User menu

The Integrated Singular Basis Function-method for the Stick Slip and the Die-swell Problems

Bibliographic reference Georgiou, G. ; Olson, L. ; Schultz, W.. The Integrated Singular Basis Function-method for the Stick Slip and the Die-swell Problems. In: International Journal for Numerical Methods in Fluids, Vol. 13, no. 10, p. 1251-1265 (1991)
Permanent URL http://hdl.handle.net/2078.1/50611
  1. and , ‘An efficient finite element method for treating singularities in Laplace's equation’, J. Comput. Phys., (1991), in press.
  2. and , Finite Elements. Mathematical Aspects, Vol. IV, Prentice-Hall, Englewood Cliffs, NJ, 1983.
  3. and , An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.
  4. Georgiou, Int. j. numer. methods fluids, 9, 1353 (1989)
  5. Georgiou, Int. j. numer. methods fluids, 10, 357 (1990)
  6. Keunings, J. Non-Newtonian Fluid Mech., 20, 209 (1986)
  7. Lipscomb, J. Non-Newtonian Fluid Mech., 24, 85 (1987)
  8. Silliman, J. Comput. Phys., 34, 287 (1980)
  9. Michael, Mathematica, 5, 82 (1958)
  10. Moffatt, J. Fluid Mech., 18, 1 (1964)
  11. Holstein, J. Non-Newtonian Fluid Mech., 8, 81 (1981)
  12. and , ‘Two finite element methods for singularities in Stokes flow: the stick-slip problem’, in and (eds.), Finite Element Analysis in Fluids, UAH Press, Huntsville, Al, 1989, pp. 992-997.
  13. Babuška, Numer. Math., 20, 179 (1973)
  14. Hood, Int. j. numer. methods eng., 10, 379 (1976)
  15. Walters, Comput. Fluids, 8, 265 (1980)
  16. Ingham Derek B., Kelmanson Mark A., Boundary Integral Equation Analyses of Singular, Potential, and Biharmonic Problems, ISBN:9783540136460, 10.1007/978-3-642-82330-5
  17. ‘Singular finite elements for Newtonian flow problems with stress singularities’, Ph.D. Thesis, Department of Chemical Engineering, The University of Michigan, 1989.
  18. Schultz, Q. J. Appl. Math. Mech., 43, 407 (1990)
  19. Richardson, Proc. Camb. Phil. Soc., 67, 477 (1970)