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Abstract

In recent years, probabilistic models have become fundamental techniques in
machine learning. They are successfully applied in various engineering prob-
lems, such as robotics, biometrics, brain-computer interfaces or artificial vision,
and will gain in importance in the near future. This work deals with the dif-
ficult, but common situation where the data is, either very noisy, or scarce
compared to the complexity of the process to model. We focus on latent vari-
able models, which can be formalized as probabilistic graphical models and
learned by the expectation-maximization algorithm or its variants (e.g., varia-
tional Bayes).

After having carefully studied a non-exhaustive list of multivariate kernel den-
sity estimators, we established that in most applications locally adaptive esti-
mators should be preferred. Unfortunately, these methods are usually sensitive
to outliers and have often too many parameters to set. Therefore, we focus on
finite mixture models, which do not suffer from these drawbacks provided some
structural modifications.

Two questions are central in this dissertation: (i) how to make mixture mod-
els robust to noise, i.e. deal efficiently with outliers, and (ii) how to exploit
side-channel information, i.e. additional information intrinsic to the data. In
order to tackle the first question, we extent the training algorithms of the pop-
ular Gaussian mixture models to the Student-¢ mixture models. The Student-¢
distribution can be viewed as a heavy-tailed alternative to the Gaussian dis-
tribution, the robustness being tuned by an extra parameter, the degrees of
freedom. Furthermore, we introduce a new variational Bayesian algorithm for
learning Bayesian Student-¢ mixture models. This algorithm leads to very ro-
bust density estimators and clustering. To address the second question, we
introduce manifold constrained mixture models. This new technique exploits
the information that the data is living on a manifold of lower dimension than the
dimension of the feature space. Taking the implicit geometrical data arrange-
ment into account results in better generalization on unseen data.

Finally, we show that the latent variable framework used for learning mixture
models can be extended to construct probabilistic regularization networks, such
as the Relevance Vector Machines. Subsequently, we make use of these methods
in the context of an optic nerve visual prosthesis to restore partial vision to blind
people of whom the optic nerve is still functional. Although visual sensations
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can be induced electrically in the blind’s visual field, the coding scheme of the
visual information along the visual pathways is poorly known. Therefore, we
use probabilistic models to link the stimulation parameters to the features of the
visual perceptions. Both black-box and grey-box models are considered. The
grey-box models take advantage of the known neurophysiological information
and are more instructive to medical doctors and psychologists.
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CHAPTER 1

Introduction

Machine learning and more generally artificial intelligence is about to play a
crucial role in our modern society. Machine learning aims at teaching machines,
either how to perform tasks in an autonomous fashion, or how to make rea-
sonable and sound decisions, for example, in order to assist experts in many
scientific domains or to support the latest technological advances.

Today’s electronic devices fulfill a wide variety of duties. Among the most
important ones, there is the control, the processing and the distribution of
information. Since the late '60, the advances made in the field of microelec-
tronics enabled engineers to build powerful communication systems in which
computers interact with each other and with humans. However, at present
time, human-computer interactions are mainly low level in the sense that a
computer can be made to represent and to solve a problem or some aspect of
it, provided it is correctly configured (by programming) and it is given appro-
priate input data. In other words, computers usually execute fastidious and
repetitive operations they have been assigned to and which can be described
in terms of simple logical and numerical expressions.

In the early ’90, the advent of large scale communication systems created the
need to organize and process more efficiently the enormous amount of infor-
mation transmitted through man-made communication networks. As a result,
information technology (IT) emerged. IT is concerned with all aspects of man-
aging and processing information. Computers play a central role in these tasks,
as they are used to convert, store, protect, process, transmit and retrieve in-
formation from anywhere, at anytime.

While IT led to an information revolution, making information universally
available and accessible, nowadays we are facing a knowledge revolution. Ma-
chines no longer only manage and process information, but they are given
computational intelligence in order to create new information, i.e. knowledge.
For instance, machines extract and transform the information that is hidden
in large databases or their environment to let intelligent systems adapt auto-
matically to our needs and desiderata or just to provide us with meaningful
information. In the near future, these systems will appear almost everywhere in
people’s everyday life. Currently, machine learning tools are already invaluable
for efficient data mining and gain in importance in domains such as robotics,
artificial vision, biometrics, speech processing, natural language processing,
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brain-computer interfaces, haptics, bioinformatics, medical imaging, etc. How-
ever, in order to be capable of natural and seamless interaction with humans,
some further advances in the fundamental techniques and their tailoring to
various practical aspects are essential.

Among others, probabilistic and in particular Bayesian learning have emerged
as approaches that are difficult to circumvent. In these approaches, knowledge
is discovered based on the statistics of the observed data. The attractiveness
of probabilistic models lies in their ability to bring powerful statistical tools
into machine learning in order to represent uncertainty. This uncertainty may
come from the noise on the data generation process or may be due to the fact
that the number of data is small compared to their dimensionality or to the
complexity of the process to model. The probabilistic approach allows us to
deal with these sources of uncertainty in a principled way, by taking them into
account explicitly when estimating the optimal model parameters.

Surprisingly, probabilistic models are based on only two fundamental rules: the
sum rule and the product rule. For continuous random variables X and ), the
sum rule states how to compute the marginal probability p(x) based on the
joint probability p(x,y):

p(x) = / p(x, y)dy - (1.1)

The marginal probability p(x) is thus obtained by integrating out y, which can
be viewed as a nuisance variable in this context. When dealing with discrete
random variables, the integral is replaced by a sum.

The product rule says how to decompose the joint probability p(x,y). It is
given by

p(x,y) = p(x|y)p(y) , (1.2)

where p(x|y) is the conditional probability of x given y. When X is independent
from Y, p(x|y) is equal to p(x) and thus p(x,y) = p(x)p(y).

From the product rule, it is straightforward to derive a third important rule:
Bayes’ rule. In analogy to (1.2), we have p(x,y) = p(y|x)p(x). Equating both
leads to the following expression:

rx[y)p(y)

p(x)
where p(y) and p(y|x) are respectively termed prior and posterior probability of
y. The normalizing constant p(x) is nothing else than the marginal probability
of x, which is given by (1.1). The prior reflects usually an a priori belief on y.
Bayes’ rule plays a very important role in Bayesian learning and in statistics
in general as it allows updating the prior of y into its posterior, on the basis of
the observation of x.

p(ylx) = : (1.3)

Biomedical engineering also underwent a revolution in the past several years.
Successful clinical systems stimulating electrically the nervous system have



Chapter 1. Introduction 15

emerged, including cochlear implants to restore hearing and deep brain stim-
ulators to reduce symptoms of Parkinson’s disease. Another complex system
that is likely to emerge is the one that restores functional vision in profoundly
blind individuals by electrical stimulation of the visual pathways. In particular,
electrical stimulation of the optic nerve was proven to provide a viable solution
when the blind’s optic nerve is still functional, such as in retinitis pigmentosa
and age-related macular degeneration.

In the frame of the European project OPTIVIP (optimization of the wvisual
implantable prosthesis), a blind female volunteer is chronically implanted with
a complete optic nerve visual prosthesis. One of the main challenges is to in-
duce meaningful visual sensations in his/her visual field, which requires to un-
derstand, decode and model the underlying neurophysiological process. Since
very little is known about the coding scheme of the visual information along
the visual pathways and since the underlying neurophysiological process is ex-
pected to be strongly nonlinear, nonlinear probabilistic techniques are suitable.
Furthermore, the data gathered with the blind volunteer during exploratory
stimulation sessions is expected to be very noisy since the degree of atrophy
of her optic nerve is unknown and because of the high complexity of the data
acquisition process.

The practical framework of this thesis is the optic nerve visual prosthesis,
the ultimate goal being to link the stimulation parameters to the features of
the visual sensations produced in the visual field of the volunteer. Therefore,
we first study probabilistic models in the general case the underlying process
is corrupted by lots of noise. In practice, very noisy environments are not
uncommon, especially in medical and biomedical applications.

This work is organized as follows. In Chapter 2, we review nonparametric
density estimation techniques and study their behavior in presence of noise.
These techniques are fundamental statistical tools for data mining, Bayesian
classification or statistical pattern recognition. A non-exhaustive list of mul-
tivariate kernel estimators is discussed and their performance is assessed on
real data. The adequacy of several bandwidth selectors is investigated. Both
methods with fixed smoothing and locally adaptive smoothing are considered.
The popular leave-one-out cross-validation criterion for standard kernel density
estimation is also extended to ordinary and weighted vector quantization-based
kernel density estimation, as well as sample point kernel density estimation.

In Chapter 3, we study finite mixture models, which are the core of this work.
Maximum likelihood, maximum a posteriori and Bayesian learning of Gaussian
and Student-¢ mixtures are discussed in detail. The use of the student-t¢ distrib-
ution is motivated by the fact that it is the robust counterpart of the Gaussian
distribution. Since we use a latent variable formalism to describe the mixture
models, their parameters can be learnt by means of the popular expectation-
maximization algorithm and its extensions (e.g., variational Bayes). When
viewing finite mixture models as a limiting case of the adaptive kernel density
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estimators, they turn out to be a flexible and powerful alternative to nonpara-
metric techniques. Variants improving the generalization capabilities of the
mixture models and avoiding numerical instabilities in noisy environment are
proposed. In particular, we introduce mixture models using the regularized
Mahalanobis distance to determine the component’s shape, as well as a practi-
cal maximum a posteriori framework. In addition, a new variational Bayesian
learning algorithm is proposed for Student-t mixture models, which provides
very robust density estimators and clustering tools. Furthermore, the algorithm
leads to a tight variational lower bound, which can be used for automatic model
selection. Finally, manifold constrained mixture models are introduced. They
exploit the information that the data is embedded in a manifold of lower di-
mension than the dimension of the feature space. In practice, this leads to
better generalization. Throughout this work, the emphasis is to analyze how
these techniques perform in real applications. Whenever it is suitable, we give
advice to the practitioners that are dealing with lots of noise and atypical
observations, while the number of available data is limited.

In Chapter 4 we describe probabilistic regularization networks. In particular,
the relevance vector machines, which are sparse Bayesian regularization net-
works, are discussed. We also show that the latent variable formalism studied
in the previous chapter can be readily applied in this context.

In Chapter 5, the complete prototype of the optic nerve visual prosthesis is
described and the probabilistic tools discussed in the previous chapters are used
to model the neurophysiological process linking the stimulation parameters to
the corresponding visual sensations generated in the visual field of the blind
volunteer. Besides data mining, both classification and regression problems are
involved. Entirely black-box models, as well as hybrid models are proposed.
The hybrid models are grey-box models in the sense that they exploit as much
as possible the known part of the neurophysiological process. Furthermore,
they have a similar accuracy as their black-box counterpart.

Finally, the conclusions of this thesis are stated in Chapter 6. In this last
chapter, we briefly discuss further research directions in Bayesian learning and
the relevance of our results for the optic nerve visual prosthesis. We also point
out which performance can be expected from this type of prothesis in the future,
as well as the problems that are still unsolved.

To end this introduction, we summarize the contributions of this doctoral dis-
sertation, which are three-fold:

Experimental contribution: Nonparametric kernel density estima-
tors are assessed in the multivariate case, showing that adaptive
estimators should be preferred in practice. Since these techniques are
sensitive to noise and have often too many parameters to set, finite
mixture models are more suitable in a similar context.
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Theoretical contributions: Besides the extension of the leave-one-
out cross-validation criterion to several adaptive kernel density
estimators, the theoretical contributions focus on mixture modeling:

o Gaussian mixtures using the regularized Mahalanobis distance
are introduced in order to avoid numerical instabilities and make
them suitable for estimating arbitrary densities.

o A practical maximum a posteriori approach, which can be com-
bined to the minimum message length principle to perform au-
tomatic model selection, is proposed.

o We extend all the training algorithms for Gaussian mixture mod-
els to the Student-¢ mixture models in order to obtain methods
that are robust to atypical observations (outliers).

o We introduce a new variational Bayesian learning algorithm for
Student-t mixture models, which leads to (i) robust density es-
timation, (ii) very robust clustering and (iii) robust automatic
model selection.

o We also introduce manifold constrained mixture models in order
to take advantage of the geometrical arrangement of the data
when learning the parameters.

o Finally, we show that the latent variable formalism used for
mixture models can be extended to probabilistic regularization
networks.

Applicative contribution: The probabilistic models discussed in this
work are used to model the neurophysiological process that is involved
when inducing visual perceptions in the blind with an optic nerve vi-
sual prosthesis. The ultimate goal of these models is to reconstruct
images such that they are meaningful for them and help medical doc-
tors to better understand the underlying neurophysiology.






CHAPTER 2

A Review of Kernel Density Estimation

Probability density estimation is a fundamental concept in statistics (e.g., Izen-
man, 1991) and machine learning (e.g., Cheng and Titterington, 1994). It pro-
vides a solid basis to data mining, knowledge discovery, pattern recognition
and unsupervised learning in general. Jain, Duin and Mao (2000) emphasize
that, in the field of pattern recognition, the statistical approach is the most
intensively used. Statistical pattern recognition (Fukunaga, 1972) was success-
fully applied to bioinformatics, industrial automation, remote sensing, medical
diagnosis, speech processing or biometrics. It is the study of how machines
observe the environment, learn to distinguish patterns of interest and make
sound and reasonable decisions about categories.

Consider an unknown process described by a continuous random variable X
This variable can be specified in a natural way by means of its probability
density function (PDF). The PDF provides a very rich source of information of
the underlying process, as it allows extracting key quantities such as the mean,
the most probable value (mode), the dispersion around the mean (variance),
the degree of asymmetry (skewness) and many other characteristic quantities.
Besides, it enables us to determine in which portion of space the PDF exists,
i.e. where X can take a certain value and with which probability. Unfortu-
nately, in practice the true PDF is unknown. Only a finite and noisy realiza-
tion of A is observed. Hence, estimating the PDF consists in describing the
imperfect process by characterizing the behavior X', based on the observations.
When performing density estimation, two major families of methods can be
considered: the parametric and the nonparametric ones. A third family, lying
somewhat in between, are finite mixture models. They will be studied in detail
in Chapter 3.

Parametric PDF estimation assumes the data is drawn from a specific density
model. The unknown PDF is estimated by fitting an a priori chosen functional
form (e.g., a Gaussian distribution) to the observed data. Of course, this a
priori choice is too restrictive in most engineering and biomedical applications,
as it might give a false representation of the underlying process. By contrast,
in nonparametric density estimation (Silverman, 1986; Izenman, 1991; Scott,
1992; Wand and Jones, 1995; Héardle, Miiller, Sperlich and Werwatz, 2004) the
information embedded in the data is extracted by making as few assumptions as
possible, that is to say letting the data “speak for themselves”. Nonparametric
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PDF estimation captures the underlying structure of the data without assum-
ing any functional form. The estimate is taken to belong to a large enough
family of densities so that it cannot be represented through a finite number
of parameters. Nonparametric methods are therefore suitable to model any
arbitrary density and are applicable in a much broader range of applications.
Smoothness conditions are usually imposed on the estimate (and on its deriv-
atives) and it should satisfy the following general constraints':

vx € RY: p(x|X, Hy) >0, /p(x|X, Hu)dx =1, (2.1)

where d is the dimension of the feature space. Features are measurable char-
acteristics by which the observations can be described and represented. The
density p(x|X,Has) is a nonparametric estimate of the true density p(x) hav-
ing a model structure Hy,, its parameters being learned on the basis of a finite
realization X = {x, })_, of X.

In the first part of this chapter, we present how to learn a density in a machine
learning perspective. Statistical resampling techniques such as cross-validation
and the bootstrap are recalled. Both are essential for model selection, especially
when the data is limited and very noisy. As the standard error criteria are
useless in unsupervised learning, it is proposed to use the average negative log-
likelihood. This is motivated by the fact that this measure is closely related
to the Kullback-Leibler divergence between the true density and its estimate.
Even if it may be problematic in some particular cases, the average negative
log-likelihood is a general criterion, which is viable and objective in practice,
regardless of the method that is used.

In the second part, nonparametric kernel density estimators are reviewed. The
key quantity in these methods is the amount of smoothing. We therefore discuss
a non exhaustive list of data-driven smoothing selectors. Asymptotic criteria
are also mentioned when appropriate. In particular, the approaches that can
be used in multivariate PDF estimation problems are retained. Based on the
smoothing selector, nonparametric estimators can be divided into two classes:
the estimators with fixed smoothing and with locally adaptive smoothing. The
first ones include the histogram and the popular Akaike-Parzen-Rosenblatt es-
timator. The second ones include the nearest neighbor, the adaptive or sample
point kernel estimator, the vector quantization-based density estimator and the
reduced set kernel density estimator. The problems faced with each method
are extensively discussed.

At the end of this chapter, the quality of the estimators is assessed in presence
of noise and according to the number of learning data. Two artificial bench-
marks of increasing dimensionality are considered. Later on, the estimators are
compared on real data. Univariate applications are briefly considered. Subse-
quently, we focus on multivariate problems, which are barely discussed in the
literature. In most examples, the number of data is also limited.

