequently, the farmers are so glad that their fields are
watered but the pedestrians are not happy because the rain makes the road so slippery. When the
moonlight is brightest in autumn like a mirror on the sky, poets are happy to see such beautiful sight
but burglars are afraid of its brightness. God is fair but people can blame him even when it is sunny or
rainy. I am not perfect so I cannot avoid being the subject of slanders. So towards these slanders, I
think you should take time to consider them and should not rush into any conclusion. If a King believes
in those slanders people said, the mandarins will become victims. If parents believe in slanders regard-
ing their children, their children will suffer. If the husband and wife believe slanders about each other,
their relationship will be damaged. Slanders are even more poisonous than the venom of snakes,
sharper than knives, and kill without leaving a blood stain (translated from Vietshare.com, 2004).

This classic reference provides direct evidence that people, through their own experi-
ences, construct their own understanding about the environment surrounding them. De facto,
individuals create different knowledge about the same natural phenomena. Even the same
individual, at different times, constructs different knowledge of the same information. For
example, moving from a farmer to a pedestrian or vice versa, he or she makes different sense
of the rain.

The situations such as those in the previous classic reference are also frequent in our to-
day life. Here is an example proposed by Kuhn (1983):

To know what scientists’ representation about the atomic theory is, a North-American researcher ques-
tions two specialists recognized by the international scientific community in their respective field:
chemistry and physics. The researcher asks them whether or not a helium atom is a molecule. The an-
swer of the chemist and the answer of the physicist do not agree to each other. For the chemist, the he-
lium atom is a molecule. He argues for his answer by referring to the kinetic theory of gases. For the
physicist, the helium atom is not a molecule. He argues for his answer by affirming that he cannot see
the molecular spectrum of the helium atom. (cited in Jonnaert and Vander Borght, 2003, p. 23)

The two answers, of the chemist and the physicist, are not contradictory at all. Each one
constructs his own definition of the helium atom according to his reference field. If a scientist
is both a chemist and a physicist, he or she may have both definitions of the helium atom at
the same time.

What could we deduce about the concept of knowledge from the previous examples?
Knowledge is not out there, external to the individual and waiting to be acquired. It is neither
wholly preformed within the individual and ready to emerge as the individual develops. In-
stead, knowledge is invented and reinvented as the individual develops and interacts with the
environment surrounding him or her. Those assumptions about knowledge are consistent with
Piaget’s views (Driscoll, 2000). In addition, Piaget believed that the individual organizes
knowledge as cognitive structures or schemata and that, when confronting new information,
the individual could use his or her prior cognitive structures and his or her cognitive ability to
yield a new set of cognitive structures or new knowledge. That is cognitive or intelligence
development.

Page 13

According to Bourgeois and Nizet (1999) and Santrock (2001), there are two main types
of knowledge: declarative knowledge and procedural knowledge. The first one is “the con-
scious recollection of information, such as specific facts or events that can be verbally com-
municated” (Santrock, 2001, p. 282), for example the assumptions about constructivism. The
second one is “[cognitive structures] in the form of skills and cognitive operations about how
to do something” (Santrock, 2001, p. 282), for instance, the way to teach students in a manner
consistent with constructivist assumptions.

Key concepts:

Cognitive structure is a concept or framework that exists in an individual’s mind to or-
ganize and interpret information (Santrock, 2001, p. 49).

Knowledge is cognitive structures an individual constructs about the new information
on the basis of his or her own experiences and the interaction with the environment sur-
rounding him or her.

1.3 Constructivism and learning

If people invent and reinvent knowledge through their own experiences and interactions with
the environment, what happens exactly “in the mind” of an individual when he or she invents
new knowledge or learns something? I begin with examining an example. Then, on the basis
of the views of Piagetian theorists, I give my own definition of learning.

Here is an example of constructivist learning proposed by Bruner (1973) in his approach
about discovery learning:

The concept of prime numbers appears to be more readily grasped when the child, through construc-
tion, discovers that certain handfuls of beans cannot be laid out in completed rows and columns. Such
quantities have either to be laid out in a single file or in an incomplete row-column design in which
there is always one extra or one too few to fill the pattern. These patterns, the child learns, happen to be
called prime. It is easy for the child to go from this step to the recognition that a multiple table, so
called, is a record sheet of quantities in completed multiple rows and columns. Here is factoring, multi-
plication and primes in a construction that can be visualized (cited in Kearsley, 2003).

To give more explanation for the previous example, I show here two figures. Figure 1.2
shows that it is easy for the child to lay out 12 beans in completed rows and columns whereas
it is impossible for the child to lay out 11 beans in such row-column designs except for a sin-
gle file (Figure 1.3). Notice that the teacher gives the child a small number of beans so that it
can try every possibility of laying out the beans in row-column designs.

Now let me look further into the learning process in the previous example from a Pia-
getian-constructivist point of view. Suppose that the child possesses a set of cognitive struc-
tures (prior knowledge) in its memory, for instance, factoring and multiplication. When the
child confronts the previous situation, its learning process may be articulated around the fol-
lowing two inseparable mechanisms:

Page 14

1. Assimilation. The child activates a certain number of cognitive structures to fit the new
information it confronts in the given situation into its existing knowledge. For example,
when we give 12 beans to the child, it will apply its existing knowledge of multiplication
and factoring to lay out the beans in completed rows and columns (Figure 1.2).

2. Accommodation. Sometimes, however, while treating new information, the child could
find that its existing knowledge is inadequate to treat the information. In this case we say
that a cognitive conflict has occurred. For instance, given 11 beans, the child could en-
counter an anomalous experience because it cannot lay out the beans in multiple tables
whatever the number of rows or columns that is greater than one (Figure 1.3). This cogni-
tive conflict motivates the child to find the way to overcome it. A possible way is that the
child transforms its existing cognitive structures into new ones to be able to account for
the incompatible information. For example, the child recognizes the difference between
two groups of numbers: the number 12 belongs to the first one and the number 11 to the
second one. The second group of numbers, the child learns, happens to be called prime.

Figure 1.2. Laying out 12 beans in completed rows and columns

Figure 1.3. 11 beans cannot be laid out in a “multiple” table

 . . .

Here is another example of assimilation and accommodation that I observed: My infant
knows how to grab its favorite little rattle and thrust it into its mouth. When it comes across a
new object, for instance its mother's expensive watch, it easily learns to transfer its "grab and
thrust" cognitive structure to the new object. That is assimilation. When my infant comes
across another object again, for example a beach ball or a big rattle, it will try its old cogni-
tive structure of grab and thrust. This of course works poorly with the new object. Therefore,
my infant will adjust its cognitive structure to adapt to the new object: In the example of the
beach ball, "squeeze and drool" would be an appropriate title for the new cognitive structure;
and in the example of the big rattle, my infant turns the rattle to find an appropriate point that
it can thrust into its mouth. That is accommodation.

Page 15

According to Piaget (1975), assimilation and accommodation exist in an inseparable rela-
tionship. An inadequate attempt to assimilate new information into existing cognitive struc-
tures may result in some adjustment of those cognitive structures (thus, accommodating the
information). And vice versa, such accommodation affects subsequent assimilation, which
will now proceed in accord with the new structure.

Moreover, assimilation and accommodation together constitute the master development
process: Equilibration. Equilibration particularly characterizes the individual’s transition
from one stage of development to the next, for example, from a child who could solve con-
crete problems in a logical fashion to an adult who could solve abstract problems in a system-
atic and logical fashion. Through the trajectory of life, an individual unceasingly encounters
anomalous experiences that create states of disequilibrium. The individual can only resolve a
state of disequilibrium when he or she adopts a more adaptive, more sophisticated mode of
thought. In this case, the individual attains a new equilibrium. That is learning.

Note that Piaget stated that cognitive changes occur from immediately after birth (Dris-
coll, 2000). According to Piaget, newborns come into the world with a number of innate re-
flexes, claimed to be primitive cognitive structures, for example, sucking, reacting to noises.
Within a short time, they begin to modify these reflexes to make them more adaptive, for in-
stance sucking a finger becomes a different action from sucking a nipple. More information
about Piaget's theory of cognitive and knowledge development is presented in Driscoll's book
(2000, chapter 6).

Key concepts:

Assimilation is the process in which individuals incorporate new knowledge into exist-
ing cognitive structures.

Accommodation is the process in which individuals adjust existing cognitive structures
to account for new information.

Learning is the process in which individuals construct and transform cognitive struc-
tures.

1.4 Constructivism and conditions of learning

If learning is a process of construction and transformation of knowledge, what are conditions
that facilitate and stimulate (or disadvantage) learning? Let me give a simple example: In the
previous example proposed by Bruner, the conditions of learning proposed for the child
stimulate constructivist learning, because they evoke a cognitive conflict in its mind. If the
child, however, is given a textual definition to learn the concept of prime numbers, this condi-
tion of learning could lead to "rote" or passive learning rather than constructivist learning.

Although there is no set of teaching practices that constitutes a Piagetian approach to in-
struction, many educational theorists have suggested broad constructivist pedagogical princi-
ples consistent with Piaget’s development theory. Driscoll (2000) examined a variety of per-

Page 16

spectives on constructivism and identified five important facets of constructivism related to
instructional design:

1. Reasoning, critical thinking, and problem solving. Regarding this facet, The Cognition
and Technology Group at Vanderbilt (1991a) named “the ability [of the learner] to write
persuasive essays, engage in informal reasoning, explain how data relate to theory in sci-
entific investigations, and formulate and solve moderately complex problems that require
mathematical reasoning” (p. 34).

2. Retention, understanding, and use. Perkins (1991a) stated: “The basic goals of education
are deceptively simple. To mention three, education strives for the retention, understand-
ing, and active use of knowledge and skills” (p.18). Regarding this facet, the author
means the ability of the student to actively apply the new knowledge in various situations,
particularly in interactions with other people, in order to reinforce his or her retention and
understanding of the new knowledge.

3. Cognitive flexibility. Spiro and associates (1991) declared the need for learners to actively
use cognitive flexibility, meaning the ability to modify one’s cognitive structures, in
many ways, to be able to adapt to a variety of new situations.

4. Self-regulation. Self-regulation is the ability of learners to identify and pursue their own
learning goals (Driscoll, 2000).

5. Mindful reflection and epistemic flexibility. Culler (1990) spoke of the need to foster post-
structuralist thinking, a kind of reflective criticism or mindful reflection. Cunningham
(1987, 1992) defined reflexivity as “the ability of students to be aware of their own role in
the knowledge construction process”. Morrison and Collins (1996) spoke of epistemic
fluency meaning the ability to identify and use different ways of knowing.

Driscoll also identified five main constructivist learning conditions corresponding to the
previous five facets, respectively:

1. Provide learners with complex and relevant learning environments.

2. Engage learners in social negotiation.

3. Provide learners with multiple modes of learning and multiple perspectives on learning.

4. Encourage the ownership of learners in learning.

5. Make learners be aware of their own role in the knowledge construction process.

I follow the distinction of the five facets proposed by Driscoll because it appears to em-
body different points of view proposed by constructivist researchers. In the following para-
graphs, I give an overview of constructivist learning conditions, according to Driscoll's five
facets. The difference between Driscoll’s synthesis and mine is that Driscoll presents both
constructivist and social constructivist pedagogical principles whereas I outline only the first
ones.

It is worth noting that the distinctions of Driscoll's five facets of constructivism are obvi-
ously not clear-cut. For example, we can find several principles about multiple perspectives

Page 17

or social interactions both in the facet about retention, understanding, and use and in the facet
about cognitive flexibility.

1.4.1 Complex, realistic, and relevant learning environments

The main learning conditions fostering reasoning, critical thinking, and problem solving are
complex, realistic, and relevant learning environments. The Cognition and Technology Group
at Vanderbilt (1991a) stated that students cannot be expected to learn to think critically and
solve the complex problems they will face in real life unless they have the opportunity to do
so. Both Jonassen (1999) and Spiro and his colleagues (1991) argued that, for problem-
solving skills to be maximally facilitated, learners must cope with very complex situations.

Regarding this facet, Bourgeois and Nizet (1999), Frenay and Bédard (2004), and Frenay
(1994) also argued for relevant learning environments. They advocated that learners should
examine appropriate learning situations to be able to identify the essential characteristics of
the new knowledge (they named this the comprehension process). On the other hand, they
added, learners should also use and apply the new knowledge in a variety of concrete situa-
tions (e.g., solving problems) that are different from the ones in the comprehension process
(they named this the exploration process). In addition, according to Bourgeois and Nizet
(1999), it is by tests, errors, and reasoning in the exploration process that learners gradually
forward to the acquisition of the new knowledge. Thus, we must also provide learners with
appropriate assessment devices.

Complex learning situations include the use of “construction kits” such as Legos or soft-
ware such as Geometric Supposer (Wilson, 1996). Construction kits allow learners to assem-
ble “not just things, such as TinkerToys, but more abstract entities, such as commands in a
program language, creatures in a simulated ecology, or equations in an environment support-
ing mathematical manipulations” (Perkins, 1991a, p. 19). Another kind of complex learning
environments is computer-based micro-worlds that emphasize the instructional nature of
simulations (Wilson, 1996). SimCity (2004), for example, is a simulation of real-world cities
that allows learners to explore what it means to build and manage a variety of aspects of city
life.

1.4.2 Social interactions in groups

It is important to note that although I am saying "social negotiation", it does not mean that
what I say belongs to social constructivist approaches. In section 1.1, I explained that cogni-
tive constructivism takes into account social negotiation, but with less emphasis than cogni-
tive development.

A number of constructivist authors have argued for social negotiation as the critical con-
dition of learning to stimulate the retention, understanding, and active use of knowledge by
students. For instance, Cunningham and associates (1993), Knuth and Cunningham (1993)
declared that intellectual development is significantly influenced through social interactions;

Page 18

therefore, learning should reflect, more or less, collaboration between both tutors and learn-
ers, and learners and learners.

Bourgeois and Nizet (1999) also advocated the importance of groups in education. Firstly,
learning in groups encourages learners to actively express their personal points of view with-
out being afraid of errors. Secondly, learning in groups multiplies feedback on the work and
understanding of each member. And finally, each individual could learn so much from ob-
serving the work and errors of peers.

Recently, a new genre of research and application has emerged as computer-supported
collaborative learning (Koschmann, 1996). For example, the Collaborative Visualization pro-
ject (Pea, 1993) has been designed to connect learners across classrooms and outside of class-
rooms.

1.4.3 Multiple modes of learning and multiple perspectives

In chapter 2, I will look further into the concept of cognitive flexibility as well as into learn-
ing conditions fostering cognitive flexibility. In this sub-section, I outline only a certain num-
ber of general principles underlying cognitive flexibility.

Researchers who adhere to cognitive flexibility have concentrated on the use of multiple
modes of learning and on the confrontation of multiple perspectives (Driscoll, 2000). For in-
stance, using multiple modes of representation can serve as a means of juxtapositions, that is,
viewing the same content through different modes such as visual and auditory. Juxtaposition
thus enables different aspects of the content to be seen. On the other hand, there are typically
multiple ways to think about and solve problems. So, learners must engage in activities that
allow them to evaluate alternative solutions to problems as a means of testing and enriching
their own understanding (Cunningham et al., 1993; Knuth & Cunningham, 1993).

Regarding cognitive flexibility, Bourgeois and Nizet (1999) described the need of the
“reversibility of the thought” for learners. According to this approach, the teacher should be
responsible for the following three activities: (a) engage learners in expressing their personal
points of view, (b) organize the confrontation of learners’ points of view, and (c) provide
methodological tools allowing learners to treat these different points of view.

Several constructivists (e.g., Cunningham, 1992) accept that hypermedia can be effec-
tively used to stimulate learners to think about ideas, theories, literary work, and so forth,
from a variety of points of view. For instance, in the Lab Design Project (Honebein et al.,
1992, 1993), graduate students could investigate the sociology of a building by using a rich
hypermedia database to explore different aspects of the building.

1.4.4 Ownership in learning

The principal condition of learning to bring self-regulation by students about is ownership in
learning. Perkins (1991b) advocated: “Students are not likely to become autonomous thinkers

Page 19

and learners if they lack an opportunity to manage their own learning” (p. 20). Learners are
not passive recipients of instruction that the teacher has designed for them. Instead, they play
an active role in identifying what their own learning needs are and how those needs can best
be satisfied (Cunningham et al., 1993; Hannafin, 1992). The teacher, however, should not
leave learners alone in their own management of learning tasks. The teacher acts as a facilita-
tor who helps learners frame their learning objectives in meaningful contexts (Cunningham et
al., 1993; Knuth and Cunningham, 1993).

To give an example, here is a report of a project with elementary school students:

In Harel and Papert’s [1992] work, elementary school students who displayed a great dislike for frac-
tions tackled the task of learning about fractions with great enthusiasm when their role was changed
from students to software designers. They were asked to design a computer program in LOGO (soft-
ware they were already familiar with) that would teach the basics of fractions to children one year
younger than themselves. In order to do this, they first had to teach themselves what was important to
know about fractions. When the project was complete, the students had learned not only about frac-
tions, but also about software design and instructional design. (Honebein et al., 1993, p. 9)

1.4.5 Self-awareness of knowledge construction

According to Driscoll (2000), the important condition of learning to bring mindful reflection
and epistemic flexibility about is to engage learners in being aware of the knowledge con-
struction process (she named this condition “self-awareness of knowledge construction”).
Examples include providing multiple modes of learning, confronting multiple perspectives,
and encouraging ownership in learning (Driscoll, 2000).

Bourgeois and Nizet (1999) also argued for the confrontation of a variety of concurrent
points of view. But they strongly stressed the need of “personal thought” that helps learners
investigate on and give their own opinion to those different points of view, like a social actor.
The teacher, therefore, should encourage learners’ personal thought by presenting, as objec-
tively as possible, a diversity of points of view, not only his or her own ones but also those of
other people.

Here is an example presented in a book about learning psychology and instruction:

Consider, for example, the different views of learning that are presented in this book. What do they
each imply about your own learning of their assumptions and knowledge? […] from a constructivist
point of view, you might be expected to recognize that all these theories are constructed to make sense
of the phenomenon of learning. Their different assumptions lead to different pictures of learning, and
consequently, of instruction. From discussion with your classmates and others, you might develop a
personal view as to what theory (or theories) is the most right or useful. Or you may reject the assump-
tions upon which all these theories have been built in order to pose a new set of assumptions and ex-
plore a potentially new theory of learning. (Driscoll, 2000, p. 390)

Key concept: Constructivism has many facets related to instructional design.

Page 20

1.5 Discussion

What can be concluded from various points of view on constructivist learning conditions pre-
sented in section 1.4, what is the problem of constructivism related to instructional design,
and what is my position in those variations of perspectives? The following paragraphs should
answer these questions.

1.5.1 Definition of a constructivist learning environment

From the five main conditions of learning presented in section 1.4, I conclude that the course
designer should examine constructivist learning conditions in four key components of learn-
ing environments (hereafter I use the term learning materials to denote these four compo-
nents together):

1. Learning contents. These are any source of information provided for learners for explor-
ing their learning objectives, for example, concept introductions, examples, exercises, and
case studies. Other names for this component include content objects, information banks,
and so on.

2. Pedagogical devices. Pedagogical devices include methods and tools provided for learn-
ers for exploring learning contents, for instance, a reference book, a Web platform in
which we can deliver various kinds of information such as text, images. Cognitive tools
and construction kits are also different types of pedagogical devices.

3. Human interactions. These include means and techniques for engaging the tutor and
learners in exchanges, for example, meeting rooms, mailing lists, forums, chat rooms.

4. Assessment. Assessment or assessment devices are problems, methods, and tools for de-
termining whether learners have achieved the learning objectives, for instance posttests.

In the following textbox, I give my definition of constructivist learning environments. Of
course, this is a general definition and it may have no universal acceptance among construc-
tivist authors (see other definitions in Wilson, 1996). I look further into this concept in the
next chapters.

Key concept: A constructivist learning environment is a place where learners may use
a variety of information resources, pedagogical and assessment devices, and interact
with the tutor and peers through communication means in their guided pursuit of learn-
ing objectives, according to constructivist principles.

1.5.2 Need of an operational approach

I believe that the indications suggested by constructivist theorists in section 1.4 are too gen-
eral for teachers to be able to imagine concrete steps when they want to design or evaluate
constructivist learning environments in their own instructional situations. For example, given

Page 21

an ICT-based learning environment, it is difficult for a teacher to determine whether the
learning contents delivered in this environment actually reflect constructivist principles. Or
when designing a new learning system, the course designer does not know whether the sys-
tem finally facilitates and stimulates constructivist learning. Both Driscoll (2000) and Jonas-
sen and Rohrer-Murphy (1999) also claimed this problem of constructivism related to instruc-
tional design. Therefore, I argue for the need of proposing operational criteria for construc-
tivism (stressing on the qualifier “operational”). I believe that operational criteria could pro-
vide a useful framework both for designing and evaluating constructivist learning systems.

Among the five facets of constructivism identified in section 1.4, cognitive flexibility is a
pedagogical principle that is often mentioned by constructivist authors (e.g., Bourgeois & Ni-
zet, 1999; Driscoll, 2000; Spiro & Jehng, 1990). The pedagogical principles underlying cog-
nitive flexibility reflect the basic characteristics of constructivism (Spiro et al., 1988, 1990,
1991). Moreover, a significant number of examples have showed that ICT may facilitate the
implementation of learning conditions fostering cognitive flexibility (Driscoll, 2000; Spiro &
Jehng, 1990; Wilson, 1996). Therefore, the main point of the thesis is to exploit the construc-
tivist facet about cognitive flexibility. In chapter 2, I propose a set of operational criteria for
cognitive flexibility. And in the following chapters, I use this set of criteria as a framework
for validating various issues such as instructional design, evaluation of learning situations and
systems.

Key concept: An operational criterion for cognitive flexibility is a test that allows a
straightforward decision about whether or not a learning situation reflects the peda-
gogical principles that are underlying cognitive flexibility.

1.5.3 Characteristics of the learner

In the Piagetian-constructivist point of view presented earlier, each learner possesses a mental
model (i.e., a mental representation or knowledge structure) about a concept or a situation at any
point in time. The purpose of learning is to have the mental model get closer and closer to that
subsumed by the learning objectives. Through personal experience, the learner may undergo a
certain number of cognitive changes and then possess a different mental model (Sasse, 1991).
Students’ mental models are one of essential characteristics that affect the learning of students
(Sasse, 1991).

To illustrate an example of mental models and cognitive development, I construct Figure
1.4. In this example, a beginner could start with a "novice" model on a given subject, for in-
stance a child with no knowledge of the concept of prime numbers. Through a number of in-
teractions with the appropriate conditions of learning provided by the teacher, for instance
laying out beans in row-column design (see also section 1.3), the learner is expected to un-
dergo several cognitive changes and gradually evolve an "expert", for instance after con-
structing tables of beans, the child could discover that certain handfuls of beans cannot be
laid out in a multiple table, and therefore grasp the concept of prime numbers (see also sec-
tion 1.3).

Page 22

Figure 1.4. An example of mental models and cognitive development

There are other characteristics of the learner than mental models that the course designer
should also take into account for designing constructivist learning environments, for example,
the motivation for learning, the social attitude and behavior when working in groups (Bour-
geois & Nizet, 1999; Driscoll, 2000; Santrock, 2001). In this thesis, however, I concentrate
on studying the role of mental models in instructional design, that is the way to devise learn-
ing situations taking into account learners’ mental models. In chapters 6 and 7, I discuss this
issue further.

Key concept: A mental model is a conceptual structure of declarative knowledge or
procedural knowledge or both of them a person holds of a concept or a device or a sys-
tem.

1.5.4 Adaptation support

If we assume the learner’s cognitive development presented previously, so one of major roles of
the designer of a "course" is to provide the learner with appropriate learning conditions (Figure
1.4) so that the learner’s process of knowledge construction and transformation is facilitated
(Bourgeois & Nizet, 1999).

A particular type of adaptation support that is often mentioned by constructivist theorists
is scaffolding, meaning that the teacher should change the level of support over the course of a
learning session of a particular learner (Santrock, 2001). In other words, a more skilled person
(teacher or more-advanced peer) adjusts the amount of guidance to adapt the learner’s current
performance level. For instance, when the learner confronts a new situation, the tutor might
guide and encourage the learner in the learning process; as the learner’s competence in-
creases, the support is adjusted or removed (Soderman, Gregory, & O’Neill, 1999). The pre-
sent thesis takes into account this particular kind of adaptation.

What conditions of learning could be adaptive to the needs of the individual learner and
how to perform adaptation support? According to Brusilovsky (1999), Murray (1999), and
Stoyanov and Kirschner (2004), there are four main adaptation techniques concerning the

Page 23

four learning components identified in section 1.5.1, respectively, and one technique concern-
ing problem-solving support, as follows:

1. Adaptive presentation of learning contents. The course designer should define which
learning contents are appropriate to a specific learner at any given time, for example sim-
pler situations and examples for a “novice” learner than for an “expert” one.

2. Adaptive use of pedagogical devices. The course designer should define which learning
activities are appropriate to a specific learner, for instance simpler tasks to a “novice”
learner than to an “expert” one.

3. Adaptive communication support. The course designer should identify which peers are
appropriate to help a specific learner, for example learners with more-advanced mental
models help learners with less-advanced ones.

4. Adaptive assessment. The course designer should identify which assessment problems
and methods are appropriate to determine the actual performance of a specific learner, for
instance simpler tests for a “novice” learner than for an “expert” one.

5. Adaptive problem-solving support. The tutor should give appropriate feedback during the
problem-solving process of a specific learner, for example to show the learner his or her
own difficulties and provide him or her with the way to overcome those difficulties.

I look further into the issue of adaptation support in chapters 4, 5, 6, and 7.

Key concept: Scaffolding is a technique of changing the level of support over the
course of a learning session of a particular student.

1.6 Conclusion

In this chapter, I present some background on constructivism. This chapter does not contrib-
ute anything new. Rather, it clarifies a certain number of important educational definitions to
which I adhere. These definitions provide the reader with the key for understanding my con-
tributions presented in the next chapters.

Page 25

CHAPTER 2

2 Operational criteria for cognitive flexibility

"Everything should be made as simple as possible, but not simpler."

Albert Einstein, German Scientist, 1879 – 1955 (cited in Suomela, 2005)

Cognitive flexibility is a pedagogical principle that is often mentioned among the basic char-
acteristics of constructivism. This chapter proposes operational criteria for cognitive flexibil-
ity and presents both justifications and examples of their use. In this chapter, I argue that the
set of operational criteria I have proposed make the process of instructional design more
straightforward than do indications suggested by educational theorists. After reading this
chapter, one should be able to propose and use one's own operational criteria for any peda-
gogical principle.

Page 26

Summary
2.1 Introduction

2.2 Cognitive flexibility

2.3 Learning conditions for cognitive flexibility

2.4 Operational criteria for cognitive flexibility

2.5 Criteria proposed by Jonnaert and Vander Borght

2.6 Conclusion

2.1 Introduction

Although many descriptions and pedagogical implications for constructivism exist, there
have been few operational interpretations of what constructivist learning is and of what con-
structivist pedagogical principles entail (Driscoll, 2000; Jonassen & Rohrer-Murphy, 1999).
To facilitate the process of instructional design exhibiting the pedagogical principles underly-
ing cognitive flexibility, an important facet of constructivism, in this chapter I propose a set
of operational criteria. I first clarify the concept of cognitive flexibility and the conditions of
learning that foster cognitive flexibility. Then I propose operational criteria for cognitive
flexibility by examining each of those learning conditions in each of the four components of
constructivist learning environments identified in section 1.5.1. I support my claim that the
set of criteria makes instructional design straightforward by showing how to apply it to the
design of learning situations in the problem area presented next.

Context for the examples: Java variable situation

In an introductory course on object-oriented programming and Java at the Université ca-
tholique de Louvain (UCL), I observed a particular kind of frequent misunderstanding. The
students were exposed to the principles underlying variables and value assignment; they
got to read several examples. Then they took a test in which they faced the following code
segment:

int a, b; /* 1 */

a = 3; /* 2 */

b = a; /* 3 */

a = 5; /* 4 */

About 20 percent of students seemed to believe that the value of variable b was “auto-
matically” changed to 5 after the value of variable a had been changed in the fourth in-
struction. Several researchers in computing science (e.g., Bayman & Mayer, 1983; Du
Boulay, 1986) also drew similar conclusions. I shall show in this chapter how one could
devise new learning situations in a manner consistent with cognitive flexibility so that stu-
dents will overcome these misconceptions.

Page 27

I also summarize a part of Jonnaert and Vander Borght's work (2003) that clarified what
the concept of constructivist learning in the school context entails in a set of criteria. I claim
that these criteria for the concept of learning and my criteria for conditions of learning are
complementary.

2.2 Cognitive flexibility

According to Spiro and Jehng (Spiro & Jehng, 1990), cognitive flexibility is “the ability to
spontaneously restructure one’s knowledge, in many ways, in adaptive response to radically
changing situational demands” (p. 165).

To clarify this concept, I give a simple example (Figure 2.1) in which I answer the fol-
lowing three questions: (a) what the child's prior knowledge is, (b) what new situations are,
and (c) how the child restructures its knowledge to respond to the new situations adaptively.
Figure 2.1. Deriving the meanings of the same word in different contexts

How does a child develop the ability to derive the meanings of the same word in different
situations?

Sentence 1:

Bats fly at night and feed on fruit and insects.

Sentence 2:

I watched the bat flitting through the trees.

Sentence 3:

He gripped the bat tightly as he waited for the pitch.

Sentence 4:

I hope I can bat a home run.

The child, through personal experience and interactions with peers, parents, and teachers,
acquired prior knowledge of the structure of simple sentences such as the role of nouns and
verbs and a rich vocabulary including the meaning of the word "bat", as an animal (Figure
2.1: sentence 1). Now, given a certain number of new situations (Figure 2.1: sentences 2, 3,
4), the child is expected to structure or restructure its prior knowledge, as follows:

• In sentence 2, as in sentence 1, it considers the word "bat" as a noun (on the basis of the
article "the"), then as an animal (on the basis of the action "flitting through the trees"),
then as the actual meaning of this word (on the basis of its prior knowledge of the mean-
ing of this word). If this situation occurs, the teacher would say that the child learns noth-
ing because no cognitive structure is modified.

• In sentence 3, the child tries to apply the same process as in sentence 2 to derive the
meaning of the word "bat" but it cannot arrive at the actual meaning of this word (we
would not grip an animal tightly while waiting for the pitch). This cognitive conflict

Page 28

makes the child restructure its own knowledge to adapt to this situation: It considers the
word "bat" as a noun (as in sentence 2), then as a tool (on the basis of the action "gripped
… tightly" that it learned in other sentences in the pass), then as the actual meaning of this
noun (e.g., on the basis of the attached picture or interactions with peers). If this situation
occurs, the teacher would say that the child learns a new meaning of the word "bat".

• In sentence 4, its cognitive process is similar to the one in sentence 3 but in a new way to
restructure its prior knowledge to adapt to the new situation: It considers the word "bat"
as an action verb (on the basis of the auxiliary verb "can"), then the actual meaning of this
verb (on the basis of the attached picture, for instance).

In a Piagetian point of view, cognitive flexibility, as learning, is the ability that newborns
already have when they come into the world. When an infant is born, it possesses a variety of
innate reflexes, for instance, sucking, reacting to noises, focusing on objects within their
view. Within a short time, it begins to modify these reflexes to adapt to the new environment
surrounding it, for example, sucking a finger becomes a different action from sucking a nip-
ple (see also other examples in section 1.3). As the child develops, its ability to exhibit cogni-
tive flexibility gradually matures (Driscoll, 2000).

What are examples of students’ cognitive flexibility behavior? On the basis of indications
suggested by constructivist researchers (e.g., Bourgeois & Nizet, 1999; Spiro & Jehng, 1990),
I have been able to deduce several instances, as follow:

• When students are faced with a new problem, they try to analyze different aspects of the
problem in a systematic manner and to use different ways they have successfully used in
the past to solve similar or related problems in order to find a solution, which is as com-
plete as possible.

• When students are confronted with a new concept, they try to perform different activities
in different contexts to look further into various aspects of the new concept.

• When students discuss with peers, they try to listen and ask, in a systematic manner, ques-
tions such as “Why?”, “What is your source of information?” in an effort to understand
other points of view.

In chapter 9, I also provide a certain number of examples I observed while working with
actual students.

The individual's cognitive flexibility is there, but in instruction we need to provide explic-
itly and systematically learning conditions that facilitate and stimulate students' cognitive
flexibility, especially in complex and ill-structured domains, that is, the domains in which
cases or examples are diverse, irregular, and complex (Spiro & Jehng, 1990; Spiro et al.,
1991; Feltovich et al., 1996). The next section describes those conditions of learning.

Key concept: Cognitive flexibility is the ability to structure or restructure one's prior
knowledge, in many ways, to adapt to a diversity of new situations.

Page 29

2.3 Learning conditions for cognitive flexibility

Advanced learning in ill-structured and complex domains such as biomedicine and literature
gives rise to a difficult problem: What one has to do to attain a deep understanding of a com-
plex concept (Spiro & Jehng, 1990). Deep understanding means that students are prepared to
be ready to apply conceptual knowledge in a domain where the phenomena occur in irregular
patterns, and to use knowledge in a great variety of ways that may be required in a rich do-
main.

Spiro and colleagues have shown in a number of studies that when students attempt to
apply, to ill-structured domains, the strategies they have used effectively for understanding
well-structured domains (e.g., in introductory learning), they make errors of oversimplifica-
tion, overgeneralization, and "overreliance" on context-independent representations (Spiro et
al., 1988). In the biomedical domain, for example, students who use only organicist meta-
phors or only the metaphor of the machine to help them understand how the body functions
tend to analyze cases only partially. The point Spiro makes is that neither metaphor captures
all aspects of body functions, although neither metaphor is wrong.

Therefore, in attempting to solve the problem of instruction in ill-structured domains,
Spiro and associates have presented a new Cognitive Flexibility Theory in which they have
advocated the use of multiples forms of pedagogical models, multiple metaphors and analo-
gies, and multiple interpretations of the same information (Feltovich et al., 1996). The central
metaphor of Cognitive Flexibility Theory is "learning in criss-crossed landscape": “Revisiting
the same material, at different times, in rearranged contexts, for different purposes, and from
different conceptual perspectives is essential for attaining the goals of advanced knowledge
acquisition” (Spiro et al., 1991, p. 28). The authors have argued that by criss-crossing a con-
ceptual landscape in many directions, knowledge that will have to be used in many ways is
acquired in many ways. If taught in this manner, medical students, for instance, would be
able to examine a single case from many different vantage points and see firsthand the effect
of reinterpreting a particular symptom. Examining multiple cases in different contexts will
help students build new cognitive structures in order to account for new cases. The example
presented in section 2.2 shows that children learn the language in a very complex landscape
of interrelated words: They understand a new sentence because they have examined a great
variety of sentences that help them derive the meaning of the new sentence (each sentence in
the past may help accounting partly for the new one). Or in chapter 1, one should examine
multiple facets of constructivism to be able to fully understand, for example, the role of social
negotiation in constructivist learning.

Another point of view proposed by educational theorists (e.g., Bourgeois & Nizet, 1999;
Frenay & Bédard, 2004; Frenay, 1994) about cognitive flexibility in adult education stresses
that teachers should encourage learners to explore new knowledge in various concrete situa-
tions, more or less different from the ones with which learners have been familiar. Those au-
thors claim that this operation is important for knowledge transfer because it provides the
chances for learning reinforcement (i.e., prior knowledge helps accounting for new knowl-
edge). On the other hand, Bourgeois and Nizet add that, it is necessary to give means allow-

Page 30

ing learners to analyze and evaluate the new knowledge "from the outside". According to this
approach, teachers are responsible for the following three activities: (a) engage learners in
expressing their personal points of view, (b) organize the confrontation of learners' points of
view, and (c) provide methodological tools allowing learners to treat different points of view.
The point Bourgeois and Nizet make is that learners are confronted not with only one alterna-
tive point of view on a given object but with a diversity of points of view, and that learners
are systematically encouraged to "come in" and "come out" different points of view with
which they are confronted, and to connect those points of views one to another.

Driscoll (2000) examined the assumptions proposed by Spiro and colleagues, and identi-
fied two principal conditions of learning for cognitive flexibility: (a) multiple modes of learn-
ing (i.e., multiple representations of contents, multiple ways and methods for exploring con-
tents), and (b) multiple perspectives on learning (i.e., expression, confrontation, and treat-
ment of multiple points of view).

From the different points of view on cognitive flexibility presented earlier, I make two
claims. Firstly, one needs to explicitly foster students' cognitive flexibility, particularly in in-
struction of ill-structured domains. I believe that most domains are complex and ill-structured
if we anchor instruction in complex and realistic situations. For example, the application of
algorithms to the problems in a word-processing program in mathematics, the learning of the
concept of recursion described in chapter 3 in computing science. Secondly, I believe that the
indications suggested by researchers in pedagogy are still too general for the course designer
to be able to imagine concrete steps when he or she wants to design learning systems leading
to cognitive flexibility. For instance, what has to be done with the learning contents, peda-
gogical devices, human interactions, and assessment in the Java variable problem presented
earlier? That is why I propose operational criteria for cognitive flexibility. Here, I define an
operational criterion to be a test that allows a straightforward decision about whether or not a
learning situation reflects the pedagogical principles underlying cognitive flexibility.

I follow the two learning conditions for cognitive flexibility proposed by Driscoll because
they appear to embody different points of view proposed by other educational theorists. In the
next section, I transform the pedagogical principles underlying these learning conditions into
operational criteria, so that one can design learning situations exhibiting the desired charac-
teristics of cognitive flexibility. I present both the way I use for this transformation process
and its application.

Key concept: The two main conditions of learning for cognitive flexibility are multiple
modes of learning and multiple perspectives on learning.

2.4 Operational criteria for cognitive flexibility

I start by considering two learning conditions for cognitive flexibility: multiple modes of
learning and multiple perspectives on learning. I also consider four main components of
learning systems identified in section 1.5.1: learning contents, pedagogical devices, human

Page 31

interactions, and assessment. In each of the four components of learning systems and for each
of the two learning conditions for cognitive flexibility, I propose criteria that can be applied
for checking the presence of the learning condition in the learning component. In Table 2.1,
each cell contains one criterion except for the fourth cell, which contains three criteria be-
cause of the complex pedagogical principles underlying the learning conditions in this cell
(see more explanations in section 2.4.2).
Table 2.1. Operational criteria for cognitive flexibility

Learning conditions
Learning components Multiple modes of learning Multiple perspectives on learning
Learning contents (1) MM1 (2) MP1
Pedagogical devices (3) MM2 (4) MP2, MP3, MP4
Human interactions (5) MM3 (6) MP5
Assessment (7) MM4 (8) MP6

In what follows, I present the operational criteria from left to right and from top to bottom
of Table 2.1; I justify each criterion and I apply each criterion for designing learning situa-
tions for the Java variable situation. I discuss the set of criteria in section 2.4.5.

2.4.1 Operational criteria for learning contents

This sub-section presents two criteria proposed for learning contents: MM1 for multiple
modes and MP1 for multiple perspectives.

MM1: The same learning content presenting concepts and their relationships is represented
in different forms (e.g., text, images, audio, video, simulations).

I believe that a single representation of content presents only part of the characteristics of
a new concept. So, the teacher should make multiple representations available to help the
learner better grasp diverse aspects of the new concept. The teacher, however, should not pre-
sent the learner with too many kinds of information (e.g., text and images and audio and
video) at the same time, because this type of presentation (cognitive overload) may distract
the learner from perceiving the new concept (Kirsh, 2000; Sweller, 2005).

In the Java variable problem, I shall use texts, images, and simulations for most presenta-
tions. Figure 2.2 shows an introduction about variables and assignment. The box metaphor
used for variables may help learners master the basics of the concept of variable in Java such
that a variable is used to hold a data value. In addition, a simulation showing what the com-
puter does when we declare and initialize a variable is useful for dynamically illustrating the
relationship between the concept of variable and memory locations in the computer.

MP1: The same abstract concept is explained, used, and applied systematically with other
concepts in a diversity of examples of use, exercises, and case studies in complex, realistic,
and relevant situations.

A small number of examples, exercises, and case studies cannot illustrate every different
interpretation of a new concept and its relationships with other ones. Thus, the teacher should

Page 32

make multiple examples, exercises, and case studies available to help learners better under-
stand and apply multiple interpretations of the new concept in different contexts. It should be
noted here that, at the end of each chapter of many textbooks, the authors present many exer-
cises in different contexts, but these exercises often illustrate the same interpretation of the
new concept.
Figure 2.2. Introduction to variables

A variable is a name for a location in memory used to hold a data value …

Example 1 (text + image):
int a; //a =
a = 2; //a =

Example 2 (text + image):
int a, b; //a = b =
a = 3; b = a; //a = b =
a = 5; //a = b =

Figure 2.2 shows the use of a box analogy for illustrating the variable concept in Java.
Note that this analogy may make learners believe wrongly that a single variable can hold
more than one value at a given time (since a physical box may contain more than one object),
or that a variable is always initialized to zero (an empty box contains nothing, and zero is
nothing). To alleviate these misconceptions, I prepared the librarian situation (Figure 2.3).
This situation shows that a variable holds only one value at a time and that a variable has no
value at the moment of declaration if we do not explicitly initialize it. Indeed, initializing the
variable “totalPrice” to zero is necessary for the computation of the total, while the vari-
able “bookPrice” is not necessarily initialized because it is only used when the librarian
purchases a new book. When a new book is purchased, the variable “bookPrice” is used to
hold only the price of the new book (but not the price of any other book), and the variable
“totalPrice” is used to add up the total price of all purchases until now.
Figure 2.3. Librarian situation

A librarian purchases new books for her department. She doesn’t stop buying until the total price of all pur-
chases is over 1900€. Write a segment of code to perform this process.

Possible solution:
int totalPrice = 0; //totalPrice =
int bookPrice; //bookPrice =
while (totalPrice <= 1900) {
 System.out.println (“Enter the new book price:”);
 // class Keyboard allows input operations
 bookPrice = Keyboard.readInt(); // bookPrice = bookPrice = …
 totalPrice += bookPrice; // totalPrice = totalPrice = …
}
System.out.println(“Total purchase price: ” + totalPrice);

The librarian situation, however, does not show that assigning one variable to another
means that the first variable holds the value of (but does not link to) the second one. I add a
third situation (Figure 2.4), in which to approximate the income of a given year (e.g., 2004),
variables “income1” and “income2” are used to hold the incomes of the previous two
years (e.g., 2002 and 2003). After approximating the income in 2004, to approximate the in-
come in 2005, the variable “income1” takes the value of the variable “income2” (i.e., the

?

2

? ?

3 3

5 3

0

?

56 31

56 87

Page 33

income in 2003) and the variable “income2” takes the value of the variable “income” (i.e.,
the income in 2004), …
Figure 2.4. IT company situation

The income of a new IT company in 2000, 2001, 2002, and 2003 is: 2, 3, 5, and 8 million euros. From 2002
onwards, the income of any given year is approximately equal to the sum of the incomes of the previous two
years). Approximate the income of the company in 2010.

Possible solution:
int income1 = 5; // income1 =
int income2 = 8; // income2 =
int income = 0; // income =
for (int year = 2004; year <= 2010; year++){
 income = income1 + income 2; // income = income = …
 income1 = income2; // income1 = income1 = …
 income2 = income; // income2 = income2 = …
}
System.out.println(“Income in 2010: ” + income);

These three situations also show different uses of variables and assignment (e.g., counter
variables, summing with a variable), and rely on the for and while concepts. When facing
the concept of variable, learners should not necessarily explore all three situations at once.
They can tackle them at a different time, for example during the exploration of the for and
while iterations (see also criteria MM2 and MP2 presented in the next sub-section).

Confronting the previous three situations, students are stimulated not only to read the text,
but also to perform other learning activities, for instance, to test the source code, to discuss
the role of each variable in the source code (see also criteria MM3 and MP5 shown in section
2.4.3).

In addition to those situations, I prepare programming exercises and the learning content
for memory locations (an important concept for understanding variables). I also include dif-
ferent interpretations proposed by other authors in books and websites about the variable
concept, for example, the reference book "Java software solutions" of Lewis and Loftus
(2003), the online Java programming tutorials of Sun (2004) and OOPWeb (2004). These re-
sources are necessary to satisfy criterion MP3 presented in the next section.

2.4.2 Operational criteria for pedagogical devices

In this sub-section I present four criteria proposed for pedagogical devices: MM2 for multiple
modes and MP2, MP3, and MP4 for multiple perspectives. I separate three interdependent
criteria MP2, MP3, and MP4 to facilitate their application. Indeed, the pedagogical principles
underlying multiple perspectives in pedagogical devices are complex. For example, Bour-
geois and Nizet (1999) and Spiro and Jehng (1990) argued for the following three suggestions
(see also section 2.3): (a) learning in a criss-cross landscape, (b) learning by confronting mul-
tiple points of view, and (c) learning by producing summaries on a diversity of points of
view. Therefore, if those three suggestions are merged into only one criterion, I think it may
be hard for the practitioner to apply it.

5

8

0

13 21

8

13

13

21

Page 34

MM2: Learners are encouraged to study the same abstract concept for different purposes, at
different times, by different methods including different activities (reading, exploring, discus-
sion, knowledge reorganization, etc.).

To satisfy criteria MM1 and MP1, the teacher should prepare the learning content taking
into account multiple modes and multiple perspectives. The teacher should also provide suit-
able pedagogical devices allowing learners to explore this learning content in different ways
and contexts. Multiple learning activities (other than mere reading) help learners better mas-
ter and transfer new knowledge.

In the Java variable problem, I could deliver the learning content on a Web-based plat-
form and engage learners in four learning activities: (a) read, (b) explore examples and cases
by using hypertexts and simulations, (c) do exercises by writing and executing programs, and
(d) find and discuss other interpretations about variables (i.e., in other programming lan-
guages than Java).

MP2: When facing a new concept, learners are encouraged to explore the relationships be-
tween this concept and other ones as far as possible in complex, realistic, and relevant situa-
tions.

Learners should learn a new concept with other ones in different meaningful contexts to
understand various interpretations of the new concept and transfer new knowledge in real
situations. Hence, the teacher should provide explicit tools to encourage learners to system-
atically explore the interrelations of concepts in relevant situations.

In the Java variable problem, when learners are led to face the variable concept, I present
hypertext links in their learning environment to have them explore related concepts such as
those of memory location, while loop, and for loop.

Similarly, when learners face the while and for iterations, a hypertext link to the vari-
able concept is presented so that learners can revise the variable concept easily. The main
idea here is to create a criss-cross landscape in the learners’ learning hyperspace.

MP3: When facing a new concept, learners are encouraged to explore different interpreta-
tions of this concept (by other authors and by peers), to express their personal point of view
on the new concept, and to give feedback on the points of view of other people.

In criterion MP2, the teacher encouraged learners to explore multiple interpretations pro-
posed by the teacher about the new concept. Here, the teacher should engage them in the ex-
pression of their personal point of view and in the exploration of those of others. These learn-
ing activities may help learners understand diverse conceptions and misconceptions, and so
help them overcome their own resistance to learning.

In the Java variable problem, I engage learners in three learning activities: (a) explore
other interpretations of other people about the variable concept (e.g., the reference book “Java
software solutions” by Lewis and Loftus 2003; the Java tutorial website of Sun, 2004; the
Java tutorial website of OOPWeb, 2004); (b) find and add other examples, exercises, and
case studies in their own learning hyperspace (e.g., using online search tools and the key-

Page 35

words “Java”, “variables”, and “assignment” to find relevant websites); and (c) explore peers’
learning hyperspaces to understand what they think and how they learn.

MP4: When facing a new concept, learners are encouraged to examine, analyze, and synthe-
size a diversity of points of view on the new concept.

In criteria MP2 and MP3, the teacher encouraged learners to explore a variety of points of
view about the new concept. In this one the teacher should provide tools to stimulate them to
treat these diverse points of view, so as to construct their own knowledge space about the
new concept (e.g., to produce a synthesis by using text, tables, concept maps).

In the Java variable problem, I could, for instance, ask learners to produce a table stating
the main points of the variable concept expressed by themselves and by peers. For each point
the learner makes, the learner is asked to provide the information source used to justify the
point.

2.4.3 Operational criteria for human interactions

This sub-section presents two criteria proposed for human interactions: MM3 for multiple
modes and MP5 for multiple perspectives.

MM3: The number of participants, the type of participant (learner, tutor, expert, etc.), the
communication tools (e-mail, mailing lists, face to face, chat rooms, video conferencing,
etc.), and the location (in the classroom, on campus, anywhere in the world, etc.) are varied.

Multiple modes of discussion provide different learning activities, produce different
learning outcomes, and help learners manage their own learning more flexibly. For example,
a mailing list allows asynchronous communications, and video conferencing allows a syn-
chronous discussion among people in different locations.

In the Java variable problem, I could organize small groups of students and provide them
with meeting rooms, mailing lists, and Q&A websites, so that they can run a variety of dis-
cussions with peers and other people.

MP5: During the discussion, learners are encouraged to diversify – as far as possible – the
different points of view about the topic discussed.

During a discussion, learners should actively express their personal points of view and
stimulate those of other participants, so as to face and process effectively a variety of points
of view. The teacher should therefore provide methodological tools to facilitate this process
(Bourgeois & Nizet, 1999).

In the Java variable problem, I could attach an open list of general and domain-specific
questions to learners’ communication tools, so that they can use them to elicit peers’ points of
view. Examples of such questions are: Why do we have to initialize the variable “total-
Price” in the librarian situation? What happens when we change the value of a variable?
Are there other explanations? Does anyone have a different opinion? What was your source

Page 36

of information? Why? Note that researchers in pedagogy (e.g., Wright, 1995) have suggested
a variety of general questions facilitating discussions in learning (see Appendix B5).

2.4.4 Operational criteria for assessment

This sub-section shows the last two criteria proposed for assessment: MM4 for multiple
modes and MP6 for multiple perspectives.

MM4: During the learning process, learners are encouraged to use different assessment
methods and tools, at different times, and in different contexts for demonstrating their ability
to solve different problems.

Multiple modes of assessment enhance multiple modes of learning and help teachers and
learners understand what learners actually learn. For instance, authentic assessment help
teachers and learners see how learners manage the tasks and actively use problem-solving
skills in a context that approximates the real world life as closely as possible. Performance
assessment enables teachers and learners to see how learners perform a task such as write an
essay, conduct an experiment, carry out a project, or solve a real-world problem (Reeves &
Okey, 1996).

In the Java variable situation, at different points in time, the learner could be engaged in
two assessment activities. Firstly, the learner is asked to do Assessment 2.1 individually, for
instance, after the introduction of the variable concept. The purpose of this assessment is to
help learners evaluate their basic understanding of the concept of variable (e.g., a single vari-
able cannot hold more than one value at a given time, variable assignment is totally different
from mathematical equality). Secondly, the learner is asked to do a programming test (As-
sessment 2.2) in small groups, for example, after the learning of other concepts such as ob-
jects, arrays. The objective of this test is to help learners apply the concept of variable with
other ones such as loops, objects, and arrays to a meaningful programming situation.
Assessment 2.1. Exchanging the value of two variables

Write a segment of code to exchange the value of two variables.

Possible solution 1:
 int a = 3;
 int b = 5;
 int c = a;
 a = b;
 b = c;

Possible solution 2:
 int a = 3;
 int b = 5;
 a = a + b;
 b = a - b;
 a = a - b;

MP6: During the problem-solving process, learners are encouraged to confront multiple
ways to solve the problem and multiple possible solutions to the problem.

