User menu

Tight-binding Density of Electronic States of Pregraphitic Carbon

Bibliographic reference Charlier, Jean-Christophe ; Michenaud, Jean-Pierre ; Lambin, Philippe. Tight-binding Density of Electronic States of Pregraphitic Carbon. In: Physical Review. B, Condensed Matter, Vol. 46, no. 8, p. 4540-4543 (1992)
Permanent URL
  1. Slonczewski J. C., Weiss P. R., Band Structure of Graphite, 10.1103/physrev.109.272
  2. McClure J. W., Band Structure of Graphite and de Haas-van Alphen Effect, 10.1103/physrev.108.612
  3. Charlier J.-C., Gonze X., Michenaud J.-P., First-principles study of the electronic properties of graphite, 10.1103/physrevb.43.4579
  4. Wallace P. R., The Band Theory of Graphite, 10.1103/physrev.71.622
  5. G. S. Painter, Phys. Rev. B, 1, 4747 (1970)
  6. Bernal J. D., The Structure of Graphite, 10.1098/rspa.1924.0101
  7. Samuelson L, Batra I P, Electronic properties of various stages of lithium intercalated graphite, 10.1088/0022-3719/13/27/009
  8. R. R. Haering, Can. J. Phys., 36, 352 (1958)
  9. J. W. McClure, Carbon, 7, 425 (1969)
  10. Charlier J.-C., Michenaud J.-P., Gonze X., Vigneron J.-P., Tight-binding model for the electronic properties of simple hexagonal graphite, 10.1103/physrevb.44.13237
  11. Robertson J., Amorphous carbon, 10.1080/00018738600101911
  12. Galli Giulia, Martin Richard M., Car Roberto, Parrinello Michele, Ab initiocalculation of properties of carbon in the amorphous and liquid states, 10.1103/physrevb.42.7470
  13. Painter G. S., Ellis D. E., Electronic Band Structure and Optical Properties of Graphite from a Variational Approach, 10.1103/physrevb.1.4747
  14. Tsukada Masaru, Nakao Kenji, Uemura Yasutada, Nagai Sumiaki, Combined OPW-TB Method for the Band Calculation of Layer-Type Crystals. I. General Formalism and Application to the π Band of Graphite, 10.1143/jpsj.32.54
  15. Nagayoshi Hideo, Nakao Kenji, Uemura Yasutada, Band Theory of Graphite. I. Formalism of a New method of Calculation and the Fermi Surface of Graphite, 10.1143/jpsj.41.1480
  16. Mallett C P, The cellular method for graphite, 10.1088/0022-3719/14/9/002
  17. Tatar R. C., Rabii S., Electronic properties of graphite: A unified theoretical study, 10.1103/physrevb.25.4126
  18. Charlier J.-C., Michenaud J.-P., Gonze X., First-principles study of the electronic properties of simple hexagonal graphite, 10.1103/physrevb.46.4531
  19. Haydock R, Heine V, Kelly M J, Electronic structure based on the local atomic environment for tight-binding bands, 10.1088/0022-3719/5/20/004
  20. Bayot V., Piraux L., Michenaud J.-P., Issi J.-P., Lelaurain M., Moore A., Two-dimensional weak localization in partially graphitic carbons, 10.1103/physrevb.41.11770
  21. Slater J. C., Koster G. F., Simplified LCAO Method for the Periodic Potential Problem, 10.1103/physrev.94.1498
  22. Toy W. W., Dresselhaus M. S., Dresselhaus G., Minority carriers in graphite and theH-point magnetoreflection spectra, 10.1103/physrevb.15.4077
  23. Allan G, A linear prediction of the recursion coefficients, 10.1088/0022-3719/17/22/013
  24. McClure J.W., Electron energy band structure and electronic properties of rhombohedral graphite, 10.1016/0008-6223(69)90073-6