1These constraints are general in the sense that they are satisfied for any density and
thus imposed in parametric density estimation or finite mixture models as well.
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2.1. Learning Densities

The aim of machine learning is to build a statistical model of the unknown
process, which exhibits good generalization capabilities. It is not to fit per-
fectly the observed data generated by the process, but to predict well on new
inputs. For a fixed size of the learning data set, the reliability of the estima-
tors decreases when the number of parameters increases. The problem is even
more severe in presence of noise. As a consequence, selecting the best model
complexity, i.e. the optimal number of parameters, should be done carefully in
practice, paying much attention to the amount of available data, the amount
of noise and the complexity of the process to model.

2.1.1. Learning and Generalization

The methodology extensively used with artificial neural networks, such as
multi-layer perceptrons (Rumelhart, Hinton and Williams, 1986; Bishop, 1995),
radial basis function networks (Broomhead and Lowe, 1988; Moody and
Darken, 1989) or the popular support vector machines (Vapnik, 1998; Cris-
tianini and Shawe-Taylor, 2000), is the hold-out method. It works in three
successive steps: training, validation and test.

Consider the random variable X describing the unknown process of interest
and let X = {x,})_, be an identically and independently distributed (i.i.d.)
sample of X'. Suppose a fixed model hypothesis Hj; of complexity M and an
a priori chosen error criterion F/, which characterizes the prediction accuracy.
In order to estimate the generalization capabilities of the model, the data is
divided into three disjunct subsets: the training, the validation and the test set.
First, the model parameters associated to the hypothesis H; are computed by
minimizing the training error, usually following an iterative scheme. As shown
in Figure 2.1, the training error decreases as a function of the model com-
plexity M. When M increases, the number of degrees of freedom increases as
well, resulting in a more accurate description of the training data (if sufficient
data are available). The training error is not a useful measure for selecting
M, as it favors an ever increasing model complexity. Second, the validation
error on the validation set is computed by using the optimal model parameters
for hypothesis Hp;. In contrast with the training error, the validation error
provides a measure for selecting M. Indeed, as the validation set is not used
for training, the validation error is an estimate of the generalization error of
this specific model. Looking to Figure 2.1, one can observe a minimum of the
validation error, meaning that when the complexity is too high, the model per-
forms worse, i.e. the model overfits the training data. Third, the generalization
error is estimated on the test set for the optimal model complexity M,,:. This
methodology can be applied to density estimation in a straightforward way,
provided an adequate performance measure is given. Performance measures
for PDF estimation will be further discussed in Section 2.1.3.
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~ validation

Mopt M

FIGURE 2.1. Evolution of the training and the validation error
as a function of the model complexity M. While the training
error decreases continually when M increases, the validation
error first decreases, goes through a minimum and then in-
creases due to overfitting. This phenomenon occurs when the
model describes better the training data, but generalizes worse
on new data (e.g., the validation data).

An approach related to the hold-out method and which is known as as early
stopping, fixes the model complexity in advance (to a high value) and seeks for
the optimal number of training iterations instead. In fact, a similar behavior
of the errors is observed depending on the number of training iterations. While
the training error continuously decreases, the validation error goes through
a minimum. Good generalization is then obtained by stopping the training
procedure at this point.

Curse of dimensionality

Although the actual definition of a density does not change as the dimension-
ality changes, there are subtle differences that are likely to make multivariate
density estimation difficult. If we are forced to work with a limited number
of data, as we are in practice, then increasing the dimensionality of the space
rapidly leads to very sparse data, resulting in a very poor representation of the
underlying density. The number of data required for a given accuracy grows
exponentially with the number of features, which has been termed curse of di-
mensionality (Bellman, 1961), empty space phenomenon (Scott and Thompson,
1983) or peaking phenomenon (Jain et al., 2000). In addition, when moving
to higher dimensions, regions of relatively low density, such as the distribution
tails, can still be extremely important parts of the distribution (Silverman,
1986). Unfortunately, the tails are very difficult to model in practice.

2.1.2. Statistical Resampling Techniques

The problem with the hold-out method is that the data split is arbitrary and
that it is wasteful of valuable data. This can possibly lead to a suboptimal
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hold-out method

| training validation

random subsampling

I
I I
I I
training validation training | test

K-fold cross-validation

L] |

(a) (b)

FIGURE 2.2. Examples of statistical resampling techniques.
(a) shows the data partitions for the hold-out method, random
subsampling and K-fold cross-validation. Although the vali-
dation sets are mutually exclusive in K-fold cross-validation,
they are not in random subsampling. (b) illustrates the plug-
in principle used in the bootstrap method. In this approach it
is assumed that the optimism ¢y is only due to the sampling
process between the real world and the sampled world. It can
therefore be simulated by subsampling the sampled world to
construct the bootstrapped world.

choice of M, as it introduces a bias in the estimation of the generalization
error. In practice, it is even more troublesome as the number of data can be
relatively small and noisy. Therefore, more elaborate techniques are needed.

Random subsampling

A straightforward extension of the hold-out method that is less sensitive to
the arbitrary split is random subsampling (Figure 2.2). The hold-out method
is repeated K times and the generalization error is computed by averaging
over the runs. However, the assumption of independency between instances of
the validation (and learning) sets from successive runs is violated. Therefore,
statistical resampling techniques (Efron and Tibshirani, 1993) such as cross-
validation and bootstrapping are widely used instead. For a smaller number
of runs, they allow to estimate the error with a greater reliability, especially
when the sample size is limited. They are commonly used in machine learning
for model selection and the optimization of the hyperparameters, i.e. other
parameters that control the functional complexity of the resulting models.

Cross-validation

In K-fold cross-validation (Stone, 1974, 1975, 1977), the data is divided into
K subsets of (approximately) equal size (Figure 2.2). The model is trained
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K times, each time leaving out one of the subsets for validation. The gener-
alization error is then estimated by computing the mean of the K validation
errors:

K
Ee, = %ZEX%X,Q , (2.2)
k=1
where X_; and X}, denote respectively the complete data set X without subset
k and subset k only. For two different data sets A; and Aj, the error E4, 4, is
obtained by training the model with the data points of A; and validating it on
the data points of A;. Confidence intervals are formed by using the standard
deviation of E.,, also known as standard error. In general, the variance of the
mean of a finite population is equal to the variance of the population divided by
its size. This leads to the following approximation for the standard deviation
of F.y:
‘AT(Eka,Xk) ~ &(en)
VK VN '

where 62(+) denotes the empirical variance and e,, is the validation error in x,,.

0(Eey) & (2.3)

In (2.3), the equality Eo, = + 25:1 e, is used. It is important to realize that
no unbiased estimator of the variance of K-fold cross-validation exists (Bengio
and Grandvalet, 2004). In particular, for small sample sizes the bias incurred
with respect to the variance may even be of the same order as the empirical
variance itself.

When K equals the sample size N, the method is called leave-one-out cross-
validation. Leave-one-out is nearly unbiased, but shows high variance and leads
thus to unreliable estimates (Efron and Tibshirani, 1993). By contrast, K-fold
cross-validation with moderate K reduces the variance while increasing the
bias. In practice, 10-fold cross-validation seems to be a good compromise (Efron
and Tibshirani, 1993; Kohavi, 1995). Further improvement can be obtained at
an additional cost by Monte-Carlo simulations. Monte-Carlo cross-validation
consists in repeating K-fold cross-validation multiple times and averaging E.,
over the Monte-Carlo runs.

Bootstrap

The bootstrap (Efron, 1979, 2003) is based on the plug-in principle. The gen-
eralization error is decomposed into two terms:

Eroot = Ex x + €0 , (2.4)

where Ex x is the apparent error and €; is the optimism. The first term
is an “overtraining” error, and therefore optimistically biased. The second
term is the correction between Fx x and the generalization error. In order to
estimate the optimism, the plug-in principle states that this bias is only due
to the sampling process of the real world (Figure 2.2). As a result, we may
simulate this optimistic bias by first constructing a bootstrap sample, which is
a subsample X* of X with replacement and having the same size as X. Next,
the optimism is considered as being the difference between the (over)training
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error Ex« x« and the validation error Fx+ x for a model trained with X*. In
order to be statistically reliable, the procedure is repeated B times:

B
1
“©“=pg I;(EX;,X - Ex;x;) (2:5)

As in K-fold cross-validation, the standard deviation of Epoet (or equivalently
the standard deviation of ¢p) can be used to form confidence intervals.

The main problem with the standard bootstrap is that the optimism does not
correct the bias sufficiently (Efron, 1983) and therefore does not lead to a good
estimate of the generalization error. In the .632 bootstrap (Efron, 1983), the
optimism € g30 is estimated in a slightly different way, using only the points
belonging to X and not to the bootstrap samples {X;}Z -

€632 — 0'632(EX*,X\X* — EX,X) 5 (26)

where

N B
_ 1 I(x, € X\ X])en
NN LT T X\ X))

The function I(-) is the indicator function. It is defined as follows:
I(xeA):{ 1 if z€ A

0 otherwise .
The factor 0.632 in (2.6) can be motivated as follows. Since the data set X
is sampled uniformly, the probability that a data point does not belong to a
particular bootstrap sample X; is (1 — 1/N)V ~ e™! ~ 0.368; the expected
number of distinct instances from X appearing in X; is thus 0.632N. The .632
bootstrap estimate of the generalization error is then given by

E632 = Ex x + €632 (2.8)

According to Efron (1983), the .632 bootstrap is nearly unbiased. However,
some ten years later it was reported by Kohavi (1995) that the .632 bootstrap
may still have an important bias in some practical applications. More recently,
Efron and Tibshirani (1997) proposed the .632+ bootstrap in order to correct
the (small) pessimistic bias of .632 bootstrap. Unfortunately, this approach
can only be applied in classification problems using the zero-one-loss (which
counts the number of misclassifications) and will not be further discussed in
this thesis.

The main drawback of statistical resampling techniques is that they are com-
putationally very demanding. Other model selection methods include Akaike’s
information criterion (AIC) (Akaike, 1973) and Schwarz’ Bayesian criterion
(BIC) (Schwarz, 1978), but these asymptotic methods are often performing
worse in practice, especially when the number of data is limited and in pres-
ence of noise and outliers. In Chapter 3, we will see how Bayesian techniques
address this problem in a natural way by marginalizing over all the nuisance
parameters.
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2.1.3. Performance Measures

Typically, the Lo-norm of the prediction error, also known as the integrated
squared error, is used in regression and the zero-one-loss in classification. While
these standard error criteria are well suited in supervised learning, they are
in general not in density estimation. Note however that the L;-norm can
be used in some particular asymptotic cases. Since density estimation is an
unsupervised learning technique, the learning set does not contain input-output
pairs, but only inputs. Nevertheless, when comparing different methods, it
might be useful to assess them while knowing the target density in advance.
Of course, this is not the case in practical applications.

Integrated Squared Error

Let p(x) be the true density and p(x|X, Has) the density model of fixed struc-
ture Hyy, learnt with the observed data X. The integrated squared error (ISE)
is commonly used to measure how well the entire curve p(x|X,Hys) estimates
p(x). The goodness-of-fit is computed as follows:

ISE = /{p(x|X, Har) — p(x)}dx . (2.10)

Depending on the realization X different estimators p(x|X, Has) are obtained.
Taking the expectation with respect to the distribution of p(x|X,Has) at x
gives the mean integrated squared error (MISE):

MISE = E{ISE} = / MSE(x)dx , (2.11)
where the mean square error (MSE) is defined at x:
MSE(x) = E { (p(x]X, Har) — p(x))?} (2.12)
= B { (p(x|X, Har) = E{p(x| X, Ha)}) "}
+ (B{p(x X, Har) = p(x)})” - (2.13)

The first term can be identified as the variance of the estimator at x, while the
second term is its squared bias at x. The MISE is thus a global measure that
corresponds to the integrated bias-variance trade-off of the estimator. Note
that the empirical ISE divided by the number of observations is usually termed
mean square error in the machine learning community and is often used in
regression problems. This quantity approximates the expected squared error
for a given model and a given X. In contrast to the MISE is concerned with
the average over all possible data sets (Izenman, 1991).

Kullback-Leibler divergence

It is appealing to measure the dissimilarity between a target distribution p(x)
and its estimate p(x|X,Hys) by the dispersion of their likelihood ratio with
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respect to the target distribution, the likelihood ratio being given by

~ p(x|X, Har)
#= p(x)

This general class of divergence measures was formalized by Ali and Silvey
(1966) and is known as F-divergence:

Fp(x)|lp(x|X, Har)] = g (B{f(#)}) . (2.15)

where f(-) is a convex function on IR* and g(-) is an increasing function on IR.

(2.14)

The Kullback-Leibler (KL) divergence (KKullback and Leibler, 1951) is a partic-
ular case of F-divergence. It measures the dissimilarity between the densities
by posing f(z) = —logz and ¢(z) = z:

p(x)

KL [px) (e}, Har)] = [ o) log Bk =0, (210)
where log denotes the natural logarithm by convention. The KL divergence is
minimum (and equal to zero) when both densities are identical and increases
when the dissimilarity increases. It is not a distance, since the triangular in-
equality and the property of symmetry? are not respected, and it is sensitive to
translation and scaling. In addition, the target distribution needs to be defined
on the entire support of its estimate in order to be informative. Indeed, when
it is not, the KL divergence tends to infinity. Related F-divergences include
the Hellinger, the Bhattacharyya and the generalized Matustita dissimilarity
measures. A non-exhaustive list can be found in Bassevile’s survey (Basseville,
1989). In practice, they behave similarly as the KL divergence.

Average negative log-likelihood

Using the KL divergence or the ISE as generalization error in PDF estimation
makes only sense when the target density is known, for example when using
artificial generated data. In this thesis however, we are mainly interested in real
applications, the target density being thus unknown. Therefore, the average
negative log-likelihood is proposed as an alternative performance measure, as
its computation does not require to know the target density, nor its support.

An important quantity in density estimation is the data likelihood. It is either
used for characterizing the likelihood of a specific model hypothesis H; having
observed a particular data set X, or the likelihood of new observations. Let
us here focus on the latter. Consider a fresh identically and i.i.d. sample
X = {xn/}ﬁf,/:l of X. The likelihood of observing the new sample X’ under
the model hypothesis H;; and having learnt the model with sample X is the

2The KL divergence can be made symmetric by computing the following quantity:
KL [p(x)|lp(x|X, Har)] + KL[p(x| X, Har)||p(x)]. Nevertheless, this measure is not a distance
either, as the triangular inequality does still not hold.
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joint probability of X

N/
LX'|X, Hur) = p(X'|X, Har) = ] pOxnr | X Har) - (2.17)

n’=1

The likelihood measures the quality of the density model p(x|X,Hys) with
respect to the new observed data. In practice, it is convenient to take the
negative logarithm of £(X’|X,Hys) and to normalize it with respect to the
number of data points, resulting in the average negative log-likelihood (ANLL)
of X"
1 &
ANLLX7X/ = _ﬁ Z logp(xn/\X, HM) 5 (218)

n’=1

This performance measure can be regarded as an error function. It should be
minimized and can be (reliably) estimated by statistical resampling techniques
(see Section 2.1.2).

Let us now discuss the ANLL in more detail and show that this measure is well
suited as error criterion in practical PDF estimation. Consider again definition
(2.16) of the KL divergence. It can be decomposed as follows:

KL [p(x) [p(x| X, Har)] = / p(x) log p(x)dx — / p(x) log p(x|X, Har)  (2.19)
= —H(p(x)) — E{log p(x| X, Har)} , (2.20)

where H(-) is the differential entropy (Cover and Thomas, 1991), which is the
extension of Shannon’s entropy (Shannon and Weaver, 1963) to the continuous
case. The second term in (2.20) is the expectation of the negative logarithm of
the density model p(x|X, Hs). It may be approximated by its empirical mean,
which is nothing else than the average negative log-likelihood:

N/
1
E{logp(x| X, Ha)} & — 1 > log p(xn | X, Har) - (2.21)

n’=1

Furthermore, the entropy term is a constant that does not depend on the
estimate p(x|X,Hys) while the second term in (2.20) does. Minimizing the
KL divergence consists in minimizing this second term, which is equivalent to
minimizing the ANLL.

Remark that although this performance measure looks attractive for assess-
ing unsupervised techniques, a serious problem may arise in practice. As-
sume Xo; € X' is isolated with respect to the learning data X, such that
P(Xout| X, Har) = 0. The logarithm of p(Xeut| X, Has) is then equal to —oo,
resulting in an ANLL that is always equal to +o00, regardless of the quality of
the PDF in the other points of X’. We should therefore be careful when using
blindly the ANLL in presence of strong outliers and when the densities have a
limited support.
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2.2. Kernel Density Estimators with Fixed Smoothing

In the previous section, the basic tools for learning densities given a particular
model hypothesis Hj; have been recalled. A simple, but general methodology
is to use the ANLL as performance measure in conjunction with 10-fold cross-
validation or the .632 bootstrap. This methodology can be applied for learning
both the model complexity (i.e. the number of parameters) and selecting the
optimal (hyper)parameters for this particular model complexity.

In the following, nonparametric kernel PDF estimators are reviewed and com-
pared. Since the type and the amount of smoothing is crucial, we provide
a non-exhaustive list of smoothing selectors, with a particular emphasis on
approaches that are applicable in the multivariate case. In this section, the
kernel estimators using a fixed smoothing parameter in the entire feature space
are discussed. In the next section, kernel estimators using locally adaptive
smoothing are considered at length.