I believe that when learners confront multiple solutions to a problem, they have opportu-
nity to compare, come in and come out different solutions, so as to construct their own one.
Therefore, the teacher should provide learners with problems whose nature must give rise di-
rectly to different ways to solve them and to different solutions to them.

Page 37

In the Java situation, I could ask learners to confront and compare different solutions to
the problem presented in each assessment. In Assessment 2.1, there are at least two possible
solutions: one using an intermediate variable, and one not using an intermediate variable. In
Assessment 2.2, there are also at least two possible solutions (see Appendix A): one using an
instance variable "totalCost" to add up the total cost of all CDs in the collection until
now, and one, instead of using an instance variable "totalCost", implementing a loop
for in the method toString to sum up the total price of all CDs in the collection until
now.
Assessment 2.2. Collection of compact discs

Complete a class CD, which represents a compact disc (CD) specified by its title, artist, purchase price, and
number of tracks, and a class CDCollection, which represents a collection of compact discs. Write and exe-
cute a class MyTest to test the methods of the classes CDCollection and CD.

/* SPECIFICATION
 * Representation of a collection of compact discs.
 */
public class CDCollection {
 // Instance variables: to be completed

 // Constructor: to be completed
 public CDCollection() {}

 // Methods: to be completed
/* PRECOND
 * POSTCOND
 * Adds a CD to the collection.
 */
 public void addCD(String title, String artist, double cost, int tracks) {}

/* PRECOND
 * POSTCOND
 * Return a report describing the CD collection: the number of CDs, the total
 * cost and the average cost of all CDs.
 */
 public String toString() {}
}

/* SPECIFICATION
 * Representation of a compact disc.
 */
public class CD {
 // Instance variables
 private String title, artist;
 private double cost;
 private int tracks;

 // Constructor: to be completed
 public CD(String title, String artist, double cost, int tracks) {}

 // Methods: to be completed
 ...
/* PRECOND
 * POSTCOND
 * Return a description of this CD.
 */
 public String toString() {}
}

Sometimes, however, students may have difficulties to give alternative solutions to a
given problem, for instance, the second solution in Assessment 2.1. In this case, I could show

Page 38

the solution to students and ask them to discuss, for example what the computer does when
the segment of code presented in the solution is executed. The point here is that the variable
concept appears to be more readily grasped when learners examine various aspects of this
concept in those situations, for instance, the advantages (and disadvantages) of using an in-
termediate variable in Assessment 2.1, the advantages of using an instance variable in As-
sessment 2.2.

Main result: Ten operational criteria were proposed for cognitive flexibility. Each cri-
terion was justified and showed with one example of application.

2.4.5 Discussion

In this sub-section, I discuss a number of points related to the pertinence and the application
of the set of criteria I proposed previously.

Firstly, the quality of criteria satisfaction is important. The role of the set of criteria is to
help the course designer frame instructional and learning situations in a manner consistent
with cognitive flexibility. But the course designer’s expertise in the subject of instruction is
essential. For example, for criterion MM1, it is important to provide the learner with multiple
representations of the learning content, but it is more important to think about which forms
and which ways are appropriate to present the learner with the learning content. In the Java
variable situation, the combination of text and images may be appropriate, whereas in the re-
cursion situation (see chapter 3), the use of text, images, and simulations should be pertinent
because the concept of recursion is more complex than the concept of variable. For criterion
MP1, one must be an expert in programming and Java to be able to devise a diversity of
meaningful instructional situations for the Java variable problem (see section 2.4.1). The
point here is that preparing a diversity of situations (quality) that emphasize different aspects
or interpretations of a new concept is more important than preparing many situations (quan-
tity) that emphasize only one or two aspects of the new concept.

Secondly, the quantity of criteria the course designer should satisfy may not be always
critical. Presently, there has been no evidence indicating that satisfying all of the criteria is
always better than satisfying, for instance, two thirds of the set of criteria. Maybe satisfying
six criteria is better than satisfying one or two criteria, but I am not sure whether satisfying 10
criteria is always better than satisfying six or seven criteria. Sometimes we may provoke cog-
nitive overload if we stimulate the learner to perform too many cognitive activities (Kirsh,
2000; Sweller, 2005). Personally, I believe that in introductory learning, satisfying several
criteria could be sufficient; in advanced learning, however, it may be necessary to satisfy
most or all of the criteria. In all cases, I think the quality is more important than the quantity
of criteria one satisfies. In chapter 5, I discuss this point further.

Thirdly, a number of criteria are related or similar to each other. Therefore, the course
designer should be aware of this characteristic to be able to apply the set of criteria effec-
tively. For instance, criteria MP3 and MP4 encourage the learner to do a variety of learning
activities, so they reinforce criterion MM2. Criteria MP3 and MP5 are relatively similar. The

Page 39

main difference is that in criterion MP3, the learner is encouraged to use different pedagogi-
cal devices to examine different points of view of other people (perhaps without interaction
with those people), whereas in criterion MP5, the learner is encouraged to actively elicit other
people’s points of view during discussion. Thus, it may be not necessary to always satisfy
both criteria, but in some cases, satisfying criterion MP5 will reinforce the satisfaction of cri-
terion MP3. The same conclusions could also be drawn for criteria MP3 and MP4.

Finally, the set of criteria I proposed is not definitive. One can surely modify it (e.g., or-
ganize a criterion into sub-criteria or assemble several criteria into one criterion), even reject
part of the criteria and propose new ones, according to one’s personal interpretation of learn-
ing conditions fostering cognitive flexibility.

2.5 Criteria proposed by Jonnaert and Vander Borght

In the previous section, I transformed pedagogical principles underlying cognitive flexibility
into operational criteria. In this section, I present a set of operational criteria proposed by
Jonnaert and Vander Borght (2003) for the concept of constructivist learning in the school
context, and I show that those criteria are complementary to the set of criteria for cognitive
flexibility introduced earlier.

2.5.1 Socio-constructivist and interactive paradigm

In chapter 1, I explained that constructivism has many variations. Therefore, every construc-
tivist author needs to clarify which paradigm(s) he or she follows before going into details his
or her own pedagogical model. The learning theory I follow in this thesis is cognitive con-
structivism (see chapter 1). Jonnaert and Vander Borght follow a socio-constructivist and in-
teractive approach in the school context (the SCI paradigm).

This paradigm primarily consists of three interdependent dimensions. In each dimension,
the authors stated one or more postulates, as follows:

1. Constructivist dimension: (a) the individual construct his or her knowledge through his or
her own activity, and (b) the object handled during this activity is strictly his or her own
knowledge.

2. "Socio" dimension related to social interactions: The student personally constructs his or
her knowledge through interactions with other people (i.e., the teacher and peers).

3. Interactive dimension related to interactions with the environment: The student learns
concepts "anchored" in situations that are both source and criterion of knowledge. The
situation with which the student is confronted is source of knowledge because it confronts
his or her prior knowledge with situational demands. The situation is also criterion of
knowledge because the student can be efficient in the situation, meaning that his or her
knowledge is pertinent.

Page 40

In my point of view, this approach underlines both individual development and social ne-
gotiation (see also section 1.1). This approach reflects my own beliefs on the concepts of
knowledge and learning (see chapter 1).

2.5.2 Operational definition of learning and its application

To clarify the concept of learning consistent with their beliefs, Jonnaert and Vander Borght
proposed an operational definition for this concept. This definition was formulated on the ba-
sis of a set of criteria. Table 2.2 shows the criteria proposed for the three dimensions identi-
fied earlier (notice that the concept of learning objects presented here has a more general
meaning than the one in the e-Learning context presented in parts 2 and 3). I do not mention
here other criteria proposed, for instance for several didactic constraints related to the school
context the authors defined, because they are not related to my present work.

The authors showed the practicality of their criteria by using them to analyze a certain
number of definitions of learning in the literature. Table 2.3 presents one example of those
analyses.
Table 2.2. A main part of criteria proposed by Jonnaert and Vander Borght for the concept of constructivist
learning in the school context

Dimensions Criteria Expected
analysis

(1.1) Who is the actor of the learning? The student
(1.2) Does the student learn on the basis of his prior knowledge? Yes

(1) Constructivist

(1.3) Does learning have a meaning for the student? Yes
(2.1) Does the student learn through interactions with peers? Yes
(2.2) Does the student learn through interactions with the teacher? Yes

(2) Socio

(2.3) Are the zones of dialogue defined to allow interactions among the
students, the teacher, and the learning object?

Yes

(3.1) Does the student learn from situations? Yes
(3.2) Does the student have to discover the learning object in these
situations?

Yes

(3.3) Does the student have to interact with these situations and the
learning object?

Yes

(3.4) Does the environment permit to establish a distinction between the
learning object and the student’s knowledge?

Yes

(3) Interactive

(3.5) Are there interactions between the learning object and the stu-
dent’s knowledge?

Yes

The point the authors made is that no available definition satisfies all of their criteria.
Therefore, they proposed their own definition of the concept of constructivist learning satis-
fying all of their criteria. Here is its short version (see its full version on page 266 of their
book):

Learning in the school context is a dynamic process in which the student, through interactions with his
or her peers and the teacher, interacts with the learning object in order to construct new knowledge
adapted to the constraints and the resources of the situation the student confronts to use his or her new
knowledge in non-didactic situations. (Jonnaert and Vander Borght, 2003, p. 266)

Page 41

Table 2.3. Analysis of a constructivist definition of learning

Definition:
(…) Learning is a process; the modification of prior acquisition forms an integral part of this process; it is
the learner who is the principal actor of the learning; learning in the school context must be anchored in
a context that is meaningful to the student.
(…) Learning occurs essentially through the management, the operations or the interventions of the stu-
dent himself or herself; the learner carries out a certain number of steps to appropriate new manage-
ment and representations of object, or to change some of them; learning is built on and with prior knowl-
edge of the learner; the evoked learning process is strictly under responsibility of the student; the
teacher manages only a part of the situation in which he or she places the student; the teacher is not a
learning master of the student, the teacher simply manages certain conditions in which he or she places
the student. (Jonnaert, 1995, p. 39; cited in Jonnaert and Vander Borght, 2003, p. 261)

Dimensions Criteria Analysis Comments

(1.1) Who is the actor of the learning? The student The student is the principal ac-
tor. In addition, it is him or her
who manages the learning proc-
ess.

(1.2) Does the student learn on the ba-
sis of his prior knowledge?

Yes This aspect is explicit in the
definition.

(1) Constructivist

(1.3) Does learning have a meaning for
the student?

Yes This aspect is explicit in the
definition.

(2.1) Does the student learn through
interactions with peers?

Not specified

(2.2) Does the student learn through
interactions with the teacher?

Implicit The teacher manages certain
conditions in which he or she
places the learner.

(2) Socio

(2.3) Are the zones of dialogue de-
fined to allow interactions among the
students, the teacher, and the learning
object?

Not specified

(3.1) Does the student learn from situa-
tions?

Yes Learning must occur in mean-
ingful contexts for the learner.

(3.2) Does the student have to discover
the learning object in these situations?

Not specified

(3.3) Does the student have to interact
with these situations and the learning
object?

Not specified

(3.4) Does the environment permit to
establish a distinction between the
learning object and the student’s knowl-
edge?

Yes The logic of the student is disso-
ciated from that of the learning
object.

(3) Interactive

(3.5) Are there interactions between
the learning object and the student’s
knowledge?

Not specified

On the basis of their operational definition of the concept of learning in the school con-
text, the authors proposed their own learning conditions to foster learning in a manner consis-
tent with the authors' SCI paradigm (see more details in chapter 6 of the authors' book).

2.5.3 Discussion

Jonnaert and Vander Borght's epistemic paradigm is different from mine. The learning con-
text they are concerned with (the school context) is also different from mine (the e-Learning

Page 42

context). The way Jonnaert and Vander Borght and I exploited constructivism, however, is
quite similar: We tried to use an operational approach to clarify what constructivist learning
and instruction are. The main difference between Jonnaert and Vander Borght's work and
mine is that they proposed a set of criteria for the concept of learning whereas I proposed a
set of criteria for conditions of learning. I give here a simple analogy: Jonnaert and Vander
Borght's criteria could be used to check whether or not an automobile can move forward,
move backward, turn left, turn right, and so on. My criteria could be applied to verify whether
or not an automobile has necessary materials and devices such as engine, fuel, steering wheel,
gas pedal, break pedal to move forward, move backward, turn left, turn right, and so forth.
That is why I claim that Jonnaert and Vander Borght's criteria and mine are complementary.

To consolidate the previous claim, in chapter 6 I show the practicality and the comple-
ment of the two sets of criteria by applying them to analyze the concept of learning and the
conditions of learning involved in the COFALE learning environment.

2.6 Conclusion

In this chapter, I have argued that the set of operational criteria I described makes the proc-
ess of instructional design more straightforward than do general guidelines suggested by edu-
cational theorists (e.g., Bourgeois & Nizet, 1999; Spiro & Jehng, 1990).I believe that the set
of criteria is applicable to a great number of instructional situations (e.g., traditional instruc-
tion, computer-based instruction, and distance education). To consolidate this point, in chap-
ter 3, I show how one can apply the set of criteria, as guidelines, to design a complete course
for the instruction of complex concepts such as the recursion one in computing science.

The criteria for cognitive flexibility also facilitate the analysis of existing learning sys-
tems (see chapter 5). Indeed, the criteria may be used as a framework to identify which as-
pects of a learning system actually embody which pedagogical principles underlying cogni-
tive flexibility.

Page 43

CHAPTER 3

3 Instructional design with cognitive flexibility

"I keep six honest serving people. They taught me everything I know. Their names are: What
and Why and When and How and Where and Who."

Rudyard Kipling, English Novelist, 1865 – 1936 (cited in Santrock, 2001, p. 362)

(Reference to Appendices B & C)

In this chapter, on the basis of the set of operational criteria presented in chapter 2, I propose
and justify an instructional design process for cognitive flexibility, and present an example of
its use: The teaching of the concept of recursion in computing science. After reading this
chapter, one should be able to propose and use one's own design process for the practice of
one's own teaching.

Page 44

Summary
3.1 Introduction

3.2 Recursion and learning context

3.3 Instructional design process for cognitive flexibility

3.4 Discussion

3.1 Introduction

Chapter 2 presented a set of operational criteria for cognitive flexibility and a simple example
of its use. To successfully create learning conditions satisfying all of these criteria for the in-
struction of complex concepts, however, I must develop a well-defined design process. This
process, of course, is not normative: It is here as an evidence for indicating the practicality of
the set of criteria for cognitive flexibility. It should, however, be both operational and open
enough for the teacher to be able to find easily his or her own way to effectively fulfill all or
part of the criteria for cognitive flexibility in his or her own teaching situations. Therefore, in
this chapter I show how to use the set of criteria for cognitive flexibility as guidelines to de-
sign a complete course for a problem area presented in section 3.2: The learning of recursion,
a complex concept in computing science (I will give an explanation of this concept for those
who are not in the domain of computing science).
Figure 3.1. A development model of learning systems

: Development

: Adjustment

The main objective of the thesis is to show how to construct ICT-based learning systems
supporting cognitive flexibility. To do so, I use a metaphor in software engineering (Schach,
1999). Figure 3.1 illustrates a development model of learning systems. This model has been
used in engineering of several ICT-based learning systems such as PETAL (Bhuiyan et al.,
1994) and SimQuest (De Jong et al., 2004). This model consists of the following four phases:

1. Specification. This phase aims at specifying the context in which learning is expected to
occur, for example to specify students' learning objectives.

2. Design. The main goal of this phase is to devise learning situations for students, for in-
stance to prepare the learning contents and pedagogical devices.

Specification
Phase

Design
Phase

Implementation
Phase

Validation
Phase

Page 45

3. Implementation. The main objective of this phase is to implement the learning conditions
proposed in the design phase in an e-Learning context, for example to deliver the learning
contents and pedagogical devices in a Web platform.

4. Validation. This phase aims to carry out experiments with actual students to formatively
evaluate the learning system. The results of the experiments may be used to adjust the de-
sign and implementation phases.

In what follows, I first describe the learning context (specification phase). Then, I propose
an instructional design process to systematically fulfill the set of 10 criteria for cognitive
flexibility identified in chapter 2 (design phase). In chapters 6, 7, and 8, I show how to im-
plement ICT-based learning conditions with respect to the design process proposed in the
present chapter (implementation phase). And in chapter 9, I report on a study performed to
evaluate those ICT-based learning conditions (validation phase). It should be noted that the
set of criteria for cognitive flexibility is used as a useful pedagogical framework through the
design phase, the implementation phase, and the validation phase.

3.2 Recursion and learning context

3.2.1 Recursion

« To iterate is human. To recurse, divine.”

Logout message on the Carnegie-Mellon CMUA computer (cited in Anderson et al., 1988, p. 163)

Recursion, in general, is the process of defining something in terms of itself (Lewis & Loftus,
2003). Recursive thinking is the ability of humans to solve a problem by reducing it to one or
more sub-problems that are identical in structure to the original problem and somewhat simpler
to solve (Robert, 1986). To illustrate recursive thinking, in the following paragraphs, I show a
simple example (Kjell, 2003) and a classical and well-known game, named the Towers of Hanoi
puzzle (Lewis & Loftus, 2003).

Example 1: Dividing a line

Say that Bob wish to divide a line into 16 equal pieces.

Firstly, he divides the line in half (see Figure 3.2); he has two equal lines. Then, for each
of the two lines, he divides the line in half … He does not stop dividing until the number of
pieces is 16.
Figure 3.2. Dividing the line in half

In the previous example, Bob divides the original problem into two sub-problems that are

identical in structure to the original problem (to divide a line into a number of equal pieces)
and simpler to solve (in the original problem, Bob needs to divide a line into 16 equal pieces,

Page 46

whereas in each of the two sub-problems, Bob needs to divide a line into only 8 equal pieces,
and 8 < 16). That is recursive thinking.

Example 2: The Towers of Hanoi puzzle

The puzzle consists of three upright pegs (Figure 3.3). On the left peg (peg A), we place a
number (N) of disks with holes in the middle so that they slide onto the peg (in Figure 3.3,
N=3). Each disk has a different diameter, the largest disk resting at the bottom and the others
getting smaller and smaller up to the top one.

The goal of the puzzle is to move all the disks from the left peg to the right one (peg C).
We can use the "extra" peg (peg B) as a temporary place to put disks, but we must obey the
following three rules:

1. We can move only one disk at a time.

2. We cannot place a large disk on top of a smaller disk.

3. At any time, all disks must be on some peg except for the disk in transit between pegs.
Figure 3.3. A solution to the three-disk Towers of Hanoi puzzle

Original configuration

 A B C

Fourth move

 A B C

First move

 A B C

Fifth move

 A B C

Second move

 A B C

Sixth move

 A B C

Third move

 A B C

Seventh (last) move

 A B C

Figure 3.3 presents the step-by-step solution for the Towers of Hanoi puzzle using three
disks. To ultimately move all three disks from peg A to peg C, we first have to get to the

Page 47

point where the smaller two disks are out of the way on peg B so that we can move the largest
disk from peg A to peg C.

We can consider the first three moves shown in Figure 3.3 as moving the smaller disks
out of the way. The fourth move puts the largest disk in its final place. The last three moves
then put the smaller disks to their final place on top of the largest one.

We can use the previous idea to form a general strategy. To move a stack of N disks from
the original peg (peg A) to the destination peg (peg C):

1. Move the topmost N-1 disks from the original peg (peg A) to the extra peg (peg B).

2. Move the largest disk from the original peg (peg A) to the destination peg (peg C).

3. Move the N-1 disks from the extra peg (peg B) back to the destination peg (peg C).

In the example of the Towers of Hanoi puzzle, we reduce the problem of moving N disks
to the problem of moving N-1 disks. This sub-problem is identical in structure to the original
problem: Moving a number of disks from the original peg to the destination peg using the
"extra" peg as a temporary place to put disks. This sub-problem is simpler to solve than the
original problem, because N-1 < N. That is recursive thinking. Note that the problem of mov-
ing a "stack" that consists of only one disk is so easy: We can accomplish the task directly
and without recursion.

The concept of recursion is very important in computing science (Henderson & Romero,
1989). To understand various aspects concerning the teaching and learning of recursion, I
have analyzed a certain number of approaches in the literature (see Appendix B6). This
analysis shows that many teachers consider that both teaching and learning recursion are dif-
ficult because of three main reasons, as follows:

1. The concept is unfamiliar: Students are induced to proceed by analogy from examples.
That is, facing a new problem, learners often do not arrive at recursive solutions directly,
but they must examine prior examples to find out an analogy to solve the problem recur-
sively.

2. The concept is complex: It is hard for students to transfer from a pattern of recursion to a
new one. That is, learners may still have difficulties to solve a new problem recursively,
even though they have successfully built recursive solutions to a variety of problems.

3. Interference may arise from knowledge of other methods of solution (e.g. iterations). For
example, "novice" learners, when constructing a recursive solution, try to adapt some part
of an iterative structure, for instance the updating of loop index variables, to achieve re-
cursion.

3.2.2 Learning context

I concentrate on the creation of learning conditions provided for students to learn recursion;
so, for the purpose of the discussion, I assume in this chapter the following learning context:

Page 48

• The targeted learners are first-year engineering students registered in an introductory
course on object-oriented programming and Java at Faculté des Sciences Appliquées,
Université catholique de Louvain. They have no knowledge of recursion.

• The learning objective, from the students' point of view, is to develop the ability to solve
problems recursively.

• Students use a standard Java programming environment and the Internet to learn recur-
sion.

• The course duration is 2 weeks (a 2-hour session in the presence of the teacher for each
week). Between the two sessions, students work in groups to solve problems.

• There are not administrative constrains, (e.g., the evaluation of students' learning is for-
mative).

In section 3.3, I show how to devise learning situations leading to cognitive flexibility so
that the selected students can attain their learning objective effectively.

3.3 Instructional design process for cognitive flexibility

Because recursion is a complex concept, in this section I propose an instructional design
process attempting to satisfy all of the criteria for cognitive flexibility defined in chapter 2. I
start by considering the 10 criteria proposed for the four learning components: learning con-
tents, pedagogical devices, human interactions, and assessment. From the teacher's point of
view, the two main questions that should be considered in instructional design are:

1. What should be done to provide the learner with learning conditions in the four learning
components in order to satisfy the 10 criteria for cognitive flexibility?

2. What should be done to evaluate students' learning behavior and the tutor's teaching be-
havior with respect to cognitive flexibility?

Educational researchers (e.g., Jonnaert & Vander Borght, 2003) have claimed that any in-
structional design process consists of three important phases: (a) pre-active phase (what
should be done before the learning session), (b) interactive phase (what should be done dur-
ing the learning session), and (c) post-active phase (what should be done after the learning
session).

In what follows, in each of the three phases, I use the 10 operational criteria (see Table
3.1) for cognitive flexibility as guidelines to propose a set of instructional design activities. In
the pre-active phase, I propose design activities that specify how the teacher should prepare
the learning materials before the learning session. In the interactive phase, I suggest teaching
activities specifying what the teacher should do, for instance, with the prepared learning ma-
terials, during the learning session. And in the post-active phase, I propose evaluation activi-
ties that specify how the teacher should evaluate both the tutor's teaching behavior and stu-
dents' learning behavior, with respect to cognitive flexibility. For each instructional design
activity, I declare which learning component the activity belongs to. I also justify each activ-

Page 49

ity by showing which criteria for cognitive flexibility are the raison d'être of the activity, and
I apply the activity to the instructional design for the recursion problem.
Table 3.1. Operational criteria for cognitive flexibility (MM = multiple modes, MP = multiple perspectives)

See sections 1.5.1 and 2.4 to know why the set of criteria is organized into four learning components.

Learning Contents

MM1: The same learning content presenting concepts and their relationships is represented in different forms
(e.g., text, images, audio, video, simulations).

MP1: The same abstract concept is explained, used, and applied systematically with other concepts in a diver-
sity of examples of use, exercises, and case studies in complex, realistic, and relevant situations.

Pedagogical Devices

MM2: Learners are encouraged to study the same abstract concept for different purposes, at different times, by
different methods including different activities (reading, exploring, knowledge reorganization, etc.).

MP2: When facing a new concept, learners are encouraged to explore the relationships between this concept
and other ones as far as possible in complex, realistic, and relevant situations.

MP3: When facing a new concept, learners are encouraged to explore different interpretations of this concept
(by other authors and by peers), to express their personal point of view on the new concept, and to give feed-
back on the points of view of other people.

MP4: When facing a new concept, learners are encouraged to examine, analyze, and synthesize a diversity of
points of view on the new concept.

Human Interactions

MM3: The number of participants, the type of participant (learner, tutor, expert, etc.), the communication tools
(e-mail, mailing lists, face to face, chat room, video conferencing, etc.), and the location (in the classroom, on
campus, anywhere in the world, etc.) are varied.

MP5: During the discussion, learners are encouraged to diversify – as far as possible – the different points of
view about the topic discussed.

Assessment

MM4: During the learning process, learners are encouraged to use different assessment methods and tools, at
different times, and in different contexts for demonstrating their ability to solve different problems.

MP6: During the problem-solving process, learners are encouraged to confront multiple ways to solve the prob-
lem and multiple possible solutions to the problem.

Key concepts:

The instructional design process is a set of instructional design activities.

An instructional design activity is one or more operations the teacher should perform in
order to create or evaluate certain learning conditions for students.

3.3.1 Pre-active phase

This sub-section presents seven design activities, to be performed by the course designer.

Activity 1.1 (learning contents): Prepare the learning content for the underlying concepts.

This activity is not the result of examining any criterion for cognitive flexibility. Rather, it
is the personal choice of the course designer for teaching a complex concept: We teach both
abstract knowledge (concepts) and meaningful cases (learning situations), each one in the

Page 50

context of the other; learning is situated, but abstract knowledge is not ignored (Spiro & Ni-
zet, 1990). However, because this activity is present, the teacher should consider criteria
MM1 and MP1: Providing multiple examples and multiple forms such as text, images, and
simulations.

In the recursion situation, I prepared the learning content for a number of underlying con-
cepts of recursion, especially recursive thinking and DCG (divide, conquer, and glue) strat-
egy (see Appendix B1). For each concept, I provided various simple examples explained by
text, Java programs, and simulations, so that students can acquire the basic knowledge under-
lying recursion.

Activity 1.2 (learning contents): Prepare a diversity of meaningful learning situations em-
phasizing the nature of the underlying concepts.

This activity is directly guided by criteria MM1 and MP1, which emphasize the need for
multiple interpretations and multiple forms of representation for the same concept.

In the recursion problem, I prepared several learning situations (see Appendix B2) to help
students understand how to apply the concept of recursion in different contexts. For example,
arithmetic expressions explain the use of recursion in binary trees in a natural way, and sim-
ple text search emphasizes the use of recursion in linked lists. For each situation, multiple
forms of representation were systematically taken into account: textual definitions, images,
simulations, and Java programs.

Note that the learning situations I prepared in Appendix B2 give rise to several cognitive
conflicts in the learners' "mind", which help them master diverse aspects of recursion. For
example, faced with arithmetic expressions and partition, students understand that it is very
hard for people to solve the given problems with other methods than recursion (e.g., itera-
tions), so they must think recursively. And when students compare recursive solutions with
iterative ones in Fibonacci numbers or when students try to represent a large document in
simple text search with other data types than linked lists (e.g., arrays), they understand that
iterative solutions should not be appropriate to certain problems, they thus like to use recur-
sion.

Activity 1.3 (learning contents): Prepare learning contents for the concepts that are related
to the underlying concepts.

This activity is directly guided by criteria MP1 and MP2, which underline the learning in
a complex landscape of interrelated concepts. Therefore, the teacher should devise the learn-
ing content for the related concepts as carefully as for the main concepts.

In the recursion problem, I applied Activities 1.1 and 1.2 to prepare the learning content
for the concept of linked lists (see Appendices B3 and B4), which is strongly related to recur-
sion because linked lists are a particular kind of recursive data structures. I did not prepare
the learning content for the concepts related to linked lists because I supposed that the tar-
geted students had mastered these concepts in the introductory course on object-oriented pro-
gramming and Java.

Page 51

Activity 1.4 (assessment): Prepare assessment situations both for individual tests and for
tests in groups. The nature of these situations should stimulate multiple points of view.

This activity is proposed on the basis of criteria MM4 and MP6, which emphasize multi-
ple assessment methods and multiple points of view on the solutions to the given problems.

In the recursion problem, I prepared the robot situation for individual tests (Appendix C)
and the file management situation for tests in groups (Appendix C). In the robot situation, to
compute the number of ways the robot can walk n meters, the learner could be encouraged to
use and compare both the iterative method and the recursive one. In the file management,
learners could be encouraged to confront and compare different solutions. For example, to list
all files and sub-directories in a given directory, there are at least two solutions that print dif-
ferent results: (a) first list the files and sub-directories in the given directory, then in its sub-
directories; and (b) first list the files and sub-directories in the sub-directories of the given
directory, then in the given directory.

Activity 1.5 (human interactions): Prepare diverse means for engaging the tutor, learners,
and other people in exchanges.

This activity is proposed on the basis of criterion MM3, which underlines the providing
of communication tools to help students run diverse discussions. In the recursion problem, I
prepared meeting rooms, mailing lists, and an online Java Q&A website (Java World, 2004).

Activity 1.6 (human interactions): Prepare a list of general discussion questions and a list of
domain-specific discussion questions.

This activity is proposed on the basis of criterion MP5, which underlines the explicit tools
helping students elicit peers' points of view. In the recursion problem, I made a list of general
discussion questions and a list of discussion questions about recursion (see Appendix B5).

Activity 1.7 (pedagogical devices): Prepare multiple external resources related to the under-
lying concepts.

This activity is directly guided by criterion MP3, which encourages learners to explore
different interpretations of the main concepts by other authors. In the recursion situation, I
examined different resources and approaches for recursion (Appendix B6), I searched the
Internet, and I chose the following resources:

• The books "Java software solutions" (Lewis & Loftus, 2003, chapter 11) and "Thinking
recursively" (Roberts, 1986).

• The online Java tutorials (Eck, 2004; Kjell, 2003) in which the authors illustrate a great
number of recursive examples.

• The online tutorials on Prolog (AMZI Inc., 1997) and on ML (Cumming, 1998) in which
the authors treat recursion as a predominant concept and at the beginning of the course.

The external resources for linked lists should also be prepared in the same way.

Table 3.2 summarizes the seven design activities for the pre-active phase. In the next in-
teractive phase, I explain what the teacher should do with the prepared learning materials.

Page 52

Table 3.2. Design activities for cognitive flexibility in the pre-active phase

Activities Raison d'être

Activity 1.1 (learning contents): Prepare the learning content for the underlying con-
cepts.

The course designer's
personal choice.

Activity 1.2 (learning contents): Prepare a diversity of meaningful learning situations
emphasizing the nature of the underlying concepts.

Criteria MM1, MP1.

Activity 1.3 (learning contents): Prepare learning contents for the concepts that are re-
lated to the underlying concepts.

Criteria MP1, MP2.

Activity 1.4 (assessment): Prepare assessment situations both for individual tests and
for tests in groups. The nature of these situations should stimulate multiple points of
view.

Criteria MM4, MP6.

Activity 1.5 (human interactions): Prepare diverse means for engaging the tutor, learn-
ers, and other people in exchanges.

Criterion MM3.

Activity 1.6 (human interactions): Prepare a list of general discussion questions and a
list of domain-specific discussion questions.

Criterion MP5.

Activity 1.7 (pedagogical devices): Prepare multiple external resources related to the
underlying concepts.

Criterion MP3.

3.3.2 Interactive phase

This section shows nine teaching activities, to be performed by the tutor. The arrangement of
these activities, according to the timetable of the 2-week learning session, is presented at the
end of this section.

Activity 2.1 (pedagogical devices): Engage learners explicitly in performing multiple learn-
ing activities related to the underlying concepts.

This activity is proposed on the basis of part of criterion MM2, which emphasizes the
studying of the same concept for different purposes by different methods including different
activities. For instance, in the recursion situation, the tutor could engage learners in the fol-
lowing three learning activities:

1. At the beginning of the course, students are asked to examine the basic concepts underly-
ing recursion and multiple learning situations, prepared in Activities 1.1 and 1.2. These
learning contents could be delivered to students, for instance, in paper.

2. After that, students are asked to solve several of the exercises presented at the end of
chapter 11 of the book "Java software solutions" (prepared in Activity 1.7) by writing and
executing Java programs.

3. During the 2 weeks of the learning session, students are encouraged to find and discuss
other interpretations about recursion in other programming languages such as Pascal,
Prolog, and LISP (prepared in Activity 1.7).

Activity 2.2 (pedagogical devices): Encourage learners explicitly to study the concepts that
are related to the underlying concepts.

Page 53

This activity is directly guided by criterion MP2, which underlines the studying of the
main concepts with related ones in meaningful situations. In the recursion problem, when
learners study simple text search, the tutor could encourage them to examine the related con-
cept "linked lists" (prepared in Activity 1.3). Similarly, while learners study this concept, the
tutor encourages them to revise different aspects of the concept of recursion such as the defi-
nition of recursion, base cases, recursive part.

Activity 2.3 (pedagogical devices): Encourage learners explicitly to examine different inter-
pretations of the underlying concepts (by other authors and by peers), to express their per-
sonal points of view on the underlying concepts, and to give feedback on the points of view of
other people.

This activity is directly guided by criterion MP3 and part of criterion MM2. In the recur-
sion situation, after exploring the course designer's interpretation about recursion, learners are
engaged in four learning activities, as follows:

1. Add comments, for example to their notebook, on the learning content proposed by the
teacher, for instance, reformulate the main points of the definition of recursion.

2. Explore other interpretations of other people about the concept of recursion (prepared in
Activity 1.7).

3. Find and add other examples, exercises, and case studies in their own learning spaces, for
instance, use online search tools and provided external resources to find recursive exam-
ples and add them to learners' notebook.

4. Explore peers' learning spaces to understand what they think and how they learn, for ex-
ample, read peers' notebooks.

Activity 2.4 (pedagogical devices): Stimulate learners explicitly to treat a diversity of points
of view on the underlying concepts.

Criterion MP4 and part of criterion MM2 are considered to propose this activity. In the
recursion problem, after examining multiple points of view on recursion, learners are asked to
produce syntheses on those points of view, for example, produce a table stating the learner's
own definitions of recursion, recursive problem solving, and recursive methods, together with
peers'. For each point the learner makes, he or she could be asked to provide the information
source used to justify the point.

Activity 2.5 (human interactions): Encourage learners explicitly to run a variety of discus-
sions with other people in different contexts.

This activity is proposed on the basis of criterion MM3. In the recursion situation, for in-
stance, during 2 weeks of the learning session, the tutor could organize small groups of learn-
ers and provide them with: (a) meeting rooms and mailing lists so that they can discuss with
peers to solve a problem about file management (see also Activity 2.7), and (b) a Q&A web-
site so that they can ask experts questions about different aspects of recursion. These peda-
gogical devices were prepared in Activity 1.5.

Page 54

Activity 2.6 (human interactions): Make available tools so that learners can actively express
their personal points of view and stimulate those of other participants during the discussion.

This activity is proposed on the basis of criterion MP5. For example, in the recursion
problem, the tutor could give a copy of general and domain-specific discussion questions
(prepared in Activity 1.6) to each one of learners, and ask them to use this list often during
the learning discussion.

Activity 2.7 (assessment): Encourage groups of learners explicitly to do assessment in
groups, to confront and compare multiple points of view.

This activity, together with Activity 2.8, is directly guided by criteria MM4 and MP6. In
the recursion situation, during 2 weeks of the learning session, the tutor could give the same
programming problem about file management (prepared in Activity 1.4) to small groups of
learners so that they can work collaboratively to solve the given problem (see also Activity
2.5).

Activity 2.8 (assessment): Encourage learners explicitly to do assessment individually, to
confront and compare multiple points of view.

In the recursion situation, at the end of the learning session, the tutor could give the same
tests in the robot situation (prepared in Activity 1.4) to learners, so that they can evaluate
their understanding of the recursion concept.

Activity 2.9 (all four learning components): During the learning session, observe and evalu-
ate the learning behavior of each learner with respect to cognitive flexibility, so as to provide
him or her with appropriate feedback.

This activity is proposed on the basis of all the criteria for cognitive flexibility. Although
all 10 criteria were satisfied in the previous activities, students may still not learn in a manner
that truly stimulates cognitive flexibility. For example, students may not examine multiple
learning situations or run discussions with peers. Therefore, the tutor should constitute a port-
folio of the learning history for each individual learner (e.g., learning activities the learner has
performed and duration of each activity), and evaluate this portfolio with respect to cognitive
flexibility. Table 3.3 presents a checklist to help the tutor in this evaluation task. If the stu-
dent's learning behavior does not respect a certain criterion, the tutor should encourage him or
her to do learning activities to satisfy the criterion. For instance, if the learner explores only
one learning situation for a particular concept, the tutor should explicitly ask him or her to
examine multiple learning situations in order to try and transfer the concept in diverse con-
texts.

The evaluation of students' learning behavior is, of course, a difficult and time-consuming
task, especially when the number of students is large. I discuss the need for using technology
in order to automate this task in section 3.4.

It should be noted that the evaluation of students’ learning behavior I mention here means
that the tutor verifies whether the student follows the suggestions expected to be consistent
with cognitive flexibility, according to the tutor and the course designer’s point of view.

Page 55

Evaluating whether the student actually exhibits the behavior of cognitive flexibility at a
given time is another issue and will be discussed in chapter 9.
Table 3.3. A checklist for evaluating students' learning behavior with respect to cognitive flexibility

Criteria Questions

MM1 Does the student examine multiple representations of the same concept systematically?

MP1 Does the student explore multiple situations prepared by the course designer for the same concept?

MM2 Does the student perform multiple learning activities suggested by the tutor for the same concept in
different contexts?

MP2 Does the student study related concepts carefully when facing a new concept?

Does the student criss-cross the learning landscape systematically?

MP3 Does the student express his or her own points of view on the new concept?

Does the student examine external resources prepared by the course designer?

Does the student examine peers' learning spaces?

Does the student give feedback on the points of view of other people?

MP4 Does the student produce summaries on the multiple points of view he or she has confronted?

MM3 Does the student use communication tools to run diverse discussions with peers and other people?

MP5 Does the student use the lists of discussion questions systematically to elicit peers' points of view?

MM4 Does the student do individual tests prepared by the course designer?

Does the student work with peers to solve problems prepared by the course designer for groups?

MP6 Does the student confront and compare different solutions to a given problem systematically?

In the recursion problem, the tutor could ask learners to constitute themselves their own
portfolio of learning history. At different points in time of the learning session, on the basis of
the checklist shown in Table 3.3, the tutor could analyze students' portfolio and give them
feedback, if necessary.

Table 3.4 summarizes the nine teaching activities for the interactive phase. I have been
able to create column "Time" on the basis of an experiment presented in chapter 9. This col-
umn presents the time the teacher should plan for students' learning activities mentioned in
the respective teaching activity.

Page 56

Table 3.4. Teaching activities for cognitive flexibility in the interactive phase

Activities Raison
d'être

Time

Activity 2.1 (pedagogical devices): Engage learners explicitly in performing multiple
learning activities related to the underlying concepts.

Criterion
MM2.

Week 1,
during 2
weeks.

Activity 2.2 (pedagogical devices): Encourage learners explicitly to study the con-
cepts that are related to the underlying concepts.

Criterion
MP2.

Week 1.

Activity 2.3 (pedagogical devices): Encourage learners explicitly to examine different
interpretations of the underlying concepts (by other authors and by peers), to ex-
press their personal points of view on the underlying concepts, and to give feedback
on the points of view of other people.

Criteria
MM2,
MP3.

Week 1.

Activity 2.4 (pedagogical devices): Stimulate learners explicitly to treat a diversity of
points of view on the underlying concepts.

Criteria
MM2,
MP4.

Week 1.

Activity 2.5 (human interactions): Encourage learners explicitly to run a variety of
discussions with other people in different contexts.

Criterion
MM3.

During 2
weeks,
week 2.

Activity 2.6 (human interactions): Make available tools so that learners can actively
express their personal points of view and stimulate those of other participants during
the discussion.

Criterion
MP5.

During 2
weeks,
week 2.

Activity 2.7 (assessment): Encourage groups of learners explicitly to do assessment
in groups, to confront and compare multiple points of view.

Criteria
MM4,
MP6.

During 2
weeks,
week 2.

Activity 2.8 (assessment): Encourage learners explicitly to do assessment individu-
ally, to confront and compare multiple points of view.

Criteria
MM4,
MP6.

Week 2.

Activity 2.9 (all four learning components): During the learning session, observe and
evaluate the learning behavior of each learner with respect to cognitive flexibility, so
as to provide him or her with appropriate feedback.

All criteria. Weeks 1,
2.

3.3.3 Post-active phase

In this section, I show the last two evaluation activities in the post-active phase.

Activity 3.1 (all four learning components): Evaluate the learning behavior and outcomes
formatively for each learner, and communicate both the result of the analysis process and
feedback explicitly to him or her, keeping a positive regard on his or her knowledge.

This activity is directly guided by all the criteria for cognitive flexibility. It is similar to
Activity 2.9; the essential difference is that it is done at the end of the learning session, and
that it concerns a global analysis of students' learning process and outcomes. According to the
constructivist point of view presented in chapters 1 and 2, the teacher should evaluate both
what students learn (i.e., acquired knowledge of the taught subject) and how students learn
(e.g., acquired knowledge of how to express, confront, and treat multiple points of view). So,
in addition to analyzing students' portfolio of learning history (see Activity 2.9), the teacher
should evaluate students' actual performance on the basis of their assessment (individual and

Page 57

in groups), communicate the result of the analysis process to each individual learner, and give
appropriate feedback to him or her for future learning. Note that the teacher should refuse the
failure in learning: In a constructivist point of view, there is neither success nor failure of
learning (Jonnaert & Vander Borght, 2003).

In the recursion situation, the tutor should analyze the portfolio of learning history consti-
tuted by each student during the learning session (see also Activity 2.9). The tutor could ana-
lyze students' Java programs and justifications in the file management situation and students'
tests in the robot situation. The tutor could also interview students about how they learn re-
cursion and how they solve the problems in the given assessment situations. After the analy-
sis process (including the interview one), the tutor should send each student a brief report in-
dicating the results of analyzing his or her assessment (e.g., to show problems in his or her
Java programs and tests) and the feedback on his or her learning (e.g., how to improve Java
programs, ability to solve problems recursively, ability to work in groups).

Activity 3.2 (all four learning components): Evaluate the teaching behavior with respect to
cognitive flexibility.

This activity is also proposed on the basis of all the criteria for cognitive flexibility. Al
though the teacher effectively applies the set of design and teaching activities presented in
sections 3.3.1 and 3.3.2, sometimes there would be a certain number of activities that need to
be adjusted for future teaching, because they do not fit to the current learning context. For
instance, there is a certain learning situation students do not like or the available examples
cannot help students avoid several kinds of misconceptions about the underlying concepts.
So, the teacher should keep a track of his or her design and teaching activities, and analyze
them according to the set of criteria for cognitive flexibility. In Table 3.5, I show a checklist
for this evaluation task.

In the recursion problem, for example, the course designer and the tutor should keep a
track of every operation they did in the pre-active and interactive phases. Then they could use
the checklist presented in Table 3.5 to analyze this track, for instance, to do an evaluation re-
port indicating which design or teaching activities need to be adjusted, and how and why they
should be modified. This report may help them improve teaching with respect to cognitive
flexibility, not only for the recursion concept but also for other ones.

I believe that, in long-term learning sessions, the teacher should also do this evaluation
activity in the interactive phase to adjust his or her teaching activities on the fly. I did not do
so for the learning session I mentioned earlier because it is a short-term session (2 weeks).

Table 3.6 summarizes the two evaluation activities for the post-active phase.

Page 58

Table 3.5. A checklist for evaluating the teaching behavior with respect to cognitive flexibility

Criteria Questions

MM1 Is every representation the course designer prepared for a particular concept useful for students?

Is it necessary to make other representations available for a particular concept for students?

MP1 Is every example, exercise, situation etc. the course designer prepared for a particular concept useful
for students?

Is it necessary to make other examples, exercises, situations etc. available for a particular concept for
students?

MM2 Is every learning activity suggested by the tutor useful for students?

Is it necessary to suggest other learning activities for students?

MP2 Is the way the tutor facilitates students' criss-crossing of the learning landscape effective?

MP3 Is the way the tutor encourages students to express their own points of view effective?

Is every external resource prepared by the course designer useful?

Is the way the tutor stimulates students to explore peers' learning spaces effective?

Is the way the tutor encourages students to give feedback on the points of view of other people effec-
tive?

MP4 Is the way the tutor engages students in producing summaries on the multiple points of view they have
confronted effective?

MM3 Is every communication means suggested by the tutor useful for students?

MP5 Are the lists of discussion questions prepared by the course designer useful for students?

MM4 Is every individual test prepared by the course designer useful for students?

Is every assessment in groups prepared by the course designer is useful for students?

MP6 Does every assessment situation actually give rise to multiple ways to solve the given problem and
multiple solutions to the given problem by students?

Is the way the tutor encourages students to confront and compare different solutions for a given prob-
lem effective?

Table 3.6. Evaluation activities for cognitive flexibility in the post-active phase

Activities Raison
d'être

Activity 3.1 (all four learning components): Evaluate the learning behavior and outcomes forma-
tively for each learner, and communicate both the result of the analysis process and feedback
explicitly to him or her, keeping a positive regard on his or her knowledge.

All criteria.

Activity 3.2 (all four learning components): Evaluate the teaching behavior with respect to cogni-
tive flexibility.

All criteria.

Table 3.7 shows the pertinence of all 18 design, teaching, and evaluation activities to the
10 criteria for cognitive flexibility.

Page 59

Table 3.7. Pertinence of the instructional design process to cognitive flexibility

Operational criteria for cognitive flexibility
Learning
contents

Pedagogical devices Human
interactions

Assessment

Phases Activities MM1 MP1 MM2 MP2 MP3 MP4 MM3 MP5 MM4 MP6
Activity 1.1 The course designer's personal choice
Activity 1.2 X X
Activity 1.3 X X
Activity 1.4 X X
Activity 1.5 X
Activity 1.6 X

Pre-active

Activity 1.7 X
Activity 2.1 X
Activity 2.2 X
Activity 2.3 X X
Activity 2.4 X X
Activity 2.5 X
Activity 2.6 X
Activity 2.7 X X
Activity 2.8 X X

Interactive

Activity 2.9 X X X X X X X X X X
Activity 3.1 X X X X X X X X X X Post-

active Activity 3.2 X X X X X X X X X X

3.4 Discussion

In this chapter, I proposed an instructional design process (see Table 3.7) that fulfills all 10
criteria for cognitive flexibility introduced in section 2.4. This design process provides a clear
evidence for the practicality of the set of operational criteria for cognitive flexibility: It may
be used as a useful framework to facilitate the exploitation of pedagogical principles underly-
ing cognitive flexibility for the practice of instruction.

As mentioned earlier, the practitioner should understand that the proposed design process
is neither normative nor definitive. What I tried to do in this chapter is only to illustrate the
usefulness of the set of criteria by showing an example. In practice, we may need to adjust
certain operations to fit to situational demands of concrete contexts, because no single peda-
gogical model fits every teaching context (Jonnaert & Vander Borght, 2003; Spiro & Jehng,
1990). I believe, however, that the way I proposed the design process, on the basis of opera-
tional criteria, is applicable to a great number of instructional situations. The practitioner, af-
ter examining this chapter, should be able to propose his or her own design process to adapt
to his or her personal teaching contexts. For example, one could modify the activities pre-
sented in section 3.3, reject part of them, or propose new activities, in such a way that one
carefully takes the criteria for cognitive flexibility into account. The practitioner could also
organize a certain activity into a number of operations to make the instructional design proc-

Page 60

ess more practical than does mine. The practitioner, however, should note that as the design
process becomes more operational, it becomes more dependent on the context in which learn-
ing occurs. Another point is that it is not necessary to always satisfy all of the criteria for
cognitive flexibility (see the discussion in section 2.4.5). The choice of criteria and the way to
satisfy them depend on the concrete context in which learning occurs.

In this chapter, I concentrated on describing the teaching process. In chapter 6, I illustrate
the learning process with support for cognitive flexibility in an ICT-based learning environ-
ment. Why and how should ICT concern cognitive flexibility?

The instructional design process presented in section 3.3 shows that ICT could be a very
promising means by which to implement essential learning conditions exhibiting the peda-
gogical principles underlying cognitive flexibility. Many constructivist theorists have also
advocated this point (Driscoll, 2000; Spiro & Jehng, 1990). For instance, regarding Activity
2.2 presented in section 3.3, hypermedia could provide significant help in implementing the
complex landscape of interrelated concepts (Spiro & Jehng, 1990). Regarding Activity 2.5
shown in the previous section, the Internet and Web could provide various means of discus-
sion such as mailing lists, chat rooms, forums (Milgrom et al., 1997). Considering Activities
2.9 and 3.1 presented earlier, the Web could also be used to automatically register part of the
learning behavior of each individual learner, for example, the learning contents he or she has
viewed and duration of each view (Adaptive Technology Resource Center, 2004; Milgrom et
al., 1997).

In chapter 5, I go into details of the analysis of several ICT-based tools fostering cogni-
tive flexibility. In chapter 7, I show how to exploit ICT to implement the learning conditions
presented in section 3.3.

Page 61

PART TWO: CONSTRUCTIVISM, ADAPTABILITY,
AND ICT-BASED LEARNING ENVIRONMENTS

Some work presented in this part was reported in the following paper:

Chieu, V.M., & Milgrom, E. (2005). COFALE: An adaptive learning environment sup-
porting cognitive flexibility. The Twelfth International Conference on Artificial Intelli-
gence in Education, Amsterdam, The Netherlands, 491–498 (full paper).

Page 63

CHAPTER 4

4 Background

"If I have seen further than the others, it is because I have stood on the shoulders of giants."

Isaac Newton, English Scientist, 1642 – 1727 (cited in Suomela, 2005)

In this chapter, I explain the following three concepts closely related to ICT-based learning
systems: learning content management systems, learning objects, and adaptive learning sys-
tems. These concepts provide the reader with some background knowledge for understanding
the next chapters, especially the use of the COFALE learning system shown in chapter 7.

Page 64

Summary
4.1 Learning content management systems

4.2 Learning objects

4.3 Adaptive learning systems

4.4 Conclusion

4.1 Learning content management systems

In recent years, learning content management systems (LCMSs) have been widely adopted
(Leslie, 2003), as evidenced by the appearance and the use of many e-Learning platforms
such as ATutor (Adaptive Technology Resource Center, 2004), Claroline (De Praetere et al.,
2004), Moodle (Dougiamas, 2004). As for many new terms in learning technology, there is
no universal acceptance of the definition of a LCMS. The following definition seems to be
adopted quite frequently by researchers in the field:

A LCMS is a multi-user software application that enables content authors to manage the life-cycle of
learning content by allowing them to create, register, store, assemble, re-use, and publish digital learn-
ing content for delivery via Web, print, CD, etc., within a central object repository (Masie Center,
2003).

Sometimes LCMSs may be confused with LMSs (learning management systems). A LMS
is a high-level, strategic solution for planning, delivering, and managing all learning events
within an organization, including online, virtual classroom, and instructor-led courses
(Greenberg, 2002; Masie Center, 2003). The focus of LMSs is to manage learners, keeping
track of their progress and performance across all types of training activities, whereas the fo-
cus of LCMSs is on learning content. See Greenberg's analysis (2002) for more details about
the difference between LMSs and LCMSs.

