User menu

Contribution To Symbolic Analysis of Deformable Multibody Systems

Bibliographic reference Fisette, Paul ; Samin, Jean-Claude ; Willems, PY.. Contribution To Symbolic Analysis of Deformable Multibody Systems. In: International Journal for Numerical Methods in Engineering, Vol. 32, no. 8, p. 1621-1635 (1991)
Permanent URL
  1. and , ‘A dynamical formalism for an arbitrary number of interconnected rigid bodies, with reference to the problem of satellite attitude control’, Proc. 3rd International Congress of Automatic Control, Butterworth, London, 1967.
  2. Wittenburg Jens, Dynamics of Systems of Rigid Bodies, ISBN:9783322909435, 10.1007/978-3-322-90942-8
  3. Orlandea N., Chace M. A., Calahan D. A., A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 1, 10.1115/1.3439312
  4. Computer Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon, Boston, 1989.
  5. Wehage, J. Mech. Des., 104, 247 (1982)
  6. Boland, AIAA J., 13, 864 (1975)
  7. Samin Jean-Claude, Willems Pierre Y., Multibody Formalism Applied to Non-Conventional Railway Systems, Dynamics of Multibody Systems (1986) ISBN:9783642827570 p.237-248, 10.1007/978-3-642-82755-6_20
  8. Roberson Robert E., Schwertassek Richard, Dynamics of Multibody Systems, ISBN:9783642864667, 10.1007/978-3-642-86464-3
  9. Boland, Ingenieur Archiv, 42, 360 (1973)
  10. Boland, AIAA J., 12, 1025 (1974)
  11. ‘Further extensions of multi-body formalism’, in (ed.), Dynamics and Control of Large Flexible Spacecraft, Blacksburg, Virginia, Oct. 1979.
  12. and , ‘Symbolic generation of dynamic and identification models for robots: linearity with respect to barycentric parameters’, Proc. 12th IMACS World Congress on Scientific Computation, Vol. 1, Paris, July 1988.
  13. and , ‘Simulation of the lateral dynamics of the GLT vehicle by means of ROBOTRAN: a model generator for robots’, in and (eds.), Simulation in the Factory of the Future, SCS Publications, Belgium, 1988, pp. 123-127.
  14. Maes P., Samin J.-C., Willems P.-Y., Linearity of Multibody Systems with Respect to Barycentric Parameters: Dynamics and Identification Models Obtained by Symbolic Generation, 10.1080/15397738909412817
  15. and , ‘On the solution of orientation constraints in tracking problems’, Proc. Int. Conf. on Dynamics, Vibration and Control, Beijing, July 1990.
  16. and , in (ed.), Autodyn and Robotran, Multibody System Handbook, Springer-Verlag, Berlin, 1990.
  17. ‘Quasi-minimal computation of the dynamic model of robot manipulator utilizing the Newton-Euler formalism and the notion of augmented body’, Proc. IEEE Int. Conf. on Robotics and Automation, Raleigh, N.C., 1987.
  18. ‘Attitude stability of deformable satellites’, Attitude Changes and Stabilization of Satellites, CNES Int. Colloquium, Paris, Oct. 1968.
  19. Cl. Samin, AIAA J., 13, 812 (1975)
  20. and , ‘Symbolic identification model for deformable multi-body systems’, Proc. 8th VPI & SU Symp. on Dynamics and Control of Large Structures, Blacksburg, May 1991.