2.2.1. Histogram

The simplest nonparametric density estimator is the histogram. Consider the
random variable X’ describing an unknown process of interest and let X =
{z,}N | be an i.i.d. sample of X. Given these observations, the target PDF
is approximated by dividing the real line in nonoverlapping bins {B,, }*_, of
half bin width h and counting the number of data points falling into each of
them, i.e. the frequency counts. The relative frequency associated to each bin is
obtained by dividing its frequency count by the total number of observations V.
In order to ensure that the integral of the estimate is equal to one, the relative
frequency is also divided by the bin width 2h, resulting in the following density
model:

| NoM
P(@| X, bo) = o ;;I(x € B)I(z, € Bn) , (2.22)
where By, = [by + 2h(m — 1),by + 2hm], by is the first bin origin and I(-) is
the indicator function. Even though the histogram is convenient for visualizing
univariate data, it has many drawbacks. The estimate is discontinuous at
the bin boundaries (and thus not differentiable), and may be zero outside a
certain range. In addition, in order to construct a good estimator, one needs
to carefully choose the first bin origin (starting point) and the half bin width
h (or conversely the number of bins M).

Choice of the bin origin

The choice of the locations of the bin origins affects the quality of the estimate
(Silverman, 1986; Hérdle et al., 2004). One way to reduce this dependency is
to use an averaged shifted histogram (Scott, 1985, 1992). In this approach,
however, we need to choose additional parameters a priori, i.e. the number
of shifts and the shift step. Besides, the kernel density estimator discussed
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FIGURE 2.3. Log-normal target distribution (dashed line)
with mean equal to 1 and standard deviation to 0.7. The log-
normal distribution is highly skewed. The effect of the choice
of the half bin width h on the estimate is illustrated in (a) and
(b). When A is too large the estimator is oversmoothed. By
contrast, when h it is too small, the estimator does not reflect
the true variations of the target PDF.

in Section 2.2.2 can be viewed as the limiting case of the averaged shifted
histogram (Héardle et al., 2004).

Choice of the bin width

The histogram appears to be strongly dependent on the choice of h, as it regu-
lates its smoothness. This is illustrated in Figure 2.3 on a toy example that will
be used throughout this chapter for illustration purposes. The true underlying
distribution is log-normal with mean equal to 1 and standard deviation equal
to 0.7. In general, this distribution is difficult to estimate as it is highly skewed,
i.e. asymmetric, and its support is equal to IR™. The number of learning data
is 250. When h is too small, the estimate is spiky and may thus not reflect the
shape of the target PDF. By contrast, when it is too large, some important
characteristics may be smoothed out. For instance, the decreasing character
of the density when x tends to zero is not observed. Thus, using a fixed h
is problematic as it may be locally unadapted (e.g., in the distribution tail).
In general, problems occur when the dispersion of the data varies in different

regions of the feature space.

Viewing histograms as finite mixture models

One advantage of histograms is that once they have been constructed, the data
may be discarded. Only the bin locations and their amplitude need to be
stored. By bin amplitude is meant the ratio between the relative frequency
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and the bin width. As a result, (2.22) can be written in the following form:

M
p(fﬂ|’/T1,...,7TM,b0) = Z ’/TmI(z € Bm) ) (223)
m=1
where the bin amplitude m,, is defined as
1
Tom = mnz::ll(acn € By) . (2.24)

We refer the reader to Chapter 3 for a detailed discussion of finite mixture
models.

Moving to higher dimensions

Last but not least, histograms cannot handle efficiently multivariate data. Due
to the curse of dimensionality, moving to higher dimensions makes the number
of bins increase exponentially with the dimension. Furthermore, additional
parameters, such as the bin shape and orientation, need to be set. In practice,
optimizing all the parameters becomes rapidly infeasible.

2.2.2. Kernel Density Estimator

The Akaike-Parzen-Rosenblatt kernel density estimator (KDE) (Akaike, 1954;
Rosenblatt, 1956; Parzen, 1962) is a continuous estimator, which avoids the
choice of the bin origin. Its multivariate extension was investigated by Cal-
coullos (1966) and Epanechnikov (1969). The target PDF is constructed by
placing a well-defined kernel function on each data point of the learning set.
The kernels are characterized by a width (or window), which is a common
tuning parameter to all kernels. For a fixed value of this parameter, the PDF
is estimated by making the sum of all the kernels over whole the domain and
dividing it by a normalizing factor:

N
1 X — Xp,
P(X|X70):WE K< . > ) (2.25)
n=1

where K(-) : R” — IR and ¢ > 0 are respectively the kernel function and the
kernel width. Usually, the kernel is chosen radially symmetric, integrates to one
and is non-negative over its domain. As a result, the estimate automatically
satisfies (2.1).

Whereas the computational effort for learning kernel estimators is limited to
optimizing a single smoothing parameter, its model complexity scales linearly
with the size of the data set. This leads rapidly to a prohibitive increase
of memory usage. In Section 2.3.4, this problem is specifically addressed by
optimally condensing the learning set. Moreover, when constructing kernel es-
timates that are locally adaptive, such as vector quantization-based estimators
(Section 2.3.3), the model complexity is also kept small.
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Choosing the kernel

In order to limit the number of parameters to set, it is convenient to sphere the
data before estimating the PDF by removing the empirical mean and dividing
by the empirical standard deviation. The isotropic Gaussian kernel can then
be used for constructing the estimator (Hwang, Lay and Lippman, 1994):

K (X _an> = oIN (x5, 072T) | (2.26)

where the multivariate Gaussian distribution is defined as follows:
Nl A) = 0) HAP e (5 - " A=) - @20)
In this equation, | - | denotes the determinant, p is the kernel center and A

is the kernel precision or inverse covariance matrix. Other kernels include the
triangle, quartic or Epanechnikov kernels (Epanechnikov, 1969). However, for
practical purposes the choice of the kernel function is almost irrelevant for the
efficiency of the estimator (Hardle et al., 2004).

Choosing the kernel width

Similarly to histograms, which depend strongly on the value of the bin width
h, the KDE depends strongly on the kernel width o. Consider again the log-
normal distribution with mean equal to 1 and standard deviation equal to
0.7. As noted before, this distribution is difficult to estimate, especially when
using symmetric kernels having an unbounded support since the log-normal
distribution is highly skewed and its support is equal to IR*. Figure 2.4 shows
the impact of the value of o on the quality of Gaussian kernel density estimator.
When o is too large, the estimator is too flat. Large variation such as it is the
case near the origin cannot be modeled. By contrast, when ¢ is too small,
the large variation of the target PDF is easily modeled, but the estimate is
spiky in the distribution tails, making the kernels clearly visible (cf. bumps).
Those variations do not reflect the true underlying structure. Therefore, it is
essential to optimize the kernel width carefully. In practice, the value of o can
be selected as the one that minimizes the ANLL. Of course, in order to avoid
overfitting statistical resampling techniques are needed. Below, two popular
alternatives to our methodology are presented.

The first method is based on the minimization of the asymptotic MISE (N —
00). It can be shown that, for an arbitrary radially symmetric kernel K (t) with
zero mean and finite variance, the asymptotic MISE can be approximated as
follows (Silverman, 1986):

AMISE ~ %4 {/tQK(t)dt}Q/{Vzp(x)}zder NLM/K(t)zdt . (2.28)
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FIGURE 2.4. Effect of the choice of the kernel width on the
Gaussian kernel density estimator of a log-normal distribution
(dashed line). In (a) the kernel width is chosen too large and
in (b) it is chosen too small. As a consequence, the estima-
tor in (a) is oversmoothed (underfits), while the one in (b) is
undersmoothed (overfits).

where V2 is the Laplacian operator. The first term in this equation can be
interpreted as the squared bias of the estimator and the second as its vari-
ance. The kernel width minimizing the AMISE, and thus achieving the best
(asymptotic) bias-variance tradeoff, is:

a4 _ d [ K(t)*dt

N{[ 62K (t)dt}” [ {V2p(x)}* dx
The optimal kernel width cannot be computed in practice as it depends on the
target density p(x). However, using Gaussian isotropic kernels and plugging

in a Gaussian distribution to compute V2p(x) leads to Scott’s rule of thumb
(Scott, 1992):

(oamISE) (2.29)

(d+2)N

- )
1 ) 6’X%N7mﬁx s (230)

0 AMISE = (
where 6x is the empirical standard deviation. The resulting estimator applied
to the log-normal toy example is shown in Figure 2.5. While in this example
the value provided by (2.30) leads to a fair estimate, the resulting performance
is generally expected to be suboptimal. Indeed, the method selects the opti-
mal o according to an asymptotic criterion and uses a Gaussian approximation
to compute the second order derivative of the target PDF. In practice, this
value will only be valid in a limited number of applications. The optimal width
strongly depends on the type of data we are dealing with, their number, the
amount of noise they are corrupted by, and the dimension of the feature space.
Besides, the Gaussian approximation leads to an oversmoothed estimate when
the target is multi-modal or highly skewed. The solve-the-equation plug-in
approach was proposed in order to find a better estimate of the kernel width.
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F1cUre 2.5. Effect of the choice of the kernel width on the
Gaussian kernel density estimator of a log-normal distribution
(dashed line). Scott’s rule of thumb and the leave-one-out
cross-validation criterion are respectively used in (a) and (b).
Both provide an intermediate kernel width with respect to
the ones used in Figure 2.4. The resulting models generalize
better, still the leave-one-out criterion seems to overfit slightly.

The method solves (2.29) iteratively, after having replaced V2p(x) by its non-
parametric estimate V2p(x|X, Has). A different kernel width is used however.
Indeed, the optimal kernel width for p(x) is sub-optimal for V2p(x). Luckily,
both are linked, such that a fixed point of (2.29) can be found. In Jones, Mar-
ron and Sheather (1996), the approach was discussed in the one dimensional
case only. Wand and Jones (1995) gave some clues to generalize the approach
in the multivariate case, but many of the practical issues are still to be resolved.
In addition, since this method does not resolve the problems linked to the use
of a fixed smoothing parameter, it will not be further discussed.

The second method is an empirical one that is closely related to our methodol-
ogy. Instead of minimizing the ANLL, it suggests to select o by least squares
cross-validation (Rudemo, 1982; Bowman, 1984). Consider again the ISE.
Equation (2.10) can be decomposed as follows:

ISE = /p(x|X, 0)%dx — 2E{p(x| X, 0)} —|—/p(x)2dx : (2.31)

When minimizing the ISE with respect to o, the last term can be ignored as
it only depends on the target distribution. Seeing that the second term can be
approximated by its leave-one-out estimator, we may define the leave-one-out
cross-validation criterion as

Buoo(o) = [ p(xX.0)dx - 2B{p(x|X ., 0)} (2.32)

N
2
~ 2
~ /p(X|Xa o) dx — N E p(xXp|X—n,0) , (2.33)

n=1
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where X_,, denotes the learning set without data point x,. Since the integral
of a product of two Gaussian distributions is still a Gaussian distribution (de-
pending only on the means), the following expression is obtained when using
isotropic Gaussian kernels:

N N
A 1
Eroo(0) = 1z > N(xnlxn, (20%)7'T)
n=1n’'=1
N N
2
- N(x, xn/,a_QI) . (2.34
NV -7 2= 2 NVl )
n'#n

The optimal kernel width is then found by exhaustive search:

&LOO = argmin ELoo(O'). (235)
This criterion is asymptotically unbiased (Stone, 1984). However, the first
problem is that the approach is computationally very expensive. The second
one is its high variance. A related approach using the (smoothed) bootstrap has
been proposed by Taylor (1989) for minimizing the MISE, but better results
were only reported for large data sets. From a practical point of view, the leave-
one-out criterion tends to favor overcomplex models; it chooses a kernel width
that is too small. This is illustrated in Figure 2.5 on the simple log-normal
example.

The major drawback of kernel density estimation is that the width is fixed and
identical for all the kernels, regardless of the local dispersion of the data in the
feature space. As a consequence, either oscillations appear in the distribution
tails, in regions of low-density or when dealing with multi-modal populations, or
the estimator cannot accurately model high density regions. This is illustrated
in Figure 2.6 for a bi-model 1D distribution. The target PDF is a mixture
of two equally likely Gaussian distributions with different means and different
standard deviations. Imposing an identical kernel width to all the kernels leads
to locally mismatched kernel precisions. Since the value of the width is usually
chosen as the one that minimizes a global error criterion, it is only well-founded
in high-density regions. On the contrary, local mismatches occur in the low-
density regions, because the kernel precisions are locally undersmoothed. This
problem is addressed by kernel estimators with adaptive smoothing, which will
be discussed in detail in Section 2.3.

Moving to higher dimensions

In contrast to the histogram, kernel density estimators do not need additional
parameters to be set when the input dimension increases (if isotropic kernels
are used). Of course, kernel estimators are also subject to the curse of dimen-
sionality and need therefore an increasing amount of data when the dimension
increases and/or an increasing amount of smoothing.



36 2.3. Kernel Density Estimators with Adaptive Smoothing

0.35 0.35

0.3 1 03

0.25 0.25

02 02
015 1 015
01 01
0.05 1 o005
S0 = o 5 10 o 10
(a) o =0.7. (b) o =0.3.

FIGURE 2.6. Kernel density estimator of a bi-modal density
(mixture of two equally likely Gaussian distributions). For a
relatively large o the flat Gaussian distribution is fairly esti-
mated, while the peaky one is oversmoothed. For a relatively
small o strong oscillations appear in lower density regions.
These mismatches are due to the varying dispersion of the data
along the real axis. In practice, an intermediate o is globally
optimal. As a result, the peak is underestimated, while some
oscillations are observed in the distribution tails of the flat
component.

2.3. Kernel Density Estimators with Adaptive Smoothing

The density estimators described so far use a fixed kernel width. As shown on
several simple examples, using estimators that are not locally adaptive leads
to an oscillatory character in low density regions. The main reason is that the
kernel width is selected according to a global criterion, favoring an accurate
approximation of high density regions. In this section, kernel estimators that
are adaptively smoothed are investigated. By contrast to the previous methods,
they are quite sensitive to local irregularities in the data, such as sparseness or
data clumping.

2.3.1. Nearest Neighbors Estimator

The M-nearest neighbor® (M-NN) estimator is a simple attempt to adapt lo-
cally the amount of smoothing (Loftsgaarden and Quesenberry, 1965). It has
enjoyed a great success in pattern recognition and nonparametric discriminant
analysis and was introduced quite early by Fix and Hodges (1951). The estima-
tor is constructed by letting a hypervolume grow around x until it contains M

3In the literature, the term K-nearest neighbor is used instead of M-nearest neighbor.
However, in order to avoid any confusion with the number of folds in K-fold cross-validation
and as M denotes the complexity of the estimators throughout this thesis, a different notation
is adopted.
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data points of the learning set X. In general, the d-dimensional hypervolume
is chosen to be the volume of the d-dimensional hypersphere:

27 pd

SOrk (2.36)

Vd = cdrd =
where ¢4 is the hypervolume of the d-dimensional unit hypersphere, r is the
radius of the hypersphere and T'(+) is the gamma function. The resulting density
estimator takes the following form:

p(x|X, M) = m ; (2.37)

where
Va(x| X, M) = cqr(x| X, M)? . (2.38)

In these equations, the probabilistic notation is abusively used to specify that
the volume of the hypersphere and its radius depend conditionally on the learn-
ing set X and the number of neighbors M.

The M-NN can be viewed as a kernel estimator with kernel width r(x|X, M):

1 N X — X
p(x|X, M) = Nr(x|X, M) nZ::lK (T(X|X, M)) ’ (2:39)

where the kernel is given by

X — Xy, et (x—x0)T(x - x,) < 7(x|X, M), (2.40)
r(x|X,M)) | 0 otherwise . ’

As for the KDE, the complete learning set need to be stored. Furthermore,
the estimator is sensitive to local noise due to its adaptive character, shows
discontinuities and has an infinite integral due to very heavy tails (Silverman,
1986). The kernel estimator undersmooths the tails, while M-NN overcompen-
sates for this difficulty by smoothing them too much. As a result, its integral
does not converge to one.

Choosing the number of neighbors

Figure 2.7 shows the effect of the number of neighbors on the M-NN estimators
of the log-normal toy example that was already considered previously. First,
we can clearly observe the discontinuities in the estimators. Second, the choice
of M has a similar impact as the choice of o in kernel density estimation: it
regulates the radius of the hyperspheres. Therefore, it is essential to make a
careful choice of M. Unfortunately, little has been done so far for selecting the
optimal number of neighbors automatically. Silverman (1986) demonstrated
that the optimal number of neighbors minimizing AMISE is approximately
proportional to N4/(4+4)  This result is not very helpful in practice as the
constant of proportionality depends on x. Nevertheless, M can still be selected
by minimizing the ANLL.
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FIGURE 2.7. M-NN estimators of the log-normal distribution.
The effect of the number of neighbors M on the quality of
the estimate is illustrated in (a) and (b). The discontinuities
in both cases can be observed, as well as the overestimated
distribution tails. The dashed line shows the target distribu-
tion.