LCMSs have been designed to enable subject matter experts, with little technology exper-
tise, to design, create, deliver, and measure the results of e-Learning courses rapidly. Those
systems play a key role in learning technology because they offer organizations one of the
most effective and flexible means to deliver and manager just-in-time and up-to-date e-
Learning courses (Masie Center, 2003; Robbins, 2002), meaning that the learner can get the
most recent and right learning materials that meet his or her own needs at any time.

For example, ATutor is an open source, Web-based LCMS designed and maintained by
ATRC (Adaptive Technology Resource Center, 2004). According to Greenberg (2002), ATu-
tor is a good LCMS because of the following characteristics:

• Various learning tools. ATutor provides the learner with many learning tools. For exam-
ple, learners can: (a) take tests, review test results, and keep track of their scores; (b) work
in groups by using a virtual collaboration hyperspace; (c) use forums, chat rooms, and e-
mail to exchange ideas; (d) introduce their own external resources and explore those of
other people; (e) search a sharable database, for instance TILE (Adaptive Technology Re-
source Center, 2004), for learning objects; (f) review their navigation history; (g) set pref-

Page 65

erences for their course, for instance, screen layout, display of text and icons, display of
navigation elements.

• Simple adaptation support. Learners can move through the learning content using global
or hierarchical or sequential navigation tools. Navigation elements can be displayed as
text or icons or both text and icons; they can also be hidden to simplify the learning envi-
ronment.

• Easy-to-use authoring tools. A set of tools including a file manager, a content editor, and
a visual editor enables the course designer to create content objects, information blocks,
and learning objects, and to define associations among them easily (see section 7.2.1). A
specific tool is offered to the course designer for introducing external resources (see sec-
tion 7.2.1). And a number of other easy-to-use tools allow the course designer to specify
many characteristics of a course such as the display of learning tools and navigation ele-
ments.

• Course tracker. The course designer and the teacher can review tool and content usage
statistics to evaluate and adjust their teaching behavior. They can also analyze the learn-
ing behavior of a particular student to give him or her appropriate feedback (see sections
6.3.1 and 7.2.3).

• IMS/SCORM content packaging. The course designer finds it easy to export or import
content objects, information blocks, learning objects, and even a complete course from or
into ATutor as IMS/SCORM conformant content packages (Advanced Distributed Learn-
ing, 2004). One of the goals in the design of ATutor is to make it interchangeable with
other conformant e-Learning systems.

• Learning objects repository. The course designer can export learning resources from
ATutor to a sharable database, for instance TILE (Adaptive Technology Resource Center
2004), and search the database for appropriate learning resources related to a particular
course.

• Assessment tools. The course designer can create several kinds of tests, evaluate students'
tests, and give feedback to students (see sections 7.2.1 and 7.2.2).

• Communication and collaboration tools. The course designer can create forums, groups
of students, and collaboration hyperspaces (see section 7.2.1). The teacher can participate
in students' discussions via forums, mailing lists, and chat rooms (see section 6.3.1).

• Effective administration tools. Many tools are proposed to the administrator such as
learner and instructor manager, course manager, backup manager, and language manager.

• Automated installer and upgrade. ATutor provides a fast and easy way to install or up-
grade the system.

• Information security. Advanced techniques are used to protect users' data and learning
contents of the system.

Several educational researchers (e.g., Dougiamas, 2004; Laanpere et al., 2004) have
claimed that almost none of existing LCMSs support pedagogical principles explicitly in or-

Page 66

der to make them more attractive to the largest possible audience. Therefore, in practice, the
course designer should apply pedagogical innovations to a LCMS to improve learning out-
comes. For instance, I have exhibited the pedagogical principles underlying cognitive flexi-
bility in the design and use of COFALE presented in chapters 6, 7, and 8.

The most important concept involved in LCMSs is learning objects (Masie Center, 2003).
The next section explains this concept and its practicality.

4.2 Learning objects

Learning object is obviously a key concept in the field of learning technology, as it has been
widely adopted by many organizations, from schools to enterprises (Advanced Distributed
Learning, 2004; Masie Center, 2003). Here is a general definition of learning objects pro-
posed by Masie Center (2003):

A re-usable, media-independent chunk of information used as a modular building block for e-Learning
content. Learning objects are most effective when organized by a metadata classification system and
stored in a content repository such as a LCMS (p. 75).

Why learning objects are important and why we need to specify metadata for them. The
next sub-sections explain these two critical issues.

4.2.1 Why are learning objects important?

In a traditional model of an e-Learning course (Figure 4.1), a course is organized as a single
unit of instruction. It is a complete presentation of all the learning materials required to meet
the defined course goal. Each lesson normally consists of a set of screens with information
presented in multiple forms such as text, images, audio and video files. At the end of each
lesson, there may be a set of traditional quiz interactions such as multiple-choice questions.
The lessons are contained in a shell including navigation, which is usually a combination of
back/next buttons and a course menu. At the end of the course, there may be a set of sum-
mary statements followed, for instance, by a multiple-choice test. The course is a complete
unit with a single score that would be registered in a database or a LMS. Kjell's website
(2003) is an example of the traditional model.

One of the characteristics of the traditional model is the ease for the course designer or
the teacher to implement it, usually without intervention of the software developer. Critics,
however, say that this model provides nothing more than electronic books, which are "stan-
dardized" for every learner. Moreover, it is hard for the course designer to repurpose a learn-
ing resource (Masie Center, 2003).

Now let me show how the course designer uses the learning object model (Figure 4.2) to
organize the same information as in the previous example, regardless of pedagogical princi-
ples. Take into consideration the information from the first Lesson 01: Overview. The course
designer first defines a measurable learning objective. Then, he or she defines an appropriate

Page 67

assessment to measure the competency of the learning objective. Finally, the course designer
fills the learning object with assets, for instance a text and an image, required to meet the
learning objective. The learning object "Recursion" presented in chapters 6 and 7 is an in-
stance of this model.
Figure 4.1. Traditional course model (adapted from
Masie Center, 2003)

Figure 4.2. Learning object model (adapted from Ma-
sie Center, 2003)

The major difference between the learning object model and the traditional one is that
each learning object is a stand-alone instructional unit with its own learning objective, learn-
ing content, assessment, and navigation mode. In my point of view, this flexibility has the
following benefits:

• For the learner. The most promising benefit of learning objects for the learner is that per-
sonalized courses can be constructed to meet the needs of the individual learner (see ex-
amples in section 6.3.2).

• For the course designer. The most interesting benefit of learning objects for the course
designer is that learning objects can be stored in a LCMS, so that the course designer can
search for them and repurpose them in different contexts (see more details in section
7.2.1). It is also quite easy for the course designer to create a particular learning object
that is tailored to the requirements of a particular student (see examples in section 7.3.2).

• For the software developer. Decomposing the learning content into fine-grained pieces of
information could make the implementation of adaptive presentation of learning contents
straightforward (see also chapter 8 and Appendix D).

According to experts in the field (Masie Center, 2003), however, adapting a learning ob-
ject approach to content development and management may also encounter several obstacles.
For instance, learners, teachers, and course designers have to change the way they learn,
teach, and design, respectively (see chapters 6 and 7): the learner must be active in selecting
learning objects and in navigating the content within the learning objects, the teacher must
allow the learner to pursue his or her own learning objectives, the course designer needs to
build many small objects, and the course designer may have to make a course by organizing
several learning objects created by other people with different navigation modes.

Page 68

4.2.2 Why and how do we specify metadata for learning objects?

Simply defined, metadata are the data that describe things. The purpose and usefulness of
metadata in e-Learning are that they provide the ability to describe and identify a great num-
ber of learning contents so that we can find, assemble, and deliver the right content to the
right person at the right time (Masie Center, 2003). Indeed, metadata allow learning objects
to be stored, indexed, searched, and retrieved from a database. For example, providing a cer-
tain number of keywords for learning objects, the course designer allows himself or herself or
someone else to search for a particular learning object that could be repurposed in different
learning contexts.

To help people in the field ensure the six "-abilities" (interoperability, reusability, man-
ageability, accessibility, durability, and scalability) within an organization and across multi-
ple organizations, several learning technology groups such as IEEE (2005), IMS (2005), and
ARIADNE (2005) have approved standards for learning object metadata (LOM). Table 4.1
shows the use of several LOM elements proposed by IEEE for describing learning resources.

The metadata implementer should be familiar with the "Metadata principles & practicali-
ties" document (Duval et al., 2002) for a list of founding principles shared by almost all
metadata groups.

Page 69

Table 4.1. A part of LOM proposed by IEEE (URI = Universal Resource Identifier)

Nr Property
name

Explanation Examples

1

General This category
groups the general
information that de-
scribes this learning
object as a whole.

-

1.1

Identifier A globally unique
label that identifies
this learning object.

-

1.1.1 Catalog The name or desig-
nator of the identifi-
cation or cataloging
scheme for this en-
try. A namespace
scheme.

"URI"

1.1.2 Entry The value of the
identifier within the
identification or cata-
loging scheme that
designates or identi-
fies this learning
object. A name-
space specific
string.

"http://www.info.ucl.ac.be/learning_resources/recursion_vmc" for
the learning object "Recursion" created by vmc
"http://www.info.ucl.ac.be/learning_resources/linked_lists_vmc" for
the learning object "Linked Lists" created by vmc

1.2 Title Name given to this
learning object.

"Recursion" for the learning object "Recursion"
"Linked Lists" for the learning object "Linked Lists"

1.3 Language The primary human
language or lan-
guages used within
this learning object
to communicate to
the intended user.

"en"

1.4 Description A textual description
of the content of this
learning object.

"This learning object helps students develop the ability to solve
problems recursively" for the learning object "Recursion"
"This learning object helps students develop the ability to repre-
sent data by using linked lists" for the learning object "Linked
Lists"

1.5 Keyword A keyword or phrase
describing the topic
of this learning ob-
ject.

"recursion", "recursive programming" for the learning object "Re-
cursion"
"linked lists", "dynamic data structures" for the learning object
"Linked Lists"

4.2.3 Discussion

To look further into the concept of learning objects and metadata, one should examine the
document made by Advanced Distributed Learning (2004) or Masie Center (2003) in which
complete descriptions of learning objects and metadata were presented. To understand how
educational researchers have applied various pedagogical principles to the design and use of
learning objects, one should read Wiley's online book (2002). To understand more about the
practice of learning objects, one should examine ATutor's "How To Course" (Adaptive Tech-
nology Resource Center, 2004).

Page 70

In section 7.2.1, I look further into the practice of learning objects in COFALE: I explain
how to design and use learning objects in COFALE to support cognitive flexibility and
adaptability.

4.3 Adaptive learning systems

Adaptability is the ability of a learning system to provide each learner with appropriate learn-
ing conditions to facilitate his or her own process of knowledge construction and transforma-
tion. In an e-Learning context, especially in Web-based distance education, adaptability is
important because of at least two main reasons (Brusilovsky, 1999; Brusilovsky & Peylo,
2003; Milgrom et al., 1997): (a) the student often learns without direct and personalized assis-
tance of a human tutor or of peers; and (b) the e-Learning platform is often used by a variety
of students (who have different personal profiles about, e.g., background knowledge and
learning progress), so a learning experience that is designed with a particular class of learners
in mind may not suit other learners.

Key concept: Adaptability is the ability of a learning system to provide a learning ex-
perience that is continuously tailored to the needs of the individual learner.

It should be noted that several authors (e.g., Brusilovsky & Peylo, 2003) use the term
"adaptive and intelligent learning systems" to denote learning systems that support adaptabil-
ity. They emphasize the qualifier "intelligent" because the learning systems with which they
are concerned have, for example, the ability to analyze students' solutions during their prob-
lem-solving session in order to provide students with appropriate feedback (e.g., hints). In the
present thesis, I use the term "adaptive learning systems" to denote all kinds of systems that
provide students with support for adaptability, including intelligent support.

In section 1.5.4, I mentioned five adaptation techniques that are often used in adaptive
learning systems: (a) adaptive presentation of learning contents, (b) adaptive use of peda-
gogical devices, (c) adaptive communication support, (d) adaptive problem-solving support,
and (e) adaptive assessment. In section 5.3, I analyze several adaptive learning systems, and I
show examples of the implementation of those five adaptation techniques. In chapters 6,7,
and 8, I also explain the way to implement several basic adaptation techniques in the
COFALE learning system.

4.4 Conclusion

In the present chapter, I do not contribute anything new. Rather, I provide the reader with
several key concepts related to ICT-based learning systems so that the reader can easily un-
derstand the analysis of existing learning systems presented in the next chapter, and the de-
sign and use of the COFALE learning system shown in the third part of the thesis.

Page 71

CHAPTER 5

5 State of the art

"Every problem has a better solution when you start thinking [about] it differently than [in]
the normal way."

Steve Wozniak, Co-designer of the Original Apple Computers, 1950 (cited in Kaplan, 2000, p. 94)

In this chapter, I first present an analysis of several "constructivist" learning systems. Then, I
analyze a number of adaptive learning systems. The main purpose of the present chapter is to
look into how researchers in the field have exploited available ICT to provide support for
constructivism and support for adaptability.

Page 72

Summary
5.1 Introduction

5.2 "Constructivist" learning systems

5.3 Adaptive learning systems

5.4 Conclusion

5.1 Introduction

In recent years, constructivist beliefs and practices have been widely adopted, as evidenced
by the appearance of several ICT-based "constructivist" learning systems (Kinshuk et al.,
2004). During the past fifteen years, many interesting ICT-based adaptive learning systems
have been developed and reported (Brusilovsky & Peylo, 2003).

The main goal of the present thesis is to help teachers designing truly ICT-based adaptive
learning environments supporting cognitive flexibility, an important facet of constructivism.
To do so, I must first analyze a number of existing learning systems with respect to the fol-
lowing two critical issues: how researchers have exploited available ICT (a) to foster con-
structivist learning, especially cognitive flexibility, and (b) to implement adaptation support.
It should be noted that the word “to analyze” I use in this chapter means to examine, but not
to evaluate, the conditions of learning provided by existing systems (I do not want to evaluate
any values of the systems I analyze here).

5.2 "Constructivist" learning systems

In this section, I look into several examples handled by the following three systems that explic-
itly claim to support constructivism: SimQuest (De Jong et al., 2004), Moodle (Dougiamas,
2004), and KBS (Henze & Nejdl, 2001). I also look into ATutor (Adaptive Technology Re-
source Center, 2004), a learning content management system. Although ATutor does not support
any pedagogical principle explicitly, I analyze it in this section because the COFALE learning
system presented in the next chapters has been built on ATutor.

For each system, I first explain the educational approach of the authors. Then, I explore
an example designed by the authors: I evaluate the conditions of learning shown in the exam-
ple with respect to my interpretation of the pedagogical principles underlying cognitive flexi-
bility introduced in chapter 2 (say the set of operational criteria for cognitive flexibility). Fi-
nally, I look into how the authors of the system ensured the learning conditions they created
to be consistent with the educational approach they followed, and I also analyze, if possible,
constructivist learning conditions provided in the example other than the learning conditions
fostering cognitive flexibility.

Page 73

5.2.1 SimQuest: Scientific discovery learning

Educational approach

The design of the SimQuest learning system is based on computer-based simulations and scien-
tific discovery learning, a self-directed and constructivist form of learning (Klahr & Dunbar,
1988; Reimann, 1991; Van Joolingen & De Jong, 1997). Discovery learning can be summarized,
as follows:

Discovery learning is a type of learning where learners construct their own knowledge by experiment-
ing with a domain, and inferring rules from the results of these experiments. The basic idea of this kind
of learning is that because learners can design their own experiments in the domain and infer the rules
of the domain themselves they are actually constructing their knowledge. Because of these constructive
activities, it is assumed they will understand the domain at a higher level than when the necessary in-
formation is just presented by a teacher or an expository learning environment. (Van Joolingen, 1999,
p. 386)

The authors of SimQuest state that students need to possess a certain number of scientific
discovery skills for discovery of learning to be successful. These skills include hypothesis
generation, experiment design, prediction, and data analysis. Lack of these skills can lead to
ineffective discovery behavior such as drawing incorrect conclusions from collected data.

Therefore, the authors support a number of cognitive tools and guidelines (see the next
sub-section) allowing learners to carry out scientific experiments, to formulate hypotheses,
and to draw conclusions easily.

Analysis process

To analyze an example of the SimQuest system with respect to the criteria for cognitive flexibil-
ity, I played the role of the student to explore the course on "motion", which was designed to
help learners mastering the effect of the acceleration on the vehicle speed and the distance cov-
ered and the influence of the mass, force, and friction on the acceleration.

Criterion MM1: The same learning content presenting concepts and their relationships is
represented in different forms (e.g., text, images, audio, video, simulations).

This criterion is well satisfied in the example handled by SimQuest because it provides
the combination of text, graphs, simulations, audios, and videos for the student to grasp di-
verse aspects of the concepts of acceleration, speed, etc. For instance, in Figure 5.1, the stu-
dent is encouraged to run simulations to see relationships among the acceleration, the initial
speed, and the distance covered.

Criterion MP1: The same abstract concept is explained, used, and applied systematically
with other concepts in a diversity of examples of use, exercises, and case studies in complex,
realistic, and relevant situations.

In the course on motion, the course designer well prepared many kinds of experiments in
the form of simulations. Each type of simulations involves several interrelated concepts in
complex and relevant situations. For example, in Figure 5.1, the concepts of initial speed, ac-

Page 74

celeration, and distance are explained in the movement of an automobile. So, criterion MP1 is
also well satisfied.

Criterion MM2: Learners are encouraged to study the same abstract concept for different
purposes, at different times, by different methods including different activities (reading, ex-
ploring, discussion, knowledge reorganization, etc.).

In the course on motion, the learner is encouraged to examine the same concepts in dif-
ferent contexts, at different times, and by different methods. For instance, the learner can ex-
amine the concept of acceleration by reading its definition, doing multiple free experiments to
see the effect of the acceleration with other concepts (e.g., Figure 5.1), and testing the
learner's hypotheses through simulation exercises. Thus, this criterion is satisfied.
Figure 5.1. A part of the student's learning space in SimQuest

Criterion MP2: When facing a new concept, learners are encouraged to explore the relation-
ships between this concept and other ones as far as possible in complex, realistic, and rele-
vant situations.

This criterion is satisfied because in every simulation the student is always stimulated to
examine multiple concepts systematically.

Page 75

Criterion MP3: When facing a new concept, learners are encouraged to explore different in-
terpretations of this concept (by other authors and by peers), to express their personal point
of view on the new concept, and to give feedback on the points of view of other people.

This criterion is not satisfied here because the student is not encouraged to explore the
points of view of other authors and peers. The learner can make his or her own hypotheses;
however, he or she is not engaged in expressing them explicitly, for instance in a textbox or a
table.

Criterion MP4: When facing a new concept, learners are encouraged to examine, analyze,
and synthesize a diversity of points of view on the new concept.

This criterion is not satisfied because the learner reads summaries prepared in advance by
the course designer.

Criterion MM3: The number of participants, the type of participant (learner, tutor, expert,
etc.), the communication tools (e-mail, mailing lists, face to face, chat rooms, video confer-
encing, etc.), and the location (in the classroom, on campus, anywhere in the world, etc.) are
varied.

The student learns individually with computer-based simulations: No communication tool
is available for engaging students and the teacher in exchanges. Therefore, this criterion is not
satisfied.

Criterion MP5: During the discussion, learners are encouraged to diversify – as far as pos-
sible – the different points of view about the topic discussed.

As with MM3, this criterion fails to be met.

Criterion MM4: During the learning process, learners are encouraged to use different as-
sessment methods and tools, at different times, and in different contexts for demonstrating
their ability to solve different problems.

This criterion is not satisfied because only individual exercises are provided for the stu-
dent.

Criterion MP6: During the problem-solving process, learners are encouraged to confront
multiple ways to solve the problem and multiple possible solutions to the problem.

In my point of view, this criterion is not satisfied because for every exercise, there is only
one correct answer, and the student is expected to find it.

Discussion

There are no explicit validation means (or rather criteria) for one to know whether the condi-
tions of learning the authors of SimQuest created for the motion course are consistent with
the pedagogical principles they wanted to exhibit. Therefore, I shall only analyze the con-
structivist learning conditions fostering cognitive flexibility.

Although SimQuest’s example satisfies only 4 among my 10 criteria for cognitive flexi-
bility, I think those four criteria are satisfied in an appropriate manner because of the way

Page 76

SimQuest exploits computer-based simulations for fostering constructivist learning. It may be
the case that in an introductory course such as the course on motion, satisfying those four cri-
teria is sufficient to help learners learn effectively. So, SimQuest’s motion course could be an
example indicating that the quality of satisfying the set of criteria for cognitive flexibility is
more important than the number of satisfied criteria (see the discussion in section 2.4.5).

5.2.2 Moodle: Constructionist pedagogy

Educational approach

The design of the Moodle system is grounded in social constructionist pedagogy (Bonk & Cun-
ningham, 1998; Jonassen, Peck, & Wilson, 1999). According to Dougiamas (2004), this peda-
gogical model consists of the following four main concepts:

1. Constructivism. The author believes that people actively construct new knowledge as they
interact with their environment and that knowledge is strengthened if people can actively
use it in the environment surrounding them.

2. Constructionism. The author assumes that learning is particularly effective if people con-
struct artifacts for others to experience.

3. Social constructivism. Extending the idea of constructionism, the author thinks that learn-
ing is more effective if social group construct artifacts for one another and if people col-
laboratively create shared artifacts.

4. Connected and separate. Separate behavior is when a person tries to remain objective and
tends to defend his or her own ideas using logic to find out holes in his or her opponent's
ideas. Connected behavior is when a person accepts subjectivity, trying to listen and ask
questions in an effort to understand other points of view. The author believes that a rea-
sonable amount of connected behavior within a learning community is a powerful stimu-
lant for learning, not only bringing learners closer together but promoting deeper reflec-
tion and re-examination of their existing beliefs.

The author claims that the current version of Moodle does not effectively support all
pedagogical principles with which he is concerned. Further improvements in pedagogical
support will be a principal direction for the development of Moodle.

Analysis process

To analyze an example of the Moodle system, I also played the role of the student to explore one
of its demonstration courses: The course on Moodle features, which is designed to help people
mastering the important features of Moodle.

Criterion MM1: The same learning content presenting concepts and their relationships is
represented in different forms (e.g., text, images, audio, video, simulations).

Page 77

This criterion is easily satisfied in the Web-based Moodle platform: The Moodle author
explicitly encourages the course designer to prepare multiple forms for presenting the learn-
ing content.

Criterion MP1: The same abstract concept is explained, used, and applied systematically
with other concepts in a diversity of examples of use, exercises, and case studies in complex,
realistic, and relevant situations.

Although this criterion should not be related to any learning platform, it seems that the
Moodle author does not explicitly encourage the course designer to prepare diverse learning
situations. Indeed, in the course on Moodle features, no situation is available for the student
to look into abstract concepts such as learning activities and teaching activities. Thus, Moodle
does not satisfy this criterion.

Criterion MM2: Learners are encouraged to study the same abstract concept for different
purposes, at different times, by different methods including different activities (reading, ex-
ploring, discussion, knowledge reorganization, etc.).

The course on Moodle features obviously satisfies this criterion because the student is ex-
plicitly encouraged to do multiple learning activities at different times for mastering the same
concepts; for instance, reading, writing, discussing, and testing (see the menu "Activities" on
the bottom-left corner of Figure 5.2).
Figure 5.2. A part of the student's learning space in Moodle

Page 78

Criterion MP2: When facing a new concept, learners are encouraged to explore the relation-
ships between this concept and other ones as far as possible in complex, realistic, and rele-
vant situations.

In the features course, Moodle does not support explicit tools to engage the learner in
criss-crossing the learning landscape. For instance, there is no explicit tool stimulating the
student to explore concepts related to the one he or she is examining. Therefore, this criterion
is not satisfied.

Criterion MP3: When facing a new concept, learners are encouraged to explore different in-
terpretations of this concept (by other authors and by peers), to express their personal point
of view on the new concept, and to give feedback on the points of view of other people.

In the features course, Moodle explicitly respects this criterion because it exhorts the stu-
dents, for instance, to explore external resources, to assess themselves their work, and to as-
sess peers' work (see the menu "Activities" on the bottom-left corner of Figure 5.2: Assign-
ments, Resources, Workshops).

Criterion MP4: When facing a new concept, learners are encouraged to examine, analyze,
and synthesize a diversity of points of view on the new concept.

Although students are encouraged to write reports on the course, they are not explicitly
stimulated to produce summaries on multiple points of view they have met. That is why this
criterion is not satisfied.

Criterion MM3: The number of participants, the type of participant (learner, tutor, expert,
etc.), the communication tools (e-mail, mailing lists, face to face, chat rooms, video confer-
encing, etc.), and the location (in the classroom, on campus, anywhere in the world, etc.) are
varied.

In the features course, Moodle satisfies this criterion quite well. For example, students
can work in small groups, sometimes with the participation of the tutor, by using e-mail, chat
rooms, forums (e.g., see the menu "Activities" on the bottom-left corner of Figure 5.2: Chats,
Forums, Workshops).

Criterion MP5: During the discussion, learners are encouraged to diversify – as far as pos-
sible – the different points of view about the topic discussed.

This criterion is also well satisfied in the Moodle features course because it provides the
student with a list of methodological tools such as how to read, write, and ask questions ef-
fectively.

Criterion MM4: During the learning process, learners are encouraged to use different as-
sessment methods and tools, at different times, and in different contexts for demonstrating
their ability to solve different problems.

In the features course, Moodle satisfies this criterion because it stimulates students to do
diverse assessment activities at different points in time (e.g., see the menu "Activities" on the
bottom-left corner of Figure 5.2: Assignments, Exercises, Quizzes, Workshops).

Page 79

Criterion MP6: During the problem-solving process, learners are encouraged to confront
multiple ways to solve the problem and multiple possible solutions to the problem.

In the features course, Moodle does not satisfy this criterion because it does not explicitly
encourage the course designer to prepare assessment situations whose nature stimulates dif-
ferent points of view.

Discussion

As for SimQuest, the author of the Moodle learning system does not explicitly provide crite-
ria for evaluating the conformity of the system with the educational approach applied for the
design and use of the system.

The design and use of the course on Moodle features satisfy 6 of my 10 criteria for cogni-
tive flexibility, distributed in all of the four learning components. I think Web technologies
have been well exploited to satisfy those six criteria effectively. Thus, the Moodle features
course could be another example of exploiting ICT to foster cognitive flexibility in introduc-
tory learning.

5.2.3 KBS: Constructivism in distance learning

Educational approach

The KBS system is built on constructivist models of learning and teaching (Duffy & Jonassen,
1992). In a context of distance learning, the authors argue for the needs of encouraging the stu-
dent to learn actively and not just to read the information passively. The way the authors chose to
stimulate students is to integrate problems or "real world tasks" in the curriculum of a "virtual
course". This approach is more or less consistent with the constructivist facet of "reasoning,
critical thinking, and problem solving" presented in section 1.4.1. Here are several key points the
authors emphasize:

• The specification and integration of authentic and complex activities during the learning
process are important elements in the design of constructivist learning environments
(CLEs).

• The CLE simulates the problem context in which the student performs those authentic
activities: The student has to decide how to structure and solve the problem, collect back-
ground information, develop solution strategies, and so forth.

• Authentic activities shift the responsibility for both selecting and performing tasks from
the tutor to the student.

• Project-based and problem-based approach should be appropriate for designing such a
CLE: Providing the learner with references, case studies, background, and related infor-
mation as well as a working environment.

Page 80

Analysis process

The example handled by KBS is an introductory course on object-oriented programming and
Java, given to undergraduate students in electrical engineering and computer science. The main
objective of the course is to help students develop object-oriented programming skills and mas-
ter basic concepts of the Java language. Because the language used in the course is German that
I do not know, and because I cannot access the course, I analyzed the example handled by the
KBS system by examining the information about KBS presented by the authors in a journal arti-
cle (Henze & Nejdl, 2001). Therefore, this analysis may not be fully pertinent.

Criterion MM1: The same learning content presenting concepts and their relationships is
represented in different forms (e.g., text, images, audio, video, simulations).

The Java course has been built on a Web platform, so KBS easily satisfies this criterion.
For example, several kinds of information are systematically presented to the student: text,
Java programs, and images.

Criterion MP1: The same abstract concept is explained, used, and applied systematically
with other concepts in a diversity of examples of use, exercises, and case studies in complex,
realistic, and relevant situations.

The Java course has been built on a project-based and problem-based approach, so I
would say KBS also satisfies this criterion. For instance, the student can explore a particular
concept with other ones in multiple relevant problems and projects.

Criterion MM2: Learners are encouraged to study the same abstract concept for different
purposes, at different times, by different methods including different activities (reading, ex-
ploring, discussion, knowledge reorganization, etc.).

This criterion is satisfied in KBS’s Java course because the student can explore the same
concept in different problems or projects by different activities such as reading, program-
ming, testing.

Criterion MP2: When facing a new concept, learners are encouraged to explore the relation-
ships between this concept and other ones as far as possible in complex, realistic, and rele-
vant situations.

This criterion is explicitly considered in KBS’s Java course because for each presentation
of a concept, the system presents the student with a set of hyperlinks to related concepts,
problems or projects.

Criterion MP3: When facing a new concept, learners are encouraged to explore different in-
terpretations of this concept (by other authors and by peers), to express their personal point
of view on the new concept, and to give feedback on the points of view of other people.

Although the student is engaged in exploring external resources such as the Sun Java tuto-
rial, this criterion is not effectively satisfied because no tool is available for students to ex-
press their personal points of view and give feedback on those of other people.

Page 81

Criterion MP4: When facing a new concept, learners are encouraged to examine, analyze,
and synthesize a diversity of points of view on the new concept.

This criterion is not satisfied because the student is not encouraged to produce summaries
after examining the course designer's interpretation and external resources.

Criterion MM3: The number of participants, the type of participant (learner, tutor, expert,
etc.), the communication tools (e-mail, mailing lists, face to face, chat rooms, video confer-
encing, etc.), and the location (in the classroom, on campus, anywhere in the world, etc.) are
varied.

Interactions among learners and between the learner and the teacher seem to be ignored in
the KBS learning system: The criterion is not satisfied.

Criterion MP5: During the discussion, learners are encouraged to diversify – as far as pos-
sible – the different points of view about the topic discussed.

For the same reason as in the previous criterion, this one appears to be not satisfied.

Criterion MM4: During the learning process, learners are encouraged to use different as-
sessment methods and tools, at different times, and in different contexts for demonstrating
their ability to solve different problems.

In the Java course, KBS satisfies this criterion because it provides the learner with differ-
ent assessment methods at different times. For instance, the student is asked to do different
kinds of problems or projects, including programming tasks.

Criterion MP6: During the problem-solving process, learners are encouraged to confront
multiple ways to solve the problem and multiple possible solutions to the problem.

No explicit information is available to assess this criterion in the design of KBS’ Java
course.

Discussion

As for SimQuest and Moodle, there are not explicit criteria for evaluating the conformity of
the KBS learning system with the educational approach used to design the system.

Among my 10 criteria for cognitive flexibility, KBS’s Java course satisfies five criteria
effectively, on the basis of a problem-based and project-based approach. I could say that
KBS’s Java course is also an example of fostering cognitive flexibility in introductory learn-
ing by means of ICT-based learning conditions.

5.2.4 ATutor: A learning content management system

Educational approach

ATutor does not support any pedagogical principle explicitly.

Page 82

Analysis process

Because of the pedagogical neutrality of the ATutor system, I did not analyze examples handled
by the system. Instead, I looked into which criteria for cognitive flexibility can be satisfied if a
course designer who is versed in the application of the set of criteria uses ATutor to deliver a
course. For example, I examined which learning conditions shown in chapter 3 can be created
using the ATutor system.

Criterion MM1: The same learning content presenting concepts and their relationships is
represented in different forms (e.g., text, images, audio, video, simulations).

Built on a Web platform just as Moodle and KBS, ATutor easily satisfies this criterion.

Criterion MP1: The same abstract concept is explained, used, and applied systematically
with other concepts in a diversity of examples of use, exercises, and case studies in complex,
realistic, and relevant situations.

If the course designer understands this criterion, he or she would satisfy the criterion be-
cause this criterion is not related to the platform in which is delivered the course.

Criterion MM2: Learners are encouraged to study the same abstract concept for different
purposes, at different times, by different methods including different activities (reading, ex-
ploring, discussion, knowledge reorganization, etc.).

This criterion can be satisfied using ATutor because the system supports many learning
activities such as reading, testing, working in groups, and exploring external resources.

Criterion MP2: When facing a new concept, learners are encouraged to explore the relation-
ships between this concept and other ones as far as possible in complex, realistic, and rele-
vant situations.

The menu "Related topics" provided by ATutor allows the course designer to encourage
learners to criss-cross the learning landscape. So, this criterion is satisfied.

Criterion MP3: When facing a new concept, learners are encouraged to explore different in-
terpretations of this concept (by other authors and by peers), to express their personal point
of view on the new concept, and to give feedback on the points of view of other people.

No explicit tool is available to satisfy this criterion. We should modify the ATutor system
to implement explicit tools satisfying the criterion.

Criterion MP4: When facing a new concept, learners are encouraged to examine, analyze,
and synthesize a diversity of points of view on the new concept.

As criterion MP3, this one is not satisfied.

Criterion MM3: The number of participants, the type of participant (learner, tutor, expert,
etc.), the communication tools (e-mail, mailing lists, face to face, chat rooms, video confer-
encing, etc.), and the location (in the classroom, on campus, anywhere in the world, etc.) are
varied.

Page 83

The course designer can satisfy this criterion by using multiple communication tools pro-
vided by ATutor, for instance e-mail, chat rooms, forums.

Criterion MP5: During the discussion, learners are encouraged to diversify – as far as pos-
sible – the different points of view about the topic discussed.

As criteria MP3 and MP4, this one is not satisfied.

Criterion MM4: During the learning process, learners are encouraged to use different as-
sessment methods and tools, at different times, and in different contexts for demonstrating
their ability to solve different problems.

If the course designer is versed in the use of this criterion, he or she can satisfy it using
ATutor, for example creating assessment situations both for the individual learner and for the
groups of learners.

Criterion MP6: During the problem-solving process, learners are encouraged to confront
multiple ways to solve the problem and multiple possible solutions to the problem.

As criterion MP1, this one can be satisfied if the course designer understands how to ap-
ply the criterion.

Discussion

Although ATutor is a learning content management system that does not explicitly support
any pedagogical principle, it provides many promising tools for implementing learning condi-
tions fostering cognitive flexibility. Indeed, if the course designer is versed in the use of the
set of criteria for cognitive flexibility, he or she can exploit available tools of ATutor in order
to satisfy many of those criteria.

5.2.5 Discussion of "constructivist" learning systems

SimQuest, Moodle, and KBS explicitly claim to support constructivism. Sometimes, it is hard
to say to which facet(s) of the five ones identified in section 1.4 their educational approaches
belong because they are often described in a general fashion. I believe, however, that the edu-
cational paradigms implied in those systems are more or less related to cognitive flexibility.

Table 5.1 summarizes the result of the previous analysis of the four learning systems, ac-
cording to the information available to me about an example of their use (except for ATutor)
and based on my set of criteria for cognitive flexibility. It should be noted that the limitation
of my analysis is that it is based on my personal interpretation of the pedagogical principles
underlying cognitive flexibility introduced in chapter 2. If one uses his or her own set of cri-
teria to evaluate those systems, the result may be different from mine. The point I make here
is that operational criteria are practical for evaluating the conformity of conditions of learn-
ing and pedagogical principles.

Indeed, SimQuest, Moodle, and KBS may have effectively implemented learning condi-
tions fostering other facets of constructivism than cognitive flexibility. For instance, I believe

Page 84

that computer-based simulations provided by SimQuest could be very promising means to
stimulate different aspects of constructivist learning (e.g., complex and realistic learning en-
vironments). It is, however, difficult to evaluate the conformity between the educational ap-
proach the authors followed and the learning conditions they implemented, because of the
lack of validation criteria.
Table 5.1. Existing learning systems examples and support for cognitive flexibility

Operational criteria for cognitive flexibility
Learning contents Pedagogical devices Human interactions Assessment

Existing
learning
systems MM1 MP1 MM2 MP2 MP3 MP4 MM3 MP5 MM4 MP6
SimQuest
(Motion course)

X X X X

Moodle
(features course)

X X X X X X

KBS
(Java course)

X X X X X

ATutor
(recursion course)

X X X X X X X

The analysis of the previous examples of use of learning systems may indicate that there
are many different ways to create ICT-based learning conditions to foster cognitive flexibility
and that the course designer should always take into account the quality of criteria satisfac-
tion rather than only the number of satisfied criteria (see the discussion in section 2.4.5). In
the next part, I show another way to foster cognitive flexibility in advanced learning such as
mastering the concept of recursion in computing science.

From Table 5.1, we can see that criterion MP4 (for pedagogical devices) and criterion
MP6 (for assessment) are absent in all of the examples I analyzed. In the next part, I show
how to create ICT-based learning conditions satisfying those two criteria. Note that it is not
surprising that the examples I analyzed do not satisfy all of the criteria for cognitive flexibil-
ity; maybe because the authors of those examples and of the underlying systems may have
designed them without any explicit ideas of cognitive flexibility in mind.

Among the four analyzed learning systems, only Moodle and ATutor take into account
the implementation of learning content management, and only ATutor takes into considera-
tion the implementation of learning objects.

Except for KBS, none of the "constructivist" learning systems I looked at effectively im-
plements adaptation support. The next section presents an analysis of several adaptive learn-
ing systems.

Main result: There have been various manners to exploit pedagogical principles un-
derlying cognitive flexibility in the design and use of ICT-based learning systems. All
10 criteria for cognitive flexibility are seldom met.

Page 85

5.3 Adaptive learning systems

In this section, I examine adaptation support in the following systems: AHA (De Bra &
Calvi, 1998), KBS (Henze & Nejdl, 2001), ELM-ART (Weber & Brusilovsky, 2001), and
PHelpS (Greer et al., 1998). ELM-ART can be accessible online, so in addition to reading
papers describing the system I played the role of the learner to explore it. To analyze the
other systems, I only examined published articles.

In the present thesis, I do not present any new technique for implementing adaptation
support in ICT-based learning systems. Rather, I borrow several adaptation techniques from
existing learning systems to implement adaptability in the COFALE learning system (shown
in the next part). Therefore, I shall not go into details here about various adaptation tech-
niques in those systems. Instead, for each system, I summarize the way the system models a
course, the characteristics of the student the system takes into account, and the adaptive fea-
tures the system offers to the student. The five main adaptation techniques (see section 1.5.4)
I looked at are: (a) adaptive presentation of learning contents, (b) adaptive use of pedagogical
devices, (c) adaptive communication support, (d) adaptive problem-solving support, and (e)
adaptive assessment.

5.3.1 AHA: An open adaptive hypermedia architecture

This sub-section analyzes several examples handled by AHA about, for instance, the course
on the subject of hypermedia, which is designed to help learners develop basic understanding
of hypermedia structures and systems.

Course and learner modeling

Course modeling in AHA is very simple. Each course consists of a set of Web pages (HTML
files). Each page is a text or a hypertext in which there are one or more hyperlinks to related
pages.

Learner modeling in AHA is also simple. Each student is represented by a set of boolean
variables. Each variable indicates whether or not the student, for example, knows a concept
or fails a test or performs a certain learning activity (e.g., reading a page or completing a
test).

At the beginning of the course, all variables are set to be "false" for every new learner.
After the student reads a page or does a test, the system will update his or her learner model,
for example to set the value of the variable corresponding to "the page is read" or "the test is
done" to be "true".

In each HTML file, the course designer can insert several conditional fragments in order
to adapt the content of the Web page to different kinds of students. This work, of course, re-
quires the course designer's knowledge of HTML. Here is an instance of conditional content:

Page 86

<!-- if not readme -->
 You must first read
 the instructions.
 These will explain how to use this course text.
<!-- else -->
 You have read
 the instructions.
 You can start studying this course.
<!-- endif -->

Adaptation support

Among the five adaptation techniques I mentioned previously, AHA effectively implements
only adaptive presentation of learning contents. For example, if the student has not read the
file readme.html yet, the system presents him or her with the following segment of hyper-
text (in a Web browser, the words "the instructions" appear as a link anchor):

 You must first read the instructions.
 These will explain how to use this course text.

Otherwise, the system presents the student with the following segment of hypertext (in a
Web browser, the words "the instructions" appear as a link anchor):

 You have read the instructions.
 You can start studying this course.

AHA also supports adaptive presentation of hyperlinks (I consider this kind of adaptation
to be a particular type of adaptive presentation of learning contents). Here are several exam-
ples:

• Direct guidance. At the end of each Web page, the system suggests the next "best" page
to a particular student, according to his or her learner model.

• Link hiding. Sometimes the system does not show a hyperlink in a Web page for a par-
ticular student because the hyperlink is assumed to be irrelevant to him or her at that time.

• Link annotation. The system changes the color of a hyperlink for a particular student (ac-
cording to the assumed learner model at a certain time) using the metaphor of traffic light,
for instance, green for recommended links (at that time) and red for links that are not
ready to explore (at that time). This is a good feature that many adaptive hypermedia sys-
tems take into account (Brusilovsky & Peylo, 2003; Brusilovsky, 1999).

Discussion

Although the course designer needs to know HTML to be able to implement adaptation sup-
port in the AHA system, it is straightforward to design a new course in any domain in AHA.
The system, however, concentrates on adapting only learning content to different kinds of
students, and student modeling using Boolean variables in AHA is quite superficial. I believe
that AHA is effective for constructing general hypermedia systems, but it needs to be im-
proved if used in the context of instruction and learning.

Page 87

5.3.2 KBS: An open adaptive corpus hypermedia

In this sub-section, I look into an example designed in KBS about the introductory course on
object-oriented programming and Java for undergraduate students in electrical engineering
and computer science (see also section 5.2.3).

Course modeling

Course modeling in the KBS learning system is complex. In this sub-section, I give only an
overview of several main points. More details are available in Henze and Nejdl's paper
(2001).

A conceptual network is used to represent a course in KBS: Each node of the network
may be an introduction of a learning concept, an example of a learning concept, a hyperlink
to a Web resource, a glossary item, or a lecture grouping several introductions, examples, and
Web resources, etc. Each link between two nodes of the network may be a "relevant" link
(similar to "related" link in COFALE, see sections 6.3.1, 7.2.1), "prerequisite" link indicating
that a particular learning concept must be mastered before another concept, etc. Problems and
projects are also integrated into the conceptual network in the same way.

Learner modeling

Student modeling in the KBS system is also complex. The knowledge of the learner is mod-
eled as a knowledge vector (a multi-layered overlay model). Each component of the vector is
a conditional probability, describing the system's estimation of the fact that the learner has
knowledge about a knowledge item (i.e., a learning concept such as if or while or
classes in the course on Java). In KBS, the authors distinguish five knowledge levels a
student may have about a knowledge item: "excellently known", "well known", "known",
"partly known", and "not known".

At the beginning of the course, the system sets a default model for every new student:
The "not known" knowledge level for every knowledge item of the course. At a certain time
during the learning process, the tutor evaluates the student's work on projects and updates his
or her knowledge level on knowledge items. For instance, after evaluating a student's work on
a project concerning the concept while, the tutor could diagnose that a student has "expert's
knowledge" on this concept (excellently known).

On the basis of the project evaluation provided by the tutor about a particular student, the
system will estimate again the student's knowledge of every knowledge item of the current
course. For example, if the student's knowledge about a concept is assumed to be "known",
then the student's knowledge about all "prerequisite" knowledge items of this one is also sup-
posed to be "known". After updating the information about the student's knowledge, the sys-
tem adapts the learning materials to that new learner model. In KBS, a Bayesian network en-
gine is used to calculate the probability of the fact that the student has a certain knowledge
level about a concept (see Henze & Nejdl, 2001).

Page 88

Adaptation support

To let the KBS system perform adaptation support, every information resource (Web pages,
examples, projects, etc.) needs to be indexed. To do so, the course designer examines the con-
tent of each information resource and introduces a set of knowledge items related to this re-
source.

Among the five adaptation techniques identified earlier, KBS effectively implements the
following three ones.

Adaptive presentation of learning contents. The KBS system provides students with appro-
priate information resources while they are performing their projects, depending on the stu-
dent's current knowledge. For instance, if the student lacks some "prerequisite" knowledge to
solve a problem, the system will present appropriate information units for him or her to "fill
the gaps" before solving the problem.

Similarly to the AHA system, KBS also supports adaptive navigation for the student, for
example, by changing the color of hyperlinks to indicate whether a Web page is ready for
reading or suggesting the next reasonable learning step, according to the student's current
knowledge. Following is an example showing the way the KBS system detects whether a
HTML page is ready for reading for a particular student:

• Let H to be the HTML page, HKI to be the set of knowledge items related to H (accord-
ing to the indexing described earlier), and PHKI to be the set of all "prerequisite" knowl-
edge items of the ones in HKI.

• H is recommended for reading for the student if his or her knowledge level (estimated by
the system) on every knowledge item in PHKI is "known" or "well known" or "excel-
lently known". This expression could mean that all prerequisites required to understand
page H are at least known to the student, so page H is ready for reading for him or her.

Adaptive use of pedagogical devices. While performing a certain project, the student is en-
couraged to do appropriate learning activities, depending on his or her present knowledge.
For instance, for a particular student, the system may suggest him or her to review his or her
prior successful examples related to the project he or she is working on.

Adaptive assessment. The KBS system does not propose the same projects for every student.
Rather, it suggests suitable problems to the individual student, depending on his or her cur-
rent knowledge. For instance, a student who is interested in learning simple control structures
in Java will have difficulties with a project that applies control structures to construct a
graphical user interface, provided that he or she possesses only a beginner's knowledge about
graphical user interfaces. So, a project with no graphical features should be appropriate to
him or her.

Page 89

Discussion

KBS effectively provides students with several kinds of adaptation. It is also a domain-
independent platform (Henze & Nejdl, 2001). The system, however, has not provided the
course designer with a set of authoring tools yet.

5.3.3 ELM-ART: A Web-based adaptive versatile system

To analyze the Web-based ELM-ART learning system, I logged, as a learner, into its online
introductory course on LISP programming, which is designed to help undergraduate students
develop programming skills in the LISP language. The 10-year-research ELM-ART system is
very complex. I would say that my understanding about the workings of this system, espe-
cially various artificial intelligence techniques implemented in it, is incomplete. I can only
show here a few general points of the system and the major results it offers. To look further
into the system, one should explore multiple resources (e.g., Weber & Brusilovsky, 2001;
Weber & Specht, 1997; Weber, 1996) describing it.

Course modeling

Course modeling in ELM-ART consists of two parts: (a) domain knowledge or conceptual
knowledge, which is declarative, consists of all the predicates, functions, and symbols that
are required to solve problems in the given domain (i.e., LISP programming), and (b) reason-
ing knowledge, which is procedural, consists of the knowledge about problem solving such as
plans, rules in the given domain (i.e., in LISP).

The representation of conceptual knowledge in ELM-ART is more or less similar to the
one in the KBS system. The conceptual network, claimed by the authors to be domain inde-
pendent, is hierarchically organized into lessons, sections, sub-sections, and terminal pages
(units). Each unit in the conceptual network is represented as an object containing slots for
the content (e.g., text) of the page and the information for relating this page to other units,
information required for interactive tests, and for programming problems.

The representation of reasoning knowledge in the system, which is domain dependent, is
an important part to support problem solving by the student, explained in the next sub-
sections. Problem-solving knowledge is represented as a complex network of concepts, plans,
and rules, created by experts in the LISP programming language. The network contains in-
formation about plan transformations leading to semantically equivalent solutions and about
rules describing different ways to solve a particular kind of problems. Additionally, there are
bug rules describing both errors anticipated by experts in the domain and errors observed
from students' interactions.

Learner modeling

Learner modeling in ELM-ART is also organized into two parts: (a) a multi-layered overlay
model that stores the individual student's knowledge about learning concepts and terminal

Page 90

pages, and (b) an episodic learner model that registers all problem-solving sessions of the in-
dividual learner.

The overlay model in the ELM-ART system is similar to the one in the KBS system. The
main difference is that in KBS the teacher updates the model for every learner whereas in
ELM-ART there are two kinds of evaluations that may be performed during the learning
process: (a) self-evaluation (the system presents the learner with his or her learning history
and asks him or her to evaluate his or her knowledge about, e.g., a learning concept), and (b)
evaluation by the system (after the student finishes a test, the system will update his or her
knowledge about the learning concepts and terminal pages to which the test is related).

The episodic model consists of a collection of episodes that are descriptions of how pro-
gramming problems have been solved by a particular learner. To construct the episodic model
for the individual student, the code produced by the student is analyzed in terms of the do-
main knowledge on the one hand and a task description on the other hand. This diagnosis
process results in a tree of concepts and rules the student might have used to solve the corre-
sponding problem. These concepts and rules are instantiations of units from the knowledge
base of the system. They are used to provide the learner with intelligent support showed in
the next sub-section.

Adaptation support

ELM-ART effectively implements the next four adaptation techniques.

Adaptive presentation of learning contents. Similarly to the KBS system, this aspect is ex-
plicit in ELM-ART. The structure of the course (curriculum sequencing) and the navigation
are adaptive to the student's current knowledge about the learning concepts and terminal
pages of the given domain. The traffic-light metaphor is also applied in the system for adap-
tive navigation support.

Adaptive use of pedagogical devices. This aspect is also explicit in the system, as in KBS.
The system encourages the learner to reuse the code of previously analyzed examples when
solving a new problem. To support problem solving by a particular learner, the system can
select the most helpful examples (for the current problem) from his or her learning history,
sort them corresponding to their relevance, and present them to the learner as an ordered list
of hypertext links (see "show example" at the bottom of Figure 5.3). The authors also con-
sider this feature as support for problem solving by the student.

Adaptive problem-solving support. This should be the most interesting support of the system,
as the authors claim that students may solve the problem without the help of the human
teacher. Here is an example of interactions between a student (Alice) and the system during
the session of solving a problem seen on the top of Figure 5.3:

• Alice introduces her solution to the given problem (see "Type in your solution here" on
the middle of Figure 5.3).

• Alice clicks on the button "Define", showed on the bottom of Figure 5.3, to select an ex-
ample call of her function with typical arguments. The evaluator window opens and

Page 91

shows the result of the function call. Because the result is not as expected, Alice is en-
couraged to try to find out the error on her own.

• Because Alice cannot find out why her solution is incorrect, she clicks on the button "di-
agnosis", seen on the bottom of Figure 5.3, to ask the system to detect the error for her.
The system uses its knowledge base including problem-solving knowledge and the epi-
sodic model constructed for Alice to analyze her LISP code: A wrong operator is found
(+ instead of *). Then, the system formulates a sequence of help messages with increas-
ingly detailed explanation of the error (see "Messages" on the middle of Figure 5.4), and
the system sends it back to Alice. The sequence of messages starts with a very vague hint
on what is wrong and ends with a code-level suggestion of how to correct the error.

• After examining one or several hints in the feedback provided by the system, Alice can
correct and check again the solution.

• Alice can use this kind of help as many times as required to solve the problem correctly.
Figure 5.3. A page with a programming problem in ELM-ART

Page 92

Figure 5.4. A diagnosis of an incorrect solution in ELM-ART

Adaptive assessment. This kind of adaptation is explicit in ELM-ART. At the end of each
terminal page, sub-section, and section, and at the end of the course, the system presents the
student with suitable tests, depending on his or her current knowledge about the domain as
well as about problem-solving skills. For example, at the end of a terminal page, the system
starts with showing a test item with medium difficulty. In case of an error made by the stu-
dent, the system will randomly select another test with lower difficulty and present it to the
student. In case of no error, the system will randomly select two tests with higher difficulty
and show them to the student. When the system has enough "evidence" that the student has
mastered the current learning concept, no further tests will be suggested to him or her. The
learner, however, can continue working on tests by clicking on the link "more exercises" dis-
played with the feedback to the last answers.

