User menu

The Toda Lattice, Dynkin Diagrams, Singularities and Abelian-varieties

Bibliographic reference Adler, M. ; Van Moerbeke, Pierre. The Toda Lattice, Dynkin Diagrams, Singularities and Abelian-varieties. In: Inventiones Mathematicae, Vol. 103, no. 2, p. 223-278 (1991)
Permanent URL http://hdl.handle.net/2078.1/51294
  1. Adler, M., Moerbeke van, P.: Kowalewski's Asymptotic Method, Kac-Moody Lie Algebras, and Regularization. Commun. Math. Phys.83, 83?106 (1982)
  2. Adler, M., Moerbeke van, P.: The complex geometry of the Kowalewski-Painlevé analysis. Invent. Math.7, 3?51 (1989)
  3. Adler, M., Moerbeke van, P.: Algebraic Complete integrable systems: A systematic approach (1985). Perspect. Math. 1989 (to appear)
  4. Arnolds, V.I.: Singularity theory (selected papers). London Math. Soc. Lect. Notes53
  5. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of differentiable maps, vol. I, monographs in math. Boston: Birkhäuser 1985
  6. Bogoyavlenski, O.I.: On perturbartions of the periodic Toda lattices, Commun. Math. Phys.51 (1976)
  7. Bourbaki, N.: Groupes et algêbres de Lie, chap. 4, 5, 6, (Eléments de mathématique. Paris: Hermann 1968
  8. Brieskorn, E.: Singular elements of semi-simple algebraic groups. Actes Congr. Int. Math.2, 279?284 (1970)
  9. Adler, M., Haine, L., Moerbeke van, P.: Limit operators for the Toda flow and periodic flags for Loop groups. (to appear)
  10. Flaschka, H.: The Toda lattice in the complex domain. Prospect of Algebraic Analysis (to appear)
  11. Flaschka, H., Zeng, Y.: Painlevé Analysis for the semi-simple Toda lattice (preprint)
  12. Griffiths, Ph., Harris, J.: Principles of Algebraic Geometry. New York: Wiley-Interscience 1978
  13. Gunning, R. C.: Lectures on Riemann surfaces, Jacobi varieties, Princeton: Princeton University Press 1972
  14. Haine, L.: Geodesic flow onSO (4) and Abelian surfaces. Math. Ann.263, 435?472 (1983)
  15. Helgason, S.: Differential geometry, Lie groups and symmetric spaces. New York, London: Academic Press 1978
  16. Humphreys, J.G.: Introduction to Lie algebras and Representation theory. New York Berlin Heidelberg: Springer 1972
  17. Kac, V. G.: Infinite Dimensional Lie algebras. Boston: Birkhäuser 1984
  18. McKean, H.P.: Integrable system and algebraic curves, Global analysis (Lect. Notes Math., vol. 755, pp. 83?200) Berlin Heidelberg New York: Springer 1979
  19. Mumford, D.: Algebraic geometry I, Complex projective varieties, Berlin Heidelberg New York: Springer 1976
  20. Mumford, D.: Curves and their Jacobians. The University of Michigan Press 1975
  21. Mumford, D.: Tata lectures on theta II (Progr. Mathematics, vol. 43) Boston: Birkhäuser 1984
  22. Ol'shanetsky, A., Perelomov, A.M.: Explicit solutions of classical generalized Toda models. Invent. Math.54, 261?269 (1979)
  23. Moerbeke van, P., Mumford, D.: The spectrum of difference operators and algebraic curves. Acta Math. (1979)
  24. Yoshida, H.: Integrability of generalized Toda lattice systems and singularities in the complex plane in Non-integrable Systems-Classical Theory and Quantuum Theory, Proc. RIMS Colloquium World Scientific, Singapore 1983
  25. Adler, M., Moerbeke van, P.: Limit of differential operators and theta functions, from the Grassmannian point of view (to appear)
  26. Goodman, R., Wallach, N.: Classical and quantum-mechanical systems of Toda lattice type I. Comm. Math. Phys.83, 355?386 (1982)
  27. Kostant, B.: On Whittaker vectors and representation theory. Invent. Math.48, 101?184 (1978)
  28. Pressley, N., Segal, G.: Loop groups. Clarendon Press, Oxford 1986
  29. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian Systems. Affine Lie algebras and La equations. I, II, Invent. Math.54, 81?100 (1979)