Moving to higher dimensions

According to Terrel and Scott (1992), the M-NN behave well only in higher
dimensions. This result however is questionable. Beyer, Goldstein, Ramakr-
ishnan and Shaft (1999) demonstrated that, for increasing dimensionality, the
difference between the distance of a given data point to its nearest neighbor
and its farthest neighbor does not increase as fast as its distance to its near-
est points. This is already observed for dimensions as low as 10 to 15. For
the Euclidean distance, this difference tends to zero (Hinneburg, Aggarwal and
Keim, 2000). In other words, when the dimensionality increases, the relative
contrast of the distances between different data points in the data set decreases.
For M-NN, this suggests that the radius behaves similarly, tending to a unique
value, regardless of the location of the reference point in the feature space.
Mathematically, it can be formulated as follows:

lim var{r(x|X, M)}

d—too E{r(x|X, M)} =0, (2.41)

where var{-} is the variance with respect to p(x). Figure 2.8 illustrates this
phenomenon with a simple example. Consider a d-dimensional isotropic Gaus-
sian distribution centered on the origin and with unit standard deviation. The
proportion of neighbors is fixed in advance to 10%. Fifty M-NN estimators
are constructed. When the dimension d increases, the relative contrast pro-
vided by the sphere radius decreases, because E{r(x|X, M)} increases faster
than var{r(x|X, M)}. As a result, the estimator tends to be flat regardless of
M, the radius of the hyperspheres approaching the same value for increasing
dimension.
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FIGURE 2.8. Evolution of the empirical relative contrast pro-
vided by the radius of the hypersphere in M-NN. The target
distribution is a d-dimensional Gaussian distribution centered
on the origin and having a unit standard deviation. Each curve
corresponds to one out of the 50 estimators that were con-
structed.

As a matter of fact, this phenomenon is not only problematic for the M-NN
estimator, but also for the standard and adaptive kernel estimators. All these
techniques use mainly the Euclidean distance to determine the influence of
neighboring data points and are thus prone to exhibit a flat character in very
high dimensional spaces.

2.3.2. Sample Point Kernel Density Estimator

A global kernel width is only suitable when the data is homogenous. When
the data statistics changes across the feature space, a local kernel width should
be preferred. The sample point density estimator or adaptive kernel estima-
tor (Breiman, Meisel and Purcell, 1977; Abramson, 1982; Silverman, 1986) is
based on the common-sense notion that a natural way to deal with long-tailed
distributions is to use a broader kernel in regions of low density. Thus, in order
to build a locally adaptive density estimator, the mass of an observation in a
low density region is smudged out over a wider range than in high density re-
gions. Besides, an attractive property of the sample point estimator is that the
approach provides a continuous estimate satisfying (2.1) automatically, unlike
the M-NN estimator.

The sample point kernel density estimator (SKDE) works in three successive
steps:

(1) Construct a pilot density estimator, which approximates (roughly)
the true density and which is non-zero at each training datum:

P(xn| X, Hyp) >0, Vn. (2.42)
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(2) Compute the data dependent kernel width factors:

p(xn| X, Hy)
A\, = {p(X|HM)} Vn (2.43)
g
where « satisfies 0 < o < 1 and g is the geometric mean of
P(xn | X, Hyp):
1N
logg = I Z log p(x,| X, H)y) - (2.44)
n=1

(3) Construct the adaptive kernel estimator as follows:

N
PX|X, 0, A) = — ZAldK(X_X”)7 (2.45)

where A = {\,}2_,

When the probability of x,, is high according to the pilot density, \,, will be
small, resulting in narrow kernels in high density regions. By contrast, when its
probability is low, A,, will be large, increasing the amount of smoothing locally.
Parameter a controls the sensitivity of the SKDE to the local variations in the
pilot estimator

It can be proven that the estimation bias decreases in comparison to the fixed
kernel width estimators, while the covariance remains the same (Hall, Hui and
Marron, 1995). However, unlike the approaches presented in the two following
sections, the method suffers from the same drawback as the KDE regarding
the computational burden of large size training sets: for each training data a
term is added to (2.45).

Choice of the pilot density

The model structure H’, of the pilot density is not necessarily the same as
the one of the SKDE. Breiman et al. (1977) used the M-NN estimator as pi-
lot density. A natural choice is rather to use the kernel estimator with fixed
smoothing (Silverman, 1986; Hwang et al., 1994). As the resulting PDF es-
timator is insensitive to a fine detail of the pilot estimate, it is convenient to
choose the kernel width by Scott’s rule (2.30):

O'AMISE OAMISE

Ploal X, antse) = T3 Z K (X X”) . (2.46)

In any case, the use of the leave-one-out cross—vahdatlon criterion will not be
rewarding due to its computational load.

Sain and Scott (1996) proposed the binned kernel density estimator that uses
a piecewise constant kernel width function. A substantial improvement over
the fixed kernel width estimator was reported. However, their discussion was
limited to the one-dimensional case. In the multivariate case, the attractive
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properties of binned kernel density estimators, such as for example the great
computational savings, are lost (Holmstrom, 2000).

Choice of the sensitivity parameter

The larger the sensitivity parameter « is, the more sensitive will be the method
to the pilot density. When « equals zero, the SKDE reduces to the standard
kernel estimator with fixed smoothing. Abramson (1982) demonstrated both in
the one-dimensional and the multi-dimensional cases that kernel width factors
inversely proportional to the square root of the pilot density give an estimator
whose bias is of a smaller order than that of the kernel estimator with fixed
width. Furthermore, he showed that no other dependence of local kernel width
on the pilot density will give this result. It is therefore common to choose
a=1/2.

It was argued by Terrel and Scott (1992) that SKDE may have a non local
behavior, that is, the estimate at a point may be significantly influenced by
observations far away, leading mainly to lower convergence rates to the true
PDF when N — oo. Nevertheless, good behaviors were still reported for small
to moderate learning sets, which are mainly of interest in this work.

Choice of the kernel width

The choice of the kernel width is essential for constructing a good density
estimator. Considering again the log-normal example in Figure 2.9, it is obvious
that when o is too large, the model underfits and when it is too small, overfitting
occurs. The overall tendency of the SKDE is to increase locally the smoothness
of the estimate. Therefore, for the same kernel width, either the overfitting is
less than in the standard kernel estimator, or conversely, the underfitting is
more important. In general, the optimal ¢ will be larger than for the kernel
estimator with fixed smoothing.

The leave-one-out cross-validation criterion (minimizing ISE) can be extended
in the case of the SKDE, the adaptive kernel factors being fixed. For Gaussian
kernels, the following criterion is obtained:

N N
- 1
Eroo(o) = N2 Z Z N (xn %0, (>‘n2 + >\n/2)710'721)
n=1n’'=1
9 N N
— , , _2 ) )
NN 1) ; Z N (xn|%n7, (Anro)"7T) (2.47)

n =1
n'#n
2.3.3. Vector Quantization-based Density Estimator

The main disadvantage of the KDE is the fixed kernel width and the high
model complexity (equal to the number of data samples). A straightforward
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F1GURE 2.9. Effect of the choice of the kernel width on the
SKDE of a log-normal distribution (dashed line) using Gaus-
sian kernels. The sensitivity parameter is set to 1/2 and Scott’s
rule is used to select the kernel width of the pilot density. In
(a) the kernel width is chosen too large and in (b) too small.

way to avoid the local mismatch of the kernel precisions is to pre-process the
data by vector quantization (VQ) (Holmstrom and Haméildinen, 1993; Hwang
et al., 1994; Voz, Verleysen and Comon, 1995). Interestingly, in contrast to the
SKDE, which shares the same drawback as ordinary kernel density estimation
regarding the model complexity, the VQ-based estimator provides a natural
approach for reducing the size of the learning set at the same time.

Let A be the set of indices of the observed data {x,})_, and B the set of
indices of the prototypes {pu,, }2/_, that minimizes an arbitrary reconstruction
error R. Pre-processing the data by VQ results in applying the transformation
gr(-) on the indices:

gr: ACN—BCIN
s.t.
Vae€ A, 3be B: gr(a) =band |A| > |B|,

where | - | denotes the cardinality of the sets. A wide variety of VQ schemes
can be used to compute the kernel prototypes. Among the most popular
ones, we have M-means (MacQueen, 1967), competitive learning (Grossberg,
1987; Ahalt, Krishnamurthy, Chen and Melton, 1990), neural-gas (Martinetz,
Berkovich and Schulten, 1993) and Kohonen'’s self-organizing maps (Kohonen,
1995). In this work, we only consider competitive learning , as the other VQ
methods lead to similar results.

The reconstruction error minimized by competitive learning is the mean square
error:

N
1
R=2 %0 = gl (2.48)
n=1
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where ||-|| is the Ly-norm. In order to minimize R stochastically, the competitive
learning algorithm proceeds as follows:

(1) Initialize the prototypes.
(2) Repeat until convergence:
(a) For each datum x,,, select the winner:

Hygin = argmin [|x, — o, [* . (2.49)
Mo

(b) Update the winner g, according to:
Min < Hyin T CV(Xn - /’l’win) . (250)

In (2.50) « is the learning rate. Usually, « is chosen to decrease exponentially
with the number of iterations on the training data set.

Once the VQ prototypes are computed, the underlying PDF is estimated as
follows:

M
1 1 _ X—
) = K|(s,1/?>——m 2.51
p0) = ypn O ok (S0 X5 L s
where @ = (pq,...,pps,S1,.-.,Sy,w). Usually, the multivariate Gaussian
kernel is used:
i (8,77 K ) < s N w8, (2

Parameter w is the width scaling factor. It regulates the overlap between the
Gaussian kernels. In classical nonparametric density estimation, the precisions
are identical for all kernels. In contrast, here they are locally data dependent
through the empirical covariance matrix S,,,, associated to the Voronoi region
of prototype p,,. The Voronoi region of p,, is the region of the feature space
mapped to p,,, i.e. Vx € IR? which is closer to W, than to any other prototype.

The main drawback of competitive learning and VQ in general is that it involves
an iterative nonlinear optimization scheme. As a result, the algorithm gets
easily trapped into local minima of the reconstruction error surface. This can
lead to a great variability in the generalization performance, depending on
the initialization of the prototypes, the model complexity M and the learning
rate a.. In order to be less sensitive to the initial conditions, several runs with
random initialization can be performed. The VQ with the lowest reconstruction
error is therefore chosen. However, this procedure is relatively slow.

Choosing the width scaling factor and the model complexity

Given a model complexity M, VQ partitions the feature space into M Voronoi
regions by associating the training data points to their closest prototype. As a
result, the local dispersion of the data can be taken into account by determining
the size and the orientation of each Voronoi region. This is computed by the
kernel precision (inverse covariance matrix), which depends locally on the data.
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FIGURE 2.10. VQ-based kernel density estimators of the log-
normal example. The number of prototypes is equal to 10.
The crosses indicate their location. The impact of the width
scaling factor is shown in (a) and (b). Here also, oscillations
are observed when the value of the smoothing parameter is
insufficient. The dashed line represents the target distribution.

The width scaling factor w is then optimized in order to enforce a smooth
estimate. It plays thus a similar role as the kernel width ¢ in the KDE.

Being able to locally adapt to the data dispersion reduces the oscillations in the
density estimates, which appear in low density regions of the target distribution.
This can be observed in Figure 2.10 on the log-normal example. Again, we
observe that the quality of the estimators are strongly affected by the choice
of the smoothing factor. Parameter w needs to be chosen sufficiently large in
order to ensure a smooth estimate. Nevertheless, even when w is too small, the
adaptive width of the kernels can still be observed (cf. the wider bumps in the
distribution tails).

Both the width scaling factor w and the number of prototypes M need to be
optimized. As in the previous methods, w can be selected according to the
leave-one-out cross-validation criterion:

1 M M
ELOO(’I.U) = W Z Z N(/—l/m|llzm/,w72(s'm, + Sm/)il)

m=1m’'=1

M M
Y D Nlbmlb, w™S,,1) (2.53)

m=1 m’'=1
m’#m

2
MM —1)
where Gaussian kernels are used. The optimal width scaling factor is then
found by exhaustive search:

oo = argmin Eroo(w) . (2.54)

w
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FIGURE 2.11. VQ-based kernel estimator of a bi-modal den-
sity (mixture of two equally likely Gaussian distributions with
different mean and standard deviation); the crosses indicate
the position of the kernel prototypes after competitive learn-
ing. The resulting estimators globally overestimate the low
density regions and underestimate the distribution modes both
for (a) large and (b) small width scaling factors.

Remark that this criterion depends also on the meta-parameter M. It can
therefore be used to select the optimal number of prototypes as well.

Magnification

It is reported by Hwang et al. (1994) that VQ-based kernel density estimators
perform poorly in presence of outlying data. As a matter of fact, the problem
is not limited to the presence of outliers. When using VQ methods, the original
distribution is distorted according to the magnification factor:

p(p) o< p(x)” (2.55)

where (3 is called the magnification. A magnification § = 1 corresponds to
an information optimal coding of the observed data; unfortunately, 5 depends
on the data dimension and the order of the minimized mean distortion error
(Zador, 1982). Competitive learning for example minimizes the mean distortion
error of order 2, which is equivalent to the mean square error (2.48). In this
situation, we have g < 1 for competitive learning in general, leading to over-
estimated low-density regions (e.g., the distribution tails) and underestimated
distribution modes, as illustrated in Figure 2.11. Thus, when estimating the
underlying density, one should select the appropriate reconstruction error or
conversely adapt the magnification to avoid additional distortion of the PDF.
This means that an additional free parameter should be included (Bauer, Der
and Herrmann, 1996), which is not feasible in practice. However, an alternative
to lower this distortion consists in weighting the kernels as discussed next.
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Weighted VQ-based kernel estimator

In order to reduce the effect of magnification, the kernels can be weighted ac-
cording to the number of data points that are assigned to the kernel prototypes.
Weighting the kernels has already been proposed by Babich and Camps (1996),
but not motivated. The VQ—based estimator takes the following form:

—1/2 X 7 Hpy
p(x|X,0) = Nde|S 3 (s / - ) (2.56)

where Ny, is the number of data points assigned to prototype u,,. Figure 2.12
shows the estimator of the bi-modal density considered in the previous para-
graph. As usual, the choice of the smoothing factor is essential. However,
the magnification is in this case clearly reduced and the functional form of the
model is much closer to the target density, the model parameters being un-
changed compared to Figure 2.11. Only non-uniform weights are introduced.

In contrast to what (2.56) may suggest, the complete learning set X does not

need to be stored. As for the histograms, only the relative frequency associated

to each cluster (or bin) is needed, allowing to view the weighted VQ-based

estimator as a finite mixture model. Defining each kernel weight by
N,

Nuwd|S,,|1/2

equation (2.56) can be rewritten as follows:

.
p(x|X,6) Zwm ( e “"L) —p(xlm6) (258)

w

T =

(2.57)

with 7w = {m,, } M_,.

Let us end this section by showing that the leave-one-out cross-validation is
still applicable. In the case of Gaussian kernels the criterion becomes:

Eroo(w Z Z N (B | B, 072 (S + Sir) ™)

m=1m/=1

N, Nm/ o
_QZ Z NN =N, N (B[, w ™87 - (2.59)

m=1 m’ 1
m’'#m

2.3.4. Reduced Set Kernel Density Estimator

More recently, Girolami and He (2003) introduced the reduced set kernel den-
sity estimator (RSKDE). The underlying motivation of the method is to con-
struct kernel density estimators based on an optimally condensed data set.
This is only meaningful when the data scarcity is not an application constraint
and the learning set is (very) large, leading to unacceptable memory usages.
Furthermore, RSKDE can also be viewed as a kernel estimator which is locally
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FIGURE 2.12. Weighted VQ-based kernel estimator of the tar-
get bi-modal density of Figure 2.11; the crosses indicate the
position of the kernel prototypes after competitive learning.
The same prototypes are used as for the ordinary VQ-based
estimators, as well as the same model complexity and width
scaling factors. One can clearly observe from (a) and (b) that
the magnification is compensated to a large extent compared
to the Figures 2.11(a) and 2.11(b) when weighting the kernels.

adaptive. Indeed, if the multiplicative constant of each kernel is different, such
as in Abramson’s SKDE, this leads to different kernel widths.

Previous approaches for optimally condensing the data were based on vec-
tor quantization (see Section 2.3.3) or support vector machines (Vapnik, 1998;
Cristianini and Shawe-Taylor, 2000). The optimization of the support vector
method for density estimation (Vapnik and Mukherjee, 1999) scales cubically
with the size of learning set, whereas for RSKDE it scales only quadratically. In
addition, the support vector method needs to set two parameters: the kernel
width and the regularization parameter. The amount of regularization con-
trols the tradeoff between sparsity and accuracy. By contrast, RSKDE does
not require additional parameters to optimize, but the kernel width. As both
techniques lead to a sparse representation of the original data and have a similar
accuracy, the support vector method will not be further discussed.

Consider the kernel density estimator of the following form:

g

N
1 - An
P X 0 m) = — S MK (X * ) , (2.60)
ag
n=1

where 7 denotes the set of weighting coefficients {m,}N_;. They are non-
negative and must sum to one:

N
Vi om, >0, Y my=1. (2.61)
n=1
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Subject to these constraints, it can be shown that the maximum likelihood
estimator of the weights? results in the standard kernel density estimator (2.25)
for a given kernel width o:

1
7, = argmax log L(0|X) = 7, = N (2.62)
where parameter 8 denotes the model parameters (o, 7,...,7N).