Discussion

Several experiments (e.g., Weber & Brusilovsky, 2001) shows that ELM-ART is interesting
in terms of its adaptability, especially the support for problem solving by the learner. ELM-
ART has two main parts: a domain-dependent part and a domain-independent part. The latter

Page 93

is similar to the KBS's and could be reused. The former concerns knowledge for problem
solving in the LISP language. It took about 10 years for the authors to develop a powerful
knowledge base for the support of problem solving in LISP. One must, however, start from
scratch to build a similar knowledge base for other subjects than LISP programming.

5.3.4 PHelpS: Adaptive peer help and collaboration

The PHelpS system has been developed, tested, and deployed in the context of the Correc-
tional Services of Canada as a part of a staff training initiative. Almost 11000 workers in 281
different locations have been expected to make significant use of the system in their everyday
activities. One of the goals of PHelpS is to facilitate peer help while workers do their tasks.

Course and learner modeling

"Course" modeling in the PHelpS system is simple. The main concept in the "course" pro-
vided by the system is tasks. Each task commonly undertaken in the system is represented as
a hierarchical set of steps or subtasks.

User modeling in the system consists of two parts: (a) a personal profile describing per-
sonal characteristics of the worker such as age, gender, login status, linguistic fluency, the
number of times the worker has provided help for the others, etc.; and (b) a multi-layered
overlay model containing information that shows the tasks the worker can perform and the
level of capability in carrying out each coarse or fine-grained step in these tasks. The system's
belief about the worker's skill on a task or subtask is based on the number of times he or she
has completed the task or subtask recently, the number of times he or she has given help (for
other workers) on the task or subtask, the number of times this help was useful to the worker
requesting help, the number of times this help was not useful, and so forth.

At the beginning of the course, for each worker, the system constitutes a personal profile
and sets a default overlay knowledge model about the domain tasks (e.g., the worker cannot
perform any task). During the training session, the user model is updated, as follows:

• For some personal information of the worker such as login status and the number of times
the worker has provided help, the system can update it automatically.

• For the worker's knowledge about tasks, two kinds of evaluations may be performed:
evaluation by the system and self-evaluation. Firstly, when the worker does a certain task,
the system presents him or her with a checklist and encourages him or her to use this
checklist while performing the task. The checklist contains every subtask of the task. On
the basis of analyzing this checklist, the system can update the tasks or subtasks the
worker can perform. The system can also automatically update several other features such
that the number of times the worker has given help on a particular task or subtask. Sec-
ondly, workers can inspect and maintain themselves their own user model. For instance,
for each step in each task, the worker can specify whether or not he or she can help on the
step.

Page 94

Adaptation support

The PHelpS system effectively implements adaptive communication support. To illustrate
this kind of adaptation offered by the system, the authors showed the following simple work-
ing scenario:

• Assume a worker (Bob) using PHelpS reaches an impasse at a task step.

• Bob requests a peer helper (by clicking on a button provided by the system).

• The system searches a knowledge base (i.e., user models) for a set of potential peer help-
ers within the organization who: (a) are knowledgeable about the problem area of the spe-
cific task, (b) are available to provide help in the time frame required, (c) have not been
overburdened with other help requests in the recent past, and (d) have other characteris-
tics critical to a successful peer help session, for instance they speak the same language as
Bob. The help request and these criteria form the inputs to a constraint solver embedded
in the system. The solver produces a set of candidate peer helpers (see "Suggested Help-
ers" on the top right of Figure 5.5) ordered according to their suitability on these criteria.

• Bob selects his preferred peer helper from the candidate list (maybe after examining some
information in the profile of the potential peer helpers). Once the helper is selected, a dia-
logue between Bob and the helper is begun (e.g., through telephone).

Figure 5.5. Peer helper suggestions for Bob by PHelpS

Discussion

PHelpS successfully implements a kind of adaptation that the previous three systems do not:
Adaptive peer help. A critical characteristic of PHelpS is that it has been tested in a real work
place and that experimental result is encouraging. The adaptation techniques used in PHelpS
could also be applied in any domain and other contexts (e.g., high schools). The system,
however, concentrates on modeling only learning tasks. I believe that other aspects such as

Page 95

information resources, learning tools should also be taken into consideration, even in the con-
text of work training.

5.3.5 Discussion of adaptive learning systems

Table 5.2 summarizes the previous analysis of adaptation support offered by several existing
learning systems. From this table, I may conclude that none of these systems effectively im-
plements all of the adaptation techniques I am concerned with in the present thesis. ELM-
ART seems to be the most interesting learning system in terms of adaptation support, espe-
cially the adaptive problem-solving support it offers. It is worth, however, to note that the ad-
aptation technique for problem-solving support is domain-dependent (the other four tech-
niques can be implemented independently of the teaching domain, see Weber & Brusilovsky,
2001).
Table 5.2. Existing learning systems examples and support for adaptability

Existing
learning
systems

Presentation
of learningcon-

tents

Use of
pedagogical

devices

Communication
support

Problem-
solving
support

Assessment

AHA
(hypermedia course)

X

KBS
(Java course)

X X X

ELM-ART
(LISP course)

X X X X

PHelpS
(work environment)

 X

Among the four analyzed systems, only KBS explicitly claims to support a learning the-
ory (constructivism). It appears that few of existing learning systems effectively take into ac-
count both pedagogical principles implied from learning theories and adaptation techniques. I
believe that the careful consideration of both aspects could be more effective in terms of
learning outcomes than that of only one of them (Henze & Nejdl, 2001).

One should examine other analyses (e.g., Henze & Nejdl, 2001; Brusilovsky & Peylo,
2003) for more information about the adaptability issue.

Main result: Existing learning systems effectively implement the various adaptation
techniques but none of them takes into account all techniques.

5.4 Conclusion

In this chapter, I presented two important analyses: an analysis of “constructivist” learning
systems and an analysis of adaptive learning systems. The main objective of the two analyses
is to know how researchers in the field have exploited ICT to foster cognitive flexibility and
to implement adaptation support. Those analyses are useful for the construction of a new
ICT-based learning environment (COFALE) presented in the next part, in which I try to sat-

Page 96

isfy all of the criteria for cognitive flexibility and to implement several basic adaptation tech-
niques borrowed from existing systems.

Starting the construction of a complex learning system from scratch, however, should be
a very hard work (Adaptive Technology Resource Center, 2004). Therefore, I decided to
build the COFALE system on an existing learning content management system (LCMS).
Among many open-source LCMSs, I selected ATutor (Adaptive Technology Resource Cen-
ter, 2004) mainly because it is a good LCMS (see section 4.1) and it apparently makes it easy
to create learning conditions exhibiting many desired characteristics of cognitive flexibility
(see the evaluation of ATutor presented in section 5.2.4). I look further into the reasons for
choosing ATutor in section 8.3.

Page 97

PART THREE: COFALE: AN ADAPTIVE
LEARNING ENVIRONMENT SUPPORTING

COGNITIVE FLEXIBILITY

This part presents the extended work of the following paper:

Chieu, V.M., & Milgrom, E. (2005). COFALE: An adaptive learning environment sup-
porting cognitive flexibility. The Twelfth International Conference on Artificial Intelli-
gence in Education, Amsterdam, The Netherlands, 491–498 (full paper).

Page 99

CHAPTER 6

6 COFALE: Conditions of learning

"In science the credit goes to the man who convinces the world, not to the man to whom the
idea first occurs."

Francis Darwin, English Botanist, 1848 – 1925 (cited in Suomela, 2005)

(Reference to Appendices B & C)

In this chapter, I present COFALE, a new domain-independent e-Learning platform, and an
example of its use. I argue that COFALE truly provides learners with personalized learning
experiences that extensively facilitate and stimulate cognitive flexibility. After examining the
presentation of COFALE in this chapter, one could understand that the operational criteria
introduced in chapter 2 may be used as means of validation for the design of learning situa-
tions exhibiting the desired characteristics of cognitive flexibility.

Page 100

Summary
6.1 Introduction

6.2 Mental models of recursion and adaptability

6.3 COFALE as a learning environment

6.4 COFALE and criteria of Jonnaert and Vander Borght

6.5 Discussion

6.1 Introduction

The objective of this chapter and chapters 7 and 8 is to describe a new domain-independent e-
Learning platform, named COFALE (cognitive flexibility in adaptive learning environments),
in which I provide every learner with personalized learning situations that extensively support
cognitive flexibility.

On the one hand, this chapter illustrates, in an ICT-based learning context, the learning
conditions identified in chapter 3 for the learning of the concept of recursion (in the next
chapter, I show how to implement those learning conditions in COFALE). Through demon-
strating the learning process of a learner, I show that all of the criteria identified in chapter 2
are satisfied by means of learning situations proposed to the learner.

On the other hand, this chapter shows the adaptability of COFALE. A constructivist point
of view on adaptation support and scaffolding (a particular kind of adaptability) was pre-
sented in section 1.5.4. To illustrate adaptation support in COFALE (i.e. scaffolding), I show
how the course designer uses COFALE to provide different learning experiences for different
kinds of students. The next chapter describes authoring tools provided for the course designer
by COFALE to implement adaptation support.

In the following sections, I first identify different kinds of students in the context of learn-
ing recursion; then, I demonstrate students' learning process with support for cognitive flexi-
bility and with support for adaptability in COFALE.

6.2 Mental models of recursion and adaptability

6.2.1 Mental models of recursion

In a constructivist point of view presented in section 1.5.3, I explained mental models (i.e., a
mental representation or knowledge structure) as a critical characteristic of the learner. I also ex-
plained the need for providing appropriate conditions of learning, according to learners' mental
models on the taught subject.

Several researchers (Anderson et al., 1988; Bhuiyan et al., 1994; Götschi et al., 2003) in-
terviewed many students and analyzed students’ tests on the subject of recursion. They dis-

Page 101

tinguished four approaches that students try to apply to generate recursive solutions to a given
problem:

1. Loop model. “Novice” students, when constructing a recursive solution, try to adapt some
part of an iterative structure, for example the updating of loop index variables, in order to
achieve recursion. That is why they often produce incorrect recursive solutions to a given
problem. For instance, it may be impossible for this kind of students to solve the Towers
of Hanoi puzzle presented in section 3.2.1.

2. Syntactic model. Students consider recursion as a template consisting of a base case and a
recursive part. Although they may not fully understand the functionality of the recursive
part, they are able to solve simple problems by filling the condition part and the action
part of the base case and the recursive part. It should be easy for this type of learners to
find out the base case of the Towers of Hanoi puzzle (where the number of disks is equal
to 1). It may be, however, very difficult for them to find out the condition part and the ac-
tion part of the recursive part for this problem.

3. Analytic model. Students consider recursion as a problem-solving technique. They ana-
lyze diverse cases of a given problem; then, for each case, they determine input condi-
tions and output actions; finally, they write recursive code. Although these students try to
analyze different cases of the Towers of Hanoi puzzle, they may not arrive at a recursive
solution because they may not see recursion in this problem.

4. Analysis-synthesis model. “Expert” students, in addition to the ability implied by the ana-
lytic model, are able to apply the DCG (Divide, Conquer, and Glue) strategy to solve
problems recursively: They break a large problem into one or more sub-problems that are
identical in structure to the original problem and somewhat simpler to solve. It should be
quite easy for these "expert" learners to build a recursive solution to the Towers of Hanoi
puzzle by applying recursive thinking in this case.

The researchers also identified one approach that learners try to apply to verify the cor-
rectness of recursive solutions to a given problem: The trace model (students create mental
images of control flow, particularly unraveling of recursive programs). It must be very hard
for people to trace the recursive solution to the Towers of Hanoi puzzle.

From my point of view, each of these methods may be seen as defining the mental model
of a learner getting acquainted with the concept and applications of recursion. For the pur-
pose of the discussion in this part of the thesis, hereafter I distinguish only four kinds of men-
tal models in learning recursion: loop, syntactic, analytic, and analysis-synthesis.

6.2.2 Adaptability

In chapter 1, I presented five principal adaptation techniques: (a) adaptive presentation of
learning contents, (b) adaptive use of pedagogical devices, (c) adaptive communication sup-
port, (d) adaptive assessment, and (e) adaptive problem-solving support.

Page 102

In section 5.3.5, I explained that only the first four adaptation techniques are domain-
independent. In addition, the way to implement adaptive assessment is similar to the one to
perform adaptive presentation of learning contents (I discuss this issue further in section
7.3.2). So, in the next section, I show how COFALE adapts the learning contents, pedagogi-
cal devices, and communication support to the different kinds of learners identified previ-
ously, in a manner consistent with the constructivist point of view presented in chapter 1.

6.3 COFALE as a learning environment

COFALE is an adaptive learning environment supporting cognitive flexibility. COFALE is
based on ATutor, an open-source, Web-based learning content management system designed
and maintained by ATRC (Adaptive Technology Resource Center, 2004).

For the purpose of the discussion, I shall assume that a “novice” learner (Bob), familiar
with "traditional" programming (say, in the Java language) and thus with the concept of itera-
tions, uses COFALE to learn recursion (i.e. to develop the ability to solve problems recur-
sively); a tutor and a number of other learners (peers) also participate in the same learning
experience.

In section 6.3.1, I show for each criterion for cognitive flexibility identified in chapter 2,
how the course designer uses COFALE to present Bob with learning situations satisfying the
corresponding criterion. Section 6.3.2 explains how the course designer uses COFALE to
provide Bob and his peers with adaptation support.

6.3.1 Learning with support for cognitive flexibility

Bob needs to develop his capacity to implement recursive solutions for a variety of problems.
Navigating the "Local Menu" seen on the right hand side of Figure 6.1, Bob reads the defini-
tion and examples of the main concepts such as recursion, DCG strategy, recursive algo-
rithms, and recursive methods (Figure 6.1: Area 1, see how the course designer prepared
these main concepts in Activity 1.1, chapter 3). After that, Bob is encouraged to explore a
situation about arithmetic expressions (Figure 6.1: Area 2). I show below, in the presentation
for criterion MM2, how Bob is encouraged, in COFALE, to explore situations.

Criterion MM1: The same learning content presenting concepts and their relationships is
represented in different forms (e.g., text, images, audio, video, simulations).

In the arithmetic expressions situation, the course designer induces Bob to examine mul-
tiple representations of recursion through the use of hyperlinks presented in Area 3 or in Area
4 of Figure 6.1: a textual definition, two simulations, and a Java implementation. For in-
stance, Figure 6.1a shows the textual definition and Figure 6.1b illustrates the textual simula-
tion.

Page 103

Figure 6.1. A part of Bob's learning hyperspace in COFALE

Figure 6.1a. A textual definition of arithmetic expressions

1

2

3

4

5

Page 104

Figure 6.1b. A textual simulation for arithmetic expressions

Criterion MP1: The same abstract concept is explained, used, and applied systematically
with other concepts in a diversity of examples of use, exercises, and case studies in complex,
realistic, and relevant situations.

After exploring the first situation (i.e., arithmetic expressions), Bob is encouraged to ex-
plore another one: “Simple text search” through the menu “Related Topics” offered by ATu-
tor, thus also by COFALE (Figure 6.1: Area 5). In this situation, Bob sees how to apply re-
cursion to represent a text (i.e. a list of words) as a linked list and to look up a phrase in a
document.

The reader should refer back to Activities 1.2 and 2.1 in chapter 3 to understand how and
why the course designer created arithmetic expressions and simple text search and presented
them to the learner. In section 7.2.1, I illustrate a set of instructor tools for creating the learn-
ing content in hypermedia form.

Criterion MP2: When facing a new concept, learners are encouraged to explore the relation-
ships between this concept and other ones as far as possible in complex, realistic, and rele-
vant situations.

When Bob explores simple text search, COFALE presents a hyperlink encouraging Bob
to examine the related concept “linked lists”. This concept is related to the concept of recur-
sion because linked lists are a particular type of recursive data structures (see also Appendi-
ces B3 and B4). Similarly, while exploring this concept (Figure 6.2), Bob could return to the
recursion hyperspace by using one of the hyperlinks presented in “Related Topics” (Figure
6.2: Area 2) and “Learning History” (Figure 6.2: Area 1). The latter contains the hyperlinks
of Bob’s recently visited content pages, those hyperlinks are automatically generated by

Page 105

COFALE. The two menus (Figure 6.2: Related Topics and Learning History) also help Bob
navigate intelligently to avoid getting lost in the learning hyperspace.

Activities 1.3 and 2.2 in chapter 3 explained how the course designer satisfied criterion
MP2. In addition, in COFALE the course designer has had to define, for every discrete piece of
learning content (page), the other pages related to that one (section 7.2.1 presents an authoring
tool to do so); for example, simple text search related to arithmetic expressions, linked lists re-
lated to simple text search. On the basis of those associations, COFALE automatically generates
the hyperlinks in “Related Topics” (Figures 6.1 and 6.2).
Figure 6.2. Bob's learning hyperspace about linked lists in COFALE

Criterion MM2: Learners are encouraged to study the same abstract concept for different
purposes, at different times, by different methods including different activities (reading, ex-
ploring, discussion, knowledge reorganization, etc.).

At the bottom of each content page, COFALE presents Bob with learning activities to
guide and encourage him in the exploration of the learning hyperspace. For instance, after
exploring arithmetic expressions, Bob is led to multiple activities in different contexts to look
further into recursion (Figure 6.3).

To satisfy criterion MM2, the course designer has defined, for each content page (e.g. “Java
test class”, the last item of arithmetic expressions in Figure 6.1), the learning activities related to
that content page (e.g. the 10 activities shown in Figure 6.3). To help the course designer in this
work, COFALE supports a set of predefined learning activities and an authoring tool (see sec-
tion 7.2.2). One should also see Activity 2.1 (shown in chapter 3), which provided a similar ex-
ample of this teaching activity.

Note that presenting 10 activities (Figure 6.3) is only an example of use in COFALE. If one
takes into account cognitive load in instructional design (Kirsh, 2000; Sweller, 2005), one

1

2

Page 106

should present the student with only several activities at a given time (showing 10 activities at
the same time may be too much).

Criterion MP3: When facing a new concept, learners are encouraged to explore different in-
terpretations of this concept (by other authors and by peers), to express their personal point
of view on the new concept, and to give feedback on the points of view of other people.
Figure 6.3. Learning activities proposed to Bob by COFALE

To satisfy this criterion, COFALE engages Bob in four learning activities:

1. Add comments on the learning content proposed by the course designer, for example re-
formulate the main points of the definition of recursion (Figure 6.3: Personal Comments).

2. Add his own examples, for instance a recursive phenomenon in his life (Figure 6.3: Ex-
amples & Summaries). Figure 6.4 shows a Web tool allowing Bob to add his recursive
examples in the form of HTML to his learning hyperspace.

3. Explore external resources, for instance the online Java tutorials (Eck, 2004; Kjell, 2003)
in which the author illustrates a great number of recursive examples (Figure 6.3: Other
Resources). Bob could also ask the tutor to approve a new resource he has found (see sec-
tion 7.2.1).

4. Explore peers’ learning spaces, for example log into the learning hyperspace of an “ex-
pert” to see her own recursive examples (Figure 6.3: Peers’ Learning Hyperspace).

Figure 6.4. Tool provided by COFALE for Bob to add his own examples

To support the third activity, the course designer has had to prepare external resources
(see Activity 1.7 in chapter 3); section 7.2.1 explains how COFALE helps the course designer

Page 107

introduce those resources. The other three activities are supported by COFALE without ex-
plicit intervention of the course designer. Those learning activities are proposed to the learner
on the basis of Activity 2.3 presented in chapter 3.

There would be a problem of privacy in the last activity. The current version of COFALE
allows Bob only to explore (not modify) the learning hyperspace (not the personal profile) of
peers. For future research, one can allow the learner to decide whether or not a peer can visit
his or her learning hyperspace, if yes, which kinds of information could be public.

Criterion MP4: When facing a new concept, learners are encouraged to examine, analyze,
and synthesize a diversity of points of view on the new concept.

To satisfy this criterion, COFALE engages Bob to produce summaries of the points of
view of other sources and peers (Figure 6.3: Examples & Summaries). For instance,
COFALE provides Bob with an empty table so that he can state his own definitions of recur-
sion, recursive methods, and recursive problem solving, together with peers' (Figure 6.5).
COFALE supports this activity without intervention of the course designer. This activity is
proposed to the leaner by considering Activity 2.4, shown in chapter 3.
Figure 6.5. Tool provided by COFALE for Bob to produce summaries

Criterion MM3: The number of participants, the type of participant (learner, tutor, expert,
etc.), the communication tools (e-mail, mailing lists, face to face, chat rooms, video confer-
encing, etc.), and the location (in the classroom, on campus, anywhere in the world, etc.) are
varied.

To satisfy this criterion, COFALE encourages Bob to work with others (Figure 6.3: Dis-
cussions), sometimes with the participation of the tutor, by using multiple communication
tools supported by ATutor – thus also by COFALE – such as e-mail, forums, chat rooms.
COFALE also incites Bob to use a Q&A website (Java World, 2004) introduced by the
course designer (see Activity 1.5 in chapter 3) to ask experts questions about recursion. The
platform supports multiple communication tools, but to engage learners to use them, the
course designer has created a forum and invited Bob and his peers to confront and discuss
their recursive examples that they have encountered in their everyday life (Figure 6.6a). Ac-
tivity 2.5 in chapter 3 is taken into account to propose those learning activities to the student.

Page 108

Criterion MP5: During the discussion, learners are encouraged to diversify – as far as pos-
sible – the different points of view about the topic discussed.

To satisfy this criterion, COFALE presents two dropdown lists of general and domain-
specific questions (Figure 6.6b: Areas 1 & 2) that Bob could use to elicit peers’ point of view.
For instance, when Bob sees an example or solution proposed by a peer, Bob can select the
question “What was your source of information?” from the list (Figure 6.6b: Area 1) to ask
the peer to justify the solution (in Figure 6.6b, the question Bob selects is automatically in-
serted in textbox "Body").
Figure 6.6a. A learning forum created by the course designer in COFALE

Figure 6.6b. Tool provided by COFALE for Bob to reply peers' messages

1

2

Page 109

The course designer is asked to prepare a list of general questions and a list of domain-
specific questions (see Activity 1.6 in chapter 3). COFALE supports a list of predefined general
questions proposed by researchers in pedagogy (Appendix B5). Section 7.2.1 describes how the
course designer uses COFALE to make those lists available for students. Activity 2.6 in chapter
3 is considered to propose those tools to the learner.

Criterion MM4: During the learning process, learners are encouraged to use different as-
sessment methods and tools, at different times, and in different contexts for demonstrating
their ability to solve different problems.

At different points in time, for example, after exploring multiple learning situations or af-
ter discussing with peers, Bob is engaged in two assessment activities:

1. Individual tests (Figure 6.3: Tests). Bob confronts a robot situation (Appendix C) in
which the course designer has Bob take a number of tests (Figure 6.7) such that comput-
ing the number of ways the robot can walk n meters and listing all the ways the robot can
walk n meters where n is a positive integer. In Figure 6.7, the upper table presents the
tests prepared by the course designer, and the lower one presents Bob's taken tests and the
scores marked by the tutor for each of these taken tests (Figure 6.7: Area 1). Clicking on
the hyperlink "View Results" attached to each taken test (Figure 6.7: Area 2), Bob can see
the feedback provided by the tutor for the corresponding taken test.

2. Work in small group (Figure 6.3: Collaboration). The course designer engages Bob in a
small group (2 or 3 learners) to solve complex problems in a tree-structured file system
(Appendix C), for instance listing all files and sub-directories in a given directory. To
support this assessment activity, ATutor (thus also COFALE) provides Bob and his peers
with a collaboration hyperspace (Figure 6.8): The learners can use the resources provided
by the course designer (Figure 6.8: Area 1) to solve the given problem. They can submit
their own solutions to a shared place (Figure 6.8: Area 2). They can use multiple commu-
nication tools, shown on the right hand side of Figure 6.8, to run diverse discussions with
members in their group.

Activities 1.4, 2.7, and 2.8 presented in chapter 3 explained how the course designer satis-
fied criterion MM4. In section 7.2.1, I describe the test manager and the collaboration man-
ager provided for the course designer by COFALE.
Figure 6.7. Individual tests proposed to Bob by COFALE

1

2

Page 110

Criterion MP6: During the problem-solving process, learners are encouraged to confront
multiple ways to solve the problem and multiple possible solutions to the problem.
Figure 6.8. Collaboration hyperspace proposed to Bob and his peers by COFALE

In the robot situation, to compute the number of ways the robot can walk n meters (see
Appendix C), Bob is encouraged to use and compare both the iterative method and the recur-
sive one. In the file management (see Appendix C), the course designer exhorts Bob and his
peers to confront and compare different solutions. For example, in the "Drafting Room" (Fig-
ure 6.8: Area 2), Bob and Alice propose two different solutions to the given problems: Bob
first lists the files and sub-directories in the given directory, then in its sub-directories, and
Alice first lists the files and sub-directories in the sub-directories of the given directory, then
in the given directory. They can use a domain-specific tool, JDiff in jEdit (2005), to help
them find out the difference between the two Java implementations. JDiff is rather simple, it
helps detecting the textual difference rather than the actual difference between two Java pro-
grams; so, for future research, one can search for tools that are more effective than JDiff.

Activity 1.4 shown in chapter 3 explained how and why the course designer prepared the
previous assessment situations to satisfy criterion MP6.

In addition to the previous learning situations proposed to Bob, at any time Bob may re-
view his learning behavior or navigation history, supported by ATutor, thus also by COFALE
(Figure 6.9). For instance, after exploring arithmetic expressions, Bob can look again at the
content pages he has viewed, the number of visits for each content page, and the total time he
has used for each content page (see the table shown on Figure 6.9).

Bob can also see the tutor’s feedback (seen on the top of Figure 6.9) on his learning be-
havior with respect to cognitive flexibility. To give Bob feedback on his learning behavior,
the tutor first logs into his learning hyperspace as a peer (Figure 6.3: Peers’ Learning Hyper-
space). Then, the tutor examines Bob' navigation history (Figure 6.9) to see how Bob has
learned the concept of recursion. Finally, the tutor uses a simple text editor supported by

1

2

Page 111

COFALE to give comments to Bob. Activities 2.9 and 3.1 in chapter 3 are considered for this
evaluation activity.
Figure 6.9. Bob's navigation history registered by COFALE

Main result: COFALE provides the learner with learning conditions satisfying all the
criteria for cognitive flexibility.

 6.3.2 Learning with support for adaptability

I shall now assume that two other learners (Ted and Alice, both at the “expert” level) are ac-
tive in the course: They are well versed in the use of COFALE and they have reached the
analysis-synthesis model of the recursion concept. I now describe how COFALE adapts the
learning contents, pedagogical devices, and communication support to the specific needs of
Bob, Ted, and Alice.

Learning contents. COFALE presents each learner with different content pages (Figure 6.10).
For example, because Bob is "novice" and Alice is "expert", COFALE introduces simpler
concepts and propose simpler situations to Bob (e.g., Appendix B1: recursive methods, base
cases, recursive part; Appendix B2: Fibonacci numbers) than to Alice (e.g., Appendix B1:
recursive thinking, iterative thinking; Appendix B2: partition).

To allow COFALE to perform this adaptation, the course designer has first decomposed
the learning content into short content pages; then, the appropriate content pages are selected
for each kind of learner, according to their mental models regarding recursion. This, of
course, is a step in which the teacher’s understanding of the various mental models among
learners is essential. For example, Fibonacci numbers (Appendix B2) are proposed to the stu-
dents with the loop model on recursion because this situation may help them master the dif-

Page 112

ference between recursion and iteration, and partition (Appendix B2) is suggested to the stu-
dents with the analysis-synthesis model on recursion because this situation may help them
understand how to build recursive solutions to complex problems (see also section 3.3.1).
Section 7.3.2 presents an authoring tool in COFALE enabling the course designer to define
those associations (mental models – learning contents).
Figure 6.10. Part of the learning content proposed to Bob (left) and Alice (right) by COFALE

Pedagogical devices. Because Bob is a “novice” and Ted and Alice are “experts”, we must
guide and encourage Bob much more than Ted and Alice in the learning process. For in-
stance, COFALE suggests 10 activities (Figure 6.3) to Bob but only 5 "advanced" tasks to
Ted and Alice (Figure 6.11): Alice and Ted are versed in the use of COFALE, so COFALE
does not present them with the three learning activities "Next Page", "Related Topics", and
"Learning History" (Figure 6.11).
Figure 6.11. Learning activities proposed to Alice and Ted by COFALE

To make this possible, COFALE provides the course designer with a specific tool (see
section 7.2.2) so that he or she can define, for each content page, the appropriate learning ac-
tivities for each type of learner.

Communication support. While learning with COFALE, learners can use a tool to search for
peers who could help them overcome difficulties about acquiring the concept of recursion;

Page 113

COFALE may, for instance, suggest Ted and Alice to Bob (Figure 6.12) so that he can ask
them questions about simple problems; COFALE may suggest Ted to Alice so that they can
exchange ideas about advanced recursive techniques. Moreover, students could use "Ad-
vanced Search" (seen at the top-middle of Figure 6.12) to find particular peers by introducing,
for example, their name, gender, mental models.
Figure 6.12. Appropriate peers proposed to Bob by COFALE

The course designer needs to define, for each kind of learner (according to the assumed
mental model), the appropriate peers (e.g. learners with more advanced mental models for
learners with less advanced ones). COFALE also supports an instructor tool for this purpose
(see section 7.3.2).

In addition to the previous three types of adaptation support, COFALE also supports goal-
based learning (Henze & Nejdl, 2001; Masie Center, 2003): It adapts the learning hyperspace
to the learner's current learning objective. For example, moving from the learning hyperspace
of recursion to the one of linked lists (or vice versa), the learner is presented with the learning
situations, learning activities, and tests that are exclusively designed for linked lists (or recur-
sion).

It should be noted that, at the beginning of the course, the course designer sets a default
model for every new learner (e.g., the loop model in the case of recursion). During the learn-
ing process, three kinds of evaluations of mental models may be performed:

1. Self-evaluation. For instance, after exploring situations and doing tests, Bob could iden-
tify that he possesses the analytic model (Figure 6.13).

2. Evaluation by the tutor. For example, after evaluating Bob’s tests and learning behavior,
the tutor could diagnose that Bob possesses the syntactic model (Figure 6.13).

3. Evaluation by COFALE. For instance, on the basis of Bob’s test results provided by the
tutor, COFALE could detect that Bob possesses the syntactic model (Figure 6.13).

At certain times, for example after a test, learners may be asked to update the information
about their mental model and choose one of the three kinds of evaluation they prefer. Bob, for
instance, decides to always rely on his own evaluation (Figure 6.13: My favorite evaluator).
COFALE will immediately adapt the learning contents, pedagogical devices, and communi-
cation support to the learners’ new mental model.

Page 114

In section 7.3.1, I detail the way and the tools provided for the course designer to manage
learners' mental models. Note that the previous three kinds of evaluation have been used in a
number of adaptive learning systems (Brusilovsky, 1999; Henze & Nejdl, 2001; Weber &
Brusilovsky, 2001).
Figure 6.13. Learner model manager proposed to Bob by COFALE

Main result: COFALE adapts the learning contents, pedagogical devices, and commu-
nication support to different kinds of students, according to their mental models.

6.3.3 Other learner tools

A part from the previous learning conditions proposed for Bob, COFALE also provides him
with many other learning tools (Figure 6.14). In Figure 6.14, many tools are originally sup-
ported by the ATutor system, only the tools next to the arrows are COFALE's.

Page 115

Figure 6.14. A subset of learner tools proposed to Bob by COFALE

6.4 COFALE and criteria of Jonnaert and Vander Borght

In this section, I use the set of criteria proposed by Jonnaert and Vander Borght for the con-
cept of learning, according to their socio-constructivist and interactive (SCI) model (see sec-
tion 2.5), to analyze the concept of learning that was described through Bob's learning proc-
ess illustrated in section 6.3.1. Table 6.1 shows that the concept of learning I described earlier
in COFALE satisfies all the criteria proposed by Jonnaert and Vander Borght for the three
dimensions in their SCI model. So, I may conclude that my educational approach is consis-
tent with this SCI model.

Page 116

Table 6.1. Conformity of the definition of learning in COFALE with Jonnaert and Vander Borght's criteria

Dimensions Criteria Analysis Comments
(1.1) Who is the actor of the learn-
ing?

The
student

This aspect is explicit: Bob is the main
actor and he actively manages his own
learning.

(1.2) Does the student learn on the
basis of his prior knowledge?

Yes Bob learns recursion on the basis of
his prior knowledge such as iterations
and linked lists.

(1) Constructivist

(1.3) Does learning have a meaning
for the student?

Yes Recursion is a very important concept
in computing science.

(2.1) Does the student learn through
interactions with peers?

Yes Bob runs discussion with Alice and
Ted through e-mail, forums, chat
rooms.

(2.2) Does the student learn through
interactions with the teacher?

Yes The teacher participates in students'
discussion to facilitate their learning.

(2) Socio

(2.3) Are the zones of dialogue de-
fined to allow interactions among the
students, the teacher, and the learn-
ing object?

Yes Forums, chat rooms, collaboration
hyperspaces related to the current
learning object.

(3.1) Does the student learn from
situations?

Yes Bob learns recursion in arithmetic ex-
pressions, simple text search, etc.

(3.2) Does the student have to dis-
cover the learning object in these
situations?

Yes Bob has to examine multiple learning
situations to be able to master the
recursion concept.

(3.3) Does the student have to inter-
act with these situations and the
learning object?

Yes Bob is exhorted to do many learning
activities at the end of each situation,
for instance to add personal com-
ments.

(3.4) Does the environment permit to
establish a distinction between the
learning object and the student’s
knowledge?

Yes Bob adds his own comments, exam-
ples, and produces summaries related
to the current learning object.

(3) Interactive

(3.5) Are there interactions between
the learning object and the student’s
knowledge?

Yes While adding recursive examples, Bob
is encouraged to establish the links
between his prior knowledge with new
knowledge.

6.5 Discussion

The previous presentation of COFALE's conditions of learning shows, not surprisingly, that
the recursion course in COFALE satisfies all 10 criteria for cognitive flexibility. It should be
noted that there is not any comparison, either implicit or explicit, between an example of use
of COFALE, which satisfies all of 10 criteria, and the examples of use of learning systems I
analyzed in section 5.2, which satisfy about a half of the criteria. The point I make here is that
we can exploit ICT to satisfy all of the criteria for cognitive flexibility and that the impor-
tance should be in the quality rather than in the quantity (see the discussion in section 2.4.5).

If the student's learning process occurs in a similar way as described earlier, we would
draw two principal conclusions. Firstly, the student’s process of knowledge construction
could be visible, that is, learners actively construct their own knowledge through their own
learning activities. For example, Bob actively give comments on the learning content pro-
vided by the course designer, Bob actively produces summaries on multiple points of view by

Page 117

peers and by other people. Secondly, the student is expected to learn both what (e.g., to apply
recursive techniques to solve diverse problems) and how (e.g., to express personal points of
view, elicit peers’ points of view, produce summaries on different points of view). That is
why I would say the pedagogical principles underlying cognitive flexibility reflect the basic
characteristics of constructivism, as Spiro and colleagues (1988, 1990, 1991) stated. I discuss
this issue further in the evaluation of COFALE presented in chapter 9.

Apart from exploiting the desired characteristics of cognitive flexibility, COFALE also
supports adaptation for different kinds of learners. Although COFALE implements several
simple adaptation techniques borrowed from other adaptive learning systems (see section
5.3), it provides learners with scaffolding: It adapts the learning contents, pedagogical de-
vices, and communication support to the mental model of each individual student. For exam-
ple, when a particular learner is "novice", COFALE presents him or her with simple exam-
ples, situations, and tasks. And when the learner develops a higher mental model, COFALE
provides him or her with more complex examples, situations, and tasks.

In section 1.4, I presented other facets of constructivism than cognitive flexibility (e.g.,
problem solving) and other adaptation techniques than the ones demonstrated in section 6.3.2
(e.g., adaptive problem-solving support). To make learning environments such as COFALE
more completely constructivist and adaptive, we should also exploit other constructivist fac-
ets and other adaptation techniques. For example, we should integrate specific tools similar to
the ones provided by the PETAL system (Bhuiyan et al., 1994) into COFALE to support re-
cursive problem solving by learners. PETAL supports three programming environment tools
(PETs): the Syntactic PET (Figure 6.15), the Analytic PET, and the A/S PET that externalize
the problem-solving process of the syntactic method, the analytic method, and the analysis-
synthesis method (see section 6.2.1), respectively. Such externalization helps learners con-
centrate on recursive problem solving, and therefore significantly improve the ability to solve
problems recursively.

Page 118

Figure 6.15. Syntactic PET proposed to learners by PETAL.

"[A learner wants to write a recursive function in LISP, Findb, which returns true if a B is present on
the top level of a list. The] learner using this PET constructs a recursive template consisting of base
case(s) and recursive case(s). Next he or she fills in the case slots with problem-specific code chunks. In
order to assist the learner, the Syntactic PET provides a menu of available code chunks specific to the
selected problem. The code chunks for a particular problem are created in advance by the domain ex-
pert. Several extra code chunks are included in the PET as distractors. Once the selected code chunks
have been placed into the template by the learner, the corresponding LISP code can be generated auto-
matically by the PET." (Bhuiyan et al., 1994)

In the next chapter, I describe a set of authoring tools in COFALE allowing one to design
learning environments such as the one I presented in this chapter. I show that COFALE is a
domain-independent learning platform, meaning that it may be used for teaching a large
number of various subjects, from mathematics and sciences to economics and literature.

Note: One can explore COFALE’s demonstration course on recursion at the following
address: http://renoir.info.ucl.ac.be/elearning/Cofale/login.php. In section 8.4,
I provide information about how to download and use the COFALE system.

Page 119

CHAPTER 7

7 COFALE: Instructional design tools

"Give me a long enough stick and a place to stand and I will move the world."

Archimedes, Greek Scientist, 287(?) – 212 B.C. (cited in Suomela, 2005)

(Reference to Appendices B & C)

In this chapter, I present a set of instructor tools provided by COFALE for the course de-
signer to devise adaptive learning situations leading to cognitive flexibility. After reading the
present chapter, one should be able to design and use adaptive learning environments sup-
porting cognitive flexibility. One could also understand that operational criteria for cognitive
flexibility may be effectively used as guidelines for devising learning situations fostering
cognitive flexibility.

Page 120

Summary
7.1 Introduction

7.2 Authoring tools for supporting cognitive flexibility

7.3 Authoring tools for supporting adaptability

7.4 Discussion

7.1 Introduction

Chapter 3 presented an instructional design process for creating learning conditions fostering
cognitive flexibility. Chapter 6 illustrated, in an ICT-based learning environment (COFALE),
a process of learning with support for cognitive flexibility and with support for adaptability.
The present chapter aims at describing a set of authoring tools in COFALE that allows one to
design learning environments such that the one shown in chapter 6 by following the design
process explained in chapter 3.

COFALE supports many instructor tools for creating and managing courses. In this chap-
ter, however, I describe only the essential tools for implementing the learning conditions
demonstrated in section 6.3. In Figure 7.1, the three tools next to the three arrows are CO-
FALE's, and the other tools are ATutor's. Hereafter, except for those three tools, when I say a
tool is supported by COFALE, the tool is originally provided by ATutor.

To understand more about all of the tools provided by COFALE, one should read ATu-
tor's "How To Course" (Adaptive Technology Resource Center, 2004). Note that the tools
provided by COFALE facilitate the design of goal-based learning; that is, organizing the
learning materials concentrated around specific learning objectives (Henze & Nejdl, 2001;
Masie Center, 2003).

To help the reader understanding this chapter, I clarify the following concepts:

• The course designer is the person who makes a course available in COFALE, for exam-
ple to create the learning content.

• The tutor or teacher is the person who participates in COFALE to facilitate students'
process of knowledge construction and transformation, for instance to evaluate students'
tests and learning behavior and to give them feedback.

• The instructor is either the course designer or the tutor or the teacher.

• The software developer is the person who develops COFALE, for example to add a soft-
ware component to COFALE.

Page 121

Figure 7.1. Subset of instructor tools proposed to the course designer by COFALE

7.2 Authoring tools for supporting cognitive flexibility

In this section, I describe a certain number of instructor tools provided by COFALE allowing
the course designer to create the learning conditions presented in section 6.3.1 for fostering
cognitive flexibility. To present those authoring tools in a systematic manner that is consis-
tent with the instructional design process shown in section 3.3, I organize this section into
three sub-sections: (a) tools for the pre-active phase, (b) tools for the interactive phase, and
(c) tools for the post-active phase. In each of the three phases, and for each activity in the
phase (see Table 7.1), I show the tools helping the construction of learning conditions men-
tioned in the activity.

Page 122

Table 7.1. Instructional design process for cognitive flexibility

See section 3.3 to understand why the design process consists of three phases.

Pre-active phase

Activity 1.1: Prepare the learning content for the underlying concepts.

Activity 1.2: Prepare a diversity of meaningful learning situations emphasizing the nature of the underlying con-
cepts.

Activity 1.3: Prepare learning contents for the concepts that are related to the underlying concepts.

Activity 1.4: Prepare assessment situations both for individual tests and for tests in groups. The nature of these
situations should stimulate multiple points of view.

Activity 1.5: Prepare diverse means for engaging the tutor, learners, and other people in exchanges.

Activity 1.6: Prepare a list of general discussion questions and a list of domain-specific discussion questions.

Activity 1.7: Prepare multiple external resources related to the underlying concepts.

Interactive phase

Activity 2.1: Engage learners explicitly in performing multiple learning activities related to the underlying con-
cepts.

Activity 2.2: Encourage learners explicitly to study the concepts that are related to the underlying concepts.

Activity 2.3: Encourage learners explicitly to examine different interpretations of the underlying concepts (by
other authors and by peers), to express their personal points of view on the underlying concepts, and to give
feedback on the points of view of other people.

Activity 2.4: Stimulate learners explicitly to treat a diversity of points of view on the underlying concepts.

Activity 2.5: Encourage learners explicitly to run a variety of discussions with other people in different contexts.

Activity 2.6: Make available tools so that learners can actively express their personal points of view and stimu-
late those of other participants during the discussion.

Activity 2.7: Encourage groups of learners explicitly to do assessment in groups, to confront and compare multi-
ple points of view.

Activity 2.8: Encourage learners explicitly to do assessment individually, to confront and compare multiple points
of view.

Activity 2.9: During the learning session, observe and evaluate the learning behavior of each learner with re-
spect to cognitive flexibility, so as to provide him or her with appropriate feedback.

Post-active phase

Activity 3.1: Evaluate the learning behavior and outcomes formatively for each learner, and communicate both
the result of the analysis process and feedback explicitly to him or her, keeping a positive regard on his or her
knowledge.

Activity 3.2: Evaluate the teaching behavior with respect to cognitive flexibility.

7.2.1 Tools for the pre-active phase

Activities 1.1 and 1.2. To help the course designer in these two activities, COFALE provides
a hypermedia editor (Figure 7.2). This editor allows the course designer to create different
types of discrete pieces of learning content or hypermedia pages. With the help of the editor,
the course designer finds it easy, for instance, to format a hypermedia page and to insert a

Page 123

hyperlink to a resource such as a website, an image, an audio or video file into a hypermedia
page (see the formatting toolbars on the middle of Figure 7.2). The course designer can also
import (see the button "Upload" on the top of Figure 7.2) a HTML file he or she creates with
a specific Web design tool such as MSWord or Netscape Composer. If the course designer is
versed in HTML, he or she can switch the editor to a text mode (see the button "Switch to
text editor" above the formatting toolbars in Figure 7.2) and then modify the structure as well
as the content of the HTML file, for example, insert a simulation written in Javascript into the
HTML file (see ATutor's "How To Course" for more details).
Figure 7.2. A Web tool provided by COFALE for the course designer to create learning contents

In the design of the learning content, particularly in the context of e-Learning, the course
designer should take into account the concept of learning objects introduced in section 4.2.
There is no universal acceptance among educational technologists of the definition of learn-
ing objects. So, I present here my definition that is close to the one proposed by Masie Center
(2003):

• An asset is learning content in its most basic form such as electronic media, text, images,
and sound. The learning content shown in Figure 7.2, for instance, would have two assets:
a paragraph of text and an image.

• A sharable content object is the lowest level of granuality of learning content that can be
tracked by a learning content management system such as ATutor, for example, the learn-
ing content presented in Figure 7.2 as being a hypermedia page.

Page 124

• An information block is a set of sharable content objects organized to present concepts,
learning situations, and so on. In Figure 6.1, "Arithmetic expressions" consisting of a tex-
tual definition, two simulations, and a Java implementation, "Basic concepts" regrouping
the concepts underlying recursion, and "Learning situations" that regroups different learn-
ing situations for recursion are examples of information blocks.

• A learning object is a set of information blocks or sharable content objects organized to
meet a particular learning objective. For example, "Recursion" shown in Figure 6.1 is as-
sembled by "Basic concepts" and "Learning situations" to help students develop the abil-
ity to solve problems recursively. "Linked lists" illustrated in Figure 6.2 is constituted by
"Basic concepts" and "Learning situations" to help students develop the ability to use
linked lists to represent different kinds of information data.

The careful decomposition of the learning content into sharable content objects is impor-
tant because it may take several easy-to-see advantages (Masie Center, 2003), as follows:

• Design of goal-based learning. Because of the flexibility of fine-grained content objects,
the course designer finds it easy to assemble and reassemble them to meet a certain learn-
ing objective. For instance, it is easy for him or her to modify the structure as well as the
content of the learning object "Recursion" shown in Figure 6.1 or "Linked lists" shown in
Figure 6.2.

• Personalization of learning contents. It is also straightforward for the course designer to
personalize the content within a learning object for different kinds of students (see also
section 7.3.2).

• Reusability. The course designer can reuse certain content objects designed for an exist-
ing learning object to create a new one. For instance, he or she can reuse the situation
about simple text search (Appendix B2) designed for recursion in the design of linked
lists.

It is worth noting that COFALE provides a number of tools (see ATutor's "How To
Course") for the management of content objects that are compliant with the IMS/SCORM
standard (Advanced Distributed Learning, 2004). For example, COFALE supports a specific
tool allowing the course designer to introduce the metadata for the content object such as
keywords and release date, which are compliant with the learning object metadata proposed
by IMS (Advanced Distributed Learning, 2004). More discussions about the concepts of
learning objects and metadata, and theirs usefulness are presented in section 4.2.

COFALE also provides "Move" tools, shown on the left hand side of Figure 7.3, to help
the course designer rearrange the order in which content objects are presented to students; for
instance, to specify that the "Arithmetic expressions" content object (Figure 7.3: Area 1) is a
sub-topic of the "Learning situations" one (Figure 7.3: Area 2), the "Arithmetic expressions"
content object must precede the "Fibonacci numbers" and "Simple text search" ones (Figure
7.3: Areas 3 & 4) in the list of content objects provided for the learner (see also Figure 6.1),
and so on. Now, if the course designer wants to place "Arithmetic expressions" after "Fibo-
nacci numbers", he or she should click on the small icon shown at Area 5 of Figure 7.3.

Page 125

Figure 7.3. A Web tool supported by COFALE for the course designer to define relationships among content
objects

Activity 1.3. In addition to the previous tools proposed to the course designer for preparing
the learning content of related concepts, COFALE provides him or her with a tool "Related
Topics" (seen on the right hand side of Figure 7.3) to define the content objects that are re-
lated to the one the course designer is editing. For example, to associate the introduction of
"simple text search" (Figure 7.3: Area 4) with the introduction of "arithmetic expressions"
(Figure 7.3: Area 1), the course designer selects the checkboxes next to the content object
whose title is "simple text search" (Figure 7.3: Area 4). On the basis of this association,
COFALE presents the hyperlink in the menu "Related Topics" (see Figure 6.1).

Presently, the relation "Related Topics" is symmetric in COFALE, meaning that when the
course designer associates content object A with content object B, COFALE automatically
associates content object B with content object A. Sometimes, this automatic association may
be inconvenient, for instance, if the course designer wants a hyperlink to the definition of re-
cursion to be presented in the menu "Related Topics" when COFALE shows the introduction
of simple text search but not vice versa. For future research, one can modify COFALE so that
the course designer can specify whether an association is symmetric or not.

1

2

3

4

5

Page 126

Activity 1.4. In support of this activity, COFALE provides the course designer with a test
manager (Figure 7.4). To create a new individual test, the course designer introduces an as-
sessment situation (e.g., the robot situation presented in Appendix C), a passing score (e.g.,
12/20 or 60%), one or more questions (e.g., 4 questions of Test 1 in Appendix C), and some
other information such as start and end dates. At the present, COFALE supports three types
of questions: multiple-choice questions, true or false questions, and open-ended questions
whose answer size is one word or one sentence or one short paragraph (e.g., questions of
Tests 1 and 5, Appendix C) or one page (e.g., questions of Tests 2, 3, 4, 6 in Appendix C).
For future research, one can add other kinds of quizzes to COFALE such as matching ques-
tions (e.g., in the learning of languages, we ask the learner to find appropriate sentences in a
column to match sentences in another column) and fill-in-the-blank questions (e.g., in the
learning of languages, we ask the learner to complete sentences).
Figure 7.4. Test manager proposed to the course designer by COFALE

COFALE also supports the tools (Figure 7.5) enabling the course designer to create as-
sessment situations in groups. For example, the course designer can constitute different
groups of learners, and present them (see "Library" on Area 1 of Figure 7.5) with certain
problems in the situation about file management and a brief specification of the class File in
Java, which could be useful for them to solve the given problems (see Appendix C).
Figure 7.5. A Web tool provided by COFALE for the course designer to create collaboration hyperspaces

1

Page 127

Activity 1.5. In support of this activity, COFALE supports a certain number of communica-
tion tools: e-mail, forums, and chat rooms. The course designer, however, should prepare
several forums in advance. For instance, in Figure 7.6, the course designer creates a forum to
engage students in the confrontation of their own recursive examples.
Figure 7.6. A Web tool provided by COFALE for the
course designer to add a forum

Figure 7.7. Discussion questions manager proposed
to the course designer by COFALE

Activity 1.6. To help the course designer in this activity, COFALE supports a built-in list of
general questions (shown in the middle of Figure 7.7) proposed by educational theorists (see
Appendix B5). The course designer and the tutor may also propose their own list of questions
by using the tools seen on the bottom of Figure 7.7. To create a particular list of questions for
a certain learning objective, the course designer first selects the learning objective from a
dropdown list (e.g., recursion seen at the top of Figure 7.7), then selects the appropriate ques-
tions in the list proposed by COFALE as well as in his or her own list, and adds them to the
list of questions seen on the top of Figure 7.7 for the selected learning objective.

To help the course designer make a list of domain-specific questions for a particular
learning objective, COFALE also provides him or her with a tool similar to the one presented
in Figure 7.7 (except that COFALE cannot support predefined domain-specific questions).

Activity 1.7. COFALE offers several tools (Figure 7.8) allowing the course designer to intro-
duce the learner to external resources. The course designer can create different categories of
external resources, for example, "References Books" and "Web Sites". In each category, he or
she can add one or more references or hyperlinks, together with their descriptions, for in-

Page 128

stance, the first link in the category "Reference Books" and the last three links in the category
"Web Sites" (Figure 7.8). The course designer can also approve (or disapprove) references or
hyperlinks suggested by the learner, for example, the second link (Figure 7.8) proposed by
the student Bob.
Figure 7.8. External resources manager proposed to the course designer by COFALE

7.2.2 Tools for the interactive phase

Activity 2.1. COFALE supports a set of predefined learning activities (Figure 7.9). Most ac-
tivities are associated with a hyperlink, so that when an activity is presented to learners (see
Figure 6.3), they can go directly to the pedagogical device(s) corresponding to the activity
through this hyperlink. For example, the activity "Other Resources" (Figure 7.9: Area 1) is
associated with the hyperlink to the pedagogical device "Resources" (Figure 7.8), so that
learners can access this pedagogical device directly while they are exploring arithmetic ex-
pressions (see Figure 6.3). The software developer stores those hyperlinks in a particular da-
tabase in COFALE in advance.

