User menu

Transient Finite-element Method for Calculating Steady-state 3-dimensional Free Surfaces

Bibliographic reference Wambersie, O. ; Crochet, Marcel. Transient Finite-element Method for Calculating Steady-state 3-dimensional Free Surfaces. In: International Journal for Numerical Methods in Fluids, Vol. 14, no. 3, p. 343-360 (1992)
Permanent URL http://hdl.handle.net/2078.1/50594
  1. Tran-Cong, Rheol. Acta, 27, 21 (1988)
  2. Tran-Cong, Rheol. Acta, 27, 639 (1988)
  3. Tran-Cong, J. Non-Newtonian Fluid Mech., 30, 37 (1988)
  4. and , ‘Three-dimensional finite element analysis for a Maxwell fluid using the penalty function method’, Proc. NUMETA Conf., Pineridge, Swansea, 1987, pp. D37, 1-8.
  5. Shiojima, J. Non-Newtonian Fluid Mech., 34, 269 (1990)
  6. Karagiannis, AIChE J., 34, 2088 (1988)
  7. Saito, J. Comput. Phys., 42, 53 (1981)
  8. Karagiannis, Rheol. Acta, 28, 121 (1989)
  9. Karagiannis, Rheol. Acta, 29, 71 (1990)
  10. and ‘A new semi-implicit method for solving the time-dependent conservation equations for incompressible flow’, in , and (eds), Numerical Methods in Laminar and Turbulent Flow, Pineridge, Swansea, 1985, pp. 3-21.
  11. ‘Time integration and conjugate gradient methods for the incompressible Navier-Stokes equations’, Proc. 6th Int. Conf. on Finite Elements in Water Resources, Lisbon, 1986, Springer Verlag, pp. 3-29.
  12. Van der Vorst, SIAM J. Sci. Stat. Comput., 3, 350 (1982)
  13. Gresho, Int. j. numer. methods fluids, 11, 587 (1990)
  14. Gresho, Int. j. numer. methods fluids, 11, 621 (1990)
  15. and , ‘On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions’, in Recent Advances in Numerical Methods in Fluids, Vol. I, Pineridge, Swansea, 1980, pp. 27-81.
  16. The Finite Element Method, 3rd edn, McGraw-Hill, New York, 1977.
  17. Ruschak, Comput Fluids, 11, 391 (1983)
  18. Brooks, Comput. Methods Mech Eng., 32, 199 (1982)
  19. Nickell, J. Fluid Mech, 65, 189 (1974)