Instead, RSKDE minimizes the ISE. As shown below, this results in a sparse
solution, as most of the weights are driven to zero. Note that this process can
be viewed as a form of automatic model selection. Consider again the ISE as in
KDE (2.31). Dropping the term that only depends on the target distribution
leads to the following objective function:

Brsscos = [ (x|, 6)dx -~ 2B{p(x1X.0)) (2.69)

As before, the first term in this equation can be computed exactly. The second
term in contrast can be approximated as follows:

E{p(x|X,0)} = i:l B {UldK (X - X”> } ~ i:l Tap(Xn| X, 0) . (2.64)

g

In this equation, p(x,|X, o) is the standard kernel density estimator as defined
in (2.25) estimated at x,,. If we assume isotropic Gaussian kernels, the objective
function for a given kernel width becomes:

N N
Erskpp(0) = Y Y N (%X, (20°) ')

n=1n'=1

N N
— % Z Z TN (X [ X, 0 2T) (2.65)
n=1n'=1
As discussed by Girolami and He (2003), the second term is sparsity inducing.
Due to the summation constraint on the weights and since we maximize a
convex combination of positive numbers, the second term is maximized by
selecting a small number of points with small inter-point distance, i.e. in high
density regions, and assinging them large weights. The minimum value of
ISE is thus penalized by large inter-point distances in the kernel window. By
contrast, the first term only causes the selection of points with high inter-
point distances, as it has a constrained quadratic form. Therefore, the overall
effect will be that points in regions of relatively high density will be selected
to provide a smoothed density estimate.

Equation (2.65) can be written as a constrained quadratic optimization having
simple positivity and equality constraints (Girolami and He, 2003). As a con-
sequence, sequential minimal optimization (SMO) (Platt, 1999) can be used to

4Note that the maximum likelihood estimator of the weights corresponds to the minimal
ANLL estimator.
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FiGURE 2.13. Effect of the choice of the kernel width on the
optimally reduced Gaussian kernel density estimator of a log-
normal distribution (dashed line). In (a) the kernel width is
too large, in (b) it is too small. The data points having a
non-zero weight are indicated by crosses.

optimize the weights. Recently, a multiplicative updating method for the non-
negative quadratic programming of support vector machines was investigated
(Sha, Saul and Lee, 2002). As for SMO, the updates have a simple closed form.
However, the approach ensures a monotonic decrease of the weights at each
iteration and all the quadratic programming variables can be adjusted in par-
allel, not just two at a time. While the multiplicative updating of the weights
looks attractive for RSKDE, its convergence rate is much slower in practice.

Choosing the kernel width

The impact of the kernel width value on RSKDE is presented in Figure 2.13.
Again, the choice of ¢ is crucial. In addition, for RSKDE the choice of o has a
direct impact on the number of weights that are non-zero, thus on the model
complexity. Choosing its value based on (2.65) is delicate as the optimization
procedure and its solution strongly depend on the specific data set used for
learning. It is therefore advised to use another criterion to select o, such as for
example the ANLL.

2.4. Comparison of Kernel Density Estimators

In this section, the quality of the nonparametric PDF estimation techniques
described so far are assessed. First, we study the impact of the amount of
noise and the number of learning data on the estimation accuracy of the es-
timators. Artificially generated multivariate data are considered. Second, the
performance of the PDF estimators is assessed on real data sets.
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While the selection of the kernel width in the one dimensional case has ex-
tensively been discussed in the literature (see for example Park and Turlach,
1992; Cao, Cuevas and Manteiga, 1994; Farmen and Marron, 1999), very few
was done in the multivariate case. One can mention the discussion of Hwang
et al. (1994), who presented results on artificial generated data only. Therefore,
we mainly focus on higher dimensional problems, as well as on real data. The
performance of the methods is measured by computing the ANLL of the test
set. In the experiments, we compare the following techniques:

(1) Ordinary kernel density estimation (KDE). The predictive distribu-
tion of KDE approximates the true density as follows:

p(x) = p(x|X,0) . (2.66)

The kernel width o is selected by Scott’s rule, the leave-one-out cross-
validation criterion (minimizing the ISE), the 10-fold cross-validation
criterion (minimizing the ANLL) or the .632 Bootstrap criterion (min-
imizing the ANLL).

(2) Sample point kernel density estimation (SKDE). Its predictive distri-
bution is defined as

p(x) ~ p(x|X,0,A) . (2.67)

The optimal kernel width o is selected by leave-one-out cross-
validation, 10-fold cross-validation or .632 Bootstrap. Abramson’s
method is used, that is to say the sensitivity parameter « is set to
1/2. The pilot density is constructed by KDE using Scott’s rule for
selecting its kernel width.

(3) Weighted wvector quantization-based kernel density —estimation
(VQKDE). The predictive distribution is given by:

p(x)Q“p(xhrvula"'7/’LM7813"'7SM7w) . (268)

The width scaling factor w is selected by the same techniques as for
SKDE. For computational reasons, the number of prototypes is fixed
in advance to 15% of the original learning set.

(4) Reduced set kernel density estimation (RSKDE). The predictive dis-
tribution is the following:

p(x) ~ p(x|X,0,m) . (2.69)

Only 10-fold cross-validation and .632 Bootstrap criterion minimizing
the ANLL are used to select the optimal kernel width o. SMO is used
for the optimization.

For all the above mentioned techniques, isotropic Gaussian kernels are used,
even for VQKDE. In practice, the computation of the precisions associated to
the Voronoi regions rapidly leads to numerical difficulties when the dimension
of the feature space increases. Remark also that two methods are left aside:
the histogram and M-NN. This is motivated by the fact that the first one is
unpractical in high dimensional problems, while the second one does not satisfy
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the basic constraints (2.1). As a result, the ANLL of the test set is meaningless
in the case of the M-NN, as the estimator is not a true density.

2.4.1. Impact of the Amount of Noise

Considering Gaussian noise is of little interest as it results in estimators that
are just flatter than the true density. This can be easily understood by noting
that the PDF of the sum of two random variables is the convolution of the
two PDFs. In this section, we rather analyze the impact of the proportion of
atypical observation added to a training set of modest size (500 data points). In
Figure 2.14, we report their effect on the quality of the estimators. The learning
set was generated from a mixture of two multivariate Gaussian distributions:

Py (%) = MmN (X|py, Ar) + TN (x[pg, Az) (2.70)

where 71479 = 1. The mixture contains two overlapping components, resulting
in a bi-modal distribution. The performance of the estimators in 2D, 5D and 7D
are successively investigated. The parameters of the distributions are chosen
as follows:

w1 = 0.35 5 w2 = 0.65 5
u,=(0000000)", o, =(2222222)T,
Ay = diag(.4 .7 1.5.9 .65 .8 1.2) , Ao = diag(.5 1.25 .75 1 1.1 .8 .95) .

In the 2D and 5D cases, we take respectively the first 2 and 5 elements of
the parameters. The number of test points is 10,000. Due to their excessive
computational cost, the leave-one-out cross-validation criteria are left out of the
analysis. The atypical observations are generated from a uniform distribution
ranging from -10 to 10 along each direction of the input space.

In 2D, all the methods perform similarly, except KDE using Scott’s rule. As
expected, the latter overestimates the kernel width when the distribution is
multi-modal. Taking a closer look, we observe that ordinary KDE performs
slightly worse than the adaptive techniques when the number of atypical ob-
servations is limited. Globally, RSKDE seems to perform the best.

In higher dimensions, the estimators behave differently. Clearly, VQKDE fails
to provide good estimators. This is due to the fact that VQ methods are a type
of least squares estimators, thus sensitive to outlying data. In addition, the
curse of dimensionality increases this effect. The other methods can be ranked
as follows RSKDE, SKDE and KDE (KDE using Scott’s rule being again the
worse).

In all cases and for all methods, the quality of the estimators decreases when
the proportion of atypical observations increases, but the quality of the adap-
tive methods degrades slower. Besides, both 10-fold cross-validation and .632
bootstrap behaved similarly.
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2.4.2. Effect of the Size of the Training Set

In this section, we consider multivariate mixtures of Gaussian and Cauchy
distributions as in Hwang et al. (1994). As before, the mixtures contain two
components, resulting in bi-modal distributions with overlapping components.
The same parameters w1, T2, fy, HUe, A1 and Ay are used. A multivariate
mixture of two Cauchy distributions is given by

pe(x) = mC(x|py, Ar) + moC (x| pg, Az) (2.71)
where m + m = 1. The multivariate Cauchy distribution has heavy tails
compared to the Gaussian distribution and is defined as follows:

L (50) 17 -

C(x|p, A) = e Lo A -] T @)

T
where I'(+) denotes the gamma function. The Cauchy distribution is a particular
case of the Student-¢ distribution, the degree of freedom being equal to 1. The
ANLL of the test set (of size 10,000) versus the number of the learning data is
reported in Figure 2.15.

Let us first discuss the Gaussian mixture case. As expected, the quality of the
estimates increases with the number of training data and degrades for increasing
dimensionality. Again, it can be observed that VQKDE fails to provide good
estimates in higher dimensions and that RSKDE slightly outperforms the other
methods. For SKDE, the .632 bootstrap selects a smoothing factor that is too
small, leading to poor generalization capabilities.

Next, consider the mixture of Cauchy distributions. Surprisingly, RSKDE per-
forms very poorly. This is due to the fact that RSKDE provides very sparse
solutions. As RSKDE is a weighted sum of Gaussian kernels, it performs well
when the tails of the underlying distribution are not to thick. However, in
general, it seems not to be capable of modeling accurately arbitrary densities.
On the contrary, VQKDE and SKDE perform well. Overall, SKDE is the most
flexible approach as it provides high quality estimates for both the mixture of
Gaussian and Cauchy distributions.

It is also worth to mention the comparative computational complexities of
these techniques. Clearly, the iterative procedures (VQKDE and RSKDE)
were found to be slower during the learning phase, while in the testing stage,
SKDE is the slowest.

2.4.3. Assessing Real Data

In this section, we assess the quality of the estimators on real data, the leave-
one-out cross-validation criteria being also used. After briefly considering three
univariate data sets, we focus on higher dimensional problems. The number
of data is limited in all the examples. Whenever needed the data is first pre-
processed by principal component analysis (PCA) (Jollife, 1986). Performing
PCA consists in applying a linear transformation (rotation) to the coordinate
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FIGURE 2.14. ANLL of the test set (10,000 data points) in
presence of atypical observations. The number of learning data
is 500. The proportion of atypical observations that is added
ranges from 1% to 50% of the original size of the training set.
See text for discussion.
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axes, in order to find the principal directions of the data, i.e. the direction
capturing maximal variance. Next, the directions capturing a sufficiently small
portion of the total data variance can be discarded with a minimal loss of infor-
mation. In addition, before constructing the models, the data is systematically
sphered to avoid scaling problems. The data is first centered by subtracting
the data mean and then divided by the data standard deviation.

The data sets that are considered are the univariate enzyme, acidity and galaxy
data; the two dimensional ring, noisy spiral and the old faithful geyser data;
the wine recognition data, of which the dimensionality can be reduced from
13D to 2D by PCA (99% of the total variance being kept); the NO? pollution
data, of which the dimensionality can be reduced from 7D to 3D by PCA
(99% of the variance being kept); the 4-dimensional iris plant data; the Boston
housing data, of which the dimensionality can be reduced from 12D to 6D
by PCA (99% of total variance being kept); the 6D liver disorder data; and
the body fat data, of which the feature dimension can be reduced from 15D
to 12D (again, 99% of the total variance being kept). In Appendix A, we
further describe the data sets. Most of them are are available form the UCI
Machine Learning repository (http://www.ics.uci.edu/~mlearn) or StatLib
(http://1ib.stat.cmu.edu).

In order to estimate how well the model represents the data, part of the learn-
ing data (20%) is kept aside for the test. The results are averaged over 20
runs, meaning that 20 random splits of the learning data into a training and
a validation set are considered. The ANLL of the test set provides a natural
criterion to compare the performance of the estimators, provided it is a true
PDF. The optimal parameters are presented in Table 2.1 and the results are
reported in Table 2.2 and 2.3.

First, we observe from Table 2.1 that the smoothing factor selected by Scott’s
rule (Gamisg) is much larger than the ones selected by the other methods.
This difference diminishes for increasing dimensionality. When the dimension
increases the optimal kernel width increases as well, forcing more overlapping
(note that the kernel widths in the tables are the ones after sphering the data).
Remark also that the width scaling factors decrease. This parameter is thus
only useful in feature spaces of modest dimension, suggesting that sufficiently
overlap is enforced by weighting the kernel in higher dimensional feature spaces.

Next, consider Table 2.2 and 2.3. For each data set, the best estimator is
underlined and the standard error is given. The following global performance
index (PI) is used:

J
1 €
PI(i) = = —_>1 2.73

( ) J j; mlni/(ei/j) ’ ( )
where ¢ € {1,...,12} is the estimator label, j € {1,...,12} is the data set label
and e;; is either the corresponding test ANLL or its standard error. PI mea-
sures, on average, how estimator ¢ performs compared to the optimal estimator
on each data set. The closer PI is to 1, the better.


http://www.ics.uci.edu/~mlearn
http://lib.stat.cmu.edu

TABLE 2.1. The optimal model parameters. The values are averages over 20 runs. The data sets are ranked in

ascending dimensionality.

Enzyme
Acidity
Galaxy
Ring
Spiral
Geyser
Wine
NO?
Iris
Boston
Liver
Body Fat

KDE SKDE VQKDE RSKDE
GAMISE 0LOO 0OcCv  GBOOT GLO0O Gcv  GBOOT WwLoo Wcv  WBOOT dcv OBOOT
0.37 0.06 0.12 0.12 0.07 0.09 0.10 10.5 6.6 7.7 0.12 0.11
0.40 0.17 0.18 0.17 0.20 0.19 0.20 9.0 7.6 6.9 0.25 0.25
0.46 0.15 0.20 0.21 0.16 0.13 0.15 9.0 5.0 5.6 0.20 0.21
0.45 0.18 0.17 0.16 0.19 0.17 0.14 5.5 2.8 2.9 0.23 0.23
0.41 0.07 0.07 0.06 0.08 0.07 0.06 5.0 2.0 2.4 0.08 0.08
0.41 0.16 0.16 0.14 0.19 0.15 0.12 5.0 3.0 3.0 0.23 0.20
0.44 0.22 0.38 0.34 0.30 0.30 0.26 5.0 3.0 3.0 0.43 0.41
0.41 0.22 0.27 0.23 0.26 0.25 0.18 4.4 3.0 3.0 0.37 0.33
0.52 0.17 0.23 0.20 0.16 0.21 0.17 3.0 1.1 1.4 0.20 0.24
0.51 0.11 0.28 0.23 0.12 0.22 0.17 3.0 1.0 1.0 0.15 0.35
0.53 0.31 0.56 0.45 0.26 0.56 0.37 3.0 1.1 1.1 0.38 0.39
0.66 0.68 0.67 0.63 0.68 0.78 0.52 3.0 1.0 1.0 0.78 0.73
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TABLE 2.2. Average ANLL of the test set for KDE and SKDE for 20 runs.

For each estimator, the best selector is bold as well.

The standard errors are given
between parentheses. The best of each line (out of Table 2.2 and 2.3) is underlined. The last line shows the
performance indices. Again, the best of each line (across all estimators and smoothing selectors) is underlined.

Enzyme
Acidity
Galaxy
Ring
Spiral
Geyser
Wine
NOZ2
Iris
Boston
Liver
Body Fat

KDE SKDE
G AMISE GLOO Gov GBOOT GLOO Gov GBOOT
055 (01) 047 (.11)  0.28 (.04)  0.27 (.04) 0.13 (.03)  0.14 (.03)  0.14 (.02)
129 (.03)  1.25 (.05) 1.26 (.05)  1.30 (.08) 1.23 (.04)  1.26 (.05)  1.26 (.05)
2.67 (.03) 252 (05) 2.55 (.06)  2.53 (.05) 2.55 (.05) 255 (.05)  2.55 (.05)
5.11 (.01)  4.85 (.03)  4.84 (.03)  4.86 (.04) 4.86 (.03)  4.84 (.03)  4.87 (.04)
4.83 (01) 3.67 (.01) 3.67 (01)  3.69 (.02) 3.60 (01)  3.69 (.01)  3.70 (.02)
447 (01) 419 (.02)  4.20 (.02)  4.21 (.02) 4.19 (02) 418 (.02)  4.21 (.02)
2.65 (03) 279 (.10)  2.64 (.04)  2.64 (.05) 2.60 (.04)  2.60 (.03)  2.62 (.04)
3.93 (01) 3.84 (.03) 3.82 (.02) 3.84 (.03) 3.80 (.02)  3.80 (.02)  3.85 (.03)
3.07 (02) 241 (17)  2.17 (.09)  2.20 (.10) 4.23 (1.18)  1.99 (07)  2.09 (.10)
6.07 (05) 11.04 (.98) 5.07 (.17)  5.15 (.24) 6.55 (.60)  4.34 (.14)  4.80 (.30)
22.16 (.09) 23.88 (.25) 22.15 (.08) 22.36 (.12)  25.03 (.38) 21.96 (.08) 22.68 (.20)
18.53 (.46) 18.38 (42) 18.45 (42) 18.93 (.54)  18.37 (.42) 18.03 (.34) 21.27 (.92)
1.40 (1.78) 1.37 (5.88) 1.12(3.06) 1.12(3.76) 1.15 (8.80) 1.01 (2.67) 1.04 (4.46)
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TABLE 2.3. Average ANLL of the test set for VQKDE and RSKDE for 20 runs. The standard errors are given
between parentheses. The best of each line (out of Table 2.2 and 2.3) is underlined. The last line shows the
performance indices. Again, the best of each line (across all estimators and smoothing selectors) is underlined.
For each estimator, the best selector is bold as well.