To define, for each type of learner and for each learning activity, the appropriate content
pages (objects) to which the activity is related, the course designer first clicks on the com-
mand "Edit" next to the activity, for example "Examples & Summaries" (Figure 7.9: Area 2).
Then, the course designer selects a particular kind of learner or all kinds of learners from a
dropdown list, for instance the loop model shown at the top-right of Figure 7.10. Then, the
course designer selects a learning objective to show all the content objects designed for the
learning objective (Figure 7.10). Finally, the course designer selects the checkboxes next to
the content pages he or she wants to associate with the learning activity "Examples & Sum-
maries" (Figure 7.10). COFALE will present the students possessing the selected model
("Loop") with the selected learning activity ("Examples & Summaries") at the bottom of the
selected content pages, for example "Java test class", the last item of arithmetic expressions
(see Figures 7.10, 6.3).

Page 129

Figure 7.9. Predefined learning activities proposed to the course designer by COFALE

Figure 7.10. A Web tool provided by COFALE for the course designer to define, for the students with the loop
model on recursion, the content objects to which the learning activity "Examples & Summaries" is related

The previous design activity must be done before the student's learning session (say, in
the pre-active phase). The previous tools, however, are related to Activity 2.1; so, I consider
them as tools for the interactive phase. Note that in a virtual learning environment such as
COFALE, the human tutor is not always present during the student's learning process, as in a
traditional class, to suggest to the student what to do next. Therefore, the course designer

1

2

Page 130

should prepare learning activities in advance, as I described earlier, so that COFALE can pre-
sent them to the learner at appropriate points in time to encourage him or her (see Figure 6.3).

Activities 2.2 – 2.8. After the course designer has carefully prepared different learning mate-
rials and has defined relationships among them, as described earlier, COFALE can help the
student execute the learning tasks mentioned in Activities 2.2 – 2.8 (see section 6.3.1). For
instance, for Activity 2.2, on the basis of the associations among content objects defined by
the course designer, COFALE automatically generates the hyperlinks in the menu "Related
Topics" (Figures 6.1 and 6.2) to stimulate the learner to explore related concepts or situations.
During the student's learning process, however, the tutor should be active and use the avail-
able tools to facilitate the student's learning. For example:

• According to Activity 2.3, the teacher should often visit the hyperspace "Resources"
(Figure 7.8) to approve (disapprove) the learner's proposals for external resources.

• Regarding Activities 2.5 and 2.6, sometimes the tutor should participate in students' fo-
rums and chat rooms to facilitate and stimulate students' discussions.

• According to Activity 2.7, the tutor should monitor the work of each group to give stu-
dents appropriate feedback via e-mail.

• Regarding Activity 2.8, the teacher should often visit the test manager (Figure 7.4) to
evaluate students' individual tests and provide them with feedback through e-mail.

Activity 2.9. In support of this activity, COFALE presents the teacher with a special tool
"Course Tracker" (see ATutor's "How To Course") allowing him or her to see how a particu-
lar student uses COFALE (see also Figure 6.9). By analyzing these data about the student's
navigation history, for instance by using the checklist shown in Table 3.3, the teacher knows
whether or not the student explores COFALE in a manner consistent with cognitive flexibil-
ity (as described in section 6.3.1), so as to give him or her appropriate feedback, for instance
via e-mail.

Furthermore, the teacher could log onto the student's learning space (Figure 6.3: Peers'
Learning Hyperspace) to understand more about how the student learns, for example, to see
comments, examples, summaries, tests, work in groups, discussions the student made or done
during his or her learning process. The teacher could also provide the student with feedback
directly in his or her own space "My Tracker" (see Figure 6.9).

For future research, one can modify COFALE so that the teacher can give feedback to a
particular student by adjusting the student's learning hyperspace directly, for example to in-
sert a particular hyperlink in the student's learning hyperspace to exhort him or her to do a
certain learning activity.

Also for future research, it should be useful to detect students' learning methods (or
strategies) during their learning process in order to adjust teaching and to give feedback to
students. For example, analyzing students' learning behavior, the teacher knows that most
students tend to find and do exercises and tests before exploring the learning content (see sec-
tion 9.4.3). Therefore, it may be useful to make explicit hyperlinks to learning situations in
the assessment hyperspace and vice versa.

Page 131

7.2.3 Tools for the post-active phase

Activity 3.1. The tutor can use here the same tools as provided for Activity 2.9. At the end of
the learning session of a particular student, however, the tutor should carefully analyze the
student's overall learning process (i.e., his or her navigation history, personal examples, com-
ments, summaries, tests, etc.), and communicate the result of the analysis process to the stu-
dent.

The evaluation work that is individualized for each student is hard work for the teacher,
especially if the number of students is large. Therefore, for future research, one can develop
several specific tools for COFALE to alleviate the teacher's workload. For example, one can
integrate an automatic evaluation tool into COFALE to detect a particular student's "level" of
exploring COFALE with respect to cognitive flexibility, according to the data of his or her
navigation history that COFALE collects. This tool should be able to identify which criterion
or criteria for cognitive flexibility the learner does not satisfy in order to give him or her ap-
propriate feedback or adjust the learning hyperspace for him or her, in an automatic manner.

Activity 3.2. Presently, the tool "Course Tracker" (see ATutor's "How To Course") enables
the course designer to review two statistics:

1. "Tools Usage" that shows, for each tool (e.g., resources, chat, forum), the number of hits
and average duration of all hits. For each tool and for each hit, it also indicates the date,
the duration, the learner, and the originating source (e.g., the content page) from which
the learner goes to the tool.

2. "Content Tracking" that shows, for each content page (e.g., "Arithmetic expressions",
"Java test class"), the number of hits and average duration of all hits. In addition, for each
content page and for each hit, it indicates the date, the duration, the learner, and the access
method, for example, via "Local Menu" or "Related Topics".

On the basis of those data, the course designer, the educational researcher, and the soft-
ware developer may know the effectiveness of a particular tool or content page, so as to im-
prove the current course as well as COFALE. For instance, the course designer can detect
that every learner explores a certain content page within a very short time, maybe because it
is not compelling; this is a signal for the course designer to improve the content of that page.

For future research, it is useful to provide the course designer, the educational researcher,
and the software developer with two specific tools that can help them measure and compare
the "level" of support for cognitive flexibility of different courses, according to the set of cri-
teria for cognitive flexibility (see also the checklist presented in Table 3.5). The first tool will
help them view statistics indicating the "level" of support for a certain criterion for cognitive
flexibility of the learning conditions they prepare. For instance, for criterion MM1, how often
text, images, simulations, and Java programs are prepared for different concepts. The second
tool will use and analyze the data collected by "Course Tracking", as described previously, to
present them with statistics illustrating the effectiveness of the learning conditions provided
for learners, regarding the set of criteria for cognitive flexibility. For example, for each crite-
rion for cognitive flexibility (e.g. MP2), the tool should be able to show how many percent of

Page 132

the students respect the criterion (e.g., 80 percent of the students explore linked lists) and how
the students satisfy the criterion (e.g., the students explore linked lists several times via the
menu "Related Topics"); so, the course designer can conclude that the menu "Related Topics"
is useful. The reader should refer back to the checklists presented in Tables 3.3 and 3.5 for
this issue.

Main result: COFALE provides the course designer with a set of authoring tools for
designing and using learning environments supporting cognitive flexibility.

7.3 Authoring tools for supporting adaptability

To implement adaptation support in COFALE, as in any adaptive learning system, the course
designer should take into account learner models carefully (Brusilovsky, 1999; Brusilovsky
& Peylo, 2003; Murray, 1999). The learner model of a particular student represents, for in-
stance, the student's personal information and preferences, learning history, test results
(Henze & Nejdl, 2001; Weber & Brusilovsky, 2001). Because one of the goals for designing
COFALE is to make it as domain-independent as possible, learner modeling in COFALE is
rather primitive. In the next paragraphs, I present several tools to help the course designer
manage learner models and set up adaptation support for different kinds of students.

Key concept: Learner model is a representation of the student's personal information
and preferences, learning history, test results, and so on.

7.3.1 General tools for managing learner models

Modeling the learner. In the COFALE environment, I represent each student by a learner
model. Each learner model consists of several parts. Each part represents certain characteris-
tics of the student. One should explore ATutor's "How To Course" to understand how
COFALE manages the student's personal information and preferences, learning behavior (or
navigation history), and test results. In this section, to explain how to implement the adapta-
tion support described in section 6.3.2, I present the course designer with the tools and guide-
lines for manage two important parts of learner modeling, as follows:

1. Mental models. I explained this characteristic of the student in sections 1.5.3 and 6.2.1.

2. Skill in using COFALE to explore the current learning objective. I distinguish two levels:
"novice" and "expert". The "novice" level indicates that the student is not yet familiar
with the way COFALE presents the current learning objective (e.g., recursion), and the
"expert" level states that the student understands quite well how to explore the current
learning objective in COFALE.

Creating components of learner models. In the learner model manager provided by COFALE
for the course designer and the tutor (Figure 7.11), I define a component of learner models to
be a mental model or a skill level of using COFALE to explore the current learning objective.

Page 133

COFALE supports a tool "Add New Component" (Figure 7.11: Area 1) allowing the course
designer to add a new component of learner models. For instance, in Figure 7.12, the course
designer introduces the description of the loop model on recursion and sets it as default for
the course on recursion. When a component is set as default, COFALE will automatically as-
sign it for every new learner (see also section 6.3.2). After creating four mental models on
recursion and two skill levels of using COFALE to explore the concept of recursion, the
course designer obtains a set of six components of learner models on the particular course on
recursion (Figure 7.11).
Figure 7.11. Learner model manager proposed to the course designer by COFALE

Figure 7.12. A Web tool provided by COFALE for the course designer to add a new component of learner
models

Defining constraints of components of learner models. To keep consistency of learner mod-
els, COFALE presents the course designer with an explicit tool (Figure 7.13) to define exclu-
sion relations among components of learner models: "C1 R C2" means that a particular stu-
dent cannot possess C1 and C2 at the same time; this relation is symmetric ("C1 R C2" => "C2
R C1"), but not reflective ("C R C") and not necessarily transitive ("C1 R C2" and "C2 R C3"
=> "C1 R C3"). In Figure 7.13, to define Mi excludes Mj, the course designer selects the
checkbox found at the cell (i,j): the four mental models on recursion exclude each other, and
the two skill levels of using COFALE to explore the recursion concept exclude each other.
Those definitions help COFALE to prevent the user (the student or the tutor) from selecting,
for instance by accident, two or more mutually exclusive components of learner models for a
certain student, so that COFALE can perform adaptation support accurately.

Updating the learner model for a particular student. At a given moment in the process of
learning a particular concept (e.g., recursion), there are two components associated with a

1 2

Page 134

particular student: a skill level of using COFALE to explore the current learning objective
and a mental model (I assumed in section 6.2.1 that each student possesses one mental model
on recursion at a given point in time). For instance, Bob, a new learner of the COFALE envi-
ronment, possesses the loop model on recursion and the "novice" level of using COFALE to
explore the course on recursion provided by COFALE. During the learning process of a cer-
tain student, the tutor can update the student's learner model by using a tool "Edit Learners'
Own Models" (Figure 7.11: Area 2). For example, after evaluating Bob's tests and learning
behavior, the tutor could diagnose that he has reached the syntactic model on recursion and
the "expert" level of using COFALE, so the tutor updates his or her evaluation of Bob's
learner model (see also section 6.3.2).
Figure 7.13. A Web tool supported by COFALE
for the course designer to define the exclusion
relations among components of learner models

Figure 7.14. A Web tool provided by COFALE for the
course designer to define the logic expression for the auto-
matic diagnosis of the loop model on recursion

To help COFALE automatically detect the student's mental model, for each mental
model, the course designer must define a logic expression in which the variables are the stu-
dent's results of individual tests. In a textbox of Figure 7.14 (Area 1), for example, the course
designer introduces an expression to allow COFALE to automatically detect the loop model
on recursion of a particular student: If the student passes test T1 but not tests T2, T3, and T4,
then he or she possesses the loop model on recursion.

Note that students can also evaluate their learner model by themselves (see section 6.3.2).
Therefore, at any time, there are three evaluations for a particular student's learner model:
self-evaluation, evaluation by the tutor, and evaluation by COFALE. At a given time, how-
ever, the system takes into account only one evaluation to perform adaptation. This evalua-
tion is selected either by the student (see section 6.3.2) or by the tutor when he or she edits
the student's learner model. In a constructivist point of view, I think, the tutor should respect
the student's choice.

7.3.2 Tools for implementing adaptation support

Adaptive presentation of learning contents. As mentioned in section 6.3.2, to allow COFALE
to perform this adaptation, the course designer must decompose the learning content into
fine-grained content objects or pages (see also section 7.2.1); then, the course designer selects

1

Page 135

the appropriate content objects for each kind of students, according to their mental models.
COFALE provides the course designer with a specific tool (Figure 7.15) to help him or her in
this work. For instance, in Figure 7.15, the course designer selects the checkboxes next to the
content objects he or she wants to present to the students with the loop model on the recur-
sion concept (see also section 6.3.2). Note that although there are two values associated to a
particular student (a mental model on the current concept and a skill level of using COFALE
to explore the current learning objective), only the student' mental model is considered to per-
form adaptive presentation of learning contents because there would be no relationship be-
tween the second value and this kind of adaptation (the same learning content should be pre-
sented to both students with "novice" level and students with "expert" level of using
COFALE).
Figure 7.15. A Web tool provided by COFALE for the course designer to define appropriate learning contents
for a particular kind of learners

The current version of COFALE does not adapt the order of presenting learning contents
to different kinds of students, for example to present arithmetic expressions before simple

Page 136

text search for students with the loop model on recursion but simple text search before arith-
metic expressions for students with the syntactic model on recursion. For future research, it
should be useful to take into consideration this type of adaptation. Presently, the course de-
signer defines the order of presenting content pages to students (see the presentation for Ac-
tivities 1&2 in section 7.2.1).

In COFALE, the organization of tests is more or less identical to the one of learning con-
tents. Therefore, for future research, one can provide the course designer with a tool similar
to the one shown in Figure 7.15, so that the course designer can implement adaptive assess-
ment in the same way he or she does for adaptive presentation of learning contents.

Adaptive use of pedagogical devices. The reader should return to the presentation for Activity
2.1 in section 7.2.2 to understand the tools provided by COFALE for the course designer to
implement this type of adaptation.

It is worth to note that there are two values associated to a particular student: a mental
model on the current concept and a skill level of using COFALE to explore the current learn-
ing objective. Thus, the learning activities proposed to a particular student are the union of
the learning activities the course designer defines for his or her mental model with the ones
the course designer selects for his or her skill level of using COFALE. For example, for the
"Java test class" (the last item of arithmetic expressions shown in Figure 7.10), and for the
loop model on recursion, the course designer defines 7 activities related to the learning of re-
cursion (Figure 7.9: Personal Comments, Examples & Summaries, Other Resources, Peers'
Learning Hyperspace, Tests, Discussions, and Collaboration). For the same page "Java test
class" and for the "novice" level of using COFALE to explore the recursion concept, the
course designer selects 3 activities related to the using of COFALE (Figure 7.9: Next Page,
Related Topics, and Learning History). So, at the bottom of the page "Java test class" and for
the student Bob with the loop model and the "novice" level, COFALE presents him with 10
activities (see also section 6.3.2).
Figure 7.16. A Web tool supported by COFALE for the course designer to define appropriate peers for a par-
ticular kind of learners

Adaptive communication support. To help the course designer in implementing this kind of
adaptation, COFALE presents a tool (Figure 7.16) allowing him or her to define help rela-
tions among components of learner models: "C1 R C2" means that students possessing C1 can
help students possessing C2 overcome difficulties about acquiring the current learning objec-

Page 137

tive; this relation may be reflective, but not necessarily symmetric and transitive. In Figure
7.16, to define Mi helps Mj, the course designer selects the checkbox found at the cell (i,j):
M2 helps M1; M3 helps M2 and M1; M4 helps M4, M3, M2, and M1; M6 helps M5. In general,
students with more advanced models could help students with less advanced ones (see also
section 6.3.2). On the basis of those associations, COFALE can automatically find and sug-
gest a list of appropriate peers to a particular student (see Figure 6.12).

Main result: COFALE provides the course designer with a set of easy-to-use tools for
implementing certain adaptation support.

7.4 Discussion

It is worth noting that the design and use of COFALE are based on a constructivist or learner-
centered approach. Thus, many teacher-centered issues (e.g., representation of teaching
methods) are not discussed here.

COFALE provides the course designer and the tutor with a set of Web-based, easy-to-use
tools for designing and using adaptive learning environments supporting cognitive flexibility.
The course designer's workload for making a course available in COFALE is not particularly
high (about 8 person-hours for the course on recursion), because COFALE supports many
learning activities without intervention of the course designer. The tutor's workload, however,
is significantly high in the case of evaluating learning behavior and tests of a large number of
students (see chapter 9 to know why). Therefore, for future research, it is necessary to im-
prove COFALE to automate several processes such as evaluating students' tests and evaluat-
ing students' learning behavior with respect to cognitive flexibility. Various techniques have
been proposed for automatic assessment (Ala-Mutka, 2003; Malmi & Korhonen, 2004). It is
also necessary to provide students with additional tools stimulating and facilitating them to
review each other's work (peer review). Several tools (e.g., SWoRD by Cho & Schunn, 2004)
and studies (e.g., Cho & Schunn, 2003) have showed that peer collaboration is effective and
peer grading is reliable and valid.

In this chapter, I explained guidelines and tools for the teacher to be able to satisfy all of
the criteria for cognitive flexibility. In practice, however, it is not necessary to always satisfy
all of the criteria. The choice of the teacher depends on his or her own teaching context (see
the discussion in section 2.4.5).

COFALE is a domain-independent platform, meaning that it can be used to design
"courses" for many domains, from sciences and mathematics to economics and literature. In-
deed, COFALE is based on ATutor, claimed to be domain-independent (Adaptive Technol-
ogy Resource Center, 2004). Additionally, the features COFALE has added on to the ATutor
system are also domain-independent. For example, the pedagogical device proposed for the
learner to produce summaries on multiple points of view (see Figure 6.5) is an empty table;
so, it could allow the learner to produce summaries in table form in any domain. The learner
model manager (see section 7.3.1) could allow the course designer to manage a number of

Page 138

components of learner models in any subject (e.g. see Figure 7.12). The adaptation imple-
menter (see section 7.3.2) could also enable the course designer to personalize learning con-
tents, learning activities, and communication facilities for the student in any subject (e.g. see
Figure 7.15).

I believe that teachers, even with limited knowledge of computing science (e.g., without
programming skill), can use COFALE to design his or her own "courses". Indeed, ATutor has
been using by many teachers in the domains different from computing science (Adaptive
Technology Resource Center, 2004). Moreover, the tools provided by COFALE is as easy to
use as the ones with which people are familiar, for instance, MSWord, Web browsers. The
present chapter, however, does not support complete documentation for the use of the
COFALE system. I think it is useful to provide practitioners with such documentation so that
they can make their own courses available in COFALE in a manner similar to the one de-
scribed in this chapter. It is also useful to collect feedback from practitioners in order to im-
prove both the learning tools and the authoring tools of the COFALE learning system.

In section 7.2.1, I showed that it is quite straightforward for the course designer to add
and manage content objects. It is, however, hard for the course designer to add a pedagogical
device to COFALE without intervention of the software developer. For instance, if the course
designer wants to provide students with a concept-mapping tool, for example IHMC's Cmap-
Tools (Institute for Human and Machine Cognition, 2005), permitting students to
(re)structure their own knowledge, the course designer must ask the software developer to
insert a hyperlink to IHMC's website and its description to COFALE's student tools. If the
course designer desires to integrate a specific tool (see section 6.5) into COFALE to support
recursive problem solving by students, the course designer must ask the software developer to
modify the source code of COFALE to add such a complex tool to COFALE's student tools.
How to integrate a specific pedagogical device (e.g., a software component) into an existing
learning system (e.g., COFALE) without intervention of the software developer should be an
exciting but difficult problem for educational technologists.

One of the objectives in the design of COFALE is to make it domain-independent so that
teachers in diverse domains can benefice it. Thus, the treatment of learner modeling and sup-
port for adaptability is technically superficial. Indeed, in COFALE, the course designer speci-
fies different kinds of students in advance, and what and how learning materials are presented
to a particular kind of students. I believe, however, that this approach is effective because in
principle the course designer is well versed in the subject he or she is designing.

In comparison with the adaptive learning systems analyzed in section 5.3, COFALE ef-
fectively supports adaptive presentation of learning contents, adaptive use of pedagogical de-
vices, and adaptive communication support. In addition, I believe that it is possible to imple-
ment adaptive assessment in COFALE in the same way adaptive presentation of learning
contents has been carried out in COFALE (see section 7.3.2). Thus, I would say adaptation
support in COFALE is more or less comparable to that present in the systems analyzed in
section 5.3.

Page 139

Several researchers (e.g., Brusilovsky & Peylo, 2003) have claimed that a more adaptive
learning system improves learning outcomes for students. So, for future research, it should be
useful to improve COFALE's adaptability. For instance, one can modify COFALE so that the
teacher can add a particular software component to COFALE to support problem solving by
students adaptively. One can also improve COFALE to support adaptation in a course in
which many learning objects are interrelated, meaning that when the student is exploring a
certain learning object, the system should personalize the learning materials for him or her,
taking into account his or her knowledge of the learning objects related to the learning object
being explored. For example, in an introductory course on object-oriented programming and
Java in which classes, interfaces, objects, methods, variables, control flow, and so on are re-
lated one another, when the learner is exploring control flow, the learning situations the sys-
tem proposes for a learner with little experience in variables should be different from the
learning situations the system proposes for a learner with much experience in variables (be-
cause the concept of control flow is closely related to the concept of variables).

Note: It is possible to explore the COFALE authoring environment as a teacher at the fol-
lowing address: http://renoir.info.ucl.ac.be/elearning/Cofale/login.php; one
can ask me for an instructor account.

Page 141

CHAPTER 8

8 COFALE: Implementation

"The devil is in the details."

English Idiom (cited in Masie Center, 2003, p. 34)

This chapter reports the main points in the development of the COFALE learning environ-
ment. COFALE is based on ATutor, an open-source, Web-based learning content manage-
ment system. The contribution of COFALE to ATutor is about 20 percent of the source code,
meaning 5000 lines of PHP code and 1500 person-hours of programming work. After reading
this chapter (and Appendix D), one should be able to modify the source code of ATutor or
COFALE to build on a new learning platform, if he or she has good programming skill.

Page 142

Summary
8.1 Introduction

8.2 Implementation of ATutor

8.3 Implementation of COFALE

8.4 Discussion

8.1 Introduction

The implementation of COFALE, based on ATutor, was a complex process. I exploited the
available ICT to build COFALE, meaning that the present dissertation does not contribute
new and important techniques in the domain of computing science. Therefore, in the present
chapter, I show only the key points about how COFALE was developed. For instance, what
were the main difficulties to build COFALE on the ATutor existing system? How to over-
come these difficulties?

8.2 Implementation of ATutor

ATutor is an open-source, Web-based learning content management system (LCMS) designed
and maintained by the ATRC group (Adaptive Technology Resource Center 2004). Presently
(April, 2005), the ATRC group supports good documentation of "How To Course" for every
released version of ATutor. It also provides preliminary ATutor developer documentation.
Figure 8.1. General architecture of ATutor

Figure 8.1 shows a very schematic architecture of the ATutor system. In general, the
functionality of the system can be explained, as follows:

• The user uses a Web browser to log into the system and make a request. For example, the
learner asks the system to present the definition of the recursion concept.

• Taking into account the user's request, the browser sends a HTTP request to the Web
server in which a set of PHP scripts was installed. For instance, the browser sends the
Web server several parameters with the name of the PHP script that is responsible for
presenting the definition of the concept of recursion.

USER

Learner
Teacher

Course designer
Administrator

BROWSER

Web

Interface

SERVER

Web Server

(PHP scripts)

Database
Server

(MySQL)

HTTP request

HTML + CSS

Page 143

• Depending upon the kind of the HTTP request, the Web server will create new data or
update existing data or retrieve existing data by connecting the MySQL database server in
which all data of the user, learning content, tests, forums, and so on are stored and in-
dexed. Then, the Web server formulates a HTML file including a CSS format and sends it
back to the browser. For example, the responsible PHP script uses the parameters pro-
vided by the HTTP request to retrieve the information of the recursion definition from the
database and build a HTML file containing the definition of the concept of recursion.

• On the basis of the HTML file and the CSS format received from the Web server, the
browser will create a Web page and present the user with the created page. For instance,
the browser shows the learner with the Web page presenting the recursion definition.

The structure of the database in ATutor is simple: There are totally about 30 tables organ-
ized in small groups. In Appendix D, I present two examples so that the reader can have a
global view about the way ATutor represents information such as the user, learning content,
and tests. ATutor's source code is organized into a tree-structured file system, which contains
a variety of short PHP scripts.

The reader should look at the ATutor developer documentation (Adaptive Technology
Resource Center 2004) for more information about how the system was developed, including
how learning objects were implemented.

8.3 Implementation of COFALE

At the beginning of the development of COFALE, I searched the Internet for several LCMSs
and I made a preliminary evaluation of each system, as follows:

• If I were to use the system to design a course, which criteria for cognitive flexibility
would be satisfied without modifying the system's source code?

• How easy is it for me to modify the system's source code to satisfy all the criteria for cog-
nitive flexibility, as I described in section 6.3.1?

• How easy is it for me to modify the system's source code to add the learner model man-
ager and implement adaptation support, as I described in sections 6.3.2?

The previous analyses (sections 5.1, 5.2.4, and 8.2) showed that ATutor is a good LCMS;
besides, its internal organization is not particularly complex. In addition, if the course de-
signer is versed in the use of the set of criteria for cognitive flexibility presented in chapter 2,
it is possible for him or her to implement in ATutor learning conditions satisfying about two
thirds of the set of criteria (see section 5.2.4). Therefore, it seemed to me that ATutor was a
good base to implement learning conditions satisfying all the criteria for cognitive flexibility
and supporting adaptability.

The main difficulty to build on COFALE from ATutor is to understand the internals of
the ATutor system. This process took time and effort because, when I first used ATutor, there
was nothing more than its source code available to me.

Page 144

To overcome this difficulty, I carefully examined the tables in ATutor's database and
many important PHP scripts in its source code. I also tried to modify a number of PHP files
and saw the effects of the modification on a Web browser. Once I understood the main func-
tionality of the ATutor system, it was easy for me to modify it and to add software and data-
base components to it in order to achieve COFALE's requirements.

In the following paragraphs, I show three examples explaining how to add software and
database components to ATutor in order to achieve certain requirements of COFALE. The
reader should refer to Appendix D to understand more about how I added the learner model
manager to ATutor, and how I implemented adaptation support in ATutor.

Example 1. To satisfy a part of criterion MP2 and to help the learner navigate intelligently to
avoid getting lost in the learning hyperspace (see section 6.3.1), I created the menu "Learning
History" (see Figure 6.1), as follows.

For the database. Examining ATutor's database, I discovered that I can use the data in the
existing table g_click_data to create the menu "Learning History", because this table
contains the information about the navigation history of every learner. Here is its description:

g_click_data

FK2
FK3
FK4
FK5
FK1

member_id
course_id
from_cid
to_cid
g
timestamp
duration

course_id: The identity of the course the learner is exploring.
member_id: The identity of the learner.
from_cid: The identity of the content object from which the learner passes to
the content object identified by to_cid (see Appendix D).
Note: FK stands for foreign key.

For the source code. In principle, constructing the menu "Learning History" and con-
structing the menu "Related Topics" (see Figure 6.1) is similar. Therefore, I searched ATu-
tor's PHP file system for all segments of code related to the implementation of the menu "Re-
lated Topics". Then, I carefully examined those segments of code. Finally, I implemented the
menu "Learning History" in the same way "Related Topics" had been created.

Example 2. To satisfy criterion MP4, I had to provide students with an explicit tool (Figure
6.14: My Own Summary) allowing them to synthesize multiple points of views. Here is the
process I used to do so.

For the database. To register students' summaries, on the basis of ATutor’s table con-
tent (see Appendix D: Figure D.1), I created table content_of_learners, as follows:

Page 145

content_of_learners

PK content_of_learners_id

FK1
FK2
FK3

course_id
learning_object_id
member_id
type
ordering
last_modified
revision
formatting
release_date
keywords
content_path
title
text
inherit_release_date

course_id: The identity of the course the learner is exploring.
learning_object_id: The identity of the learning object the
learner is exploring (this attribute corresponds to content_id in
table content, see Appendix D: Figure D.1).
member_id: The identity of the learner.
type: The kind of the learner's work (an example or a concept map
or a summary).
title: The title of the learner's work.
text: The content of the learner's work.
…
Note: PK stands for primary key, FK for foreign key.

For the source code. Here is the process:

1. I logged into the recursion course designed in COFALE as a learner.

2. I selected the menu "Tools" to know the PHP file needed to modify in order to add the
desired learning tool: tools/index.php was found.

3. I examined this file to understand how learner tools had been implemented.

4. I modified this file to display the desired learner tool (Figure 6.14: My Own Summary).
This tool is linked to a file learners/my_own_content.php created by me. This
file leads the student to the actual tool for constructing his or her own summary. The
techniques used to write this file are similar to the ones used to write ATutor’s PHP file
that helps the course designer add learning content: a part to display Web interface for the
user and another part to save the data submitted by the user to the database (Figure 7.2).

Example 3. To satisfy a part of criterion MP3, I created a specific tool (Figure 6.14: Peers'
Learning Hyperspace) for the student. To construct this tool, I needed to modify only the
source code, in the same way I did in the previous example. Note that ATutor supports auto-
matic login using cookies. So, it is straightforward to allow the student to log into peers'
learning space without knowing their password: When the student selects a peer's login, the
system will set the value of variables login and password (stored in the system's cookie)
to the peer's login and password; then, the system will call a PHP file serving for automatic
login to lead the student to the peer's learning hyperspace. Similarly, when the student selects
a hyperlink to return to his or her own learning hyperspace, the system will reset the value of
variables login and password to the student' login and password and make an automatic
login to bring the student back to his or her homepage.

Page 146

8.4 Discussion

In this chapter, I have shown the way to build on a new e-Learning platform (COFALE) from
an existing LCMS (ATutor). The point I make here is the possibility to modify the source
code of a LCMS in order to create guidelines and models for effective pedagogical principles
implied from a relevant learning theory (i.e., cognitive flexibility, one important facet of con-
structivism). One more time, the set of operational criteria has been applied as guidelines to
the development of the new learning platform. I have also illustrated a simple way to add the
adaptability on to the LCMS.

My contribution to the ATutor system is approximately 20 percent of the source code,
meaning 5000 lines of PHP code (1500 person-hours of programming work). Although CO-
FALE's source code has not been optimized yet, it seemed to work well when I carried out an
experiment with actual students (see chapter 9). For future work, it would be useful to opti-
mize the source code of COFALE to make it more stable and powerful.

To respect the GNU General Public License (1991), which encourages the free use, modi-
fication, and distribution of open-source projects such as ATutor and COFALE, I have cre-
ated a website for the open-source COFALE project, available at the following address:
http://renoir.info.ucl.ac.be/elearning/COFALE.html, from which one can
download both the source code and the documentation for the development and use of
COFALE.

Page 147

PART FOUR: EVALUATION

Page 149

CHAPTER 9

9 A preliminary evaluation of COFALE

"No amount of experimentation can ever prove me right; a single experiment can prove me wrong."

Albert Einstein, German Scientist, 1879 – 1955 (cited in Suomela, 2005)

(Reference to Appendix C)

A 2-week-long survey was carried out to evaluate the COFALE learning environment. Nine
first-year engineering students were selected for the study: four learners in the COFALE
group and five learners in a traditional approach. Both groups were given the same 45-
minute-long lecture and 2-hour-long programming homework about recursion. In addition,
within 1 hour, the COFALE group was exposed to explore COFALE and the traditional
group a chapter of a reference book. After the learning session, both groups of learners de-
veloped the ability to build recursive solutions to a variety of problems, and were interested
in learning with the help of COFALE or the chapter. The survey did not provide clear evi-
dence for the difference of learning outcomes between the COFALE group and the traditional
one. The main differences were learning motivation and cognitive flexibility behavior: Stu-
dents had more motivation for learning with COFALE than for learning with the book chap-
ter, and the COFALE group’s learning behavior seems to be somewhat more consistent with
cognitive flexibility than the traditional group’s. I claim that, to evaluate the complete effec-
tiveness of ICT-based learning conditions exhibiting the desired characteristics of cognitive
flexibility, we should perform long-term experiments with a significant number of students.

Page 150

Summary
9.1 Introduction

9.2 Method

9.3 Result

9.4 Discussion

9.5 Conclusion

9.1 Introduction

In the previous chapters, I showed a useful approach based on operational criteria for the de-
sign and use of COFALE, an ICT-based adaptive learning environment truly exhibiting the
desired characteristics of cognitive flexibility, according to educational theorists (e.g., Bour-
geois & Nizet, 1999; Driscoll, 2000; Spiro & Jehng, 1990). A number of studies showed
positive results that pedagogical models proposed for cognitive flexibility helped students in
advanced knowledge acquisition (Spiro & Jehng, 1990). The implementation of learning
conditions fostering cognitive flexibility in an e-Learning platform (COFALE), however, is
relatively new. Thus, it is necessary to carry out a certain number of surveys to evaluate vari-
ous aspects of the COFALE systems.

In a constructivist point of view, to evaluate COFALE, as a new adaptive learning system
supporting cognitive flexibility, I take into account, for instance, the following questions (see
also Reeves & Okey, 1996; Wilson, 1997; Wilson et al., 1995):

• Do learning conditions provided by COFALE foster students' cognitive flexibility effec-
tively? The questions for this kind of studies include: After learning with the help of
COFALE, do learners take into account multiple aspects of a situation or problem sys-
tematically? Do learners express their personal points of view clearly, give pertinent
feedback to peers' points of view, and produce good summaries on multiple points of
view? Does this meta-cognitive knowledge of students help them mastering other subjects
faster and more effectively?

• What are outcomes of learning a particular concept with the assistance of COFALE? For
example, how effectively do students learn the concept of recursion with the help of the
COFALE learning environment? Why?

• Do students follow suggestions proposed by COFALE, for example to explore related
concepts and do learning activities presented at the bottom of each page? More specifi-
cally, do their learning processes respect all of the criteria for cognitive flexibility?

• Does COFALE provide a learning experience that is really tailored to the needs of the
individual student? Does learning with adaptation support help students attain the learn-
ing objective faster and more effectively than learning without support for adaptability?

Page 151

• What are students' reactions to the COFALE learning environment? Do they like or dis-
like the way COFALE presents them with learning experiences?

In my point of view, to persuade teachers to use COFALE, it is necessary to show them at
least two evidences. Firstly, we need to show that the conditions of learning proposed by
COFALE truly facilitate and stimulate cognitive flexibility in students. Secondly, we need to
convince that COFALE really helps improving students' learning outcomes, for instance to
master a particular concept to a significant degree.

To provide the first evidence, however, it is necessary to carry out a long-term experiment
with a significant number of students because the characteristics of cognitive flexibility are
complex (Spiro et Jehng, 1990). It is also necessary to construct an effective means (e.g. a set
of criteria for the assessment of cognitive flexibility) in order to perform this kind of experi-
ments effectively.

In the context of this PhD thesis, I did not have the means to completely answer all of the
questions I mentioned earlier, particularly the question about whether COFALE fosters cog-
nitive flexibility effectively. Therefore, this chapter describes a short-term study (a prelimi-
nary evaluation) whose main purpose is to evaluate how students master a particular concept
(i.e. the changes of mental models about the concept of recursion identified in chapter 6) with
the help of COFALE (an e-Learning approach) in comparison with the help of a chapter of a
reference book (a traditional approach). I decided to choose a chapter that was designed for
teaching recursion by other authors because this choice could make the experiment as objec-
tive as possible. I also analyze students' feedback on learning with the help of COFALE or
the book chapter, and when possible, I look into the difference between the two groups, re-
garding their cognitive flexibility behavior.

In the study, I used a method borrowed from a successful survey of teaching recursion by
Bhuiyan and associates (Bhuiyan et al., 1994). An important characteristic of this method is
to provide learners with a realistic learning situation. In the study, I attempted to simulate
such a situation for both groups of students to see the effects of COFALE in real environ-
ments. The study involved two groups of learners: the COFALE group (four students) and the
traditional group (five students). The selected students had no knowledge of recursion, and
their learning objective was to develop the ability to solve problems recursively. Both groups
participated in the same 45-minute-long lecture and were asked to do the same 2-hour-long
homework. The main difference was that the COFALE group explored the COFALE learning
environment within 1 hour and the traditional group explored a chapter about recursion in a
reference book "Java software solutions" (Lewis & Loftus, 2003) within 1 hour as well.

The next sections show and discuss the evidences I found in the survey.

9.2 Method

I first describe the learners selected for the study. Then I present the materials and the proto-
col used to perform the experiment.

Page 152

9.2.1 Selecting the learners

Because recursion is a high-level programming concept, the study was targeted at students
having knowledge of programming and no knowledge of recursion. So, I decided to select
first-year engineering students in FSA (Faculté des sciences appliquées, Université ca-
tholique de Louvain). Those students had been registered in an introductory course on object-
oriented programming and Java before the study. To engage students in participating in the
study, I sent them an e-mail in which I showed the elegance of recursive solutions and the
usefulness of recursion in drawing fractals, and I offered each participant two movie tickets.
To make the result of the study as convincing as possible, I wanted about 20 students for the
study; however, only 11 volunteer students were initially registered. Two students dropped
out of the study leaving four members in the COFALE group, and five learners in the tradi-
tional one. The two groups were randomly constituted. The COFALE group learners were
labeled C1 through C4, and the traditional group learners were labeled T1 through T5.

In the introductory course on object-oriented programming and Java, the selected students
were taught in a PBL (problem-based learning) approach (Pedagogy Group at FSA/UCL,
2005), and they were able to learn the concept of linked lists within 1 week (about 8 hours).
The main reference book for this course was "Java software solutions" (Lewis & Loftus,
2003). Table 9.1 presents the grade of the final exam of those students in this course (the av-
erage grade of all students in this course was 11.40/20). Table 9.1 shows that: (a) although
the COFALE group was more "homogeneous" than was the traditional one, the two groups
were more or less equal in academic capacity; and (b) the selected students were highly
graded among about 280 students in this course.
Table 9.1. The grade of the final exam of the selected students in the introductory course on object-oriented
programming and Java

COFALE group Traditional group
Label Grade (/20) Label Grade (/20)
C1 17 T1 12
C2 13 T2 19
C3 16 T3 17
C4 13 T4 15
 T5 11

Average 14.75 Average 14.80
Standard deviation 2.06 Standard deviation 3.35

9.2.2 Design of the study

In carrying out an evaluation, we must always avoid bias, meaning that we should not, for
example, do the best for the COFALE group and do the worst for the traditional one. There-
fore, in the study, I tried to provide the two groups of learners with the same learning condi-
tions except for COFALE and the chapter of the reference book, two tools that I wanted to
compare. I organized the study into four phases: the pretest phase, the experimental phase,
the posttest phase, and the interview phase.

Page 153

Pretest phase

The pretest phase aimed at identifying students' mental models on the recursion concept be-
fore the learning session. All of the selected students took the same paper-and-pencil pretest
(see Appendix C) within 15 minutes. The first two questions in the pretest were borrowed
from a study of Götschi and colleagues (Götschi et al., 2003). These authors claimed that
those two questions could be used to determine students' certain mental models on recursion.
I also proposed the last three questions in the pretest to gather more information about what
students had really thought about recursion before the learning session. Students' comprehen-
sion about recursion at this point of time was also verified one more time in the interview
phase.

Experimental phase

The objective of this phase was to provide each group of learners with a realistic learning
situation for developing the ability to solve problems recursively. So, I decided to integrate
COFALE or the chapter of the reference book as a part of the learning materials provided for
students. This phase was divided into three sessions:

1. Lecture. I gave the same lecture on recursion within 45 minutes to both groups of stu-
dents, although in separate sessions because of students' constraints of time. In the lecture,
I first introduced the DCG (Divide, Conquer, and Glue) strategy in problem solving with
several examples. Then, I explained the concept of recursion used in the Java program-
ming language. Finally, I showed how to apply recursion and Java to solve a diversity of
simple problems and a problem about drawing a snowflake. The content of the lecture
was essentially based on a chapter about recursion written by Kjell (2003).

2. Exploration. After the lecture, each group immediately explored the tool I provided
within 1 hour. The learners in the COFALE group explored the COFALE learning envi-
ronment. Because the robot situation presented in the test section of COFALE was re-
served for the posttest of the study, I replaced it with several exercises presented at the
end of chapter 11 of the reference book (Lewis& Loftus, 2003). The learners in the tradi-
tional group explored chapter 11 of the reference book (Lewis& Loftus, 2003) with which
they had been familiar in the introductory course on object-oriented programming and
Java (the content of this chapter was summarized in Appendix B6).

With the COFALE group, I let students explore themselves the COFALE environment;
however, to simulate a realistic learning situation, I was active online to answer students'
questions and to give suggestions to students through communication tools such that e-
mail, forums, chat rooms. With the traditional group, I let students read themselves the
chapter of the reference book. I also observed and guided their reading and answered their
questions.

3. Homework. At the end of the exploration session, I gave the same programming home-
work (see Appendix C) to the two groups of students. I estimated the time for students to
finish the homework to be about 2 hours. I explicitly encouraged the learners in the
COFALE group to use COFALE and the learners in the traditional group to use the chap-

Page 154

ter of the reference book to help solving the problems presented in the homework. I asked
both groups to send me both their Java program and their brief report through e-mail.

Posttest phase

The purpose of the posttest phase was to identify students' mental models on recursion after
the learning session. All of the selected students took the same paper-and-pencil posttest (see
Appendix C) within about 1 hour. In the posttest, I had students confront a complex situation
whose nature made them to think recursively to be able to solve the problems. I also asked
them the same three questions presented in the pretest to see the changes in their understand-
ing of recursion. To facilitate the analysis process, I collected students' tests as well as draft
sheets. The posttest analysis was also verified in the interview phase.

Interview phase

The interview phase aimed to gather additional information to identify students' changes of
mental models on recursion more precisely. It also helped me understand the type of difficul-
ties students had encountered with recursion and the way they had used the available learning
materials in the learning session. Both groups of learners were asked the same questions (see
Appendix C) within 15 minutes. All of the interviews were recorded in WAV format using an
audio-recorded computer program and saved on two CD-ROMs.

9.3 Result

On the basis of the collected data, in this section I analyze two important issues: (a) how stu-
dents developed the ability to solve problems recursively, and (b) how students used the
available learning materials during the learning session.

9.3.1 Cognitive development

To see students' cognitive development, I analyze their mental models on recursion before
and after the learning session.

Before the learning session

The data used to identify learners' mental models on recursion before the learning session
were their pretest and a part of their interview.

Table 9.2 summarizes the evaluation of learners' pretest (see the pretest in Appendix C).
For the question 1, "incomplete" means that learners did not consider the base case of the re-
cursive method (i.e. their answer was "hheelloo"). For the question 2, I marked "correct" if
learners were able to trace the computation process of the recursive method (although the fi-
nal answer several learners provided was incorrect because of miscalculations). The evalua-
tion of the first two questions showed that the learners in the traditional group traced recur-

Page 155

sive methods significantly better than did the COFALE group learners. The evaluation of the
last three questions showed that both groups of learners had some basic understanding of re-
cursion but more or less deduced from iteration.
Table 9.2. Pretest analysis

Learners Question 1 Question 2 Question 3 Question 4 Question 5
C1 Incomplete Correct Call a code

many times
Repeat the same in-
struction

Solve the sub-problems

C2 Incomplete Give up An alternative
of loop

Give up Give up

C3 Correct Correct Call itself Problem solving tech-
nique

Use the same method
to obtain a solution

C4 Incomplete Correct Call itself Something repeated
many times

Do the same action
many times

T1 Correct Correct Call itself, have

an exit of loop
Method that calls itself Recursion = a type of

iteration in itself
T2 Correct Correct Call itself, have

an exit of loop
Method that calls itself Recursion = repetition

T3 Correct Correct Call itself, have
an exit of loop

Find the result accord-
ing to previous results

Solve problems by it-
eration, simplification

T4 Correct Correct Call itself, have
an exit of loop

Find the result accord-
ing to previous results

Solve problems based
on previous results

T5 Correct Correct Call itself, have
an exit of loop

Loop with the same tool
(method)

Find and solve different
cases

The pretest analysis also provided the evidence that students demonstrated different levels
about the trace model. I distinguished the following five levels:

1. Novice. Students cannot trace any recursive method.

2. Beginner. Students can trace several simple cases but the result is sometimes incomplete.

3. Intermediate. Students can trace correctly a variety of simple cases.

4. Advanced. Students can trace correctly a diversity of cases, simple or complex.

5. Expert. Students, in addition to the ability implied by the advanced level, actively use the
trace approach to verify the correctness of their recursive solutions.

Table 9.3. Interview analysis on learners' mental models on recursion before the learning session

Learners Interview analysis
C1 "I was familiar with the loop concept [for, while] to solve problems."
C2 "I had no idea about what recursion is and for what it is used."
C3 "I saw recursion in the snowflake but I did not imagine how it works."
C4 "I knew a method calls itself but I did not see how it works, it has base cases, and how to build it."

T1 "I had no idea about the concept of recursion."
T2 "I did not know the concept of recursion."
T3 "I only saw recursion as a recursive series: we cannot find a term without previous terms […] I

thought we use iteration rather than recursion."
T4 "I heard about recursion but did not see what it is and for what it is used."
T5 "I saw recursive formulas in math […] I knew a method calls itself but I did not know base cases."

Page 156

Table 9.3 present the analysis of learners' interview (see Appendix C for the interview
question), I believe that all of them possessed the loop model on recursion before the learning
session because they claimed they could not build recursive methods. Table 9.4 summarizes
the mental representations about recursion of both groups of learners before the learning ses-
sion.

Note that I did not prepare any materials to evaluate students’ cognitive flexibility behav-
ior before the learning session. Because students were randomly organized into the two
groups, I assume that, before the learning session, the two groups have the same initial
“level” regarding cognitive flexibility behavior.
Table 9.4. Learners' mental models on recursion before the learning session

Note that students with intermediate level of the trace model may possess higher levels of this model (they
traced the two answers of the pretest correctly, so they may trace more complex tests correctly).

COFALE group Traditional group
Learners Mental models Learners Mental models
C1 Loop model, trace model (beginner) T1 Loop model, trace model (intermediate)
C2 Loop model, trace model (novice) T2 Loop model, trace model (intermediate)
C3 Loop model, trace model (intermediate) T3 Loop model, trace model (intermediate)
C4 Loop model, trace model (beginner) T4 Loop model, trace model (intermediate)
 T5 Loop model, trace model (intermediate)

Main result: Both groups of learners possessed the loop model before the learning ses-
sion. The traditional group had somewhat better skills in tracing recursive methods than
did the COFALE group.

After the learning session

The data used to identify learners' mental models on recursion after the learning session were
their homework and posttest, and a part of their interview (see Appendix C).
Table 9.5. Homework analysis

Learners Program Used resources Justification Time
C1 Good Not specified Not specified Not specified
C2 Problem with the class

File, recursion
File specification, the ref-
erence book, Internet

Not specified 4h30

C3 Good Not specified Not specified Not specified
C4 Good File specification Good analysis, being in-

terested in the problem
45 minutes

T1 Problem with recursion Not specified Not specified Not specified
T2 Good Not specified Not specified Not specified
T3 Good API of Java Good analysis 1h
T4 Good API of Java, Java tutorial

of Sun, the reference book
Good analysis 2h30

T5 Good API of Java Not good analysis 2h30

Page 157

The homework analysis (Table 9.5) showed that both groups of students were more or
less equal in the ability to solve the programming problem presented in the homework. Most
students solved the problem about file management well because the nature of the problem
enabled them to see recursion easily: Only one (C2) among the four students of the COFALE
group and one (T1) among the five students of the traditional group could not see how to
build recursive solutions to the given problem. It appears that the specification of the class
File was sufficient enough for the students to solve the given problem. Most students who
submitted the report analyzed correctly the advantage of using recursion to solve the given
problem. The time to finish the homework varied widely from one student to another; the
mean was approximately 2 hours.

Can we see the difference of the two groups regarding their cognitive flexibility behavior
from Table 9.5? I think it is hard to answer this question by analyzing, for instance students’
Java programs or justification reports. It is necessary to define a set of operational criteria to
do so. This work is of course difficult, and because I am not a cognition specialist, I am not
able to propose such criteria here.
Table 9.6a. Posttest grade (SD = Standard Deviation)

Learners Test 1
(/4)

Test 2
(/4)

Test 3
(/4)

Test 4
(/5)

Test 5
(/4)

Test 6
(/4)

Total grade
(/25)

Total time
(minutes)

COFALE group
C1 4 3 4 3 4 3 21 75
C2 3 1 2 1 3 0 10 85
C3 0 3 4 3 3 4 17 90
C4 4 4 4 1 4 0 17 75
Average 2.75 2.75 3.50 2.00 3.50 1.75 16.25 81.25

SD 1.89 1.26 1.00 1.15 0.58 2.06 4.57 7.50
Traditional group

T1 4 4 3 0 3 0 14 75
T2 4 4 4 5 3 4 24 60
T3 4 4 3 4 4 0 19 90
T4 1 1 1 2 3 0 8 95
T5 4 1 2 3 3 0 13 90
Average 3.40 2.80 2.60 2.80 3.20 0.80 15.60 82.00

SD 1.34 1.64 1.14 1.92 0.45 1.79 6.11 14.40

Table 9.6a displays students' posttest results and Table 9.6b presents a qualitative analysis
of students' tests. Posttest solutions to recursive problems were graded on a 5-point scale (ex-
cept for test 4 on a 6-point scale): 0 through 4 with 4 indicating a correct solution (see Ap-
pendix C for the detailed scale of each test). The evaluation of the posttest was concentrated
on recursive solutions; therefore, I did not consider students' syntactic errors such as paren-
thesis closing, forgetting semicolon; I also took into account students' interview to evaluate
their posttest more accurately. It appears that the COFALE group progressed a little better
than did the traditional group, and the COFALE group's posttest results were more "homoge-
neous" than were the traditional group's. The time to finish the posttest of both groups was
more or less equal. In the COFALE group, C1, C3, and C4 demonstrated both the under-

Page 158

standing of the recursion concept and the ability to apply it to solve a diversity of problems,
and C2 had serious problems with building recursive solutions. In the traditional group, T2
and T3 (especially T2) showed good understanding of recursion as well as good ability to
solve problems recursively, T4 had serious problems and T5 had several problems on the pa-
per-and-pencil test (although they did the programming homework well), and T1 showed
good understanding of recursion in several simple cases but had certain problems with the
Java programming language. Students' posttest grades presented in Table 9.6a is more or less
consistent with students' final exam grade presented in Table 9.1: The students who had bet-
ter programming skill and Java knowledge learned recursion better. Table 9.6b indicates that
students often did not take into account all the base cases of a recursive solution to complex
problems.
Table 9.6b. Analysis on students' solutions

Tests COFALE group Traditional group
Test
1

C1 and C4 arrived at a correct solution, C2
could not answer the fourth question, C3
could not see recursion.

