User menu

The Gacs-kurdyumov-levin Automation Revisited

Bibliographic reference Desa, PG. ; Maes, C.. The Gacs-kurdyumov-levin Automation Revisited. In: Journal of Statistical Physics, Vol. 67, no. 3-4, p. 507-522 (1992)
Permanent URL http://hdl.handle.net/2078.1/50383
  1. A. L. Toom, Stable and attractive trajectories in multicomponent systems, inMuhicomponent Random Fields, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980).
  2. J. L. Lebowitz, C. Maes, and E. Speer. Statistical mechanics of probabilistic cellular automata,J. Stat. Phys. 59:117 (1990).
  3. Liggett Thomas M., Interacting Particle Systems, ISBN:9781461385448, 10.1007/978-1-4613-8542-4
  4. P. Gacs, G. L. Kurdyumov, and L. A. Levin, One-dimensional uniform arrays that wash out finite islands,Probl. Pered. Inform. 14:92 (1978).
  5. P. Gacs, Reliable computation with cellular automata,J. Comput. Syst. Sci. 32:15 (1986).
  6. R. Kinderman and J. L. Snell,Markov Random Fields and Their Applications (American Mathematical Society, Providence, Rhode Island, 1980).
  7. C. Maes and S. B. Shlosman, Ergodicity of probabilistic cellular automata: A constructive criterion,Commun. Math. Phys. 135:233 (1991).
  8. L. Onsager, Crystal statistics. I. A two-dimensional model with order-disorder transition,Phys. Rev. 65:117 (1944).
  9. J. Bricmont, Private communication.
  10. Y. Imry and S. K. Ma, Random-field instability of the ordered state of continuous symmetry,Phys. Rev. Lett. 35:1399 (1975).