VQKDE RSKDE
WLOO ey WBOOT Gov GBOOT

Enzyme 0.16 (.03)  0.16 (.03)  0.16 (.03) 0.25 (.05)  0.26 (.06)
Acidity 1.25 (.03) 124 (.03)  1.25 (.03) 1.27 (.06)  1.26 (.05)
Galaxy 2.67 (.04)  2.61 (.05)  2.60 (.05) 2.56 (.06)  2.56 (.07)
Ring 540 (.02)  5.06 (03)  5.10 (.06) 4.92 (.04)  4.94 (.03)
Spiral 451 (02)  4.05(.03)  4.04 (.03) 3.77 (.02) 375 (.02)
Geyser 4.37 (02) 421 (.02)  4.22 (.02) 4.23 (.03)  4.24 (.03)
Wine 2.79 (02)  2.64 (.03)  2.64 (.03) 2.66 (.05)  2.66 (.05)
NO?2 4.32 (.04)  4.06 (02)  4.05 (.01) 3.95 (.03)  3.94 (.04)
Tris 3.11 (.03) 258 (.15)  2.64 (.15) 2.45 ((15) 2,57 (.14)
Boston 6.28 (.04)  5.00 (.12)  4.98 (.11) 9.40 (.80)  13.08 (1.00)
Liver 22.66 (.04) 22.37 (11)  22.29 (.10) 23.10 (.16)  23.20 (.17)
Body Fat  20.50 (.05) 18.02 (.32) 21.67 (1.90) 18.08 (.36)  18.18 (.36)

1.17 (1.72) 1.08 (3.03) 1.10 (5.83) 1.21 (4.96) 1.29 (5.43)
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As expected, Scott’s rule performs the worse on average. This is not a surprising
result as it is based on an (approximate) asymptotic rule, thus not taking the
dispersion of the data into account. The leave-one-out (LOO) cross-validation
is downward biased in many cases, meaning that it selects a smoothing factor
which is in general too small. The resulting estimators have poor generalization
capabilities. The standard errors are also much larger, reflecting the instability
of the method. This is in agreement with previously published results (Park
and Turlach, 1992; Cao et al., 1994).

For each estimator type, the 10-fold cross-validation and .632 bootstrap perform
similarly. When compared to the LOO cross-validation criteria, they both
perform better. In all situations, the PI of the standard error of 10-fold cross-
validation is the smallest, suggesting that a smoothing selector based on this
method is more attractive.

Now, comparing the estimators regardless of the resampling technique, one
can see that VQKDE and especially SKDE perform well in practice. This
emphasizes the importance of adapting the amount of smoothing through the
feature space. RSKDE performs better than KDE using Scott’s rule or the
LOO cross-validation criterion, but worse than the 10-fold cross-validation and
.632 bootstrap selectors. RSKDE was designed in the first place to reduce the
size of the data set when performing nonparametric PDF estimation. In these
examples, the number of data is limited. This may explain the poor results of
RSKDE and in particular its relatively high standard error.

Recommendations for the practitioners

In practice, standard approaches should not be used blindly. For example, KDE
using Scott’s rule for selecting the kernel width often results in oversmoothing.
When performing multivariate PDF estimation SKDE should be used, espe-
cially when the number of data is limited and in presence of outliers. The
method clearly outperforms the other kernel estimators. In particular, using
10-fold cross-validation for selecting the amount of smoothing provides reliable
results (low standard error), which are always close to the optimal in terms of
the ANLL.

It was also shown that weighted VQKDE performs quite well in many cases,
but it may be sensitive to (strong) outliers. A solution is to remove them in
some way, before modeling the PDF. However, this would require to choose an
additional parameter that is difficult to set in practice. The popular LOO cross-
validation criteria do not provide reliable results and select a smoothing factor
that leads to overfitting in many cases. In addition, we should underline the
fact that the computational complexity of the methods becomes unacceptable
for learning sets of more than 1,000 data points.

Finally, RSKDE performs similarly as ordinary KDE and should therefore only
be used when the size of the learning set should be reduced. Note that training
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RSKDE may be nevertheless time consuming in the beginning of the training
phase, as many of the weights are not yet driven to zero.

2.5. Summary

In this chapter, a non-exhaustive list of nonparametric PDF estimators based
on kernels is reviewed. More specifically, we discussed in detail the advantages
and drawbacks of ordinary kernel density estimation (KDE), sample point ker-
nel density estimation (SKDE), vector quantization-based kernel density es-
timation (VQKDE) and reduced set kernel density estimation (RSKDE). For
each technique, several smoothing selectors were investigated. In particular,
we focused on the ones that can be used for multivariate problems, which are
hardly addressed in the literature. In this context, it was proposed to use the
average negative log-likelihood as performance measure. It was shown that,
when used with adequate statistical resampling techniques, this (conventional
but) general methodology provides satisfactory results.

The well known leave-one-out cross-validation criterion for KDE was also ex-
tended to the adaptive SKDE and VQKDE. In addition, it was explained why
the standard VQKDE does not work well due to the magnification, and how
this effect can be reduced by weighting the kernels, thus providing an a pos-
teriori justification of Babich and Camps’ method (Babich and Camps, 1996).
More importantly, the form of the weighted VQKDE motivates is very simi-
lar to finite mixture models. One cant therefore think of using the latter for
estimating arbitrary densities. This will be extensively discussed in the next
chapter.

The quality of the methods were assessed through extensive simulations. The
main result of this comparative study is that adaptive estimators outperform
the commonly used KDE with a fixed smoothing. In particular, SKDE is the
method of predilection, especially when dealing with data sets of modest size.
Its main drawback is its model complexity, which increases linearly with the size
of the learning set. If memory resources are a limiting constraint, one should
move to either weighted VQKDE, paying attention to outliers, or possibly to
RSKDE.

Finally, when using the ANLL as performance measure for selecting the amount
of smoothing, 10-fold cross-validation behaves well. On the one hand, it is a
stable method (low standard errors) and, on the other hand, it is less biased
(best generalization performance on average) than the other techniques. In
addition, its computational complexity is smaller than the leave-one-out criteria
and the .632 bootstrap.



CHAPTER 3

Finite Mixture Models

To be able to model arbitrary probability density functions is of common in-
terest in many scientific domains. Density estimators are fundamental tools
for extracting the information embedded in raw data. In the previous chap-
ter, nonparametric kernel density estimators were reviewed. Starting with the
ordinary kernel density estimator (KDE) with fixed smoothing, we moved on
to variants allowing adaptive smoothing. In general, these techniques lead to
models of higher quality or, at least, show a satisfactory accuracy for a much
smaller model complexity. Unfortunately, they are also sensitive to outliers and
have often many parameters to set.

An alternative to nonparametric methods are finite mixture models (Redner
and Walker, 1984; McLachlan and Peel, 2000). As nonparametric techniques,
they do not assume a priori the overall shape of the PDF to estimate. Mix-
ture models are based on a divide-and-conquer approach, which means that
subpopulations of the observed data are modeled by parametric distributions,
while the resulting PDF is often far from any standard parametric form. Unlike
the nonparametric methods, the complexity of the model is fixed in advance,
avoiding a prohibitive increase of the number of parameters with the size of
the data set.

In contrast to the traditional view of mixture models as being clustering tools,
these techniques are also suitable for a more general purpose: nonparametric-
like PDF estimation (Bishop, 1995). Even if subpopulations cannot be identi-
fied within the data, mixture models can still be used. As a matter of fact, we
may consider finite mixture models as an extreme case of adaptively smoothed
KDE. More specifically, they can be interpreted as the probabilistic version
of the weighted vector quantization-based kernel density estimator. The fron-
tier between nonparametric and finite mixture models is thus quite vague, es-
pecially when considering methods that use locally adaptive smoothing tech-
niques. Based on the same considerations, Scott and Szewczyk (2001) proposed
to build mixture models explicitly from nonparametric estimators. Another
closely related approach is Priebe’s adaptive mixtures (Priebe, 1994), which
are based on the method of sieves.

In this chapter, finite mixture models are discussed in detail. Since they can
be viewed as latent variable models, we first describe how to learn this type of
models in general. Next, the methodology is applied to both finite Gaussian
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mixture models and finite Student-¢ mixture models. The Student-¢ distrib-
ution provides a robust alternative to the Gaussian distribution and is par-
ticularly useful in noisy environment. Finally, manifold constrained mixture
models are introduced. Whenever possible, this variant exploits the fact that
the data manifold is of a lower dimension than the dimension of the feature
space. Intuitively, one can picture a manifold as follows. Consider data points
lying on a sheet of paper, which is folded in a 3D space. Even though the points
are located in the 3D space, they are also lying on a 2D manifold (i.e., the sheet
of paper). In practice, we can take advantage of this additional information to
enhance the quality of the estimators.

3.1. Learning Latent Variable Models

In this section, we present how to learn the parameters of hidden or latent vari-
ables models, such as finite mixture models. Although they cannot be observed,
latent variables may either interact through the model parameters in the data
generation process, or are just mathematical artifacts that are introduced into
the model in order to simplify it in some way. The expectation-maximization
(EM) algorithm (Baum, Petrie, Soules and Weiss, 1970; Dempster, Laird and
Rubin, 1977) and its extensions (McLachlan and Krishnan, 1997) are partic-
ularly suited for learning this type of models (see for example Titterington,
1984; McLachlan and Bashford, 1988; Jordan and Jacobs, 1994). In general,
and more particularly in the Bayesian setting, it is convenient to formalize
latent variable models as graphical models.

Probabilistic graphical models provide a general methodology for handling sta-
tistical problems involving (a large number of) random variables that are linked
with each other in a complex way (Jordan, 2004). Probability distributions are
defined in terms of directed or undirected graphs, called respectively Bayesian
networks (Pearl, 1988) and Markov random fields (Kindermann and Snell,
1980). The nodes are identified with random variables and the joint probability
distributions are defined by taking products of functions defined on connected
subsets of nodes. For example, in directed acyclic graphs (Bayesian networks),
an edge denotes the conditional dependency of the child node on its parent
node and the joint probability of Z = {z, })_; is defined as the product of the
conditional probabilities of each variable given the set of its parents:

p(Z) = Hp(zn|zpa(n)) ) (3'1)

where Zpq(,) is the set of parents of node z,. Each node is thus condition-
ally independent from its non-descendents (ancestors) given its parents. This
conditional relationship allows us to represent the joint distribution more com-
pactly. Consider for instance the Bayesian network shown in Figure 3.1. The
joint distribution p(zm, zp, 2R, 28) can be expanded using the product rule:

p(2m, 2p, 2R, 2E) = D(2M|2p, 2R, 28)P(2P|2R, 28)P(2R | 2E)P(2E) - (3.2)
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FiGURE 3.1. Example of a Bayesian network. The nodes are
binary random variables (True/False). The arrows indicate
conditional dependencies.

Using the conditional independence relationships, leads to the following expres-
sion:

p(2M, 2P, 2R, 2E) = p(2m|2p, 2r)p(2P |2E)P(2R |2E)P(2E) - (3.3)

The first factor in (3.2) can be simplified as zy is independent of zg given
its parents zp and zr. Similarly, the second one can be simplified as zp is
independent of zg given its parent zg.

The attractiveness of graphical models comes from their graph-theoretic rep-
resentation, which provides general algorithms for computing marginal and
conditional probabilities of interest. The three principal classes of Bayesian
inference tools are first, exact algorithms, e.g. belief propagation (Pearl, 1986;
Spiegelhalter, 1986); second, sampling algorithms, e.g. Markov Chain Monte-
Carlo (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, 1953; Hastings,
1970), Gibbs sampling (Geman and Geman, 1984), rejection sampling (Gilks
and Wild, 1992) and slice sampling (Neal, 2003); third, approximate algorithms,
e.g. variational algorithms (Hinton and van Camp, 1993; Waterhouse, MacKay
and Robinson, 1995; Jaakkola, 1997; Jordan, Ghahramani, Jaakkola and Saul,
1999; Beal, 2003) and loopy belief propagation (Heskes, 2002; Yedidia, Free-
man and Weiss, 2003). Unlike the variational methods, which will be discussed
in depth, the other graph-theoretic algorithms will not be further discussed in
this work. For a detailed presentation of these methods we refer the interested
reader to the books of Gilks, Richardson and Spiegelhalter (1996), Cowell,
Dawid, Lauritzen and Spiegelhalter (1999) and Jordan (1999). Software imple-
mentations of these algorithms, such as WinBUGS (Lunn, Thomas, Best and
Spiegelhalter, 2000) and VIBES (Winn and Bishop, 2005), are also available.

Maximum likelihood (ML) provides good estimators in large learning set set-
tings, i.e. when asymptotic analyzes are meaningful. The underlying idea
of ML is to maximize the joint probability (or likelihood) of the observations
X = {x,}}__, in order to find the optimal model parameters. These parameters
specify the specific model of which the functional form is assumed a priori. The
probability of a new datum is then predicted on the basis of the parameters
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O\11,, which are optimal in terms of likelihood:

p(x) =~ p(x|0m1) - (3.4)

For small learning sets however, adding a penalty (or regularization) improves
the ML estimate. The resulting estimate is termed maximum a posteriori
(MAP) estimate. The goal in MAP is to penalize unrealistic values of the
parameters by a prior on them. The likelihood is multiplied by the prior.
Maximizing this new quantity, which corresponds to the posterior distribution
of the parameters p(@|X) up to a normalizing constant, leads to the MAP
estimate. The probability of a new datum is predicted as follows:

p(x) ~ p(x[Omar) , (3.5)
where Oyap are the optimal parameters in terms of penalized likelihood.

In the Bayesian setting, the uncertainty on the model parameters is taken into
account in a principled way. While ML or MAP only provide point-estimates
of the model parameters, in the Bayesian framework, predictions are made by
means of model averaging:

p(x) ~ / p(x10)p(6]X)d6 . (3.6)

where p(0]X) is the posterior distribution of the parameters given the observa-
tions. The predictions are thus made by a weighted sum of the predictions of
all possible models (within the chosen family) and the weighting coefficients are
given by the posterior distribution of the parameters. Unfortunately, model av-
eraging involves usually the computation of intractable integrals and therefore
approximate methods such as variational Bayes are needed.

In the remaining of this section, the general principle of ML, MAP and Bayesian
learning is described. We focus on the particular case of latent variable models
and discuss the EM algorithm and its variants, which provide elegant solutions
to these learning problems.

3.1.1. Maximum Likelihood Learning

Consider a set of i.i.d. variables X = {x,,}_; that were generated using a set
of hidden variables Z = {z,})_,. For a particular model H,; of complexity
M, the data likelihood is defined as a function of the parameters @ of H;:

£(01%) = p(x10) = [[ /p(xn,zn\e) dz,, | (3.7)

where the hidden variables are assumed to be continuous. The integration
(marginalization) over the hidden variables is required to form the likelihood
as a function of the observed data only. Note that when the hidden variables
are discrete the integral is replaced by a sum.
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Maximizing the data likelihood, or equivalently its logarithm, with respect to
0 results in the maximum likelihood parameters:

Oy1, = argmax log L(0]X) . (3.8)
0

In the absence of hidden variables, maximizing this expression is straightfor-
ward. However, if some variables are hidden, the maximization problem be-
comes difficult as the integral appears inside the logarithm and is in many
practical problems intractable:

N
Onr, = argrgax Z log/p(xn,znw) dz,, . (3.9)
n=1

By introducing a distinct arbitrary auxiliary distribution gy, (z,) over each
hidden variable, a lower bound on the log-likelihood is obtained using Jensen’s
inequality (Jensen, 1906):

log L(O|X) = log/p(X,Z|0)dZ (3.10)
=log/qZ(Z)p(q);’7(ZZ|f)dZ (3.11)
> /qZ(Z) log X-210) 47 (3.12)
= F (qz,(21)s- -1 Gay (2N), 0) . (3.13)
where
N
92(2) = [] da.(zn) - (3.14)
n=1

This equality follows from the fact that the data X are i.i.d.