T4 could not see recursion, the others arrived at a cor-
rect solution.

Test
2

C4 arrived at a correct solution, C1 and C3
did not consider all the base cases, C2 could
not build a recursive solution.

T4 and T5 could not build a recursive solution, the oth-
ers arrived at a correct solution.

Test
3

C2 did not consider all the base cases, the
others arrived at a correct solution.

T2 arrived at a correct solution, T1 and T3 did not con-
sider all the base cases, T4 and T5 could not build a
recursive solution.

Test
4

C1 and C3 did not construct the complete
recursive part, C2 and C4 could not see re-
cursion.

T2 arrived at a correct solution, T3 and T5 did not con-
sider all the base cases, T4 did not construct base
cases correctly, T1 could not see recursion.

Test
5

C1 and C4 gave adequate definitions, C2 and
C3 gave incomplete definitions.

T3 gave adequate definitions, the others gave incom-
plete definitions.

Test
6

C3 arrived at a correct solution, C1 did not
consider all the base cases, C2 and C4 could
not build a recursive solution.

T2 arrived at a correct solution, the others could not see
recursion.

Table 9.7 presents the mental models students tried to use to generate or verify recursive
solutions to the problems presented in the posttest. It was hard for me to know exactly how
students solved the problems because they found it difficult to explain how they had built
their recursive solutions to the given problems. So, I think we need more practical techniques
to help students express what they have actually learned. I created Table 9.7 on the basis of
the following signs:

• Iterative. Students tried to generate an iterative solution, for example count all the ways
the robot can walk 8 meters in test 1 or propose an iterative solution in test 3.

• Loop. Students tried to make a recursive call in a for loop although they did not see the
recursive formula in test 2.

• Syntactic. Students tried to fill the condition and the action part of the base case and the
recursive part; they did not analyze different cases explicitly, for example in draft sheets.

• Analytic. Students tried to analyze different cases explicitly for a given problem, for ex-
ample in draft sheets.

Page 159

• Analysis-synthesis. Students tried to think recursively first of all to identify the sub-
problems that are identical in structure to the original problem.

• Trace. Students tried to trace their recursive solutions after writing the code to verify the
correctness of those solutions.

• Problems with TernaryTree. Students did not understand the data structure TernaryTree
in tests 4 and 6.

Table 9.7. Interview analysis on the mental approaches learners used in the posttest

Learners Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
C1 Analysis-

synthesis
Analytic, analy-
sis-synthesis

Analytic Analytic, analy-
sis-synthesis

Analysis-
synthesis

Analytic, analy-
sis-synthesis

C2 Analysis-
synthesis

Syntactic Syntactic Problem with
TernaryTree

Analysis-
synthesis

Give up

C3 Iterative, not
see recursion

Analytic Iterative,
analytic

Analytic Analytic Analytic

C4 Analysis-
synthesis

Analytic, analy-
sis-synthesis

Analytic Problem with
TernaryTree

Analysis-
synthesis

Problem with
TernaryTree

T1 Analysis-

synthesis
Analytic, analy-
sis-synthesis

Syntactic Problem with
TernaryTree

Analysis-
synthesis

Give up

T2 Analysis-
synthesis

Syntactic, analy-
sis-synthesis

Iterative,
syntactic

Syntactic, analy-
sis-synthesis

Syntactic,
analysis-
synthesis

Analysis-
synthesis

T3 Analysis-
synthesis

Analytic, analy-
sis-synthesis,
trace

Iterative,
analytic

Analysis-
synthesis

Analysis-
synthesis

Analytic

T4 Iterative, not
see recursion

Loop, syntactic Iterative,
syntactic

Analytic Analysis-
synthesis

Give up

T5 Iterative, ana-
lysis-
synthesis

Syntactic Iterative Syntactic Analysis-
synthesis

Give up

Table 9.7 provides the evidence for the following four points: (a) at a given time, students
may possess different mental models on the concept of recursion; (b) they tried to use differ-
ent mental approaches to generate recursive solutions to a given problem; (c) although they
tried to use different mental approaches, they may not arrive at correct solutions; and (d) most
students did not use the trace model to verify the correctness of their recursive solutions.

Can we see the difference of the two groups regarding their cognitive flexibility behavior
from Tables 9.6a, 9.6b, and 9.7? I believe C1, C3, and C4 in the COFALE group and T2 and
T3 in the traditional group demonstrated behavior of cognitive flexibility during the problem-
solving process in the posttest. For instance, they tried to use the analytic method or the ana-
lytic-synthesis method systematically to solve the given problems. I think this behavior is
consistent with cognitive flexibility because students tried to activate their prior knowledge,
in different ways, in order to analyze different aspects of a new problem and to propose a so-
lution as complete as possible. Because of limited space, I do not show here all of the data I
collected from students’ posttests (see also Appendix C).

Table 9.8 presents students' mental representations about recursion discovered in the in-
terview session. It seems that the students in the COFALE group expressed the definition of

Page 160

the concept of recursion more clearly than the students in the traditional group. For instance,
all the COFALE students mentioned either "base cases and recursive part" or "dividing a
problem into identical and smaller sub-problems" or both of them, whereas it seemed that
only T3 of the traditional groups mentioned "dividing a problem into identical and smaller
sub-problems".

Can we see the difference of the two groups regarding their cognitive flexibility behavior
from Table 9.8? Although most students understood the concept of recursion, it seems that, in
the interview session, students in the COFALE group tried to define the concept of recursion
more clearly and accurately than did students in the traditional group. This may be an indica-
tor of cognitive flexibility behavior. Why? I am not able to answer this question because I am
not a cognition specialist; it is only my personal remark.
Table 9.8. Interview analysis on learners' mental models on recursion after the learning session

Learners Interview analysis
C1 "Now I see recursion as dividing a large problem into identical pieces that are simpler to solve […]

Opposed to the loop concept, it is easy to read a recursive method but not easy to write it."
C2 "Now I see recursion as dividing a problem into sub-problems in the same type […] I see for what

recursion is used but I do not understand well how to apply it."
C3 "Now it is clear, recursion allows us to write methods with one or more base cases and recursive

part […] I know how to build recursive methods."
C4 "Now I know a recursive method has base cases and recursive part […] I know how it works and

how to divide a problem into the same sub-problems."

T1 "Now I know for what recursion is used […] recursion is to reduce a large problem into sub-problems

until we arrive at base problems."
T2 "Now recursion is to repeat something many times by calling the same method […] I would say in

trees where I see things that are regular in the form."
T3 "Now I see recursion as dividing a problem into sub-problems that are identical and simpler to

solve."
T4 "Now recursion is to divide a problem into sub-problems that are equivalent to each other […] it

changes the way to solve problem […] it is useful for manipulating trees and fractals."
T5 "Now I know recursion is to divide a problem into small entities until we arrive at the base cases."

It is worth to note that oral expressions sometimes do not completely reflect students'
mastering of the recursion concept. For example, C2 seemed to define the concept of recur-
sion well, but she could not arrive at any correct recursive solution in the posttest. T2 seemed
to express the concept of recursion unclearly, but he correctly solved most problems in the
posttest. Once more, I think we need more practical techniques to measure students' under-
standing accurately.

The posttest and interview analyses also showed that students demonstrated different lev-
els for the syntactic, analytic, and analysis-synthesis models (Table 9.9). I distinguished the
following five levels:

1. Novice. Students do not know or use the model.

2. Beginner. Students know how to apply the model but in several simple cases, and their
solutions are often incorrect or incomplete.

Page 161

3. Intermediate. Students know how to apply the model in a variety of cases, and their solu-
tions are sometimes incomplete or incorrect.

4. Advanced. Students know how to apply the model in a diversity of cases, and their solu-
tions are hardly incomplete or incorrect.

5. Expert. Students, in addition to the ability implied by the advanced level, know when and
why apply the model to solve problems.

Table 9.9. Some evidences for different levels of mental models on recursion

Levels Syntactic Analytic Analysis-synthesis
Novice Students' mental models before

the learning session.
Students' mental models
before the learning ses-
sion.

Students' mental models before
the learning session.

Beginner T4 tried to apply this model in
Tests 2, 3, but could not arrive at
a correct solution.

T4 tried to use this
model in Test 4, but
could not arrive at a
correct solution.

C2 tried to use this model in Test
1, she correctly answered the first
three questions, but not the fourth
one.

Intermediate C2, T1 applied this model in
Test 3, their solutions were ap-
proximately correct.

No evidence was found. T1 applied this model to do Test
1 correctly, but his solution to
Test 2 was incomplete.

Advanced No evidence was found. C4 applied this model
successfully in Tests 1,
2, 3.

C1 and T3 applied this model
well to do Tests 1, 2, 4.

Expert T2 used this model to do Tests
2, 3, 4 correctly. He knew that
this model is not appropriate to
do Test 6.

No evidence was found. T2 used this model to do Tests 1,
6 correctly. He knew that this
model is appropriate to do these
tests.

On the basis of the previous criteria and students' interview, I constructed Table 9.10,
which summarizes students' mental models on the concept of recursion after the learning ses-
sion (except for T3, there were no explicit data for analyzing students' changes of the trace
model). Three (C1, C2, and C4) among four students of the COFALE group and two (T2 and
T3) among five students of the traditional group developed the ability to solve problems re-
cursively to a relatively high level. Two other students (T1 and T5) of the traditional group
also made significant progress in learning recursion. We cannot distinguish considerable dif-
ferences of learning outcomes between the two groups: Both groups of learners seem to be
more or less equal in mastering the recursion concept.
Table 9.10. Learners' mental models on recursion after the learning session

Learners Loop model Syntactic model Analytic model Analysis-synthesis model Trace model
C1 No Not used Advanced Advanced Beginner
C2 No Intermediate Not used Beginner Novice
C3 No Not used Advanced Not used Intermediate
C4 No Not used Advanced Intermediate Beginner

T1 No Intermediate Advanced Intermediate Intermediate
T2 No Expert Not used Expert Intermediate
T3 No Not used Advanced Advanced Advanced
T4 Yes Beginner Beginner Beginner Intermediate
T5 No Intermediate Not used Intermediate Intermediate

Page 162

When asked the question "Did you have particular difficulties when you were brought to
work on this concept [recursion]?", most students said (Table 9.11) that they understood the
concept of recursion quite well but found it difficult to see recursion in concrete problems,
particularly in complex situations such as the ones in the posttest of the study.
Table 9.11. Learners' difficulties about learning recursion

Learners Difficulties
C1 Recursive thinking: how to write a recursive method for a given problem.
C2 Not see how to build recursive methods for a given problem.
C3 It is not easy to see recursion in different problems.
C4 Application to diverse problems.

T1 What are base cases? How to build recursive solutions to a given problem.
T2 No difficulties.
T3 Recursion is a counter-natural concept. Problem is to identify recursive elements in a given situation.
T4 See how to solve problem recursively and where is recursion in concrete situations such as trees.
T5 It is difficult to apply recursion in concrete cases.

Main result:

Most students in both groups developed the ability to solve problems recursively to a cer-
tain degree but there was no clear difference of learning outcomes between the two
groups of learners.

The COFALE group’s behavior seemed to be more consistent with cognitive flexibility
than the traditional group’s behavior, more analysis is needed to verify this claim.

All the students in both groups had difficulty to apply recursion in concrete problems, par-
ticularly complex problems different from the ones with which they were confronted.

9.3.2 Exploration of learning materials

I now analyze students' exploration of and feedback on the provided learning materials (the
lecture, the homework, and the COFALE environment or the chapter of the reference book).
The analysis could explain why students learned recursion and why there was no difference
of learning outcomes between the two groups. The data used for this analysis were a part of
students' interview and my observation about students' learning behavior during the learning
session.

On the basis of students' navigation history registered in COFALE (see chapters 6 and 7)
and students' interviews, I created Table 9.12. From this table, I may deduce that, within 1
hour, all of students followed a certain number of suggestions fostering cognitive flexibility
offered by COFALE. Indeed, the three main learning activities that students performed were:
(a) exploring multiple representations and learning situations related to both recursion and
linked lists (e.g., arithmetic expressions, simple text search, and phone book); (b) doing all of

Page 163

three exercises presented in the test section of COFALE; and (c) asking me via e-mail to give
feedback on their exercises.
Table 9.12. COFALE group learners' exploration of COFALE with respect to criteria for cognitive flexibility

Criteria for cognitive flexibility Students' learning behavior

MM1: The same learning content presenting concepts and their relation-
ships is represented in different forms (e.g., text, images, audio, video,
simulations).

All learners explored multiple repre-
sentations.

MP1: The same abstract concept is explained, used, and applied system-
atically with other concepts in a diversity of examples of use, exercises,
and case studies in complex, realistic, and relevant situations.

All learners explored multiple situa-
tions.

MM2: Learners are encouraged to study the same abstract concept for
different purposes, at different times, by different methods including differ-
ent activities (reading, exploring, knowledge reorganization, etc.).

All learners performed multiple
learning activities at different times.

MP2: When facing a new concept, learners are encouraged to explore the
relationships between this concept and other ones as far as possible in
complex, realistic, and relevant situations.

All learners examined related con-
cepts.

MP3: When facing a new concept, learners are encouraged to explore
different interpretations of this concept (by other authors and by peers), to
express their personal point of view on the new concept, and to give feed-
back on the points of view of other people.

Only C4 explored external re-
sources. No one examined peers'

learning spaces.

MP4: When facing a new concept, learners are encouraged to examine,
analyze, and synthesize a diversity of points of view on the new concept.

No one produced summaries.

MM3: The number of participants, the type of participant (learner, tutor,
expert, etc.), the communication tools (e-mail, mailing lists, face to face,
chat room, video conferencing, etc.), and the location (in the classroom,
on campus, anywhere in the world, etc.) are varied.

All learners used e-mail to ask
questions to the tutor. Only C3 par-

ticipated in the forum created in
advance by the tutor.

MP5: During the discussion, learners are encouraged to diversify – as far
as possible – the different points of view about the topic discussed.

No one used the list of predefined
discussion questions.

MM4: During the learning process, learners are encouraged to use differ-
ent assessment methods and tools, at different times, and in different con-
texts for demonstrating their ability to solve different problems.

All learners did tests and homework
individually.

MP6: During the problem-solving process, learners are encouraged to
confront multiple ways to solve the problem and multiple possible solu-
tions to the problem.

No work in groups was recorded.

Why did COFALE students’ learning behavior satisfy only about a half of the set of crite-
ria? Why did their learning behavior satisfy those criteria but not other ones? Here is what I
observed: At the beginning of COFALE exploration, all students tried to find tests to do.
They arrived at learner tools (see section 6.3.3), they found tests and did them. They had
questions and they tried to find communication tools. They arrived at discussion tools (it is
easy to see them in COFALE). They used e-mail to communicate with the tutor. The tutor
suggested them, via e-mail, to explore learning situations before doing tests. They followed
the tutor’s suggestions, they explored different learning situations. They saw the menu “Re-
lated topics”, they explored related topics (linked lists). Then, they returned to do tests and to
ask the tutor questions. C3 and C4 also explored other learner tools (external resources, fo-
rums). And time (1 hour) was up. From this observation, I derive three conclusions:

Page 164

• One hour may be too short for students to explore every condition of learning provided by
the recursion course in COFALE. It is, however, not necessary to always examine all of
the learning conditions in the environment.

• Although COFALE has been designed to guide students automatically in the exploration
of the learning hyperspace, it is important that the tutor be active to help students explore
the learning environment effectively, especially at the beginning of the learning process,
when students are still “novice” in the use of COFALE.

• In an e-Learning context such as COFALE, students like to find and do exercises and
tests more than explore learning contents. I discuss this issue further in section 9.4.3.

There was no clear evidence registered for the effect of adaptability supported by
COFALE, because the exploration time was too short (about 1 hour during the experimental
phase, in the interview session, most COFALE students claimed that they did not use
COFALE after the experimental session and before the posttest and interview ones).

On the basis of students' interviews, I created Table 9.13. This table shows that T2 and T3
had good reading skills, whereas T1, T4, and T5 did not examine the content of the chapter
well enough. My observation of students' reading also confirmed this claim: T2 and T3 care-
fully read each example presented in the chapter, whereas T1, T4, and T5 had a quick glance
at the content of the chapter. This claim may explain the traditional group students' grades
both in the final exam of the introductory course on object-oriented programming and Java
and in the posttest of this study.

Tables 9.12 and 9.13 and my observation of students' learning behavior showed that the
COFALE group had more learning motivation than did the traditional one. Indeed, all of the
four COFALE group students did all three exercises presented in COFALE in comparison
with one or two among many exercises presented at the end of the book chapter did four of
the five traditional group students. This behavior of persistence of students (i.e. to maintain
attention to the learning environment) is an important indicator in a theory of motivation
(Huitt, 2001). In addition, during the exploration session, I received 20 questions of the
COFALE group students via e-mail compared to only 3 face-to-face questions of the students
in the traditional group (the questions principally concerned the feedback on students' exer-
cises). This meta-cognitive strategy of students (i.e. to ask questions) is also a critical indica-
tor in a theory of motivation (Huitt, 2001).
Table 9.13. Traditional group learners' exploration of the chapter of the reference book

Learners Exploration
T1 "I had a quick glance at the chapter […] I did one or two exercises at the end of the chapter."
T2 "I examined all the examples well […] I did not do exercises at the end of the chapter."
T3 "I read only the points that are interesting to me, the examples particularly […] I also did several ex-

ercises at the end of the chapter."
T4 "I rarely read the comments […] I read only the source code in examples […] I did one or two exer-

cises at the end of the chapter."
T5 "I had a quick glance at the examples […] I did one or two exercises at the end of the chapter."

Page 165

Table 9.14 displays students' feedback on the provided learning materials. Almost all of
students in both groups claimed that the lecture was good because it provided many simple
examples for the understanding of the recursion concept. All students in the COFALE group
were satisfied with the way COFALE provided learning situations and activities; especially,
C3 and C4 were very interested in learning with COFALE. Most students in the traditional
group were also satisfied with the chapter of the reference book, except for T4 who did not
like the way the chapter presented the Java code and for T5 who wanted the chapter would
explain the way to arrive at recursive solutions. Students also liked the homework (its analy-
sis was presented in Table 9.5) because it helped them see the usefulness of recursion well.

When asked the question "Were two weeks sufficient for this course?", except for C2,
students said that the time duration and the learning materials were sufficient for learning the
concept of recursion. They claimed, however, that they needed more time to apply recursion
in a diversity of complex situations by themselves. Thus, it is necessary to prepare conditions
of learning to help students transfer their own knowledge in future contexts, especially out-
side the school contexts (Jonnaert & Vander Borght, 2003).
Table 9.14. Learners' feedback on the provided learning materials

Learners Comments Difficulties
C1 "I had not much time to examine COFALE […] it is useful but what hap-

pens if the tutor has to correct the exercises of 200 students."
Not understand several
learner tools

C2 "I need more lectures to be able to master recursion […] COFALE is
good […] but I need feedback immediately after I submit my homework."

No difficulties

C3 "The lecture was good […] COFALE is interesting, instructive […] ex-
amples with graphics are clear, very well explained […] I like the way to
navigate freely […] COFALE can replace the lecture […] it should be
presented in French."

No difficulties

C4 "The lecture was good […] COFALE is good, personalized […] we can
work anywhere, submit exercises online […] there is not much in one
page […] many examples, they are clear and well explained, in each
example we do not give the solution immediately, there is one page to
explain how to think, one page to explain how to build the solution, and
one page to present the solution […] but I need more exercises."

Not easy to find exercises
in COFALE

T1 "The lecture was very clear […] Examples in the chapter are very clear,

very good, and interesting."
No difficulties

T2 "The lecture provided simples examples […] The chapter is good but
should also provide several simple examples."

Sometimes English

T3 "The lecture was good but I need more homework […] The chapter is
well done […] examples are clear and well explained except for the first
several ones, and examples are presented with increasing difficulties."

No difficulties

T4 "Examples and exercises in the chapter are good […] but the source
code is too long, so I must turn back pages when reading."

Not see how to find out
recursion, how it works

T5 "The lecture was good […] The chapter is clear but it should provide
complex exercises and explain how to arrive at recursive solutions."

Not see how to build re-
cursive solutions

Main result: Most students were satisfied with the lecture, the homework, and the
COFALE environment or the book chapter; the students in the COFALE group, how-
ever, had more learning motivation than did the students in the traditional one.

Page 166

9.4 Discussion

After the 4-hour-long learning session, most students in both groups developed the ability to
solve problems recursively to a significant degree, and were interested in and satisfied with
COFALE or the book chapter. The COFALE group had more learning motivation than did
the traditional one: It appears that all of the COFALE group students followed COFALE's
suggestions fostering cognitive flexibility, whereas about half of the traditional group stu-
dents followed the chapter's suggestions. It seems that the COFALE group progressed a little
better than did the traditional one in learning the concept of recursion. There was, however,
no clear evidence for the difference of learning outcomes in terms of the concept of recursion
between the two groups. For example, the posttest grade, the quality of solutions to the prob-
lems of the posttest, and the change of mental models on recursion of the two groups are
more or less comparable.

I also found out some evidence that indicate that the COFALE group demonstrated more
cognitive flexibility behavior than did the traditional group.

In what follows, on the basis of my findings, I discuss the following five issues: (a) rea-
sons for the fact that both groups of students learned the concept of recursion to a certain de-
gree, (b) reasons for the fact that there was no difference of learning outcomes between the
two groups of students, (c) useful findings for improving COFALE, (d) useful findings for
the teaching and learning of the recursion concept, and (e) examples of students' knowledge
construction consistent with the constructivist point of view shown in chapter 1.

9.4.1 Why did students learn recursion to a significant degree?

In this study, among nine first-year engineering students at UCL, five learners mastered rea-
sonably well and two learners mastered to a high degree both the concept of recursion and its
application to solve a diversity of problems in a complex situation. It is worth to note that the
selected students learned recursion with the Java programming language within about 4 hours
during 2 weeks in comparison, for example, with 12 hours during 3 weeks Bhuiyan's nine
first-year science students mastered recursion with the Lisp programming language (Bhuiyan
et al., 1994). Because there was no difference of learning outcomes between the two groups
of students, the main reasons for that success may be among of the following ones:

1. Students' programming skills were good before the study. The four evidences for this
claim are: (a) in the introductory course on object-oriented programming and Java, stu-
dents mastered both programming and problem solving techniques and Java well through
a problem-based learning approach (Pedagogy Group at FSA/UCL, 2005), a kind of ac-
tive learning; (b) in the introductory course on object-oriented programming and Java,
students were able to learn the concept of linked lists, which is related to recursion, within
8 hours during 1 week; (c) most selected students were among the best ones of about 280
students in this course; and (d) most selected students were able to trace one or two recur-
sive methods successfully although they had no knowledge of recursion.

Page 167

2. The lecture was good. The main evidence for this claim is that in the interview session,
most selected students advocated that the lecture was very clear with many simple exam-
ples that helped them mastering the basic knowledge about the recursion concept. Further
more, the explicit teaching of the DCG (Divide, Conquer, and Glue) strategy may also be
an important factor for the success (Turbak et al., 1999).

3. COFALE and the chapter were good. The main indication for this affirmation is that in
the interview session, most students said (see Table 9.14) that they were satisfied with
COFALE (or the chapter) because it provided a variety of compelling examples that
helped them see recursion in different situations.

… (it may have more reasons than that present here)

9.4.2 Why was there no significant difference between the two
groups?

This study did not provide clear evidence for the difference of learning outcomes between the
COFALE group learners and the traditional group learners. One or more reasons of the fol-
lowing ones could explain this affirmation:

1. The time for the study was too short to see the difference. Although the time was suffi-
cient enough for most students to learn recursion, it may be too short to see the difference
of learning outcomes between the two groups of students. Indeed, within 1 hour the
COFALE group students could not benefit all of the learning materials supported by the
COFALE learning environment such as forums, learning tools for adding students' per-
sonal examples and producing students' own summaries. More long-term experiments
should thus be performed.

2. The number of participants was not sufficient enough to see the difference. Among four
COFALE group students, three learners mastered recursion well and one learner had seri-
ous problems with it. And among five traditional group students, two learners mastered
recursion well, two learners had a little difficulty in applying it to solve complex prob-
lems, and one learner had serious difficulty in the application of recursion. These factors,
however, cannot provide significantly statistical evidence for the difference of learning
outcomes between the two groups because the population of the study was too small. So,
more experiments with more participants (e.g. 20 students) should be carried out.

3. The selected students had good enough programming skills and the lecture was good
enough for students to learn recursion. Therefore, after the lecture two students (C3 in the
COFALE group and T2 in the traditional one) declared that they had mastered the recur-
sion concept. They also stated that COFALE (or the chapter) was useful but they consid-
ered it as an additional resource for seeing how to apply recursion in various examples.

4. The chapter of the reference book was as good as was COFALE for learning recursion.
Most students in both groups advocated that COFALE or the chapter clearly presented a
variety of interesting examples. Moreover, the traditional group students were versed in

Page 168

the exploration of the book in their introductory course on object-oriented programming
and Java.

5. The means (the posttest and interview questions) and criteria used to assess students'
learning outcomes were not pertinent. I think that it is necessary to propose finer (rather
operational) criteria for the assessment of students' learning outcomes. For instance, a set
of operational criteria should be useful for evaluating students' posttest and interview.

6. The learning conditions provided by COFALE did not foster cognitive flexibility effec-
tively. Although COFALE's learning conditions presented in chapter 6 were consistent
with the pedagogical principles underlying cognitive flexibility, no experiment was car-
ried out with actual students to verify whether those conditions of learning truly foster
cognitive flexibility. It is thus important to perform one or several surveys for this issue.

7. The selected students had done unanticipated learning activities before the posttest ses-
sion. After the experimental session and before the posttest one, the selected students had
been asked to do the homework (see section 9.2.2). During that time, however, the two
groups could use other pedagogical devices than COFALE or the book chapter to learn
the concept of recursion.

… (it may have more reasons than that present here)

9.4.3 Findings for improving COFALE and the book chapter

The experiment provided evidence that may be useful for improving the COFALE system
and the chapter of the reference book, as follows:

• In the interview session, several students claimed that the chapter should present more
simple examples, and especially explain how to go from problem specifications to recur-
sive solutions. This claim is consistent with the comments presented in Appendix B6.

• In virtual learning environments such as COFALE, students tend to find (e.g., through
learner tools in COFALE) and do exercises and tests first. The current version of
COFALE presents assessment activities at the bottom of certain content pages (see sec-
tion 6.3.1), but not vice versa. So, for future research, for each exercise or test in
COFALE, it is useful to associate appropriate concepts and learning situations so that stu-
dents can examine them while doing the exercise or the test. Incorporating assessment
into students' learning process, possibly at its beginning, is an aspect consistent with con-
structivism (Lajoie & Lesgold, 1992; Wilson et al., 1995).

• When exploring learner tools in COFALE at the beginning of the learning session, stu-
dents may not understand several tools such as "Export Content", "My Tracker" (see
ATutor's "How To Course": Adaptive Technology Resource Center, 2004). Thus, the
hyperspace of learner tools should be adaptive to students' skill level in exploring
COFALE: When students are not familiar with using COFALE, we should present them
with simple tools. When they are versed in using COFALE, we should provide them with
more "advanced" tools.

Page 169

• During he learning session, students ask the tutor similar questions, for instance about
tests. Therefore, the tutor should create one or more Q&A forums to reduce his or her
workload.

• Students like to learn a new concept in their native language. So, COFALE's interface and
the learning content should be presented in students' native tongue, for example in French
for students at FSA/UCL.

9.4.4 Findings for teaching and learning recursion

The survey provided a certain numbers of findings that may be useful both for teaching and
for learning recursion. Here are several essential findings:

• Explicit teaching of the DCG strategy may help students applying recursion flexibly (i.e.
they can use different mental approaches to solve problems recursively), and therefore
grasping the recursion concept well. Turbak and colleagues (Turbak et al., 1999) also
claimed this finding.

• Recursion is really unfamiliar and complex because: (a) it is hard for students to see re-
cursion in a given problem, for example, in the posttest, C3 was able to solve the complex
problem in test 6 but was not able to see recursion in test 1, whereas several other stu-
dents saw recursion in test 1 but were not able to solve the problem in test 6; (b) some-
times, students express the concept of recursion correctly but cannot apply it in concrete
situations (e.g. C2 and T4) and vice versa (e.g. T2); and (c) to construct complete and cor-
rect recursive solutions to complex problems, students often have to use different mental
approaches such as analytic and analysis-synthesis – using only the analysis-synthesis ap-
proach often leads to incomplete solutions. Several researchers on recursion (e.g., Ander-
son et al., 1988; Bhuiyan et al, 1994) also drew this conclusion. Therefore, the tutor
should make a great diversity of situations available and encourage learners to apply re-
cursion to those situations.

• If the nature of problems does not force students to think recursively, it seems that they
prefer to think iteratively and propose iterative solutions (of course if they have prior
knowledge of iteration), for instance, in the posttest, several students preferred an itera-
tive solution to a recursive one to the problem in test 3, several students tried to count the
number of ways the robot can walk 8 meters in test 1, but most students tried to think re-
cursively to solve the problems in test 4 and in test 6.

• Although students have no knowledge of recursion, they can trace correctly several recur-
sive methods if they have good programming skills (see the pretest analysis in section
9.3.1).

• To personalize learning materials for different students in the recursion course, we need
to take into consideration the two following factors: (a) students often use different men-
tal approaches to solve problems recursively – several researchers on recursion (e.g.
Bhuiyan et al., 1994) also drew this conclusion; and (b) the same mental approach, for

Page 170

example analytic, may have different levels, from "novice" to "expert" (see section 9.3.1)
– it appears that there has not been considerable research attention devoted to this issue.
This finding suggests that it is necessary to consider many more kinds of mental models
on recursion than the four ones I assumed in section 6.2.1 in the design of COFALE.
Thus, for future research, one can improve COFALE's learner model manager, for exam-
ple, to provide an explicit tool allowing the course designer to specify the level of each
mental model on the learning object being designed.

• Students' results of the posttest may reflect more or less their mental models on the con-
cept of recursion. It isn't, however, always exact to identify students' mental models
automatically if we rely only on their test results (passed or failed), as I proposed in sec-
tion 7.3.1. For example, in the posttest, C3 successfully used the analytic model (but not
the analysis-synthesis one) to solve the problem in test 6 (in the design of COFALE, I as-
sumed that if students pass this test then they have reached the analysis-synthesis model).
Sometimes, we need to interview students in order to know exactly their mental represen-
tations about recursion. Further research should thus be done for the problem of detecting
learners' mental models automatically. In addition, it is worth to encourage the learner to
carefully examine the following three methods of evaluation of his or her learner model
(see section 6.3.2): self-evaluation, evaluation by the tutor, and evaluation by the system.

9.4.5 Examples for constructivism

While evaluating students' posttest, I found the following two examples, which are frequent
in computing science:

1. Different ways to solve the same problem. Students proposed three different solutions to
the problem in test 2: one approach with two base cases, one approach with three base
cases, and one approach with four base cases (none of them resembles the solution pre-
sented in Appendix C). All of those solutions are correct and produce the same output for
the same input. This example means that given the same problem, individuals use their
own way to arrive at their own solution, which is not necessarily the tutor's.

2. Different solutions to the same problem. In test 3, because there was no precondition for
the method "isZigzag", students expressed two different points of view for the given
problem: (a) one student thought that if a list is null then return "false", and (b) several
other students supposed that list is not null. These points of view are different from (even
opposed to) the tutor's (see Appendix C: If a list is null then return "true"), although they
should be all acceptable. This example explains that, given the same situation, people
construct their personal understanding, which may be different from each other’s.

The previous examples may suggest that in the design of COFALE, we should systemati-
cally provide students with problems whose nature must give rise directly to different ways to
solve the problems and to different solutions to the problems. This claim is consistent with
criteria MP6 shown in section 2.4.4.

Page 171

9.5 Conclusion

In the present chapter, I have reported a preliminary evaluation of the COFALE learning en-
vironment. Although the survey provided several encouraging results for fostering cognitive
flexibility by means of ICT-based learning conditions, there are still a number of important
questions needed to be taken into account, especially the question about whether COFALE's
learning conditions truly facilitate and stimulate students' cognitive flexibility.

For future research, I claim that to gather more evidences indicating the full effectiveness
of learning with the assistance of COFALE, it is necessary to carry out a number of long-term
experiments with a significant number of learners, for instance, to integrate COFALE into
long-term official courses of students at FSA/UCL.

Page 173

Conclusions and future work

"The journey of a thousand miles begins with a single step."

Lao Tsu, Chinese Philosopher, 6th Century B.C. (cited in WorldPeace, 1997)

I summarize in this conclusion section the aim of the dissertation, the main results of the pre-
sent work, the directions for future research, and several concluding remarks.

Page 174

Aim of the thesis

The main objective of the dissertation is to investigate on how to exploit ICT effectively to
design constructivist and adaptive learning environments. I have tackled two important ques-
tions of ICT-based constructivist and adaptive learning systems by means of an operational
approach:

1. How to exploit ICT to provide the individual student with appropriate learning conditions
that truly facilitate and stimulate constructivist learning?

2. How to help the teacher design ICT-based adaptive learning systems from a constructivist
point of view?

Contributions

Among many facets of constructivism, cognitive flexibility is often mentioned as being
strongly relevant to the constructivist learning theory. The important claim I make in this the-
sis is that: The operational approach proposed in this thesis makes the design and use of
adaptive learning systems supporting cognitive flexibility straightforward and effective.

More specifically, this dissertation makes the four main contributions, as follows:

1. A set of operational criteria for cognitive flexibility. In chapter 2, I proposed a set of op-
erational criteria for cognitive flexibility (stressing the qualifier "operational"). Showing
an example of their application, I argued that operational criteria make the process of in-
structional design more straightforward than do general indications suggested by educa-
tional theorists. The set of criteria was then applied as a useful framework for designing
and evaluating learning conditions fostering cognitive flexibility: it is used, for example,
(a) as guidelines for proposing an instructional design process in chapter 3, (b) as means
of validation for demonstrating the COFALE learning environment in chapter 6, and (c)
as means of validation for analyzing several "constructivist" learning environments in
chapter 5.

I believe that the usefulness of the set of operational criteria is in the way I have proposed
it. After reading chapter 2, one should be able to propose and use one's own operational
criteria for any pedagogical principle other than cognitive flexibility.

2. An operational instructional design process for cognitive flexibility. In chapter 3, on the
basis of the set of criteria for cognitive flexibility, I proposed an instructional design
process and I showed an example of its application for the instruction of the complex con-
cept of recursion in computing science. The set of instructional design activities was then
applied in chapter 7 to guide the course designer in using authoring tools offered by
COFALE to devise learning conditions that facilitate and stimulate cognitive flexibility. I
argued that the process of instructional design I proposed is useful in the practice of in-

Page 175

struction because the set of instructional design activities was used as a practical frame-
work (or as guidelines) for creating conditions of learning.

In my point of view, the usefulness of the instructional design process is in the manner I
have exploited the pedagogical principles exhibiting cognitive flexibility in order to make
them practical in instruction. After reading chapter 3, one should be able to propose one's
own instructional design process for the practice of one's own teaching.

3. A domain-independent adaptive e-Learning platform supporting cognitive flexibility. In
chapters 6 and 7, I showed how to exploit available learning technologies to design learn-
ing environments that facilitate and stimulate cognitive flexibility. The design and use of
COFALE learning environment provides clear evidence for the usefulness of my ap-
proach because: (a) using operational criteria as means of validation, it is quite easy to il-
lustrate that COFALE provides the individual student with learning conditions fostering
cognitive flexibility (see chapter 6); and (b) the operational instructional design process
makes it straightforward for the course designer to use authoring tools provided by
COFALE to design and use learning systems supporting cognitive flexibility (see chapter
7).

COFALE also supports several adaptation techniques borrowed from other adaptive
learning systems. It adapts the learning contents, pedagogical devices, and communica-
tion support to different kinds of students (see section 6.3.2). The two adaptation tech-
niques COFALE has not implemented yet are adaptive problem-solving support and
adaptive assessment (see sections 1.5.4 and 5.3).

The usefulness of the design and use of COFALE I described is in the way I have ex-
ploited available ICT to implement learning conditions exhibiting the desired characteris-
tics of a relevant pedagogical principle (i.e., cognitive flexibility). I think that the
COFALE system is ready to be used in a great number of domains, for instance, in
mathematics, in sciences, in economics (see section 7.4), and that it is open enough for
one to modify it to exploit any pedagogical principle. COFALE may also be used as a
"test bed" for educational researchers to carry out various experiments related to learning
technologies and cognitive flexibility. Of course, the system needs to be tested by differ-
ent people (teachers, course designers, educational researchers, software developers) in
different domains, so that we can draw definitive conclusions.

4. A preliminary evaluation of ICT-based learning conditions fostering cognitive flexibility.
A number of studies have been carried out for evaluating how learning conditions foster-
ing cognitive flexibility affect how students learn (Spiro & Jehng, 1990); these experi-
ments have showed that such learning conditions significantly help students in acquiring
knowledge, especially in advanced learning. In chapter 9, I also carried out a preliminary
experiment to evaluate the COFALE system: How students learn the complex concept of
recursion in computing science with the help of COFALE? Although the short-term study
did not provide evidence for the difference of outcomes between learning with the assis-
tance of COFALE and learning with the help of a book chapter, several encouraging re-
sults from learning with the help of COFALE were reported (e.g., students were satisfied

Page 176

with and interested in the way COFALE supports learning, students gained cognitive
flexibility behavior to some level). Also, the study provided a certain number of findings
that were useful to improve the design and use of COFALE as well as the creation of
learning situations for the particular concept of recursion.

It is important, however, to emphasize the need for carrying out long-term experiments in
order to verify whether the learning conditions provided by COFALE truly foster stu-
dents' cognitive flexibility.

Future directions

In the previous chapters, I discussed a number of ideas for future research. Here, I summarize
a certain number of critical issues.

More completely constructivist learning environments

Operational criteria for constructivism. Jonnaert and Vander Borght (2003) proposed a set of
operational criteria for the concept of learning in a constructivist point of view (see also sec-
tion 2.5). In chapter 2, I proposed a set of operational criteria for learning conditions foster-
ing cognitive flexibility, an important facet of constructivism.

In chapter 1, however, I explained that constructivism has various paradigms and many
facets related to instructional design. The educational paradigm Jonnaert and Vander Borght
followed is only one of many constructivist variations. Cognitive flexibility I exploited is
only one of many constructivist facets. In addition, in section 9.4.2, I claimed that is it neces-
sary to propose criteria for constructivist assessment. I believe that the operational approach
used by Jonnaert and Vander Borght and in this thesis could also be used to make construc-
tivist learning, instruction, and assessment clearer than what we have done.

For example, for the facet of problem solving related to instructional design, one first
needs to propose operational criteria for this facet in the same way I proposed such criteria
for cognitive flexibility in chapter 2: One should identify learning conditions facilitating
problem solving by students and propose criteria for these conditions of learning in each of
the four learning components identified in section 1.5.1. Then, on the basis of those criteria,
one should be able to propose an instructional design process (see chapter 3).

While exploiting other facets of constructivism than cognitive flexibility, one may en-
counter several difficulties. For instance, facing the problem-solving facet, one should note
that problem solving is domain-dependent (Spiro & Jehng, 90; Weber & Brusilovsky, 2001).
Thus, it must be hard to propose a general framework that covers different domains.

Learner and instructor tools for constructivism. In chapters 6, 7, and 8, I introduced a new
and open-source e-Learning platform, named COFALE, in which ICT-based learning condi-
tions fostering cognitive flexibility were created. For future research, one can build various

Page 177

tools for fostering not only cognitive flexibility but also other facets of constructivism. Here
are several examples:

• To alleviate the teacher's workload, it should be necessary to build a tool allowing the
automatic evaluation of students' learning behavior with respect to the pedagogical prin-
ciples underlying cognitive flexibility (see also section 7.2.3).

• To help teachers use COFALE effectively, we may need to provide them with specific
tools to analyze their teaching behavior with respect to the desired characteristics of cog-
nitive flexibility (see also section 7.2.3). It should also be necessary to build a tool allow-
ing the teacher to "deduce" learning methods (or strategies) learners use during their
learning process, so that the teacher can adjust the conditions of learning he or she has
created for learners (see also section 7.2.2).

• It should be useful to present teachers with a specific tool allowing them to exhort a spe-
cific student to follow a teaching method (see section 7.2.2).

• It should be important to make COFALE open enough so that one can integrate specific
pedagogical devices into COFALE without intervention of the software developer, for in-
stance domain-specific tools to support problem solving by students (see also sections 6.5
and 7.4).

• It should be useful to ameliorate a certain number of COFALE's existing learner tools
such as the tool for exploring peers' learning hyperspace (see section 6.3.1).

More completely adaptive learning systems

In section 1.5.4, I described five main adaptation techniques that can be implemented in a
learning system: adaptive presentation of learning contents, adaptive use of pedagogical de-
vices, adaptive communication support, adaptive problem-solving support, and adaptive as-
sessment. In section 6.3.2, I showed that COFALE takes into account the first three tech-
niques mentioned earlier, and in section 7.3.2, I explained how to implement those tech-
niques. I believe that COFALE' adaptability can be improved. Here are several examples:

• Adaptive assessment can be implemented in the same way I implemented adaptive pres-
entation of learning contents (see section 7.3.2).

• Adaptive problem-solving support should be a very useful technique (Weber & Brusi-
lovsky, 2001). The implementation of such a domain-dependent technique in a domain-
independent platform such as COFALE must be difficult (Weber & Brusilovsky, 2001).
One possible way is to make the platform open enough so that one can easily integrate
domain-specific tools into the system to support problem solving by learners (see also
sections 6.5 and 7.4).

• Adaptive presentation of learning contents can be improved (see also section 7.3.2). For
instance, we can implement adaptive navigation support and adaptive curriculum se-
quencing (see section 5.3) in COFALE.

Page 178

• Adaptive features of COFALE, designed for separate learning objects, can be improved
for designing "complex" courses in which many learning objects are interrelated (see also
section 7.4).

More experiments for COFALE

In chapter 9, I reported a preliminary evaluation of the COFALE learning environment. The
survey is preliminary because it was carried out in a short term and with a small number of
students. Cognitive flexibility is important in instruction (Driscoll, 2000; Spiro & Jehng,
1990). Therefore, it should be useful to conduct several kinds of long-term studies to know
the full extent of how learning conditions fostering cognitive flexibility affect how students
learn, especially in an e-Learning context. Those studies could also help ameliorating the de-
sign and use of COFALE. Here are several instances (see also section 9.1):

• To verify whether COFALE's conditions of learning truly foster students' cognitive flexi-
bility. To do so, I have claimed that we need a set of operational criteria.

• To know whether students follow every suggestion proposed by COFALE.

• To know the impact of COFALE's adaptability on students' learning.

• To analyze the impact of COFALE on students' learning when it is integrated in their
long-term courses, for instance the course on object-oriented programming and Java
given to the first-year engineering students. The questions for this kind of experiments in-
clude: Does COFALE help students master those concepts better than, for instance, a tra-
ditional approach? Are students satisfied with and interested in learning with the assis-
tance of COFALE? Can COFALE replace a part of traditional pedagogical devices, for
instance, the tutor's exercise sessions, students' meeting rooms?

• To know teachers and educational researchers' feedback on the design and use of
COFALE in their own teaching and research, respectively.

More learning facilities: Towards a learning engine

Context. For the purpose of the discussion, I shall assume that a teacher (Tom) uses COFALE
to design a certain learning object, for instance linked lists, and that a computing-science stu-
dent (Alice) is using COFALE to explore this learning object. While exploring linked lists, by
accident Alice discovers that linked lists are closely related to the concept of recursion. Thus,
she desires to master this concept. Tom, however, did not anticipate this situation, so he did
not make the course on recursion available in COFALE.

Alice uses a search engine, for instance Google (2005), to search for websites that teach
the concept of recursion. After introducing a keyword "recursion" in a small textbox and
clicking on a button "Search", she receives a list of Web resources related to the keyword
"recursion" (Figure 10.1). It is obvious that this list includes a great number of hyperlinks that
are not suitable to Alice's objective. Even with a website (Figure 10.1: Recursion – Program-

Page 179

ming with Recursion) that is actually related to Alice's objective, it seems to be hard for Alice
to attain her own learning goal because the website is an electronic book rather than a learn-
ing environment. So, Alice is not satisfied with the results provided by the search engine.

COFALE provides Alice with an online learning engine (integrated in COFALE). After
introducing the keyword "recursion" (e.g., Figure 10.2), she is led to a learning hyperspace of
the concept of recursion designed by another teacher (not Tom), as described in chapter 6.
This kind of learning is called "right", anytime, and anywhere learning (Masie Center, 2003).
That is, to provide the learner with the right learning materials, at the right time, in the right
context, in the right amount, and so forth. I believe that this learning facility reinforces the
pedagogical principles underlying cognitive flexibility because it provides the student with a
very useful learning activity for exploring related concepts or topics on the demand.
Figure 10.1. Search results provided for Alice by Google

Figure 10.2. A learning engine proposed for Alice

Problems. Providing people with right, anytime, and anywhere learning is obviously impor-
tant because it will change the way students and workers learn, as online search engines have

Page 180

been changing the fashion people search for information. In my personal point of view, the
research on building learning engines gives rise to a number of critical problems in comput-
ing science, education, artificial intelligence, and learning psychology.

For example, a difficult problem is to create a very large repository of learning resources
well described by metadata. If we want a learning engine be able to serve for a great diversify
of learners studying in many different subjects, we may have to construct a very great number
of learning objects in a variety of domains. Note that the Google robust search engine (2005)
has recently indexed about eight billion Web links available in the Internet.

A second problem is to construct a database of learner profiles so that the engine can
automatically provide each individual learner with appropriate learning materials in a given
context. For example, in the previous scenario, if the engine has information about which
domain Alice is studying and her prior knowledge, it will present her with the learning object
on recursion and the Java programming language (but not the one on recursion and the LISP
programming language she does not know).

Other problems include how to automate the process of constructing a learning object
meeting a particular learning objective of the learner, how to index a large number of content
objects and learners so that the engine can easily find the right objects for the right learners at
the right time and in the right context.

Feasibility. I believe that, to develop a robust learning engine, it requires much effort of both
the researcher and the practitioner in computing science, education, artificial intelligence, and
learning psychology.

For example, for the repository of learning objects, several organizations of learning tech-
nologies have recently proposed standards and models such as IMS/SCORM (Advanced Dis-
tributed Learning, 2004) for practitioners in the field to build sharable content object data-
bases (see also section 4.1). Therefore, in the coming years, I think a significant number of
sharable learning objects will be available.

A possible way to enrich the database of content objects is to encourage learners to intro-
duce learning resources they have found somewhere, together with several elements of meta-
data such as keywords for describing those resources (see also section 7.2.1).

Another way to create a large repository of learning resources is to crawl the Web, ana-
lyze Web resources, and define metadata for them. This method has been successfully used in
various search engines such as Google (2005), Yahoo (2005). I think, however, the automatic
process of analyzing the content of a Web page and defining learning metadata for it is very
hard. For instance, it is very difficult for a system to automatically detect which topic(s) a
Web page concerns, whether it is actually related to a particular learning concept. This issue
concerns the field of artificial intelligence.

It is worth to note that the COFALE learning environment supports many learning activi-
ties without intervention of the course designer (see chapters 6 and 7). Using COFALE, the
main work of the course designer is: (a) to create assets and content objects; (b) to construct
learner models; and (c) to organize assets and content objects into information blocks and

Page 181

learning objects for different kinds of learners. Therefore, once we have a database of learn-
ing resources well described by metadata and a database of learner profiles (e.g., we ask
learners to create and update it), we can use automated techniques, for example constraint
satisfaction (Mitrovic, 2005; Deville et al., 1999; Van Hentenryck et al., 1998), to create the
right learning object for the right learner in the right context.

More discussions related to the right, anytime, and anywhere learning are presented in
Masie Center's "Making sense of learning specifications and standards" (2003).

Concluding remarks

I claim that the approach I used to exploit ICT and pedagogical principles in this thesis is
more important than the results I obtained. I believe that clarifying what pedagogical princi-
ples entail in an operational manner is effective in the practice of instruction, because it pro-
vides a useful framework for the course designer, the teacher, and the software developer to
design, use, and develop learning systems exhibiting the desired characteristics of the peda-
gogical principles.

By claiming constructivism for my educational approach in this thesis, as a personal
choice, I am not saying that I dispute the widely reported findings of other learning theories.
In practice of instruction, many educational approaches have been successfully used, and no
one can say that constructivism is the best (Driscoll, 2000; Santrock, 2001). Similarly, by
claiming domain-independence for my operational approach, I do not state that I dispute a
variety of domain-dependent findings in cognitive science, for example findings about prob-
lem solving. Indeed, my dissertation is mainly concerned with cognitive flexibility, a domain-
independent facet of constructivism (Spiro & Jehng, 1990).

A final point: What the present research attempts to do is to contribute a part of making
learning and instruction, in a constructivist point of view, as easy as possible.

Page 183

APPENDIX A: Implementation for the collection of
compact discs

Two possible implementations for classes CD and CDCollection

Implementation 1 (successfully tested)

/* SPECIFICATION
 * Representation of a compact disc.
 */

import java.text.NumberFormat;

public class CD {

 // Instance variables
 private String title, artist;
 private double cost;
 private int tracks;

 // Constructor
 public CD(String title, String artist, double cost, int tracks) {
 this.title = title;
 this.artist = artist;
 this.cost = cost;
 this.tracks = tracks;
 }

 // Method
/* PRECOND
 * POSTCOND
 * Return a description of this CD.
 */
 public String toString() {
 NumberFormat fmt = NumberFormat.getCurrencyInstance();
 return fmt.format(cost) + "\t" + tracks + "\t" + title + "\t" + artist;
 }
}

/* SPECIFICATION
 * Representation of a collection of compact discs.
 */

import java.text.NumberFormat;

public class CDCollection {

 // Instance variables
 private CD[] collection;
 private int count;
 private double totalCost;

 // Constructor
 public CDCollection() {
 collection = new CD[200];
 count = 0;
 totalCost = 0.0;
 }
 // Methods
/* PRECOND
 * POSTCOND

Page 184

 * Adds a CD to the collection.
 */
 public void addCD(String title, String artist, double cost, int tracks) {
 if (count >= collection.length) return;

 collection[count] = new CD(title, artist, cost, tracks);
 totalCost += cost;
 count++;
 }

/* PRECOND
 * POSTCOND
 * Return a report describing the CD collection: the number of CDs, the total cost
 * and the average cost of all CDs, and the list of CDs.
 */
 public String toString() {
 if (count == 0) return "My CD Collection is empty.\n";

 NumberFormat fmt = NumberFormat.getCurrencyInstance();
 String report = "My CD Collection:\n\n";
 report += "Number of CDs: " + count + "\n";
 report += "Total cost: " + fmt.format(totalCost) + "\n";
 report += "Average cost: " + fmt.format(totalCost/count) + "\n\n";
 report += "CD List:\n\n";
 for (int i = 0; i < count; i++)
 report += collection[i].toString() + "\n";

 return report;
 }
}

Implementation 2 (successfully tested)
The difference between Implementation 1 and Implementation 2 is marked by vertical lines.

