User menu

The level of cyclic division algebras

Bibliographic reference Denert, Marleen ; Tignol, Jean-Pierre ; Van Geel, Jan ; Vast, Nicole. The level of cyclic division algebras. In: Mathematische Zeitschrift, Vol. 205, no. 4, p. 603-616 (1990)
Permanent URL http://hdl.handle.net/2078.1/51296
  1. Albert, A.A., Modern higher algebra. Chicago: University of Chicago Press 1958
  2. Denert, M., Van Geel, J., Note on the level of division algebras. (unpublished note)
  3. Lam, T.-Y., The algebraic theory of quadratic forms. Reading: Benjamin 1973
  4. Leep, D., Shapiro, D., Wadsworth, A.: Sums of Squares in Division Algebras. Math. Z.190, 151–162 (1985)
  5. Leep, D., Tignol, J.-P., Vast, N.: The level of division algebras over local and global fields. J. Number Theory33, 53–70 (1989)
  6. Lewis, D.W.: Levels and sublevels of division algebras. Proc. R. Ir. Acad., Sect. A87, 103–106 (1987)
  7. Lewis, D.W.: Levels of quaternion algebras. In: Proceedings of the 1986 Corvallis conference on quadratic forms and real algebraic geometry. Rocky Mt. J. Math. (to appear)
  8. Lewis, D.W.: On the level, IMS Bulletin19, 33–48 (1987)
  9. Pierce Richard S., Associative Algebras, ISBN:9781475701654, 10.1007/978-1-4757-0163-0
  10. Pfister, A.: Zur Darstellung von—1 als Summe von Quadraten in einem Körper. Lond. J. Math.40, 159–165 (1965)
  11. Scharlau, W., Tschimmel, A.: On the level of skew fields Arch. Math.40, 314–315 (1983)
  12. Tignol, J.-P., Vast, N.: Représentation de—1 comme somme de carrés dans certaines algèbres de quaternions. C.R. Acad. Sci. Paris, Sér. I.,305, 583–586 (1987)