The expectation-maximization (EM) algorithm, which was formalized by
Dempster et al. (1977), can be understood as an iterative procedure for maxi-
mizing this lower bound. The bound F can be identified as Helmholtz’ negative
free-energy from statistical physics (Neal and Hinton, 1998). Defining the com-
plete data likelihood

N
Lc(B|X,Z) = p(X,Z|0) = [ ] p(xn.2.]6) (3.15)
n=1
as opposed to the incomplete data likelihood £(0]X), we can decompose (3.12)
as follows:

F (2, (21), - - 4ay (2n), 0) = Ez{log L(0|1X, Z)} + H(qz(Z)) ,  (3.16)

where the expectation is taken with respect to ¢z(Z) and where H(-) is Shan-
non’s or the differential entropy for respectively discrete or continuous random
variables (Cover and Thomas, 1991). Successively maximizing the lower bound
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with respect to gz (Z) while keeping 0 fixed, and then with respect to 8 while
keeping qz(Z) fixed, results in the EM update equations:

E-step : ¢z, (z,) < argmax F (qz,(21), .-, qzy (2N),0) , VN . (3.17)

Gz, (Zn)

M-step : 6 — argmax F (qz, (21), ..., Gzy (2N),0) . (3.18)
0

The functional maximization problem in the E-step is easily obtained (when
tractable) by observing that the bound is made tight when equating each
(s, (Zn) to the posterior distribution of its corresponding latent variable:

E-step : ¢z, (zn) = p(2n|%xn,0) , Vn . (3.19)

This result is straightforward when considering an alternative decomposition
of (3.12):

f(Qm (Z1>7 <o Qzy (ZN)’ 0)
=log £(0|X) — KL[qz(Z)[lp(Z| X, 0)] (3.20)

=log L(0]X) — Y n_; KL|gz, (2,) |p(2n %0, 0)] - (3.21)

In these equations, KL denotes the Kullback-Leibler divergence (Kullback and
Leibler, 1951). The E-step is illustrated in Figure 3.2. When the exact posterior
is intractable, approximate EM is required; see for example Heskes, Zoeter and
Wiegerinck (2003), where the exact free-energy is approximated by a Bethe-
Kikuchi free-energy, leading to an approximate E-step.

In contrast to (3.9), the maximization problem in the M-step can be computed
explicitly in many cases. As the logarithm appears inside the integral and the
entropy term is independent of 6 we have:

M-step : 6 — argmax Ez{log L.(0|X,Z)} . (3.22)
0

The M-step is illustrated in Figure 3.2. When no closed form solution to the
M-step exists, it is sufficient to chose the M-step in such a way that it ensures
an increase in log-likelihood at each iteration rather than maximizing it. This
is known as Generalized EM (Dempster et al., 1977).

Given initial parameters, applying successively the E- and the M-step provides
an estimate of @y, corresponding to a local maximum of the likelihood sur-
face. Let us denote this estimate by Onr. The predictive distribution in the
maximum likelihood setting is then:

p(x) ~ p(x[Ou,) - (3.23)

The attractive property of the EM algorithm is its monotonic increase in like-
lihood at each iteration. During the E-step, the lower bound is made tight
and in the M-step the expected energy is maximized with respect to the model
parameters, keeping ¢z (Z) fixed. However, as the likelihood is unbounded,
its maximization may be ill-posed when the number of training data is small.
Therefore, maximum penalized likelihood learning will be considered next.
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Ficure 3.2. The EM algorithm maximizes iteratively the
negative free-energy F. In the E-step, the bound is made
tight by equating gz (Z) to the posterior probability of the la-
tent variables. The current estimates of the parameters are
fixed. In the M-step, the bound is maximized with respect to
the parameters, while gz (Z) is fixed. As a result, a new bound
is obtained, as well as an updated incomplete data log-
likelihood.

3.1.2. Maximum a Posteriori Learning

Regularization techniques (Tikhonov and Arsenin, 1977; Chen and Haykin,
2002) are powerful in making ill-posed problems well-posed, the penalized like-
lihood being a particular case among many others (Green, 1999). The use of
the EM algorithm for maximum penalized likelihood or maximum a posteri-
ori (MAP) estimation was investigated by Green (1990). The overall effect of
regularization is to smooth the model, avoiding therefore overfitting. More-
over, adding a penalization term to the objective function (in this case the
log-likelihood) usually makes it more concave.

Consider the prior distribution p(@) on the model parameters @ of Hy;, re-
flecting our prior knowledge on them. It is for instance common to have prior
information on the range of 8. Applying Bayes’ rule allows us to update our
prior belief about the model parameters to a posterior belief (up to a normal-
izing constant) having observed the data X:

p(0]X) < p(X|0)p(0) . (3.24)

The MAP estimate of the parameters is then obtained by maximizing the log-
posterior distribution of the parameters:

Oniap = argmax logp(0]X) (3.25)
0

= argmax log L(6|X) + log p(0) . (3.26)
o
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Note that the quantity £(6]|X) is the incomplete data likelihood, which is
defined in (3.7).

In the presence of latent variables, the same difficulty as in ML learning arises.
Luckily, the EM algorithm is still applicable (Green, 1990). Since the penalty
term only depends on 0, the E-step is unchanged. This can be easily understood
by seeing that the incomplete log-posterior can still be lowerbounded using
Jensen’s inequality. In contrast, the M-step is augmented to:

M-step : 0 < argmax Ez{log L.(0|X,Z)} + logp(0) . (3.27)
0

Denoting the estimate of Oyap provided by the EM algorithm by éMAP, the
predictive distribution in MAP learning is:

p(x) ~ p(x|Onap) . (3.28)

A practical MAP approach

Apart from the choice of the type of prior on the parameters, the main prac-
tical problem in MAP learning is the choice of the hyperparameters, i.e. the
parameters of the priors. Choosing them a priori does not provide satisfactory
results, as this may lead to significant biases in the estimators. A straightfor-
ward approach is to optimize these hyperparameters in a more conventional
way, for example by means of resampling techniques. However, most priors
depend on more than one parameter. As a result, the optimization procedure
becomes rapidly infeasible for computational reasons. Instead, it is suggested
to use the following practical approach.

Let 9 be the hyperparameters. Introducing ¥ in Bayes’ rule leads to:
p(6|X) o< p(X|0)p(0]9) , (3.29)

where X is assumed to be independent of 1 given 6. Next, instead of optimizing
19, we make an explicit choice 9" for ¥ according to some prior belief on the
problem. For instance, when imposing a prior on the covariance matrix of a
Gaussian distribution, we may assume it should be (approximately) diagonal.
However, as it is not known to which extent this belief is true, an additional
learning parameter & > 0 (to be optimized in a standard way) is introduced.
The new prior is then defined as follows:

p(Bla) o p(0]9")« . (3.30)

Adjusting « allows us to temper our prior belief whenever needed, as well as to
reinforce it. Setting a@ < 1 results in a prior that is flatter, thus less informative.
By contrast, setting o > 1 leads to a prior that is more peaked, strengthening
our prior belief. This is illustrated in Figure 3.3(b) for a Gaussian prior on the
mean of a specific target distribution. Subfigures (¢) and (d) show how the
choice of « affects the posterior on the mean. Clearly, adjusting o improves its
quality.
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FiGURE 3.3. Effect of parameter o on the shape of the prior
and the corresponding posterior. (a) shows the target distri-
bution, its mean being equal to —4. The mean is assumed
unknown. (b) shows a specific prior on the mean raised to
the factor o = 0.1 (dashed), o = 1 (solid) and o = 10 (dash-
dotted). (c) shows the resulting posterior distributions and
(d) is a zoom on the posteriors in the vicinity of the true mean.

Assuming a posterior distribution of the form (3.30) leads to the following
modified maximum a posteriori estimate for the parameters:

Opnap = argmax log L(0|X) + log p(0]|a) (3.31)
0
= argmax log £(0|X) + alogp(0|9) . (3.32)
0
The form of this expression resembles much more the formulation of standard

regularized models, which are commonly used in the field of machine learning
(see for example Bishop, 1995).

The resulting M-step is defined as follows:

M-step : 6 — argmax Ez{log L.(0|X,Z)} + alogp(6|9") . (3.33)
0
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The modified MAP approach presented above is easily extended when the prior
factorizes. Assume for example a prior of the following form:

K
p(619) = [ p(6kl9%) (3.34)
k=1

where 8 = (01,...,0k) and ¥ = (91,...,9k). When choosing particular
values for ¥ and introducing the learning vector a = (g, ..., ak) in order to
adjust our prior belief, the following maximization problem is obtained:
K
Opriap = argmax log L(6]X) + > ay log p(0x|95) , (3.35)
k=1
which can still be solved by means of the EM algorithm for a given a. Observe
that since a is optimized by means of resampling techniques, a moderate K is
mandatory.

To conclude this section, note that an undesirable property of MAP learning is
the dependance on the parametrization of the prior (Beal, 2003; Winn, 2003).
In other words, the MAP approaches are basis-dependent, meaning that it is
always possible to find a basis in which any particular 8" is the MAP solution
(provided it has non-zero prior probability). This is not the case for Bayesian
learning, which is described next.

3.1.3. Bayesian Learning

Although the posterior distribution of the parameters is used in MAP learn-
ing, predictions are still performed based on point-estimates. Therefore, MAP
learning does not properly deal with the uncertainty on the parameters. In
Bayesian learning, these parameters are treated as (latent) random variables.
The uncertainty on the parameters is better taken into account by using their
posterior distribution for constructing the predictive distribution:

) = p(x1X) = [ p(x|X,0)p(61X)d0 = [ pixio)p(61X)d6 . (3.30)

where it is assumed that the prediction x is independent of X given 6. The
parameters are viewed as nuisance parameters and are thus integrated out of
the predictive distribution, i.e. a weighted average is performed according to
the posterior distribution of the parameters. Therefore, Bayesian learning is
also known as model averaging or ensemble learning (see for example MacKay,
1992b).

Bayesian learning consists of two stages: model fitting and model selection. In
the maximum (penalized) likelihood setting, the structure Has of the model
cannot be inferred automatically. As the likelihood function is unbounded,
both ML and MAP learning favor models of ever increasing complexity, and
are thus incapable of performing model selection automatically. Still, we can
follow a more conventional approach to model selection by splitting the learning
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data in a training and validation set. The Bayesian setting does not have this
drawback as the model complexity is included in the problem statement. As a
result, Bayesian inference is not wasteful of valuable learning data.

During model fitting, it is assumed that the model structure H; is fixed. The
parameters are learnt given the observed data X. Applying Bayes’ rule allows
us to update our prior belief on 6 to a posterior belief given X:

likelihood prior
(X160, Har) p(0|Hor)
p y M) P M
0| X, H = , 3.37
p—V—/( | M) p(X|HM) ( )
posterior T

where the dependency on Hy, is introduced explicitly. In case of latent variable
models, the likelihood is identical to the incomplete data likelihood defined
in (3.7). The evidence is the probability of observing the data given a particular
model H ;. While this quantity is not important in this first level of inference,
it plays a crucial role in the second level of inference, which is model selection.

During model selection, the posterior of the model having seen the data X is
computed by Bayes’ rule:

p (M| X) o< p (X[Har) p(Har) - (3.38)

In practice, there is no reason to favor one model to another. Therefore, the
prior p(Hys) is often chosen to be uniform, in which case the models can be
ranked by their evidence p (X|Has). To compute the evidence, however, we
need to integrate out the model parameters:

p(X|Har) = / p (X160, Har) p (6]Har) d6 (3.39)

Unfortunately, this integral is usually intractable. Next, this issue is addressed
by means of variational inference.

Variational Bayes

Consider again the general case of latent variable models and let us treat the
parameters 0 as latent variables as well. Following the same approach as in ML
learning, for any auxiliary distribution ¢(Z,0), the logarithm of the evidence
can be lower bounded using Jensen’s inequality:

logp (X[Har) =log [ [ p(X. 2,6/Hsr)dzdo (3.40)
= log / / (2,0)2 22000 4740 (3.41)

X,Z,0|Hwm)
> / / 4(Z,0) log PEZET0 4746 (3.42)

= Fy,,(4(Z,0)) . (3.43)
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The bound can be made tight by equating the auxiliary distribution to the true
joint posterior of the latent variables and the parameters:

q(Z,0) =p(Z,0|X, Hy) - (3.44)
This is easily verified by considering the following decomposition of the bound:
Frp(@(Z,0)) =logp (X[Har) — KL[a(Z,0)|p(Z, 0| X, Har)] - (3.45)

Unfortunately, this does not simplify the problem, unlike in the ML case. Eval-
uating the exact posterior distribution requires to know the evidence as well,
which appears as the normalizing constant in Bayes’ rule. Instead, in vari-
ational Bayes (VB), an approximate posterior is chosen in such a way that
the lower bound becomes tractable. In fact, it is sufficient to constrain the
variational posterior to have a factorized form:

N
Q(Z7 0) = QZ(Z)C]G(B) = <H 9z, (Zn)> QG(B) ’ (346)
n=1

where the last equation is a consequence of the data X being i.i.d. Thus, the
variational approximation of the joint posterior assumes independency between
the parameters and the latent variables given the observed data. In other
words, the problem is converted into a simpler one by decoupling the degrees
of freedom of the original problem.

Under this factorization, the lower bound on the log-evidence has the following
form:

logp (X[Har) = [ [ a2(2)10(6)log 2540060 azap (3a7)
EfH]\/I (QZ1(21)7--'7QZN(ZN)7QH(0)) . (348)

Maximizing this bound with respect to the free distributions ¢z (Z) and ¢e(6)
leads to the variational Bayesian EM update equations (Beal, 2003):

VBE-step : ¢,,(2,) o exp (Eo{log p(x,,2,(0, Har)}) , Vn . (3.49)
VBM-step : qg(0) x p(0|H,,) exp (Ez{log L.(0|X,Z, HM)}) : (3.50)

In these equations, Eg{-} and Ez{-} denote respectively the expectation with
respect to go(0) and ¢z (Z), and L.(0]X, Z, H s ) is the complete data likelihood
defined in (3.15). By construction, VBEM is guaranteed to monotonically
increase.

Let us now demonstrate that the VBE- and VBM-step can be obtained without
having to resolve a functional maximization problem. First, consider the VBE-
step. Starting from (3.47) and denoting the entropy by H(-), the lower bound
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can be re-written as follows (omitting the dependency in Hys):

]:HM (QZ1 (Z1)7 <oy lzy (ZN)a qg(a))
- / / 42(Z)q0(8) log p(X., Z,0)dZd6 + (g7 (Z)) + (e (6)) (3.51)

- / 42(Z)Ee{log p(X, Z|6)}dZ + Ee{logp(8)} + H(gz(Z)) + H(ge(6))(3.52)

- [artzyon | EeteegX 2O a7 1 o) (3.53)

= —KL [qZ(Z)Hé exp (Eo{log p(X, Z|0)})} +¢2(0,¢z) (3.54)
N 1

—- YKL [qzn (2a)|| () ™ exp <E9{1ogp<xn,zn|e>}>] +ea(0,e2). (3.55)

In the last equation, we use the fact that the data are i.i.d. Constant ¢;(-) is
a function of @ only and cy(+) is a function of @ and the normalizing constant
cz. From (3.55), it can be seen that the VBE-step maximizes indeed the lower
bound with respect to ¢y, (z,), Vn.

Next, consider the VBM-step. It can be decomposed by analogy with the
VBE-step (omitting again the dependency in Hpy):

‘FHJM (qzl (Zl)v vz (ZN)a CIG(O))
- / / 42(2)10(6) log p(X, Z,0)dZd6 + H(qz(Z)) + H(ge(6)) (3.56)
- / 46(0)E {log p(X, Z,0)}d6 + H(gp(0)) + H(qz(Z))  (3.57)

= —KL [40(6)

i exp (Ez{logp(X, Z, 0)})} +c3(Z,co) - (3.58)

Constant cz(-) is a function of Z and the normalizing constant cg. Since we
have

exp (Ez{logp(X, Z,6}) = p(0) exp (Ez{log p(X, Z|)}) (3.59)
=p(0) exp (Ez{log L.(8]X,2)}) , (3.60)

it can be seen from (3.58) that the VBM-step maximizes indeed the lower
bound with respect to gg(0).

One might think at first sight that the VBE- and the VBM-step only differ in
the prior term on the parameters. However, the prior on the latent variables is
included in p(X, Z]0, Hyr). As a matter of fact, VBEM makes no distinction
between the latent variables and the parameters, except that the number of
hidden variables increases with the size of the data set, while the number of
parameters is fixed. Both in the VBE- and the VBM-step, the lower bound
on the log-evidence is maximized by minimizing the KL divergence between
the factorized variational posterior and the true joint posterior of the latent
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FIGURE 3.4. Variational Bayesian EM steps. In order to max-
imize the lower bound on the log-evidence, both the VBE- and
the VBM-step minimize the KL divergence between the fac-
torized variational posterior and the true joint posterior of the
latent variables and the parameters.

variables and the parameters given X (see Figure 3.4):

fHM (qzl (Zl)v <oy Qzy (ZN)QQ(G))
=logp (X|Hn) — KL[qz(Z)qe(0)|p(Z, 601X, Har)] . (3.61)

The factorized posterior is optimized such that, in terms of KL divergence, it
is a good approximation of the true posterior, making the bound as tight as
possible. However, the factorized posterior will have most of its mass in some
region of the feature space where the true posterior has high probability, while it
may have low probability in other high probability regions of the true posterior.
In other words, the optimal ¢(Z,0) will be generally more compact than the
true posterior (Winn, 2003). This is a consequence of the KL divergence being
asymmetric.

The VB framework requires to choose an initial prior distribution over the pa-
rameters. By repeatedly applying the VBE- and the VBM-step, the variational
posterior is computed. In practice, it is convenient to choose the prior to be
conjugate to the exponential family. The prior p(0) is said to be conjugate to
r(x|0) if the posterior ¢(0|x) x r(x|@)p(0) is of the same form as p(@). Learn-
ing in the VB framework consists then simply in updating the parameters of
the prior to the parameters of the posterior.