/* SPECIFICATION
 * Representation of a compact disc.
 */
import java.text.NumberFormat;

public class CD {

 // Instance variables
 private String title, artist;
 private double cost;
 private int tracks;

 // Constructor
 public CD(String title, String artist, double cost, int tracks) {
 this.title = title;
 this.artist = artist;
 this.cost = cost;
 this.tracks = tracks;
 }

 // Methods
/* PRECOND
 * POSTCOND
 * Return the cost of this CD.
 */
 public double getCost() {
 return cost;
 }

/* PRECOND

Page 185

 * POSTCOND
 * Return a description of this CD.
 */
 public String toString() {
 NumberFormat fmt = NumberFormat.getCurrencyInstance();
 return fmt.format(cost) + "\t" + tracks + "\t" + title + "\t" + artist;
 }
}

/* SPECIFICATION
 * Representation of a collection of compact discs.
 */
import java.text.NumberFormat;

public class CDCollection {

 // Instance variables
 private CD[] collection;
 private int count;

 // Constructor
 public CDCollection() {
 collection = new CD[200];
 count = 0;
 }

 // Methods
/* PRECOND
 * POSTCOND
 * Adds a CD to the collection.
 */
 public void addCD(String title, String artist, double cost, int tracks) {
 if (count >= collection.length) return;

 collection[count] = new CD(title, artist, cost, tracks);
 count++;
 }

/* PRECOND
 * POSTCOND
 * Return a report describing the CD collection: the number of CDs, the total cost
 * and the average cost of all CDs, and the list of CDs.
 */
 public String toString() {
 if (count == 0) return "My CD Collection is empty.\n";

 String report = "My CD Collection:\n\n";

 report += "CD List:\n\n";
 double totalCost = 0.0;
 for (int i = 0; i < count; i++) {
 report += collection[i].toString() + "\n";
 totalCost += collection[i].getCost();
 }

 report += "\nNumber of CDs: " + count + "\n";
 NumberFormat fmt = NumberFormat.getCurrencyInstance();
 report += "Total cost: " + fmt.format(totalCost) + "\n";
 report += "Average cost: " + fmt.format(totalCost/count) + "\n";

 return report;
 }
}

Page 187

APPENDIX B: Teaching recursion

This appendix is a reference for the learning resources used for the design of learning materi-
als presented in chapter 3. Note that all Java implementations presented here were success-
fully tested. I have organized this appendix into the next six sections:

1. B1: Basic concepts related to recursion.

2. B2: Learning situations for recursion.

3. B3: Basics concepts related to linked lists.

4. B4: Learning situations for linked lists.

5. B5: General discussion questions.

6. B6: Teaching recursion in the literature.

Page 188

Appendix B1: Basic concepts related to recursion

Recursion

Definition: Recursion is the process of defining something in terms of itself.

Example 1: Definition of the factorial function
1! = 1
N! = N x (N – 1)! (N > 1)

Example 2: Definition of a list of one or more numbers
A List is a: number
or a: number comma List

For instance, tracing the recursive definition of the list 2, 3, 5, 7:
List: number comma List
 2 , 3, 5, 7
 number comma List
 3 , 5, 7
 number comma List
 5 , 7
 number
 7

DCG Strategy
DCG stands for divide, conquer, and glue. In problem solving, this strategy means (see also the following figure):
- Divide a problem P into sub-problems P1, P2, … Pn.
- Conquer these sub-problems by solving them and yielding sub-solutions S1, S2, … Sn.
- Glue these sub-solutions together into the solution S to the whole problem.

DCG strategy in problem solving (Turbak et al., 1999)

Recursive thinking

Definition: Recursive thinking is the ability of humans to solve a problem by reducing it to one or more sub-
problems that are (1) identical in structure to the original problem and (2) somewhat simpler to solve.
Note: We would say this technique of problem solving is top down.

Example1: Computing 215
STEP 1: since 215 = 27 * 28, we compute 27 and 28
STEP 2: since 27 = 23 * 24 and 28 = 24 * 24, we compute 23 and 24
STEP 3: since 23 = 2 * 22 and 24 = 22 * 22, we compute 22
STEP 4: we know 22 = 2 * 2 = 4, so 23 = 2 * 22 = 8, 24 = 22 * 22 = 16, 27 = 23 * 24 = 128, 28 = 24 * 24 = 256, and 215 =
27 * 28 = 32768
Example2: Look up a word in a dictionary, for instance, “recursion”
STEP 1: we look up the words that start with ‘r’

Page 189

STEP 2: within these words, we look up the words that begin with “re”
 …

Recursive algorithms

Definition: A recursive algorithm to solve a problem is a set of steps in each step we see one or more sub-
problems that are either solved or identical in structure to and smaller than the problem(s) of the previous step.
Notes: We use the term “base case” to denote a simple case in a recursive algorithm, and we use the term “re-
cursive part” to denote the references to the problems that are identical in structure to the original problem.

Example: A recursive procedure for factorials

procedure factorial (n : positive integer)
/* BASE CASE */
if n = 1 then
 factorial (n) : = 1
/* RECURSIVE PART */
else
 factorial (n) : = n * factorial (n - 1)

For instance, tracing the computation of 5! :
STEP 1: since 5! = 5 * 4!, we compute 4! (identical to and smaller than 5!)
STEP 2: since 4! = 4 * 3!, we compute 3! (identical to and smaller than 4!)
STEP 3: since 3! = 3 * 2!, we compute 2! (identical to and smaller than 3!)
STEP 4: since 2! = 2 * 1!, we compute 1! (identical to and smaller than 2!)
STEP 5: we know 1! = 1, so 2! = 2 *1 = 2, 3! = 3 * 2! = 6, 4! = 4 * 3! = 24, and 5! = 5 * 4! = 120

Iterative thinking

Definition: Iterative thinking is the ability of humans to combine a number of small and well-known problems to
solve a larger problem.
Note: We would say this technique of problem solving is bottom up.

Example1: Computing 215
STEP 1: we compute 22 = 2 * 2 = 4
STEP 2: we compute 23 = 2 * 22 = 8
...
STEP 14: we compute 215 = 2 * 214 = 2 * 16384 = 32768

Example 2: Look up a word in a dictionary, for instance, “recursion”
No one looks up a word from the beginning of the dictionary because all the words in the dictionary are ordered
alphabetically.

Iterative algorithms

Definition: An iterative algorithm to solve a problem is a set of steps in each step we see one or more problems
that are solved either independently or by combining the solutions of the problems in previous steps.
Note: Iterative thinking often produces an iterative algorithm.

Example: An iterative procedure for factorials
procedure factorial (n : positive integer)
f : = 1
for i : = 2 to n
 f : = i * f
/* f is n! */

For instance, tracing the computation of 5! :
STEP 1: we compute 1 * 2 = 2
STEP 2: we compute 2 * 3 = 6
STEP 3: we compute 6 * 4 = 24
STEP 4: we compute 24 * 5 = 120

Page 190

Recursive methods

Definition: In programming, a recursive method is a method that calls itself.
Notes: Other possible names for recursive methods are recursive functions, recursive procedures.

Example: A Java method for computing n!
/* PRECOND
 * n is a positive integer
 * POSTCOND
 * Return n!
 */
public int factorial (int n) {
 /* BASE CASE */
 if (n == 1) return 1;
 /* RECURSIVE PART */
 else return n * factorial (n - 1); // this method calls itself
}

Base cases

Definition: The base cases of a recursive definition (e.g., a recursive algorithm or a recursive data structure) are
the non-recursive part of the definition; this non-recursive part permits the recursion to eventually end.
Notes: We find out the base case(s) of a recursive algorithm by examining its simplest case(s).

Example: A Java method for computing n!
/* PRECOND
 * n is a positive integer
 * POSTCOND
 * Return n!
 */
public int factorial (int n) {
 /* BASE CASE */
 if (n == 1) return 1; // this command line shows the simplest case of n!
 /* RECURSIVE PART */
 else return n * factorial (n - 1);
}

Recursive part

Definition: The recursive part of a recursive definition (e.g., a recursive algorithm or a recursive data structure) is
the part (of the definition) in which one or more self-references occur.
Notes: We find out the recursive part of a recursive algorithm by examining the self-reference(s).

Example: A Java method for computing n!
/* PRECOND
 * n is a positive integer
 * POSTCOND
 * Return n!
 */
public int factorial (int n) {
 /* BASE CASE */
 if (n == 1) return 1;
 /* RECURSIVE PART */
 else return n * factorial (n - 1); // this command line shows a self-reference : the method calls itself
}

Page 191

Appendix B2: Learning situations for recursion

Arithmetic expressions

A simple arithmetic expression composes of integer numbers and simple operators +, -, *, and / (integer division),
for example, E = (2 + 3) * 4 – 3 * (3 – 1). We often use a binary tree to represent an arithmetic expression, as the
following figure.

A recursive representation of the expression (2 + 3) * 4 – 3 * (3 – 1)

Recursive definition

The following definition defines arithmetic expressions in a recursive manner.

A recursive definition of arithmetic expressions
An operator is: + or - or * or /.
An expression is an: integer number
or an: expression operator expression.
For instance, tracing the recursive definition of the expression (2 + 3) * 4 - 3 * (3 - 1)
expression: expression operator expression
 (2 + 3) * 4 - 3 * (3 - 1)
expression operator number number operator expression
 2 + 3 * 4 3 * 3 - 1
number operator number number operator number
 2 + 3 3 - 1

Recursive evaluation

The following figure shows how to evaluate an arithmetic expression in a recursive manner.
A tree-recursive evaluation of the expression (2 + 3) * 4 – 3 * (3 – 1)
(Follow the arrows from 1 to 15)

Page 192

Recursive evaluation process

The following table points out how to decompose the evaluation of an arithmetic expression and how to combine
sub-solutions to build the final solution.

Decomposing and combining sub-solutions of the evaluation of (2 + 3) * 4 – 3 * (3 – 1)

Java implementation

The following implementation shows how to use the Java programming language to represent and evaluate arith-
metic expressions.

A Java implementation of arithmetic expressions
/* SPECIFICATION
 * This class is a data type for arithmetic expressions
 */
public class Expression{
 /* BASE CASE */
 /* identifier is the root of the binary tree representing the expression
 it could be + or - or * or / or a string representing an integer */
 private String identifier;
 /* RECURSIVE PART */
 /* left and right are the left sub-expression and the right sub-expression
 left and right are null if identifier is an integer */
 private Expression left, right;

 /* Construct an integer as an expression, s represents an integer */
 public Expression(String s){
 identifier = s;
 left = null;
 right = null;
 }
 /* Construct a compound expression, s represents an operator */
 public Expression(String s, Expression l, Expression r){
 identifier = s;
 left = l;
 right = r;
 }

Page 193

 /* PRECOND
 * This is a correct arithmetic expression
 * POSTCOND
 * Return the integer value of this expression
 */
 public int evaluate(){
 /* RECURSIVE PART */
 if (identifier == "+") return left.evaluate() + right.evaluate();
 else if (identifier == "-") return left.evaluate() - right.evaluate();
 else if (identifier == "*") return left.evaluate() * right.evaluate();
 else if (identifier == "/") return left.evaluate() / right.evaluate();
 /* BASE CASE */
 /* Convert identifier into an integer and return it */
 else return Integer.parseInt(identifier);
 }
}

Java test class

The following implementation shows an example for testing arithmetic expressions.

A Java implementation testing arithmetic expressions
/* SPECIFICATION
 * This class tests the evaluation of an arithmetic expression
 */
public class TestExpression{
 public static void main (String[] args){
 Expression two = new Expression ("2");
 Expression three = new Expression ("3");
 Expression ex1 = new Expression ("+", two, three);
 Expression four = new Expression ("4");
 Expression ex2 = new Expression ("*", ex1, four);
 Expression one = new Expression ("1");
 Expression ex3 = new Expression ("-", three, one);
 Expression ex4 = new Expression ("*", three, ex3);
 Expression myExpression = new Expression ("-", ex2, ex4);
 System.out.println("The value of my expression is: " + myExpression.evaluate());
 }
}

Simple text search

A text is a set of words such as a phrase or a paragraph or a document. The length of a text, meaning that the
number of words in the text, could range between a few words such as a phrase to hundreds of thousand of words
such as a document. An example of a short text is “recursion is unfamiliar” and an example of a longer text is “re-
cursion is a very difficult concept for students to learn because recursion is unfamiliar and complex”. The problem
is to identify whether a short text appears in a long text.

Recursive definition

A word is a group of lowercase letters (words are case insensitive).
A text is a: word
or a: word followed by a text (we omit punctuation marks in a text).
Note: We define the tail of a text to be the text without the first word.

Page 194

Definition tracing

Tracing the recursive definition of the text "recursion is unfamiliar"

Recursive algorithm

A recursive algorithm for searching text T1 in text T2

By applying the DCG strategy, we divide the search problem into one sub-problem, as follows:

procedure search (T1, T2 : simple texts)
/* BASE CASE */
if T1 = null then search (T1, T2) : = true /* It is a convention */
else if begin (T1, T2) then search (T1, T2) : = true /* T1 appears at the beginning of T2 */
else if (tail of T2) = null then search (T1, T2) : = false /* We reach the end of T2 and T1 is not found */
/* RECURSIVE PART */
else search (T1, T2) : = search (T1, tail of T2) /* Only one sub-problem */

We divide the problem of checking whether T1 appears at the beginning of T2 into one sub-problem, as follows:

procedure begin (T1, T2 : simple texts)
/* BASE CASE */
if first word of T1 is different from first word of T2 then begin (T1, T2) : = false
else if (tail of T1) = null then begin (T1, T2) : = true /* We reach the end of T1 before we reach the end of T2 */
else if (tail of T2) = null then begin (T1, T2) : = false /* We reach the end of T2 before we reach the end of T1 */
/* RECURSIVE PART */
else begin (T1, T2) : = begin (tail of T1, tail of T2) /* Only one sub-problem */

You should note that there is no “glue” stage in this algorithm because we divide the original problem into only one
sub-problem; this is a simple form of the DCG strategy.

Page 195

Searching examples

Java implementation

A Java implementation of simple texts

/* SPECIFICATION
 * This class is a data type for simple texts
 */
public class SimpleText{
 /* BASE CASE */
 /* The first word of the text */
 private String word;
 /* RECURSIVE PART */
 /* The tail of the text */
 private SimpleText tail;

 /* Construct a word as a text, s is a word */
 public SimpleText(String s){
 word = s;
 tail = null;
 }
 /* Construct a compound text, s is a word and t is a text */
 public SimpleText(String s, SimpleText t){
 word = s;
 tail = t;
 }
 /* Get the word of the text */
 public String getWord(){
 return word;
 }
 /* Get the tail of the text */
 public SimpleText getTail(){
 return tail;
 }

 /* PRECOND
 * No comment
 * POSTCOND

Page 196

 * Return true if t is null or t appears in this text, otherwise return false
 */
 public boolean contain(SimpleText t){
 /* BASE CASES */
 if (t == null) return true; // By convention
 else if (containAtTheBeginning(t)) return true; // t appears at the beginning
 else if (tail == null) return false; // Reach the end of this text but not found
 /* RECURSIVE PART */
 else return tail.contain(t); // Check whether t appears in the tail of the text
 }
 /* PRECOND
 * t is not null
 * POSTCOND
 * Return true if t appears at the beginning of this text, otherwise return false
 */
 private boolean containAtTheBeginning(SimpleText t){
 /* BASE CASES */
 if (word != t.getWord()) return false; // The first words are different
 else if (t.getTail() == null) return true; // Reach the end of t and found
 else if (tail == null) return false; // Reach the end of this text and not found
 /* RECURSIVE PART */
 /* Check if the tail of t appears at the beginning of the tail of this text */
 else return tail.containAtTheBeginning(t.getTail());
 }
}

Java test class

The following implementation shows an example for testing simple text search.

A Java implementation testing simple text search
/* SPECIFICATION
 * This class tests whether a text t1 is contained in another text t2
 */
public class TestSimpleText{
 public static void main (String[] args) {
 SimpleText t1 = new SimpleText("recursion", new SimpleText("is", new SimpleText("unfamiliar"));
 SimpleText t2 = new SimpleText("recursion", new SimpleText("is", new SimpleText("difficult", new SimpleText
 ("because", new SimpleText("recursion", new SimpleText("is", new SimpleText("unfamiliar")))));
 System.out.println("Search result: " + t2.contain(t1));
 }
}

Fibonacci numbers

The Fibonacci numbers, F0, F1, F2, … are defined by the following equations.

A recursive formula for computing Fibonacci numbers
- F0 = 0 and F1 = 1.
- Fn = Fn-1 + Fn-2 if n >= 2.
An iterative formula for computing Fibonacci numbers
- F0 = 0 and F1 = 1.
- F2 = F0 + F1 = 0 + 1 = 1, F3 = F1 + F2 = 1 + 1 = 2; F4 = F2 + F3 = 1 + 2 = 3, …

Page 197

First Java implementation

/* A recursive implementation using a recursive algorithm */
/* PRECOND
 * n is a nonnegative integer
 * POSTCOND
 * Return F(n)
 */
public int fibonacciRecursive (int n) {
 /* BASE CASES */
 if (n == 0) return 0;
 else if (n == 1) return 1;
 /* RECURSIVE PART */
 else return fibonacciRecursive(n - 1) + fibonacciRecursive(n - 2);
}

Second Java implementation

/* A recursive implementation using an iterative algorithm */
/* PRECOND
 * n is a nonnegative integer
 * POSTCOND
 * Return F(n)
 */
public int fibonacciIterative1(int n){
 /* BASE CASES */
 if (n == 0) return 0;
 else if (n == 1) return 1;
 /* ITERATIVE PART */
 // 0, 1 are F(0) and F(1).
 // 2 is the initial index of the iterative process: We iterate from 2 to n
 else return iterateFibonacci(0, 1, 2, n);
}
// A supplementary method helping the implementation of the previous method
private int iterateFibonacci(int number1, int number2, int index, int n){
 // Apply F(n) = F(n-1) + F(n-2) for calculating F(index)
 int number = number1 + number2;
 // We have reached the end of the iterative process, F(n) = F(index)
 if (index == n) return number;
 // A recursive call to calculate F(index + 1) in the iterative process
 else return iterateFibonacci(number2, number, index + 1, n);
}

Third Java implementation

/* An iterative implementation using an iterative algorithm */
/* PRECOND
 * n is a nonnegative integer
 * POSTCOND
 * Return F(n)
 */
public int fibonacciIterative2(int n){
 /* BASE CASES */
 if (n == 0) return 0;
 else if (n == 1) return 1;
 /* ITERATIVE PART */

Page 198

 else{
 int number1 = 0; // F(0)
 int number2 = 1; // F(1)
 int number = 0; // number is used for calculating F(n)
 for (int i = 2; i <= n; i++){
 number = number1 + number2; // Calculate F(i)
 // Reassign intermediate numbers to calculate F(i+1)
 number1 = number2;
 number2 = number;
 }
 return number;
 }
}

Partition

A partition of a positive integer m is a way to write m as a sum of positive integers. Let Pm equal the number of
different partitions of m, where the order of terms in the sum does not matter. Given m, find Pm.
We list all partitions of the number five in the following example.
This example is complex and compelling for recursion. This example is also good to explain how to go from a prob-
lem specification to a recursive solution. People must think the problem recursively to be able to solve it.

All partitions of the number five
(1) 5 = 5
(2) 5 = 4 + 1
(3) 5 = 3 + 2
(4) 5 = 3 + 1 + 1
(5) 5 = 2 + 2 + 1
(6) 5 = 2 + 1 + 1 + 1
(7) 5 = 1 + 1 + 1 + 1 + 1

Recursive formula

A recursive formula for computing Pm

Let Pm,n be the number of different ways to express the positive integer m as the sum of positive integers not ex-
ceeding the positive integer n. The following recursive definitions are correct and can be used to compute Pm:
- Pm = Pm,m
- P1,n = 1 and Pm,1 = 1
- Pm,m = 1 + Pm,m-1 if m > 1
- Pm,n = Pm,m if m < n
- Pm,n = Pm,n-1 + Pm-n,n if m > n > 1

Page 199

Recursive computation process

The following table points out how to decompose the computation of P5 and how to combine sub-solutions to build
the final solution.

Decomposing and combining sub-solutions of P5

Tree-recursive computing process

A tree-recursive computing process of P5
(Follow the arrows from 1 to 20)

Page 200

From problem to solution

A dialogue between tutor and student for finding a recursive solution of the partition problem

Tutor: You have examined all of the ways to write five as a sum of positive integers. Think recursively, what can
you find out from this example?
Student: I cannot find out the relationship between P5 and P4, P3, P2, and P1. Although, I see that there is only one
way to write 5 = 5 and that there are six ways to write five as a sum of positive integers not exceeding four.
Tutor: Well, you have found that the number of ways to express five as the sum of positive integers not exceeding
five is equal to the number of ways to write five as the sum of positive integers not exceeding four plus one, ha-
ven’t you? Don't you see the sub-problem?
Student: Oh yes I do, however, how to divide this sub-problem now?
Tutor: You have divided the original problem by distinguishing two cases: one with the presence of the number
five, and one without it. Why don't you apply this strategy now?
Student: Right, the number of ways to express five as the sum of positive integers not exceeding four is equal to
the number of ways to write five as the sum of positive integers not exceeding three plus one, because there is
only one way to express 5 = 4 + 1.
Tutor: Really? It is a particular case. Think to write 10 as the sum of positive integers not exceeding four.
Student: I understand. I would say the number of ways to express 10 as the sum of positive integers not exceed-
ing four is equal to the number of ways to write 10 as the sum of positive integers not exceeding three plus the
number of ways to write six (10 – 4) as the sum of positive integers not exceeding 4.
Tutor: Can you complete the definitions to compute Pm now?
Student: Yes, I should use Pm,n to denote the number of different ways to express m as the sum of positive inte-
gers not exceeding the positive integer n, then give base cases as well as recursive definitions for that function.

Recursive algorithm

A recursive procedure for computing Pm,n
procedure partition (m, n : positive integer)
/* BASE CASE */
if m = 1 or n = 1 then partition (m, n) : = 1
/* RECURSIVE PART */
else if m < n then partition (m, n) : = partition (m, m)
else if m = n then partition (m, n) : = 1 + partition (m, m – 1)
else partition (m, n) : = partition (m, n – 1) + partition (m – n, n)

Page 201

Appendix B3: Basic concepts related to linked lists

(Some part of learning contents for linked lists were reused from Friesen, 2003)

Linked-list data structure (from Friesen, 2003)

The linked-list data structure involves four concepts: the self-referential class, node, link field, and link:

Self-referential class: a class with at least one field whose reference type is the class name:
class Employee
{
 private int empno;
 private String name;
 private double salary;

 public Employee next;

 // Other members
}
Employee is a self-referential class because its next field has type Employee.

Node: an object you create from a self-referential class.

Link field: a field whose reference type is the class name. In the code fragment above, next is a link field. In con-
trast, empno, name, and salary are nonlink fields.

Link: the reference in a link field. In the code fragment above, next's reference to an Employee node is a link.
The four concepts above lead to the following definition: a linked list is a sequence of nodes that interconnect via
the links in their link fields. Computer scientists use a special notation to illustrate linked lists. A variant of that nota-
tion appears in the following figure.

A special notation for illustrating linked lists

The figure presents three nodes: A, B, and C. Each node divides into a contents area (in orange) and one or more
link areas (in green). The contents area represents all nonlink fields, and each link area represents a link field. A's
single link area and C's link areas incorporate an arrow to signify a reference to some other node of the same type
(or a subtype). B's single link area incorporates an X to signify a null reference. In other words, B doesn't connect
to any other node.

Singly linked list (from Friesen, 2003)

Page 202

A singly linked list is a linked list of nodes, where each node has a single link field. A reference variable holds a
reference to the first node, each node (except the last) links to the next node, and the last node's link field contains
null to signify the list's end. Although the reference variable is commonly named top, you can choose any name
you want. The next figure presents a three-node singly linked list, where top references the A node, A connects to
B, B connects to C, and C is the final node.
A three-node singly linked list contains connected nodes A, B, and C

Insertion

One common singly linked list algorithm is node-insertion. That algorithm is somewhat involved because it must
deal with four cases: when the node must be inserted before the first node; when the node must be inserted after
the last node; when the node must be inserted between two nodes; and when the singly linked list does not exist.
Before studying each case, consider the following pseudo code:
DECLARE CLASS Node
 DECLARE STRING name
 DECLARE Node next
END DECLARE

DECLARE Node top = NULL
The pseudo code above declares a Node self-referential class with a name non link field and a next link field.
The pseudo code also declares a top reference variable (of type Node) that holds a reference to the first Node in
a singly linked list. Because the list does not yet exist, top's initial value is NULL. Each of the following four cases
assumes the Node and top declarations:
The singly linked list does not exist: This is the simplest case. Create a Node, assign its reference to top,
initialize its non link field, and assign NULL to its link field. The following pseudo code performs those tasks:
top = NEW Node
top.name = "A"
top.next = NULL
The following figure shows the initial singly linked list that emerges from the pseudo code above.

The initial singly linked list contains the solitary Node A

The node must be inserted before the first node:. Create a Node, initialize its non link field, assign top's ref-
erence to the next link field, and assign the newly created Node's reference to top. The following pseudo code
(which assumes that the previous pseudo code has executed) performs those tasks:
DECLARE Node temp

temp = NEW Node
temp.name = "B"
temp.next = top
top = temp
The resulting two-Node list appears in the next figure.

The expanded two-Node singly linked list places Node B ahead of Node A

Page 203

The node must be inserted after the last node. Create a Node, initialize its non link field, assign NULL to the
link field, traverse the singly linked list to find the last Node, and assign the newly created Node's reference to the
last Node's next link field. The following pseudo code performs those tasks:
temp = NEW Node
temp.name = "C"
temp.next = NULL

DECLARE Node temp2

temp2 = top

// We assume top (and temp2) are not NULL
// because of the previous pseudo code

WHILE temp2.next IS NOT NULL
 temp2 = temp2.next
END WHILE

// temp2 now references the last node

temp2.next = temp
The next figure reveals the list following the insertion of Node C after Node A.

Node C comes last in the expanded three-node singly linked list

The node must be inserted between two nodes: This is the most complex case. Create a Node, initialize its
non link field, traverse the list to find the Node that appears before the newly created Node to be inserted, assign
the link in that previous Node's next link field to the newly created Node's next link field, and assign the newly
created Node's reference to the previous Node's next link field. The following pseudo code performs those
tasks:
temp = NEW Node
temp.name = "D"

temp2 = top

// We assume that the newly created Node is inserted after Node
// A and that Node A exists. In the real world, there is no
// guarantee that any Node exists, so we would need to check
// for temp2 containing NULL in both the WHILE loop's header
// and after the WHILE loop completes.

WHILE temp2.name IS NOT "A"
 temp2 = temp2.next
END WHILE

// temp2 now references Node A.

temp.next = temp2.next
temp2.next = temp
The following figure presents the list following the insertion of Node D between Nodes A and C.

The ever-growing singly linked list places Node D between Nodes A and C.

Page 204

Deletion

A second common singly linked list algorithm is node-deletion. Unlike node-insertion, there are only two cases to
consider: delete the first node and delete any node but the first node. Each case assumes a singly linked list with
at least one node exists:
Delete the first node: Assign the link in the top-referenced Node's next field to top:
top = top.next; // Reference the second Node (or NULL if there is only one Node)
The next figure presents before and after views of a list where the first Node is deleted. In that figure, Node B
disappears and Node A becomes the first Node.

Before and after views of a singly linked list where the first Node is deleted. The red X and dotted lines
signify top's change of reference from Node B to Node A.

Delete any node but the first node: Locate the Node that precedes the Node to be deleted and assign the link
in the Node-to-be-deleted's next link field to the preceding Node's next link field. The following pseudo code
(which assumes Figure 6's linked list and extends that figure's associated pseudo code) deletes Node D:
temp = top
WHILE temp.name IS NOT "A"
 temp = temp.next
END WHILE
// We assume that temp references Node A
temp.next = temp.next.next
// Node D no longer exists

The following figure presents before and after views of a list where an intermediate Node is deleted. In that figure,
Node D disappears.

Before and after views of a singly linked list where an intermediate Node is deleted. The red X and dotted
lines signify Node A's change of link from Node D to Node C.

Page 205

Appendix B4: Learning situations for linked lists

Phone book

The phone book is a place wherein you store the name and the cell phone of your friends. The basic operations for
the phone book include inserting a new entry, deleting an existing entry, and searching for an existing entry. The
following table shows an example of a phone book.

Name Cell phone

Nicolas Devos 0486234334

Mariane Frenay 0475223344

Christine Jacqmot 0485312204

Jean Cara 0475243189

Marc De Vylder 0474222999

Insertion examples

Page 206

Insertion Java code

 * SPECIFICATION
 * This class defines insertion part of phone book
 */
public class PhoneBook{
 private FriendNode list;
 // Constructor
 public PhoneBook(){
 list = null;
 }
 // Methods
 /* PRECOND
 * fr is not null
 * POSTCOND
 * Create a new FriendNode object and add it to the beginning of the linked list
 */
 public void addFirst(Friend fr){
 FriendNode node = new FriendNode(fr);
 node.next = list;
 list = node;
 }
 /* PRECOND
 * fr is not null
 * POSTCOND
 * Create a new FriendNode object and add it to the end of the linked list
 */
 public void addLast(Friend fr){
 FriendNode node = new FriendNode(fr);
 if (list == null)
 list = node;
 else{
 FriendNode current = list;
 while (current.next != null)
 current = current.next;
 current.next = node;
 }
 }
 /* PRECOND
 * fr is not null
 * POSTCOND
 * Create a new FriendNode object and add it to the next of the node that contains a friend object whose "name"
 * field is name. If the node is not found, add to the end of the linked list
 */
 public void addMiddle(Friend fr, String name){
 FriendNode node = new FriendNode(fr);
 if (list == null)
 list = node;
 else{
 FriendNode current = list;
 while ((name.equals(current.friend.getName()) == false) && (current.next != null))
 current = current.next;
 node.next = current.next;
 current.next = node;
 }
 }

Page 207

 /* SPECIFICATION
 * An inner class that represents a node in the phone book
 */
 private class FriendNode{
 public Friend friend;
 public FriendNode next;
 public FriendNode(Friend friend){
 this.friend = friend;
 next = null;
 }
 }
}

Search examples

Search Java code

/* SPECIFICATION
 * This class defines search part of phone book
 */
public class PhoneBook{
 private FriendNode list;
 // Constructor
 public PhoneBook(){
 list = null;
 }

Page 208

 // Methods
 /* PRECOND
 * POSTCOND
 * Return the cellphone number of the friend whose name is name
 */
 public String findCellPhone(String name){
 FriendNode current = list;
 while ((current != null) && (name.equals(current.friend.getName()) == false))
 current = current.next;
 if (current != null)
 return current.friend.getCellPhone();
 else
 return "Not Found";
 }
 /* SPECIFICATION
 * An inner class that represents a node in the phone book
 */
 private class FriendNode{
 public Friend friend;
 public FriendNode next;
 public FriendNode(Friend friend){
 this.friend = friend;
 next = null;
 }
 }
}

Deletion examples

Page 209

Deletion Java code

/* SPECIFICATION
 * This class defines deletion part of phone book
 */
public class PhoneBook{
 private FriendNode list;
 // Constructor
 public PhoneBook(){
 list = null;
 }
 // Methods
 /* PRECOND
 * POSTCOND
 * Delete the first node of the linked list
 */
 public void deleteFirst(){
 if (list != null)
 list = list.next;
 }
 /* PRECOND
 * POSTCOND
 * Delete the last node of the linked list
 */
 public void deleteLast(){
 if (list != null) {
 if (list.next == null)
 list = null;
 else{
 FriendNode current = list;
 while (current.next.next != null)
 current = current.next;
 current.next = null;
 }
 }
 }
 /* PRECOND
 * POSTCOND
 * Delete the node following the one that contains a friend object whose "name" field is name
 */
 public void deleteMiddle(String name){
 if (list != null){
 if (name.equals(list.friend.getName()))
 list = list.next;
 else{
 FriendNode current = list;
 while ((current.next != null) && (name.equals(current.next.friend.getName()) == false))
 current = current.next;
 if (current.next != null)
 current.next = current.next.next;
 }
 }
 }
 /* SPECIFICATION
 * An inner class that represents a node in the phone book
 */

Page 210

 private class FriendNode{
 public Friend friend;
 public FriendNode next;
 public FriendNode(Friend friend){
 this.friend = friend;
 next = null;
 }
 }
}

Phone book Java code

/* SPECIFICATION
 * This class defines insertion part of phone book
 */
public class PhoneBook{
 private FriendNode list;
 // Constructor
 public PhoneBook(){
 list = null;
 }
 // Methods
 /* PRECOND
 * fr is not null
 * POSTCOND
 * Create a new FriendNode object and add it to the beginning of the linked list
 */
 public void addFirst(Friend fr){
 FriendNode node = new FriendNode(fr);
 node.next = list;
 list = node;
 }
 /* PRECOND
 * fr is not null
 * POSTCOND
 * Create a new FriendNode object and add it to the end of the linked list
 */
 public void addLast(Friend fr){
 FriendNode node = new FriendNode(fr);
 if (list == null)
 list = node;
 else{
 FriendNode current = list;
 while (current.next != null)
 current = current.next;
 current.next = node;
 }
 }
 /* PRECOND
 * fr is not null
 * POSTCOND
 * Create a new FriendNode object and add it to the next of the node that contains a friend object whose "name"
 * field is name. If the node is not found, add to the end of the linked list
 */
 public void addMiddle(Friend fr, String name){
 FriendNode node = new FriendNode(fr);

Page 211

 if (list == null)
 list = node;
 else{
 FriendNode current = list;
 while ((name.equals(current.friend.getName()) == false) && (current.next != null))
 current = current.next;
 node.next = current.next;
 current.next = node;
 }
 }
 /* PRECOND
 * POSTCOND
 * Delete the first node of the linked list
 */
 public void deleteFirst(){
 if (list != null)
 list = list.next;
 }
 /* PRECOND
 * POSTCOND
 * Delete the last node of the linked list
 */
 public void deleteLast(){
 if (list != null) {
 if (list.next == null)
 list = null;
 else{
 FriendNode current = list;
 while (current.next.next != null)
 current = current.next;
 current.next = null;
 }
 }
 }
 /* PRECOND
 * POSTCOND
 * Delete the node following the one that contains a friend object whose "name" field is name
 */
 public void deleteMiddle(String name){
 if (list != null){
 if (name.equals(list.friend.getName()))
 list = list.next;
 else{
 FriendNode current = list;
 while ((current.next != null) && (name.equals(current.next.friend.getName()) == false))
 current = current.next;
 if (current.next != null)
 current.next = current.next.next;
 }
 }
 }
 /* PRECOND
 * POSTCOND
 * Return the cellphone number of the friend whose name is name
 */
 public String findCellPhone(String name){

Page 212

 FriendNode current = list;
 while ((current != null) && (name.equals(current.friend.getName()) == false))
 current = current.next;
 if (current != null)
 return current.friend.getCellPhone();
 else
 return "Not Found";
 }
 /* PRECOND
 * POSTCOND
 * Return this list of friends as a string
 */
 public String toString(){
 String result = "";
 FriendNode current = list;
 while (current != null){
 result += current.friend + "\n";
 current = current.next;
 }
 return result;
 }
 /* SPECIFICATION
 * An inner class that represents a node in the phone book
 */
 private class FriendNode{
 public Friend friend;
 public FriendNode next;
 public FriendNode(Friend friend){
 this.friend = friend;
 next = null;
 }
 }
}

Java test class

/* SPECIFICATION
 Driver to test the phone book class */
public class TestPhoneBook{
 public static void main(String[] args){
 PhoneBook myPhoneBook = new PhoneBook();
 myPhoneBook.addFirst(new Friend("Christine Jacqmot", "0485312204");
 myPhoneBook.addFirst(new Friend("Nicolas Devos", "0486234334");
 myPhoneBook.addLast(new Friend("Jean Cara", "0475243189");
 myPhoneBook.addMiddle(new Friend("Mariane Frenay", "0475223344", "Nicolas Devos";
 System.out.println(myPhoneBook);
 System.out.println(myPhoneBook.findCellPhone("Phillipe Jonnaert");
 System.out.println(myPhoneBook.findCellPhone("Christine Jacqmot");
 myPhoneBook.deleteFirst();
 System.out.println(myPhoneBook);
 myPhoneBook.deleteLast();
 System.out.println(myPhoneBook);
 myPhoneBook.deleteMiddle("Mariane Frenay";
 System.out.println(myPhoneBook);
 }
}

Page 213

Appendix B5: Discussion questions

General questions (From Wright, 1995)

What mechanism would explain your hypothesis?
How would you explain that?
Are there other explanations?
Why?
What is the mechanism?
What do you mean?
How do you know that's true?
What does this mean?
What is the evidence?
Have you thought of everything that needs to be considered?
Does everyone in group agree?
Does anyone have a different opinion?
What was your source of information?
What is your hypothesis?
That is a good question. Can anyone answer?
Where might you get the information you need?
How might you get the information you need?
Can you be more specific?
Can you give an example?
How did we do as a group?

Domain-specific questions

Why recursion should be used in this problem?
Why recursion should not be used in this problem?
Can you see recursion in this problem, what is it?
Do you think this recursive method eventually ends?
Can you show me your iterative solution?
What is your own recursive solution? Can you explain it?
How did you go from the problem specification to your recursive solution?
What is wrong with this recursive solution?

Page 214

Appendix B6: Teaching recursion in the literature

In this appendix, I tried to analyze several authors' teaching of recursion in classroom or in
books or in computer-based learning systems. As in any teaching analysis, the following six
criteria were considered:

1. Learning objectives: What the authors expected from students.

2. Motivation: Why the authors taught recursion.

3. Problems: Difficulties for teaching recursion.

4. Pedagogical approach: How the authors taught recursion.

5. Learning outcomes: How students learned recursion.

6. Comments: My critiques of the authors' teaching of recursion.

Lewis and Loftus (2003) published the book “Java software solutions”, which cover recursion in a separate
chapter with a certain number of examples.
• Learning objectives. The main objective is to help students use recursion to solve programming problems.
• Motivation. Recursion is a powerful programming technique, which provides elegant solutions to certain

problems.
• Problems. No comment.
• Pedagogical approach. Explanation of the basic concepts underlying recursion (e.g. recursive thinking).

Exploration of recursion with various programming examples (e.g., traversing a maze, the tower of Hanoi,
fractals).

• Learning outcomes. No comment.
• Comments. The authors should explain how to go from a problem specification to a recursive solution.

Roberts (1986) published the book “Thinking recursively” exclusively devoted to the concept of recursion.
• Learning objectives. The authors want to help students think recursively and apply recursive thinking to

solve complex programming problems.
• Motivation. Recursive algorithms are quite important in computing science; recursion is useful to solve

complex problems; recursive solutions are concise and easily understood.
• Problems. Recursion is unfamiliar, obscure, difficult, and mystical.
• Pedagogical approach. Teaching the principle of recursive thinking: Solve a large problem by reducing it

to one or more sub-problems that are identical in structure to the original problem and simpler to solve. Ex-
amining recursion from different perspectives: (a) the use of recursion outside the context of programming,
(b) the use of recursion in mathematics, (c) the use of recursion to solve complex problems (e.g., sorting,
permutations, fractals), (d) the use of recursion in defining data structures, (e) how recursion works in the
computer.

• Learning outcomes. No comment.
• Comments. No comment.

Henderson and Romero (1989) used a ML programming environment (Standard ML) as a tool for teaching
recursion in an introductory course on computing science.
• Learning objectives. The main objective is to help learners use recursively defined data structures and de-

fine recursive functions in ML.
• Motivation. Recursion is a central concept in computing science; recursive algorithms often provide elegant

solutions to complex problems.

Page 215

• Problems. Recursion is counter-intuitive and very difficult for students to learn.
• Pedagogical approach. Discovery learning: Doing programming exercises with Standard ML. Selecting

Standard ML because of its recursive and simple-syntax characteristics. Teaching recursion at the beginning
of the course.

• Learning outcomes. Most learners among 200 first-year students, with no prior programming experience,
after three weeks, were able to define fairly powerful recursive functions in ML.

• Comments. To follow the course, students should have prior knowledge of recursive mathematical functions
and definitions.

Turbak and colleagues (1999) emphasized teaching recursion before loops in their CS1 with the Java pro-
gramming language.
• Learning objectives. The authors want to teach students how to think recursively in problem solving and

how to use recursion in programming.
• Motivation. Recursion is a central concept in computing science.
• Problems. Recursion is difficult to teach because of interference arose from students' knowledge of itera-

tions.
• Pedagogical approach. Teaching the DCG (Divide, Conquer, and Glue) strategy explicitly. Teaching recur-

sion before loops. Showing examples that emphasize the nature of recursion rather than traditional exam-
ples (i.e., Factorials, Fibonacci numbers).

• Learning outcomes. Most students finished the course with a firm understanding of both recursion and
loops. It seems that students left out the course with better problem-solving skills than in the previous in-
carnation of CS1.

• Comments. No comment.

Bhuiyan and associates (1994) supported the learning of recursive problem solving with the PETAL learning
environment.
• Learning objectives. The principal objective is to help learners solve programming problems recursively.
• Motivation. No comment.
• Problems. Recursion is a difficult concept to teach and learn, especially for novice programmers.
• Pedagogical approach. Providing programming tools explicitly to assist learners in the use of three mental

methods to solve problems recursively: the syntactic method, the analytic method, and the analy-
sis/synthesis method (see chapter 6 for more details of these methods).

• Learning outcomes. Knowledge about recursive problem solving of five students in the PETAL group (stu-
dents used PETAL as they learned recursion) improved both quantitatively and qualitatively over time. The
five PETAL group learners also fared much better than the four learners in the traditional group (students
used a standard LISP environment as they learned recursion).

• Comments. No comment.

Anderson and colleagues (1988) provided the GRAPES learning environment to help students learn recursion.
• Learning objectives. The main goal is to help learners write recursive functions in LISP.
• Motivation. No comment.
• Problems. Recursion is unfamiliar and complex; students could not determine what has to be done to the

result produced by a recursive call in order to get a result for the current function call.
• Pedagogical approach. Learning by analogy: the learner solves a new problem by looking at worked-out

examples. And learning by knowledge compilation: After each problem-solving session, the learner is
asked to produce problem-solving operators (IF-THEN rules) so that he or she can apply them to new prob-
lems). Both kinds of learning were supported by GRAPES, which models the recursive programming be-
havior of an expert and visualizes students' problem-solving processes.

• Learning outcomes. Observing the behavior of a student during and after solving three recursive functions
in LISP, the authors found that she improved from one function to the next, and that she eventually became
quite effective at writing a wide variety of recursive functions.

• Comments. No comment.

Page 217

APPENDIX C: Materials and evidences of the evalua-
tion of COFALE

This appendix is a reference for the materials used to evaluate COFALE and several evi-
dences collected during the survey process. The evaluation of COFALE was presented in
chapter 9. In this appendix, I list the pretest, the posttest, the homework, and the interview
questions. In the posttest, I also present the scale for grading students' tests (all implementa-
tions presented in the posttest were successfully tested) and students’ solutions to a posttest
question. Note that the original materials were written in French because the experiment was
performed with French-native students. Several students had a little problem with understand-
ing what I wanted to say in the posttest and the homework; however, they understood after
listening to my explanation.

Because of limited space, one should contact me for having a complete copy of all the
data collected in the survey of COFALE.

Page 218

Pretest
(Recursion course, duration about 15 minutes)

Question 1

What would be the result of the following program? Justify your answer.

public class MyString{

 public static void main(String[] args){
 System.out.println (M1("hello"));
 }

 public static String M1(String list){
 if (list.equals("")) return "END";
 else return list.substring(0,1) + list.substring(0,1) + M1(list.substring(1));
 }
}
 // list.substring(0,1) returns the first character of list
 // list.substring(1) returns a substring of list, the substring begins with the character
 // at the index 1 and extends to the end of list

Possible solution:
Call M1("hello"): return "hh" + M1("ello").
Call M1("ello"): return "ee" + M1("llo").
Call M1("llo"): return "ll" + M1("lo").
Call M1("lo"): return "ll" + M1("o").
Call M1("o"): return "oo" + M1("").
Call M1(""): return "END".
Print to the Java console: "hheellllooEND".

Question 2

What would be the result of the following program? Justify your answer.

public class MyInteger{

 public static void main(String[] args){
 System.out.println (M1(8));
 }

 public static int M1(int n){
 if (n == 1) return 1;
 else return 2 * M1(n/2) + 3;
 }
}

Possible solution:
Call M1(8): return 2 * M1(4) + 3.
Call M1(4): return 2 * M1(2) + 3.
Call M1(2): return 2 * M1(1) + 3.
Call M1(1): return 1.
So M1(8) = 2 * (2 * (2 * 1 + 3) + 3) + 3 = 29.
Print to the Java console: 29.

Page 219

Question 3

Write the attributes of recursive methods below.

Possible solution:

- A recursive method must have one or more base cases, which permit the recursion to even-
tually end.
- A recursive method has a recursive part in which the method calls itself.

Question 4

Present in several lines your definition of the concept of recursion.

Possible solution:

Recursion is the process of defining something in terms of itself.

Question 5

In your opinion, what does “solving problems recursively” mean? Write your answer in sev-
eral lines.

Possible solution:

"Solving problems recursively" means that we divide a large problem into one or more sub-
problems that are identical in structure to the original problem and somewhat simpler to
solve.

Page 220

Posttest
(Recursion course, duration about 60 minutes)

Situation

A robot can take steps of 1 meter, 2 meters, or 4 meters. Figure 1 shows all of the ways the

robot can walk 5 meters. Let Fn denote the number of ways the robot can walk n meters

where n is a positive integer. Table 1 presents some values of Fn.

Table 1. Some values of Fn

N Fn

1 1

2 2

3 3

4 6

5 10

6 18

7 31

Figure 1. A ternary tree representing all of the ways the robot can walk 5 meters

Page 221

Test 1 (4 points)

Answer the following questions. Justify each answer.

How many ways can the robot walk 8 meters if its first step is 1 meter?

The answer is: F7 = 31. (1 point)

How many ways can the robot walk 8 meters if its first step is 2 meters?

The answer is: F6 = 18. (1 point)

How many ways can the robot walk 8 meters if its first step is 4 meters?

The answer is: F4 = 6. (1 point)

How many ways can the robot walk 8 meters?

The answer is: F7 + F6 + F4 = 55. (1 point)

Test 2 (4 points)

Complete the following recursive method.

/* PRECOND
 * distance is a positive integer
 * POSTCOND
 * Return the number of ways the robot can walk distance meters
 */
public int numberOfWays(int distance) {

Two points for the correct base cases, 1 point for the incomplete base cases (e.g. absence of
one or more base cases), and 0 point for the incorrect base cases.
Two points for the correct recursive part, 1 point for the incomplete recursive part (e.g. make
correctly three recursive calls but not sum up the three return values), and 0 point for the in-
correct recursive part (e.g. absence of one or more recursive calls).

Possible solution:

// BASE CASES (2 points)
 if (distance == 1) return 1;
 else if (distance == 2) return 2;
 else if (distance == 3) return 3;
 else if (distance == 4) return 6;

// RECURSIVE PART (2 points)
 else
 return numberOfWays(distance-1)+numberOfWays(distance-2)+numberOfWays(distance-4);

}

Page 222

Test 3 (4 points)

Let ListOfSteps denote a simply linked list composed of positive integers, which represents a

way the robot walks n meters where n is a positive integer:

/* SPECIFICATION
 * Definition of the class ListOfSteps: a simply linked list composed of positive
 * integers
 */
public class ListOfSteps {
 // Instance variables
 private int step; // value (meters)
 private ListOfSteps next; // link to the next element

 // Constructor
 public ListOfSteps(int step, ListOfSteps next) {
 this.step = step;
 this.next = next;
 }

 // Methods
/* PRECOND
 * POSTCOND
 * Return the value
 */
 public int getStep() {
 return step;
 }

/* PRECOND
 * POSTCOND
 * Return the link to the next element
 */
 public ListOfSteps getNext() {
 return next;
 }
}

A ListOfSteps is zigzag if there are no two equal consecutive steps, for example (1, 2, 2) is

not zigzag, but (2, 1, 2) is. Complete the following recursive method.

/* PRECOND
 * POSTCOND
 * Return "true" if list is zigzag, otherwise return "false"
 */
public boolean isZigzag(ListOfSteps list) {

Three points for the correct base cases, 2 points if not check whether the first and second ele-
ments of the list are equal, 1 point if not check whether the list has only one element, and 0
point for the incorrect base cases.
One point for the correct recursive part and 0 point for the incorrect recursive part.

Possible solution:

// BASE CASES

 if (list == null) return true; (1 point)
 else if (list.getNext() == null) return true; (1 point)
 else if (list.getStep() == list.getNext().getStep()) return false; (1 point)
// RECURSIVE PART

 else return isZigzag(list.getNext()); (1 point)
}

Page 223

Test 4 (5 points)

Let TernaryTree denote a ternary tree that represents all the ways the robot can walk n meters

where n is a positive integer:

/* SPECIFICATION
 * Definition of the class TernaryTree: a ternary tree
 */
public class TernaryTree {
 // Instance variables
 private TernaryTree stepOfOne;
 private TernaryTree stepOfTwo;
 private TernaryTree stepOfFour;

 // Constructors
 public TernaryTree() {
 stepOfOne = null;
 stepOfTwo = null;
 stepOfFour = null;
 }

 public TernaryTree(TernaryTree one, TernaryTree two, TernaryTree four) {
 stepOfOne = one;
 stepOfTwo = two;
 stepOfFour = four;
 }

 // Methods

}

Complete the following method.

/* PRECOND
 * distance is a positive integer
 * POSTCOND
 * Return a TernaryTree that represents all the ways the robot can walk distance
 * meters
 */
public TernaryTree walk(int distance) {

One point for the correct base case and 0 point for the incorrect base case.
Four points for the correct recursive part, minus 1 point for each absence of the construction
of one or two or four or for the absence of the return statement.

Possible solution:

// BASE CASE

 if (distance == 0) return new TernaryTree (); (1 point)
// RECURSIVE PART
 TernaryTree one, two, four;

 one = walk (distance - 1); (1 point)
 if (distance >= 2) two = walk (distance - 2); (1 point)
 else two = null;

 if (distance >= 4) four = walk (distance - 4); (1 point)
 else four = null;

 return new TernaryTree (one, two, four); (1 point)

}

Page 224

Test 5 (4 points)

Question 1: Write the attributes of recursive methods below.

Possible solution:

- A recursive method must have one or more base cases, which permit the recursion to even-
tually end. (1 point)
- A recursive method has a recursive part in which the method calls itself. (1 point)

Question 2: Present in several lines your definition of the concept of recursion.

Possible solution:

Recursion is the process of defining something in terms of itself. (1 point)

Question 3: In your opinion, what does “solving problems recursively” mean? Write your
answer in several lines.

Possible solution:

"Solving problems recursively" means that we divide a large problem into one or more sub-
problems that are identical in structure to the original problem and somewhat simpler to
solve. (1 point)

 Students’ solutions to Test 5

Learners Question 1 Question 2 Question 3
C1 They decompose the resolution

of a complex problem into differ-
ent small problems identical eas-
ier to solve. Although they re-
quire a higher degree of abstrac-
tion, they are generally easier to
understand. They avoid using a
list of complicated methods, and
variables that would solve the
same problem with the use of
more memory and time.

Recursion is a technique to
split a complex problem into
many small problems identical
but easier to solve.

Solve a problem small piece to
small piece, each one is iden-
tical to another.

C2 It is a method that calls itself. It
consists of a base case, which
governs the number of calls that
will be made.

It is back-tracking. We make
many times a call to something
known in order to advance to
something unknown.

It is to divide a complex prob-
lem into a number of problems
simple and of the same type.
To solve the global problem, it
is sufficient to solve the small
problems, one to another.

Page 225

C3 One or more base cases. Make
a call to the method from the
method itself.

Recursion allows us to solve
without too many lines of code
a problem that possesses one
or more base cases and that
must make a way.

Keep a base case and by tak-
ing into account one or more
base cases. Make all of opera-
tions that arrive at those
cases.

C4 A recursive method possesses a
base case, which indicates
where the method must termi-
nate and a recursive part, which
is the body of the method and in
which the method calls itself with
other parameters until the base
case is reached.

Recursion is a concept that
aims at executing a same
method a number of times with
other parameters until reaching
the indicated limit.

Begin with a given problem,
divide this problem into similar
sub-problems, divide these
problems … until reaching a
list of problems simple and
easy to solve (these are the
base cases).

T1 They are methods that use

themselves, until reaching some-
thing that is named a base case.
The base case(s) are the cases
where we arrive at the end of an
iteration, where the treated prob-
lem is much too simple (so call
base case).

Recursion is another way to
treat problems of unknown size
than iteration. The principle is a
little different and recursion is
more advantageous in certain
cases. It is sufficient to find out
all of the base cases (difficult)
and treat them (easy). We also
reduce the difficulty of the prob-
lem by transforming it into small
problems solved fast.

We need to find base cases,
treat them, it means give the
solution of these small prob-
lems, of these particular
cases, and ask the method to
reduce, and reduce, and re-
duce the problem until we
arrive at base cases, which
return a response, and the
method can then come up
again to the (small) previous
problem, and so on.

T2 They call themselves. They need
a condition of exit. Fast to travel
through a tree or to make frac-
tals, but less interest for the rest.

Function including in its code
one or more calls to itself. This
permit to test all of the possibili-
ties of a situation, for example.

It is to solve the problems by
making call to a recursive
function.

T3 They call themselves. They pos-
sess one or more cases of exit.
They are relatively short and
elegant.

Recursion is a concept that
allows us to simplify the resolu-
tion of a complex problem by
dividing it into small problems
identical and easy to solve.

DCG: Divide the problem into
small problems easy to solve
and identical. Find the solution
of these problems. Assemble
the solutions to form the final
solution.

T4 It employs itself. It possesses a
condition of exit.

Recursion allows us to treat
problems that are difficult to
solve in an iterative manner.
Recursion allows us to use the
information previous, or, follow-
ing in a same method.

Divide the solution of a prob-
lem into many small step to
facilitate the resolution.

T5 Consist of a base case and a
recursive part (position where
they call themselves).

We find a base solution and we
divide a problem into a list of
base problems.

Divide the problems into
pieces easy, then we solve the
base case and we divide the
problem into pieces equal to
base case. Then we assemble
the solutions to attain the one
of the global problem.

Page 226

Test 6 (4 points)

Let TernaryTree denote a ternary tree that represents all the ways the robot can walk n meters

where n is a positive integer. Complete a method traverse:

/* SPECIFICATION
 * Definition of the class TernaryTree: a ternary tree
 */
public class TernaryTree {
 // Instance variables
 private TernaryTree stepOfOne;
 private TernaryTree stepOfTwo;
 private TernaryTree stepOfFour;

 // Constructors
 public TernaryTree() {
 stepOfOne = null;
 stepOfTwo = null;
 stepOfFour = null;
 }

 public TernaryTree(TernaryTree one, TernaryTree two, TernaryTree four) {
 stepOfOne = one;
 stepOfTwo = two;
 stepOfFour = four;
 }

 // Methods
 /* PRECOND
 * POSTCOND
 * Print to the Java console line by line all the ways of the robot represented by
 * this ternary tree, for example:
 * 11111
 * 1112
 * ...
 * 41
 */
 public void print(){
 traverse("");
 }
 // This recursive method helps the print process of the method "print"
 private void traverse(String path) {

One point for the correct base case and 0 point for the incorrect base case.
Three points for the correct recursive part, minus 1 point for each absence of the three recur-
sive calls.

Possible solution:

// BASE CASE
 if ((stepOfOne == null) && (stepOfTwo == null) && (stepOfFour == null))

 System.out.println (path); (1 point)
// RECURSIVE PART
 else {

 if (stepOfOne != null) stepOfOne.traverse (path + "1"); (1 point)
 if (stepOfTwo != null) stepOfTwo.traverse (path + "2"); (1 point)
 if (stepOfFour != null) stepOfFour.traverse (path + "4"); (1 point)
 }

 }
}

Page 227

Homework: A case study for recursion
(Recursion course, duration about 2 hours)

File management: A key concept supported by virtually all operating systems such as Win-

dows is the file system. To provide a place to keep files, operating systems have the concept

of a directory as a way of grouping files together. A directory can contain nothing, or one or

more directory entries. Directory entries may be either files or other directories. The file

system may be organized as a hierarchy (Figure 1). We can specify every file within the di-

rectory hierarchy by giving its path name from the top of the directory hierarchy, the root

directory. For the file management, Java supports the class File. Table 1 describes a part of

this class (for more details, see: http://java.sun.com/j2se/1.4.2/docs/api/).

Figure 1. A directory hierarchy

The round
rectangles are
files and the
other ones are
directories.

Table 1. A part of the specification of the class File

Constructor Summary
File (String pathname)
 Creates a new File instance by converting the given pathname string into an abstract pathname.

Method Summary
boolean exists()

 Tests whether the file or directory denoted by this abstract pathname exists.
boolean isDirectory()

 Tests whether the file denoted by this abstract pathname is a directory.
boolean isFile()

 Tests whether the file denoted by this abstract pathname is a normal file.
long length()

 Returns the size, in bytes, of the file denoted by this abstract pathname.
String getName()

 Returns the name of the file or directory denoted by this abstract pathname.
String getPath()

 Converts this abstract pathname into a pathname string.
File[] listFiles()

 Returns an array of abstract pathnames denoting the files in the directory denoted by this abstract pathname.

Page 228

We ask you to:

• complete a class FileManager

• write a class MyTest for testing the methods of FileManager

• justify why recursion is very useful for solving this problem.

import java.io.*;

import java.io.File;

/* SPECIFICATION

 * Definition of the class FileManager that provides a certain number of methods

 * for the management of files

 */

public class FileManager{

 // Methods

 /* PRECOND

 * POSTCOND

 * Print to the Java console line by line the path name of all the files and sub

 * directories in the directory "dirName" (recursively)

 */

 public static void dirFunction(String dirName){

 // To be completed

 }

 /* PRECOND

 * POSTCOND

 * Return the total size in bytes of all the files in the directory "dirName"

 * (recursively)

 */

 public static long sizeFunction(String dirName){

 // To be completed

 }

}

Page 229

Interview questions
(Recursion course, duration about 15 minutes)

Introduction

During the past several years, we have been encountering with students in FSA a certain

number of difficulties about mastering the concept of recursion. This is why we seek for bet-

ter understating the type of difficulties that students have and how we can help them with the

pedagogical devices we set up to overcome these difficulties. To help us in this work, I would

like to ask you some questions. They are open enough and do not hesitate to tell us any other

element that seems to be important to you. It goes without saying there are no good or bad

answers, because it is your specific opinion that interests us. We also asked a certain number

of students to answer these questions, so as to have the most complete possible view of what

students think.

Question 1

First of all, could you tell me how you would define the concept of recursion today?

Question 2

Undoubtedly, do you remember how you considered it before the course, according to you,

what has been changed on the way in which you understand this concept today?

Question 3

Did you have particular difficulties when you were brought to work on this concept? Can you

tell me your difficulties?

Question 4

Now, if we look at the way you used to build your own recursive solution to the problems

presented in this posttest, can you explain how you constructed it?

Question 5

Finally, between the course that I gave you one week ago and this posttest, you worked alone

with the help of a chapter (or of COFALE). Can you tell me how you used this chapter (or

this tool)?

Question 6

Did you have particular difficulties? Can you explain your difficulties to me?

Question 7

Do you have suggestions to improve this tool?

Question 8

Were two weeks sufficient for this course?

Page 231

APPENDIX D: Development of COFALE

Implementation of ATutor
Here are two examples of how ATutor organizes information. Look at the ATutor developer documentation for
more details.

Example 1. Figure D.1 shows how courses and content objects, information blocks, and learning objects are
represented in ATutor, taking into account the standard suggested by IMS/SCORM (Advanced Distributed
Learning, 2004).
Figure D.1. Representation of courses and content objects in ATutor (adapted from the ATutor developer
documentation, PK = primary key, FK = foreign key, I = index)

The attributes of a course consist of:

• member_id: The identity of the person who creates the course.

• cat_id: The identity of the category to which the course belongs.

• title: The title of the course.

• description: The short description of the course.

• primary_language: The first language used in the course. This is a new attribute added in versions
greater than 1.4.

• And so on.

The attributes of a content object include:

• course_id: The identity of the course to which the content object belongs.

• content_parent_id: The identity of the parent content object of the current one (this attribute is equal
to zero if the current content object has no parent). For example, the parent content object of "Java test
class" is "Arithmetic expressions" (see Figures 6.1 and 7.3).

• ordering: The order of the content object within the parent content object (1 = the first child, 2 = the
second child, etc.). For instance the order of "Java test class" in "Arithmetic expressions" is equal to five
(see Figures 6.1 and 7.3).

• title: The title of the content object.

• text: The text or the HTML code describing the content object.

Page 232

Table related_content describes the relationships among content objects (see also Figure 7.3). The
data in this table are used to construct the menu "Related Topics" (see also Figure 6.1).
Figure D.2. Representation of courses, members, and tests in ATutor (adapted from the ATutor developer docu-
mentation, PK = primary key, FK = foreign key, U = unique, I = index)

Example 2. Figure D.2 shows how courses, users, and tests are represented in ATutor.

Table members represents the data of all kinds of users: learners, teachers, course designers, and adminis-
trators. Here are its attributes:

• login: The login of the user to the ATutor system. It must be unique.

• password: The password the user uses to log into ATutor.

• status: A non-negative integer indicating whether the user is a learner or a teacher or an administrator
(ATutor considers the course designer as the teacher).

• And the user's personal information such as name, age, gender, address.

Each course may have zero or one or more tests. The attributes of a test include:

• course_id: The identity of the course to which the test belongs.

• title: The title of the test.

• format: The format (text or HTML) of the test.

num_questions: The number of questions of the test.

Each test may have one or more questions. The attributes of a question are:

• test_id: The identity of the test to which the question belongs.

• type: The type of the question (multiple-choice or true-false or open-ended).

Page 233

• weight: The maximal score of the question.

• feedback: The feedback provided for the learner when he or she demands.

• question: The question in the form of text or HTML.

• choice_0, …, choice_9: The attributes for multiple-choice questions.

• answer_0, …, answer_9: The attributes for multiple-choice questions.

• And so forth.

Each result of a learner for a test is represented in table tests_results. Here are its attributes:

• member_id: The identity of the learner.

• test_id: The identity of the test.

• date_taken: The date the learner takes the test.

• final_score: The test final score marked by the teacher for the learner.

Each answer of a learner for a question of a test is represented in table tests_answers. Here are its at-
tributes:

• member_id: The identity of the learner.

• result_id: The identity of the test result of the learner.

• question_id: The identity of the question.

• answer: The answer of the learner.

• score: The question score marked by the teacher for the learner.

• notes: The comments proposed by the teacher for the learner.

Implementation of COFALE
I illustrate here how to implement adaptability in ATutor. Sometimes, I do not explain why I used certain tech-
niques because I assume that the reader has good programming knowledge when he or she wants to read this
section.

Implementation of the learner model manager
Creating and editing components of learner models. I created an authoring tool (see section 7.3.1) allowing the
course designer to create and edit components of learner models, as follows.

For the database. I created table mental_models to represent components of learner models. The structure
of this table is shortly described next.

mental_models

PK mental_model_id

FK1
FK2

model_name
model_description
member_id
course_id
model_default

course_id: The identity of the course the designer is editing.
member_id: The identity of the course designer.
model_name: The title of the component.
model_description: The description of the component.
model_default: A true/false value indicating whether or not the com-
ponent is set as default for a new learner.

For the source code. Here is the process:

1. I logged into the recursion course designed in COFALE as a course designer.

2. I selected the menu "Tools" to know the PHP file needed to modify to add the desired authoring tool:
tools/index.php seen on the address bar of the browser (Figure D.3).

Page 234

3. I examined this file to understand how instructor tools had been implemented.

4. I modified this file to display the desired instructor tool (see Figure 7.1: Learner Model Manager). This tool
is linked to a file teachers/learner_model.php created by me. This file leads the course designer
to a set of tools (Figure 7.11) for managing components of learner models.

5. I created a file teachers/edit_learner_model.php to enable the course designer to add new
components or edit existing components. For instance, when the course designer clicks on "Add New Com-
ponent" (Figure 7.11) linked to this file, he or she is led to a tool (Figure 7.12) for adding a new component
to the database (table mental_models).

Updating the learner model for a particular student. In section 7.3.1, I mentioned three evaluations for a par-
ticular student's learner model: self-evaluation, the teacher's evaluation, and the system's evaluation. Next, I ex-
plain the implementation for the last two evaluations.

For the database. Each student may possess one or more components of learner models. So, I created table
learner_mental_model (notice that the student's favorite kind of evaluation is stored in table
course_enrollment, see more information of this table in the ATutor developer documentation). The sys-
tem can automatically detect several components of learner models, on the basis of students' test results (see
section 7.3.1). Thus, I constructed table mental_model_test to represent means for diagnosing certain
components of learner models. The brief description of the two tables is following:

learner_mental_model

PK learner_mental_model_id

FK1
FK2

FK3

member_id
mental_model_id
evaluator
course_id

course_id: The identity of the course the designer is editing.
member_id: The identity of the learner.
mental_model_id: The identity of the component.
evaluator: The kind of evaluation.

mental_model_test

PK mental_model_test_id

FK1

FK2
FK3

mental_model_id
means
execution
member_id
course_id

course_id: The identity of the course the designer is editing.
member_id: The identity of the course designer.
mental_model_id: The identity of the component.
means: The means to detect the component (nothing or test).
execution: The expression the system can use to detect the com-
ponent (if the means is "test").

For the source code. Here is the process:

1. I created a file teachers/edit_learners_own_models.php. When the teacher clicks on "Edit
Learners' Own Models" (Figure 7.11) linked to this file, he or she is led to a set of tools for updating stu-
dents' learner model to the database (table learner_mental_model).

2. In the file teachers/edit_learner_model.php mentioned earlier, I wrote a segment of code pro-
viding the course designer with a tool (see Figure 7.14) for introducing the expressions to detect certain
components of learner models. These expressions are stored in table mental_model_test.

3. To let the system detect and update the learner model of a particular student, I first searched ATutor's PHP
file system for a segment of code where students' test results are updated (I found it in
tools/tests/view_results.php). Then, I modified this segment of code. The detecting algorithm
can be informally explained, as follows:

Page 235

Input:
• A set of tests, for instance, T1, T2, T3, T4, …
• A set of test results of a student, for example, T1 (passed), T2 (passed), T3 (fail), T4 (passed), …
• A component of learner models, for instance the loop model on recursion.
• A logic expression to detect the component, for example "T1 AND NOT T2 AND NOT T3 AND NOT T4" (the

student possesses the component if he or she passes test T1 but not tests T2, T3, and T4).

Output:

• Return a true/false value indicating whether or not the student possesses the component.

Algorithm:

1. Replace the variables in the logic expression by their values: 1 if the student passes the test, 0 otherwise.
For example: "T1 AND NOT T2 AND NOT T3 AND NOT T4" => "1 AND NOT 1 AND NOT 0 AND NOT 1".

2. Make a SQL select command with the new expression. For instance: "SELECT 1 AND NOT 1 AND NOT 0
AND NOT 1 AS possessed".

3. Use the MySQL server to run this command, the value of variable possessed indicates the result: 1 means
the student possesses the component, 0 means the student does not possess the component.

Note: Because this algorithm relies on the one implemented in the MySQL server, I do not show here its proof.

Implementation of adaptability
Adaptive presentation of learning contents. See sections 6.3.2 and 7.3.2 to understand how the course designer
makes this feature available for the student.

For the database. To represent associations between components of learner models and content objects, I cre-
ated table mental_model_content, as follows:

mental_model_content

PK mental_model_content_id

FK1
FK2
FK3
FK4

mental_model_id
content_id
member_id
course_id

course_id: The identity of the course the designer is editing.
member_id: The identity of the course designer.
mental_model_id: The identity of the component.
content_id: The identity of the content object defined by the
course designer to be appropriate to students possessing the compo-
nent.

For the source code.

1. In the file teachers/edit_learner_model.php mentioned previously, I wrote a code segment
providing the course designer with a tool (see Figure 7.15) so that he or she can define appropriate content
objects for the component of learner models being editing. These associations are stored in table men-
tal_model_content.

2. I searched ATutor's PHP file system for the segment of code that manages the set of content objects pre-
sented for the student: The function initContent in the file in-
clude/classes/ContentManager.class.php was found.

3. I modified this function in such a way that the learning content is adapted to the current learner model of the
student: Table mental_model_content was used to retrieve the appropriate content objects for the
student, according to his or her current learner model.

Adaptive use of pedagogical devices. To know how the course designer makes this characteristic available for
the student, the reader should refer back to sections 6.3.2 and 7.3.2.

For the database. To represent associations between learning activities and learner models and content objects,
here are the two tables learning_activities and learning_activity_content I created. For the
former, I filled a set of learning activities in advance (see also Figure 6.3).

Page 236

learning_activities

PK learning_activity_id

FK1
FK2

activity_name
activity_description
activity_action
member_id
course_id

course_id: The identity of the course the designer is editing.
member_id: The identity of the course designer.
activity_name: The title of the learning activity.
activity_description: The description of the learning activity.
activity_action: Null or the hyperlink leading the student to the
tool(s) for performing the learning activity.

learning_activity_content

PK learning_activity_content_id

FK1
FK2
FK3
FK4
FK5

learning_activity_id
content_id
mental_model_id
member_id
course_id

course_id: The identity of the course the designer is editing.
member_id: The identity of the course designer.
learning_activity_id: The identity of the learning activity.
mental_model_id: The identity of the component.
content_id: The identity of the content object at the end of which
the activity is presented for the student possessing the component.

For the source code.

1. The way to add a learning activity manager (Figure 7.1: Learning Activities and Learning Content) to ATu-
tor is more or less similar to the one to add a learner model manager presented earlier. The file I created is
teachers/learning_activity.php.

2. The way to present the course designer with a tool (Figure 7.10) for defining associations between learning
activities and learner models and learning contents is also identical to the one to provide the course designer
with a tool (Figure 7.15) for defining associations between learning contents and learner models. The file I
constructed is teachers/edit_learning_activity.php.

3. I searched for the segment of code that manages the presentation of a particular content object: It was found
in index.php. Then, I inserted into this file a segment of code that retrieves the appropriate learning ac-
tivities from the two tables learning_activities and learning_activity_content and pre-
sents them for the student at the end of the content object being considered.

Adaptive communication support. This kind of adaptation support was showed in sections 6.3.2 and 7.3.2.

For the database. To represent help relations among components of learner models, I created the following ta-
ble:

mental_model_help_relation

PK mental_model_help_relation _id

FK1
FK2
FK3
FK4

model_left_id
model_right_id
member_id
course_id

course_id: The identity of the course the designer is editing.
member_id: The identity of the course designer.
Students possessing the component identified by
model_left_id can help students possessing the component
identified by model_right_id.

For the source code.

1. In the set of PHP files proposed for the learner model manager, I created teach-
ers/edit_model_constraints.php producing the tool (Figure 7.16) for the course designer to de-
fine help relations among components of learner models.

2. In the set of PHP files related to "Peers' Learning Hyperspace" (see Example 2 in the previous section), I
constructed search_peers.php that produces a list of appropriate peers (Figure 6.12), arranged from
the highest "level of appropriateness" to the lowest one, for the student when he or she makes a demand.
The algorithm calculating the "level of appropriateness" can be informally explained, as follows:

Page 237

Input:
• Let C be the set of components of learner models: C1, C2, … CN. For instance, N = 6 in the course on recur-

sion.
• Let T be the two-dimension table T N, N defining help relations among components of learner models: T i, j = 1

if students possessing Ci can help students possessing Cj, otherwise T i, j = 0 (1 ≤ i, j ≤ N, i ≠ j). For instance
the table presented in Figure 7.16.

• Let CS be the set of components of learner models possessed by the student: Cs1, Cs2, … Csa (CS is a sub-
set of C, 1 ≤ s1 < s2 < … < sa ≤ N). For example, Bob with the loop model on recursion and the "novice"
model on the use of COFALE.

• Let CP be the set of components of learner models possessed by the peer: Cp1, Cp2, … Cpb (CP is also a
subset of C, 1 ≤ p1 < p2 < … < pb ≤ N). For example, Alice with the analysis-synthesis model on recursion
and the "expert" model on the use of COFALE.

Output:

• Return a non-negative integer indicating the "level of appropriateness" about the fact that the peer can help
the student. This number is defined to be the sum of T pi, sj (1 ≤ i ≤ b and 1 ≤ j ≤ a). I assume that the higher
this number is, the higher the probability of the fact the peer can help the student is.

Algorithm:

1. Set level_appropriateness = 0.
2. For each i in (p1, p2, … pb) and for each j in (s1, s2, … sa), sum up level_appropriateness with T i, j.
3. Return level_appropriateness. For instance, return the value 2 in the case of Bob and Alice.

Note: Because this algorithm is quite simple, I do not show here its proof.

Page 239

Glossary

The document "Making sense of learning specifications & standards" created and maintained
by Masie Center (2003) provided many resources in which a great number of terms related to
the field of learning technology. Santrock (2001) also provided many definitions of terms re-
lated to learning and instruction.

Accommodation. In Piaget’s theory, the
process in which individuals adjust exist-
ing cognitive structures to account for new
information.

Adaptability. (Also adaptation) The abil-
ity of a learning system to provide a learn-
ing experience that is continuously tailored
to the needs of the individual learner.

Adaptive assessment. A technique of
providing a specific learner with appropri-
ate assessment problems and methods at
any given time.

Adaptive communication support. A
technique of identifying appropriate peers
who could help a specific learner.

Adaptive learning system. A learning
system that can adapt the learning materi-
als to different kinds of students.

Adaptive presentation of learning con-
tents. A technique of providing a specific
learner with appropriate learning contents
at any given time.

Adaptive problem-solving support. A
technique of providing appropriate feed-
back during the problem-solving process
of a specific learner.

Adaptive use of pedagogical devices. A
technique of providing a specific learner
with appropriate learning activities at any
given time.

Assessment. (A component of constructiv-
ist learning environments) Problems,

methods, and tools for determining
whether learners have achieved the learn-
ing objectives.

Asset. The learning content in its most ba-
sic form such as electronic media, text,
images, and sound.

Assimilation. In Piaget’s theory, the proc-
ess in which individuals incorporate new
knowledge into existing cognitive struc-
tures.

Authentic assessment. Evaluating a stu-
dent's knowledge or skill in a context that
approximates the real world life as closely
as possible (Santrock, 2001, p. 513).

Cognitive constructivist approach. (Also
cognitive constructivism) An educational
approach that emphasizes that individuals
construct knowledge by transforming, or-
ganizing, and reorganizing previous
knowledge and information.

Cognitive flexibility. The ability to spon-
taneously restructure one’s knowledge, in
many ways, in adaptive response to radi-
cally changing situational demands (Spiro
& Jehng, 1990, p. 165).

Cognitive structure. (Also schema) A
concept or framework that exists in an in-
dividual’s mind to organize and interpret
information (Santrock, 2001, p. 49).

Computer-based instruction. (Also com-
puter-assisted instruction) Instruction that
is provided by a computer.

Page 240

Constructivism. A learning theory that
emphasizes that individuals learn best
when they actively construct their own
knowledge and understanding. Construc-
tivism has two main paradigms: a cogni-
tive constructivist approach and social
constructivist approaches.

Constructivist learning environment. A
place where learners may use a variety of
information resources, pedagogical and
assessment devices, and interact with the
tutor and peers through communication
means in their guided pursuit of learning
objectives.

Declarative knowledge. The conscious
recollection of information, such as spe-
cific facts or events that can be verbally
communicated (Santrock, 2001, p. 282).

Distance education. Teaching and learn-
ing in which learning normally occurs in a
different place from teaching.

E-Learning. Learning or training that is
prepared, delivered, or managed using a
variety of learning technologies, and that
can be deployed either locally or globally.
Term covering a wide set of applications
and processes, such as Web-based learn-
ing, computer-based learning, and digital
collaboration. It includes the delivery of
content via Internet, intranet, extranet, vir-
tual private network, audiotape, videotape,
satellite broadcast, virtual classroom, in-
teractive television, CD-ROM, DVD,
PDA, and other delivery platforms (Masie
Center, 2003).

Human interactions. (A component of
constructivist learning environments)
Means and techniques for engaging tutors
and learners in exchanges.

ICT-based learning environment. Learn-
ing or training that is prepared, delivered,

or managed using ICT (see also e-
Learning).

Information and communication tech-
nology. (ICT) The study of the technology
used to handle information and aid com-
munication.

Information block. A set of sharable con-
tent objects organized to present concepts,
learning situations, and so on.

Instructional design activity. One or
more operations the teacher should per-
form in order to create or evaluate certain
learning conditions for students.

Instructional design process. A set of
instructional design activities.

Interactive phase. (In instructional de-
sign) The process in which the teacher
specifies what should be done during the
learning session.

Knowledge. (In a Piagetian point of view)
Cognitive structures an individual con-
structs about the new information on the
basis of his or her own experiences and the
interaction with the environment surround-
ing him or her.

Learning. (In a Piagetian point of view),
The process in which individuals construct
and transform cognitive structures.

Learning content management system.
(LCMS) A multi-user software application
that enables content authors to manage the
life-cycle of learning content by allowing
them to create, register, store, assemble,
re-use, and publish digital learning content
for delivery via Web, print, CD, etc.,
within a central object repository (Masie
Center, 2003).

Learning contents. (A component of con-
structivist learning environments) Sources

Page 241

of information provided for learners for
exploring their learning objectives.

Learning materials. A general term de-
noted for learning contents, pedagogical
devices, assessment, and human interac-
tions.

Learning object. A set of information
blocks or sharable content objects organ-
ized to meet a particular learning objec-
tive.

Learning objective. (Also instructional
objective) A statement of what students
should know or be able to do as a result of
instruction (Santrock, 2001, p. 499).

Mental model. (Also mental approach,
mental method, and mental representation)
A conceptual structure of declarative
knowledge or procedural knowledge or
both of them a person holds of a concept
or a device or a system.

Mindful reflection and epistemic flexi-
bility. The ability of students to be aware
of their own role in the knowledge con-
struction process.

Multiple modes of learning. (One of two
main learning conditions for cognitive
flexibility) Multiple representations of
contents, multiple ways and methods for
exploring contents.

Multiple perspectives on learning. (One
of two main learning conditions for cogni-
tive flexibility) Expression, confrontation,
and treatment of multiple points of view.

Operational approach. An approach for
designing learning environments that is
based on operational criteria used as
guidelines and means of validation.

Operational criterion. (for cognitive
flexibility) A test that allows a straight-
forward decision about whether or not a

learning situation reflects the pedagogical
principles that are underlying cognitive
flexibility.

Pedagogical devices. (A component of
constructivist learning environments)
Methods and tools provided for learners
for exploring learning contents.

Performance assessment. Assessments
that require students to perform a task such
as write an essay, conduct an experiment,
carry out a project, and solve a real-world
problem (Santrock, 2001, p. 502).

Portfolio. A systematic and organized col-
lection of a student's learning activities
such as the student's work.

Post-active phase. (In instructional de-
sign) The process in which the teacher and
the course designer specify what should be
done after the learning session.

Pre-active phase. (In instructional design)
The process in which the course designer
specifies what should be done before the
learning session.

Procedural knowledge. Cognitive struc-
tures in the form of skills and cognitive
operations about how to do something
(Santrock, 2001, p. 282).

Reasoning, critical thinking, and prob-
lem solving. The ability of the learner to
write persuasive essays, engage in infor-
mal reasoning, explain how data relate to
theory in scientific investigations, and
formulate and solve moderately complex
problems that require mathematical rea-
soning.

Retention, understanding, and use. The
ability of the student to actively apply the
new knowledge in various situations, par-
ticularly in interactions with other people,

Page 242

in order to reinforce his or her retention
and understanding of the new knowledge.

Scaffolding. A technique of changing the
level of support (learning contents, peda-
gogical devices, assessment, communica-
tion, problem-solving) over the course of a
learning session of a particular learner.

Self-regulation. The ability of learners to
identify and pursue their own learning
goals.

Sharable content object. (Also content
object) The lowest level of granuality of
learning content that can be tracked by a
learning content management system.

Social constructivist approach. (Also
social constructivism) Educational ap-

proach that emphasizes that individuals
construct knowledge through social inter-
actions with others.

Standard deviation. A statistic that indi-
cates how tightly all the various examples
are clustered around the mean in a set of
data.

Virtual learning environment. (Also vir-
tual classroom) An online learning envi-
ronment that provides facilitated, interac-
tive instruction and peer-to-peer learner
interaction during real-time events (Masie
Center, 2003).

Page 243

Bibliography

Adaptive Technology Resource Center (2004). ATutor learning content management sys-
tem. Retrieved June 2, 2004, from: http://www.atutor.ca/

Advanced Distributed Learning (2004). SCORM content aggregation model. Retrieved
November 8, 2004 from:
http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?fileid=993

Ala-Mutka (2002). Computer-assisted software engineering courses. Paper presented at
The 5th IASTED International Multi-Conference on Computers and Advanced
Technology in Education. Cancun, Mexico.

Alliance of Remote Instructional Authoring and Distribution Networks for Europe
(ARIADNE) (2005). Retrieved April 28, 2005, from: http://www.ariadne-
eu.org/index.html

AMZI Inc. (1997). Adventure in Prolog. Retrieved January 27, 2004 from:
http://oopweb.com/Prolog/Documents/AdventureInProlog/VolumeFrames.html

Anderson, J.R., Pirolli, P., & Farrell, R. (1988). Learning to program recursive functions.
In M. Chi, R. Glaser, & M. Farr (Eds.), The nature of expertise (pp. 153–184).
Hillsdale, NJ: Erlbaum.

Bayman, P., & Mayer, R.E. (1983). A diagnosis of beginning programmers’ misconcep-
tions of basic programming statements. Communication of the ACM, 26(9), 677–
679.

Bhuiyan, S., Greer, J., & McCalla, G. (1994). Supporting the learning of recursive prob-
lem solving. Interactive Learning Environments, 4(2), 115–139.

Bonk, C. J., & Cunningham, D. J. (1998). Searching for learner-centered, constructivist,
and sociocultural components of collaborative educational learning tools. In C. J.
Bonk, & K. S. Kim (Eds.), Electronic collaborators: Learner-centered technolo-
gies for literacy, apprenticeship, and discourse (pp. 25–50). New Jersey: Erl-
baum.

Bourgeois, E., & Nizet, J. (1999). Apprentissage et formation des adultes. Paris, FR:
Presses Universitaires de France.

Bourgeois, E., & Frenay, M. (2002). Les modèles théoriques de l’apprentissage: Note de
synthèse. Louvain-la-Neuve, BE: Cours EDFO 2106 Psychologie de
l’apprentissage.

Bruner, J.S. (1973). Going beyond the information given. New York: Norton.

Bruner, J.S. (1986). Actual minds, possible worlds. Cambridge, MA: Harvard University
Press.

Page 244

Bruner, J.S. (1996). The culture of education. Cambridge, MA: Harvard University Press.

Brusilovsky, P. (1999). Adaptive and intelligent technologies for Web-based education.
In C. Rollinger, & C. Peylo, Special Issue on Intelligent Systems and Teleteaching
(pp. 19–25), Künstliche Intelligenz, 4.

Brusilovsky, P. & Peylo, C. (2003). Adaptive and intelligent Web-based educational sys-
tems. International Journal of Artificial Intelligence in Education, 13, 156–169.

Cho, K. & Schunn, C. D. (2004). The SWoRD is mightier than the pen: Scaffolded writ-
ing and rewriting in the discipline. Paper presented at the 4th IEEE International
Conference on Advanced Learning Technologies, Joensuu, Finland.

Cho K. & Schunn, C.D. (2003). Validity and reliability or peer assessments with a miss-
ing data estimation technique. Paper presented at the ED-Media 2003 World Con-
ference on Educational Multimedia, Hypermedia & Telecommunications, Hono-
lulu, Hawaii.

Cognition and Technology Group at Vanderbilt (1991a, May). Technology and the de-
sign of generative learning environments. Educational Technology, 31, 34–40.

Cognition and Technology Group at Vanderbilt (1991b, September). Some thoughts
about constructivism and instructional design. Educational Technology, 31, 16–
18.

Culler, J. (1990, April). Fostering post-structuralist thinking. Paper presented at the An-
nual Meeting of the American Educational Research Association, Boston.

Cumming, A. (1998). Introduction to ML language. Retrieved January 27, 2004 from:
http://www.dcs.napier.ac.uk/course-notes/sml/manual.html

Cunningham, D.J. (1987). Outline of an education semiotic. American Journal of Semi-
otics, 5, 201–216.

Cunningham, D.J. (1992). Beyond educational psychology: Steps toward an educational
semiotic. Educational Psychology Review, 4, 165–194.

Cunningham, D.J., Duffy, T.M., & Knuth, R.A. (1993). Textbook of the future. In C.
McKnight (Ed.), Hypertext: A psychological perspective. London: Ellis Horwood
Publishing.

De Bra, P. & Calvi, L. (1998). AHA! an open adaptive hypermedia architecture. The New
Review of Hypermedia and Multimedia, 4, 115–139.

De Jong, T., van Joolingen, W., & van der Meij, J. (2004). SimQuest discovery learning.
Retrieved November 8, 2004 from: http://www.simquest.nl

De Praetere, T., et al. (2004). Claroline: Open source e-Learning. Retrieved June 2,
2004, from: http://www.claroline.net/index.php

Deville, Y., Barette O., & Van Hentenryck, P. (1999). Constraint satisfaction over con-
nected row-convex constraints. Journal of Artificial Intelligence, 109, 243–271.

Page 245

Doise, W., & Mugny, G. (1997). Psychologie sociale et développement cognitif. Paris,
FR: Armand Colin.

Dougiamas, M. (2004). Moodle: Course management system. Retrieved November 8,
2004 from: http://moodle.org

Driscoll, M.P. (2000). Psychology of learning for instruction. Massachusetts: Allyn and
Bacon.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1), 57–73.

Duffy, T., & Jonassen, D., editors (1992). Constructivism and the technology of instruc-
tion. Mahwah, NJ: Lawrence Erlbaum Associates.

Duffy, T.M., & Cunningham, D.J. (1996). Constructivism: Implications for the design
and delivery of instruction. In D.H. Jonassen (Ed.), Handbook of research for
educational communications and technology (pp. 170–198). New York: Macmil-
lan.

Duval, E., Hodgins, W., Sutton, S., & Weibel S.L. (2002). Metadata principles and prac-
ticalities. Retrieved November 8, 2004 from:
http://www.masie.com/standards/s3supplement/edu_dlib_04weibel_042002.pdf

Eck, D.J. (2004). Introduction to programming using Java. Retrieved January 27, 2004
from:
http://oopweb.com/Java/Documents/IntroToProgrammingUsingJava/VolumeFra
mes.html

Edelson, D.C., Pea, R.D., & Gomez, L. (1996). Constructivism in the collaboratory. In
B.G. Wilson (Ed.), Constructivist learning environments: Case studies in instruc-
tional design (pp. 151–164). Englewood Cliffs, NJ: Educational Technology Pub-
lications.

Feltovich, P.J., Spiro, R.J., Coulson, R.L., & Feltovich, J. (1996). Collaboration within
and among minds: Mastering complexity, individually, and in groups. In T.
Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm (pp. 25–
44). Mahweh, NJ: Erlbaum.

Frenay, M. (1994). Apprentissage et transfert dans un contexte universitaire. Louvain-la-
Neuve, BE: Université catholique de Louvain, Faculté de psychologie et des sci-
ences de l’éducation. Thèse de doctorat.

Frenay, M., & Bédard, D. (2004). Des dispositifs de formation s'inscrivant dans la pers-
pective d'un apprentissage et d'un enseignement contextualisés pour favoriser la
construction de connaissances et leur transfert. In A. Presseau & M. Frenay (Dir.),
Le transfert des apprentissages : comprendre pour mieux intervenir (pp. 241–
268). Québec, CA: Les presses de l'Université Laval.

Friesen, J. (2003). Data structures and algorithms, part II. In Java World. Retrieved

Page 246

March 23, 2005 from: http://www.javaworld.com/javaworld/jw-06-2003/jw-
0613-java101.html

GNU General Public License (1991). Retrieved June 2, 2004 from:
http://www.gnu.org/copyleft/gpl.html

Google (2005). The Google search engine. Retrieved May 11, 2005 from:
http://www.google.com/

Greenberg, L. (2002). LMS and LCMS: What's difference?. Retrieved April 19, 2005
from: http://www.learningcircuits.org/2002/dec2002/greenberg.htm

Greer, J., McCalla, G., Collins, J., Kumar, V., Meagher, P., & Vassileva, J. (1998). Sup-
porting peer help and collaboration in distributed workplace environments. Inter-
national Journal of Artificial Intelligence in Education, 9, 159–177.

Götschi, T., Sanders, I., & Galpin, V. (2003, February). Mental models of recursion. Pa-
per presented at the ACM 34th SIGCSE Technical Symposium on Computer Sci-
ence Education. Reno, Nevada.

Hannafin, M.J. (1992). Emerging technologies, ISD, and learning environments: Critical
perspectives. Educational Technology Research and Development, 40, 49–64.

Henderson, P.B., & Romero, F.J. (1989). Teaching recursion as a problem-solving tool
using Standard ML. Paper presented at the ACM 20th SIGCSE Technical Sympo-
sium on Computer Science Education. Louisville, Kentucky.

Henze, N. & Nejdl, W. (2001). Adaptation in open corpus hypermedia. International
Journal of Artificial Intelligence in Education, 12, 325–350.

Honebein, P.C., Chen, P., & Brescia, W. (1992). Hypermedia and sociology: A simula-
tion for developing research skills. Liberal Arts Computing, 1, 9–15.

Honebein, P.C., Duffy, T.M., & Fishman, B.J. (1993). Constructivism and the design of
authentic learning environments: Context and authentic activities for learning. In
T.M. Duffy, J. Lowyck, & D. Jonassen (Eds.), Designing environments for con-
structive learning (pp. 87–108). Hillsdale, NJ: Erlbaum.

Huitt, W. (2001). Motivation to learn: An overview. Educational Psychology Interactive.
Valdosta, GA: Valdosta State University. Retrieved July 2, 2005 from:
http://chiron.valdosta.edu/whuitt/col/motivation/motivate.html

IEEE Learning Technology Standards Committee (2005). Retrieved April 28, 2005 from:
http://ltsc.ieee.org

IMS Global Learning Consortium (2005). Retrieved April 28, 2005 from:
http://www.imsglobal.org/

Institute for Human and Machine Cognition (2005). CmapTools. Retrieved March 15,
2005 from: http://cmap.ihmc.us/

Java World (2004). Java Q&A. Retrieved January 27, 2004 from:

Page 247

http://www.javaworld.com/columns/jw-qna-index.shtml

jEdit (2005). Programmer's text editor. Retrieved March 30, 2005 from:
http://www.jedit.org

Johnson, M.J. (1987). The body in the mind: The bodily basis of meaning. Chicago: Uni-
versity of Chicago Press.

Jonassen, D.H. (1999). Designing constructivist learning environments. In C.M. Reige-
luth, Instructional design theories and models: Their current state of the art (pp.
215–239). Mahwah, NJ: Lawrence Erlbaum Associates.

Jonassen, D.H., & Rohrer-Murphy, L. (1999). Activity theory as a framework for design-
ing constructivist learning environments. Educational Technology, Research &
Development, 47(1), 61–79.

Jonassen, D. H., Peck, K. L., & Wilson, B. G. (1999). Learning with technology: A con-
structivist perspective. Upper Saddle River, NJ: Merrill.

Jonnaert, P. (1995). Entrer dans l'apprentissage scolaire. In G. Forges, (éd.), Enfants issue
de l'immigration et apprentissage du français langue seconde (pp. 15–53). Paris,
FR: Didier-Érudition.

Jonnaert, P., & Vander Borght, C. (2003). Créer des conditions d'apprentissage: Un ca-
dre de référence socioconstructiviste pour une formation didactique des ensei-
gnants. Bruxelles, BE: De Boeck-Université, Perspectives en Éducation et For-
mation.

Kaplan, D.A. (2000). The Silicon boys and their valley of dreams. New York, NY:
HarperCollins.

Kearsley, G. (2003). Theory into practice. Retrieved September 24, 2004 from:
http://tip.psychology.org.

Kinshuk, Looi, C.K., Sutinen, E., Sampson, D., Aedo, I., Uden, L., & Kähkönen, E.
(2004). Proceedings of the 4th IEEE International Conference on Advanced
Learning Technologies. IEEE Computer Society.

Kirsh, D. (2000). A few thoughts on cognitive overload. Retrieved September, 12, 2005
from: http://icl-server.ucsd.edu/~kirsh/Articles/Overload/published.html

Kjell, B. (2003). Introduction to computer science using Java. Retrieved November 8,
2004 from: http://chortle.ccsu.edu/CS151/cs151java.html

Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive
Science, 12, 1–48.

Knuth, R.A., & Cunningham, D.J. (1993). Tools for constructivism. In T. Duffy, J.
Lowyck, & D. Jonnasen (Eds.), Designing environments for constructive learning
(pp. 163–188). Berlin, DE: Springer-Verlag.

Koschmann, T. (1996). CSCL: Theory and practice of an emerging paradigm. Mahweh,

Page 248

NJ: Erlbaum.

Kuhn, Th. (1983). La structure des révolutions scientifiques. Paris, FR: Flammarion.

Laanpere, M., Põldoja, H., & Kikkas K. (2004). The second thoughts about pedagogical
neutrality of LMS. Paper presented at the 4th IEEE International Conference on
Advanced Learning Technologies, Joensuu, Finland.

Lajoie, S. P. & Lesgold, A. M. (1992). Dynamic assessment of proficiency for solving
procedural knowledge tasks. Educational Psychologist 27(3), 365–384.

Lakoff, G. (1987). Women, fire and dangerous things: What categories reveal about the
mind. Chicago: University of Chicago Press.

Language Development and Hypermedia Group (1992). Bubble dialogue: A new tool for
instruction and assessment. Educational Technology, Research & Development,
40(2), 59–67.

Legendre, R. (1988). Dictionnaire actuel de l'éducation. Paris, FR: Larousse.

Leslie, S. (2003). Open source course management systems. Retrieved June 2, 2004,
from: http://www.edtechpost.ca/gems/open_source_cms3.htm

Lewis, J. & Loftus, W. (2003). Java software solutions. Boston: Addison Wesley Long-
man.

Malmi, L. & Korhonen, A. (2004). Automatic feedback and resubmissions as learning
aid. Paper presented at the 4th IEEE International Conference on Advanced
Learning Technologies, Joensuu, Finland.

Marshall, H.H. (1996). Implications of differentiating and understanding constructivist
approaches. Educational Psychologist, 31, 235–240.

MASIE Center e-Learning CONSORTIUM (2003). Making sense of learning standards
and specifications. Retrieved November 8, 2004 from:
http://www.masie.com/standards/s3_2nd_edition.pdf

Milgrom, E., Jacqmot, Ch., Blaise, O., Cohen, A., D'Hautcourt, F., Lammé, A., & Uytte-
brouck, E. (1997). Evaluation of web-based tools for building distance education
systems. Journal of interactive instruction development, 3–11.

Mitrovic, A. (2005). Constraint-based tutors: A success story. Invited talk presented at
the 12th International Conference on Artificial Intelligence in Education, Amster-
dam, The Netherlands (soon appear).

Morrison, D., & Collins, A. (1996). Epistemic fluency and constructivist learning envi-
ronments. In B.G. Wilson (Ed.), Constructivist learning environments: Case stud-
ies in instructional design (pp. 107–120). Englewood Cliffs, NJ: Educational
Technology Publications.

Murray, T. (1999). Authoring intelligent tutoring systems: Analysis of the state of the
art”. International Journal of Artificial Intelligence in Education, 10, 98–129.

Page 249

OOPWeb (2004). Java Programming Tutorials. Retrieved January 9, 2004 from:
http://www.oopweb.com/Java/Files/Java.html

Pea, R.D. (1993). The collaborative visualization project. Communications of the ACM,
36, 60–63.

Pedagogy Group at FSA/UCL (2005). Candis 2000: Apprendre par les problèmes. Re-
trieved March 10, 2005 from:
http://www.fsa.ucl.ac.be/candis/publications/index.html

Perkins, D.N. (1991a, May). Technology meets constructivism: Do they make a mar-
riage? Educational Technology, 31, 18–23.

Perkins, D.N. (1991b, September). What constructivism demands of the learner. Educa-
tional Technology, 31, 19–21.

Perkins, D.N. (1996). Minds in the 'hood. In B.G. Wilson (Ed.), Constructivist learning
environments: Case studies in instructional design (pp. v–viii). Englewood Cliffs,
NJ: Educational Technology Publications.

Piaget, J. (1975). L’équilibration des structures cognitives. Paris, FR: PUF.

Reeves, T.C., & Okey, J.R. (1996). Alternative assessment for constructivist learning en-
vironments. In B.G. Wilson (Ed.), Constructivist learning environments: Case
studies in instructional design (pp. 191–202). Englewood Cliffs, NJ: Educational
Technology Publications.

Reimann, P. (1991). Detecting functional relations in a computerized discovery environ-
ment. Learning and Instruction, 1, 45–65.

Robbins, S.R. (2002). The evolution of the learning content management system. Re-
trieved April 19, 2005 from:
http://www.learningcircuits.org/2002/apr2002/robbins.html

Roberts, E.S. (1986). Thinking recursively. John Wiley & Sons, NY.

Rogoff, B. (1998). Cognition as a collaborative process. In W. Damon, D. Kuhn, & R.S.
Siegler (Eds.), Handbook of child psychology (5th ed., Vol. 2). New York: Wiley.

Rubin, E. (1915). Visuell wahrgenommene figuren. Gyldenalske Boghandel, Copenha-
gen.

Santrock, J.W. (2001). Educational psychology. New York: McGraw-Hill.

Sasse, M.A. (1991). How to t(r)ap users' mental models. In M.J. Tauber & D. Acker-
mann, Mental models and human-computer interaction (Vol. 2). Amsterdam, NL:
Elsevier Science Publishers.

Schach, S.R. (1999). Classical and object-oriented software engineering. New York:
McGraw-Hill.

Shepard, L.A. (1991). Psychometricians’ beliefs about learning. Educational Researcher,
2–16.

Page 250

SimCity. (2004). A city simulator. Retrieved January 6, 2004 from:
http://www.mcli.dist.maricopa.edu/proj/sw/games/simcity.html

Soderman, A.K., Gregory, K.M., & O’Neill, L.T. (1999). Scaffolding emerging literacy.
Boston: Allyn & Bacon.

Spiro, R.J., Coulson, R.L., Feltovich, P.J., & Anderson, D.K. (1988). Cognitive flexibility
theory: Advanced knowledge acquisition in ill-structured domains. In Tenth An-
nual Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Spiro, R.J., & Jehng, J.C. (1990). Cognitive flexibility and hypertext: Theory and tech-
nology for the nonlinear and multidimensional traversal of complex subject mat-
ter. In D. Nix, & R.J. Spiro, Cognition, education and multimedia (pp. 163–205).
Hillsdale, NJ: Erlbaum.

Spiro, R.J., Feltovich, P.J., Jacobson, M.J., & Coulson, R.L. (1991, May). Cognitive
flexibility, constructivism, and hypertext: Random access instruction for advanced
knowledge acquisition in ill-structured domains. Educational Technology, 31, 24–
33.

Stoyanov, S., & Kirschner, P. (2004). Expert concept mapping method for defining the
characteristics of adaptive e-Learning: ALFANET project case. Educational
Technology, Research & Development, 52(2), 41–56.

Sun Microsystems Corp. (2004). The online Java tutorial. Retrieved January 9, 2004
from: http://java.sun.com/docs/books/tutorial/index.html

Suomela, J. (2005). Jari's astronomy site. Retrieved May 12, 2005 from:
http://www.kolumbus.fi/jimenez/quotes/index.htm

Sweller, J. (2005). Cognitive load theory. Retrieved September, 12, 2005 from:
http://tip.psychology.org/sweller.html

Turbak, F., Royden, C., Stephan, J., & Herbst J. (1999). Teaching recursion before loops
in CS1. Journal of Computing in Small Colleges, 14(4), 86–101.

Van Hentenryck, P., Saraswat V., & Deville, Y. (1998, October). The design, implemen-
tation, and evaluation of the constraint language cc(FD) ”. Journal of Logic Pro-
gramming, Special Issue on Constraint Logic Programming, 26 pages, Vol. 37 (1–
3).

Van Joolingen, W., & De Jong, T. (1997). An extended dual search space model of scien-
tific discovery learning. Instructional Science, 25, 307–346.

Van Joolingen, W. (1999). Cognitive tools for discovery learning. International Journal
of Artificial Intelligence in Education, 10, 385–397.

Vietshare.com (2004). Câu chuyện cát đá. Retrieved October 25, 2004 from:
http://www.vietshare.com.

Von Foerster, H. (1988). La construction d'une réalité. In P. Watzlawick, (dir.), L'inven-

Page 251

tion de la réalité. Contributions au constructivisme (pp. 45–69). Paris, FR: Seuil.

Vygotsky, L.S., (1962). Thought and language. Cambridge, MA: MIT Press.

Weber, G. (1996). Episodic learner modeling. Cognitive Science, 20 (2), 195–236.

Weber, G., & Specht, M. (1997). User modeling and adaptive navigation support in
WWW-based tutoring systems. Paper presented at The 6th International Confer-
ence on User Modeling. Vienna, New York.

Weber, G. & Brusilovsky, P. (2001). ELM-ART: an adaptive versatile system for Web-
based instruction. International Journal of Artificial Intelligence in Education, 12,
351–384.

Wiley, D.A. (2002). The instructional use of learning objects. Retrieved February 17,
2004 from: http://www.reusability.org/read/

Wilson, B., Teslow, J., & Osman-Jouchoux, R. (1995). The impact of constructivism
(and postmodernism) on ID fundamentals. In B. B. Seels (Ed.), Instructional de-
sign fundamentals: A review and reconsideration (pp. 137–157). Englewood
Cliffs NJ: Educational Technology Publications.

Wilson, B.G. (1996). Constructivist learning environments: Case studies in instructional
design. Englewood Cliffs, NJ: Educational Technology Publications.

Wilson, B.G. (1997). Reflections on constructivism and instructional design. In C.R.
Dills & A.A. Romiszowski (Eds.), Instructional development paradigms. Engle-
wood Cliffs NJ: Educational Technology Publications.

Wittrock, M.C. (1985a). Teaching learners generative strategies for enhancing reading
comprehension. Theory into Practice, 24, 123–126.

Wittrock, M.C. (1985b). The generative learning model and its implications for science
education. Studies in Science Education, 12, 59–87.

WorldPeace J. (1997). The contemporary Tao of peace and harmony. Retrieved May 11,
2005 from: http://www.johnworldpeace.com/taoteching.html

Wright, W.A. (1995). Teaching improvement practices. Successful strategies for higher
education. Bolton: Anker Publishing Company.

Yahoo (2005). The Yahoo search engine. Retrieved from May 11, 2005 from:
http://search.yahoo.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