The true predictive distribution is approximated using the variational posterior
of the parameters:

p(x) ~ /p(x|0)qg(0)d9 ) (3.62)
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In case the integral is intractable, one may also compute the Bayes estimate of
the parameters

éBaycs = /9(10(9)619 5 (363)

which can then be plugged into the original model by approximating the pos-
terior of the parameters by a delta function:

p(x) ~ / D(X0)5 (O payes) 46 = p(x|Opayes) (3.64)

Note that ML and MAP approximate the predictive distribution in a similar
way, but they use respectively §(0mr,) and 6(Onap) instead of 0(Opayes)-

In the next sections, ML, MAP and VB learning are applied to Gaussian and
Student-t mixture models.

3.2. Finite Gaussian Mixture Models

Early references on finite Gaussian mixtures include Sundberg (1972, 1974) and
the excellent review of Redner and Walker (1984). During the past decade,
Gaussian mixtures gained a renewed interest and are still an active field of
research. See for example the book of McLachlan and Peel (2000) for a thor-
ough discussion. Among others, the success of mixture models in general can
be explained by their ability to model heterogenous data, which are frequent
in a wide range of applications. For instance, Gaussian mixtures have been
successfully applied to the segmentation of the brain tissues in magnetic reso-
nance images (Gupta and Sortrakul, 1998; Schroeter, Vesin, Langenberger and
Meuli, 1998; Ruan, Jaggi, Xue, Fadili and Bloyet, 2000; Bach-Cuadra, Platel,
Solanas, Butz and Thiran, 2002), text desambiguation (de Marneffe, Archam-
beau, Dupont and Verleysen, 2004) or vision based fire detection (Liu and
Ahuja, 2004).

A finite Gaussian mixture model (GMM) is defined as a linear combination of
M multivariate Gaussian distributions:

M
p(x|Ox) = Y TN (x|t Ar) (3.65)

where On = (m1, ..., T, byy- -« Upgs A1, ..., Aps). The mixing proportions
{mm }M_, are non-negative and must sum to one. The definition of the mul-
tivariate Gaussian distribution is given in (2.27). Estimating the true density
p(x) by the approximate density p(x|@-) consists in computing the parameters
{p, M A M and {7, }22_, based on the learning data.

The GMM is commonly used for clustering tasks. We could however imagine to
use it in a more general, nonparametric-like framework when the model com-
plexity is selected arbitrarily. In this case, the goal would be not to decompose
the observed data into distinct clusters, but to model the data locally. This is
motivated by some attractive properties of the GMM:
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(1) The GMM is locally data dependent and therefore able to deal with
the local dispersion of the data points.

(2) The GMM is flexible due to the introduction of the mixture propor-

tions {7, }M_,, resulting in a relatively low model complexity.

(3) The GMM provides smooth estimates that are expected to general-
ize better on new data, as oscillations in the density estimate are

prevented.

In addition, the model complexity of the GMM does not depend on the size of
the learning set. Therefore, an excessive use of memory resources is avoided.
By contrast, the computational complexity during the training phase is rather
large compared to ordinary kernel density estimation.

Subsequently, maximum likelihood, maximum a posteriori and Bayesian learn-
ing of the GMM are described. Variants are proposed either for improving the
generalization capabilities or to ease the learning procedure. Finally, several
solutions to the model selection problem are provided.

3.2.1. Maximum Likelihood Learning

Assume the observed data X = {x,}N_, are i.i.d. The data log-likelihood
under the GMM density model is given by

N
log L(Ox]X) = logp(X|0x) = Zlogp(xnw/\/) . (3.66)
n=1
Unfortunately, maximizing L£(0x|X) (or equivalently its log) subject to the
constraint on the mixture proportions is intractable, unless we define a com-
ponent dependent auxiliary variable associated to each data point:
[j o 7TmN(Xn |I~l1m7 Am)
nm — M
Zm’:l WW’N(X‘IJ‘mH Am’)
In this definition, each mixture proportion 7, can be interpreted as the (esti-
mated) prior probability of having the m*™ component of the mixture. Further-
more, the conditional probability N (x|u,,, Ay, is the probability of observing
X, given the component mean p,, and the component precision A,,, i.e. as-
suming x,, is generated by the mixture component m. Recalling Bayes’ rule,
it can easily be seen that each auxiliary variable p,,,, is nothing else than the
posterior probability that x,, is generated by m, provided density model (3.65).
The auxiliary variables are therefore called responsibilities.

, Vn, VYm. (3.67)

Denoting the Lagrange multiplier by A, the Lagrangian is constructed as fol-
lows:

M
log £(Oxr, A) = log L(Oxr| X) + A (Z Tom — 1) . (3.68)
m=1
When the responsibilities are fixed, we can maximize log ¢ with respect to the
model parameters. Rearranging leads to the following estimation formulas for
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(a) Known labels. (b) Unknown labels. (c) Expected labels.

FIGURE 3.5. Example of a mixture of three Gaussian distri-
butions. In (a) the data points are colored according to their
true label. (b) shows the situation in practice: the label (color)
is not observed. (c) shows the labels that are recovered by the
EM algorithm. The data points are colored according to their
responsibilities.

the component means, precisions and weights:

N
anl PrnmXn

By = S (3.69)
227:1 Pnm
N Ty !
En:l Pnm
1 N
Tm = nz::l p (3.71)

Observe that (3.69) and (3.70) are weighted averages based on the responsibil-
ities. These update equations turn out to be the EM update rules, which will
be discussed shorthly. The procedure operates iteratively in two stages. In the
E-step, the responsibilities (3.67) are computed, while the current model para-
meters @5 are kept fixed. Subsequently, during the M-step, the model para-
meters are updated according to (3.69-3.71) using the responsibilities variables
computed in the E-step.

Latent Variable Viewpoint

More formally, the GMM can be viewed as a latent variable model in the sense
that the component label associated to each data point is unobserved. This is
illustrated in Figure 3.5. Although the data generation process involves labeled
data, the data labels are in practice unknown. In other words, we have no idea
by which component a data point has been generated. By means of the EM
algorithm, the expected labels can be recovered.

Consider the set of binary latent vectors Z = {z,}Y_;, with latent variables
Znm € {0,1} indicating which component has generated x,. Variable z,,,
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Zn

Xn

. NJ

F1GURE 3.6. Graphical representation of the GMM. The
nodes are random variables, the shaded ones being observed.
The plate denotes the repetition of i.i.d. observations. The
arrow indicates the conditional dependency of the nodes. We
omit the dependency on the parameters since they are deter-
ministic quantities.

is equal to 1 if x, is generated by component m and equal to 0 otherwise.
Therefore, the following constraint should be satisfied:

M
> zum=1, Vn. (3.72)
m=1

The prior distribution of the latent vectors and the conditional distribution of
observed data are then respectively:

M
(2 |On) = H T "™ (3.73)
m=1
M
p(%n|2, On) = [T N Gnl s M) (3.74)
m=1

Marginalizing over the latent variables results in (3.65):

p(xn|On) = Zp(xm Zn|Ox) (3.75)
= p(Xn|zn, 00 )p(20|On) (3.76)
' M
=3 T s N (el ) (3.77)
z, m=1
M
= > TN (Xn s Am) - (3.78)
m=1

Figure 3.6 shows the GMM as a simple directed acyclic graph. The random
variables in the model are the observations X = {x,}2_; and the latent vectors
7Z = {z,}Y_,. Each x,, depends conditionally on z,. Both the observations
and the latent vectors are i.i.d. The plate indicates N copies. The parameters
do not appear in the graph as they are fixed.
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As discussed in Section 3.1.1, the EM algorithm seeks iteratively for a local
maximum of the data log-likelihood by first computing the posterior probabil-
ity of the latent variables (E-step) and then maximizing the expected complete
data log-likelihood with respect to the model parameters (M-step). The ex-
pectation is taken with respect to the posterior distribution computed in the
E-step as shown below.

Since the joint distribution p(x,, z,|0,) factorizes, the posterior probability of
the indicator variables factorizes as well. Using Bayes’ rule leads to the E-step:

WmN(Xn‘N'mv Ay)
P(Xn|0x)

p(znm = 1|Xn79./\/) = = Pnm > Vn s VYm . (379)

Next, let us detail how the M-step proceeds. The complete data log-likelihood
of the GMM is given by

N
log L.(0x| X, Z) = log H P(Xn, Zn|On) (3.80)
n=1
N M
= log H T N (X [y A ) *7™ (3.81)
n=1m=1
N M
= Z Z Znm {10g T + log N (X |ty Arn) T (3.82)
n=1m=1

Observe the difference between this log-likelihood and the original log-
likelihood, i.e. the incomplete data log-likelihood:

N
log L(Ox|X) = log H P(Xn|On) (3.83)
n=1
N M
= Z log Z TN (X | s M) - (3.84)
n=1 m=1

In this expression, the logarithm appears outside the summation with respect
to m. This reflects the fact that the incomplete log-likelihood is a marginal
probability. As a result, there is no closed form solution to this maximization
problem. In contrast, the complete log-likelihood is not a marginal probability,
and thus the logarithm is inside the sum, leading to simple maximum likelihood
formulas.

The expected complete data log-likelihood can be written as follows:
Ez{log L.(0x|X, Z)}

N M
= Z Z Ez{znm} {log mpm + log N (x|, Am)} - (3.85)

n=1m=1
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Now, the conditional expectation of the latent variables with respect to their
posterior distribution is equal to the responsibilities:

Znm A Znm
= Zum o™ N s Ar) (3.87)
~ p(xn|Ox)
— B - (3.88)

Maximizing (3.85) subject to the constraint on the mixture proportions leads
to the update rules (3.69-3.71).

Initialization

Choosing adequate initial values for the component means, precisions and
proportions is essential in order to attain a good local maximum of the log-
likelihood surface. While a random assignment does not provide satisfactory
results, a simple technique such as M-means' (MacQueen, 1967) provides al-
ready good starting values. Moreover, M-means is closely related to the GMM,
making this technique even more attractive.

Recall we have a set of observations X = {x,})_;. Our goal in M-means
is to cluster the data into M clusters. The basic idea is to assign each data
point to its nearest cluster mean or centroid. Let {u,,}_, be the centroids
and Z = {z,}_, the discrete indicator vectors, such that z,, € {0,1} and
Zf\le Znm = 1, ¥n. Making an initial assignment for the centroids, the M-
means algorithm alternates between the two following steps:

(1) Evaluate the indicator vectors:

L1 ifm = argming [ — gl
Fnm { 0 otherwise. (3.89)
(2) Compute the centroids:
N
W, = M . (3.90)

2 n=1 #nm

As M-means depends on some initial assignment of the centroids as well, it
is worth considering multiple initializations and keeping subsequently the best
one (for example the one minimizing the reconstruction error). Of course, this
is at the cost of additional computation time. For the same initialization of the
centroids, M-means minimizes the same reconstruction error as competitive

1SimilaLrly as for M-NN in Chapter 2, we use the term M-means instead of K-means in
order to be consistent with our notations, M denoting the number of components.
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learning (see Section 2.3.3):

N M
R = Z Z Znm || Xn — Nm||2 . (3.91)

n=1m=1

Note, however, that competitive learning minimizes R stochastically.

Comparing (3.90) to (3.69) makes the link between M-means and the GMM
explicit. While the first method performs a hard assignment of the data points
to the cluster means, the second one performs a soft assignment. M-means
converges after a finite number of iterations, since there are only a finite number
of assignments for the discrete vectors and for each assignment there is a unique
value for the cluster means. In practice, the algorithm converges rapidly. When
it is terminated, the component precisions and proportions can be estimated
as follows:

N T -1
A — {zn_l o (3 = )0~ ) } | 5.92)
Zn:l Znm
1 N
Tm = n; Znm - (3.93)

More elaborate techniques for being less sensitive to the initial conditions of
the GMM include stochastic EM (SEM) (Celeux and Diebolt, 1985; Celeux,
Chaveau and Diebolt, 1996), deterministic annealing EM (DAEM) (Ueda and
Nakano, 1998) and split-and-merge EM (Ueda, Nakano, Ghahramani and Hin-
ton, 2000) (SMEM).

In SEM, a label vector z, is effectively assigned to each observation x,, at each
iteration step, according to the multinomial distribution with M categories and
having the current responsibilities p,,,, for parameters. Replacing the expected
labels (i.e. the responsibilities) by a stochastic assignment allows SEM to
escape from the current path of convergence followed by the EM algorithm.
This is especially desirable when the algorithm is started from poor parameter
values, but it is not when the process is close to convergence. It is therefore
suggested to use ordinary EM in the latter stages of the iterative procedure.

DAEM acts also on the E-step. Here, the conditional expectation of the com-
plete data log-likelihood is computed with respect to the current responsibilities
raised to the power (:

T (Pem)®
The inverse of (§ is referenced as a temperature by analogy to statistical me-
chanics. It is suggested to start with a value of 3 close to zero and then
increasing it after each iteration until 8 equals 1. When g is small, the ad-
justed responsibilities are close to 1/M, producing component densities that
overlap considerably. When § increases, the contribution of the data points
are gradually localized. Therefore, the DAEM is able to recover from a poor

, Vn, VYm. (3.94)
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choice of the starting values by letting the components overlap considerably in
the first iterations.

Ueda et al. (2000) proposed SMEM, which combines the EM algorithm to
split-and-merge operations. After convergence of the EM algorithm, SMEM
checks if the expected complete data log-likelihood can be improved by splitting
one component into two, while merging two others. Next, two steps, called
the partial and the full EM steps, are executed in turn. The partial EM is
only applied to the above new three components and the full EM step to all
components of the mixture, yielding a new set of parameters 63,. Then, the
new mixture is accepted if the following condition holds:

Ez{log L.(0\|X,Z} > Ez{log L.(0x|X,Z} . (3.95)

In fact, a set of three candidate components is generated and appropriately
ranked. If none of the candidates yield an improvement, the algorithm is ter-
minated.

SMEM allows to jump to regions in the parameter space being hopefully more
attractive. However, it was recently demonstrated that SMEM is not fully
compatible with maximum likelihood learning (Minagawa, Tagawa and Tanaka,
2002). The reason is that the expected complete log-likelihood is computed
with respect to different posterior probabilities. Therefore, an increase in the
expected complete log-likelihood does not correspond necessarily to an increase
in likelihood, possibly leading to the rejection of the global optimum.

More recently, Verbeek, Vlassis and Krose (2003) proposed an efficient greedy
learning algorithm for the GMM, building on the work of Li and Barron (1999),
and Vlassis and Likas (2002). In this approach, the components in the mix-
ture are inserted one after the other according to a heuristic. A set of new
candidate components are generated in a randomized manner. Then, by us-
ing partial EM searches (see Verbeek et al.; 2003, for a detailed description),
locally optimal candidates and their corresponding weights are computed. Sub-
sequently, the optimal new component is selected as the one maximizing the
resulting log-likelihood and is included in the mixture. Possibly ordinary EM
is then applied until convergence. The greedy algorithm has a running time
M times slower than standard EM. It is also reported to perform similarly
as SMEM (while being faster) and to outperform ordinary EM initialized by
M-means (see Verbeek et al., 2003).

Convergence

In the context of the GMM, the EM algorithm has been found to have the
advantage to provide rather reliable estimators. A recent experimental study
of the asymptotic properties (i.e., for N — 00) of the univariate GMM, showed
that only (moderate) biases in the parameter estimates are observed when the
component means are close to each other and the variances are considerably
different (Nityasuddhi and Boéhning, 2003). However, it was reported that
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its convergence may be slow (Redner and Walker, 1984; Meng and van Dyk,
1997), especially when the component means are close. In addition, it is not
guaranteed that EM provides a global maximum of the log-likelihood surface
(Wu, 1983).

Xu and Jordan (1996) provided a careful study of the EM algorithm’s conver-
gence properties for the GMM, tempering the critics offered by Redner and
Walker (1984). The authors linked the algorithm to gradient methods and
demonstrated that, under appropriate conditions, it approximates superlin-
ear methods (e.g., quasi-Newton). They concluded that the EM algorithm is
particularly attractive in the case of the GMM, as it enjoys automatic satis-
faction of probabilistic constraints, monotonic convergence, without the need
to set a learning rate, and low computational overhead. Moreover, while EM
can converge slowly for problems in which the mixture components are not well
separated, the gradient-based algorithms (including Newton’s method) are also
likely to perform poorly due to a poorly conditioned Hessian. Finally, when
one is concerned with the convergence in likelihood, EM generally performs
well.

Choosing the number of components

The major drawback of the learning procedure of the GMM is that maximizing
the likelihood is ill-posed. The numerical difficulties are for example often
encountered when dealing with (multivariate) real data, which is due to the
fact that the likelihood function is unbounded. This may result in putting
infinite probability mass on a single data point, leading to a mixture component
to collapse (see for example Duda and Hart, 1973; Abbas and Fahmy, 1994;
McLachlan and Peel, 2000). Archambeau, Lee and Verleysen (2003) traced the
collapsing mechanism in the case of isotropic Gaussian kernels and accredited
this burden to the concept of relative isolation of some training data. By
“relative isolated data point” it is meant that the point is either an outlier or
abnormally repeated. The local character of Gaussian components combined to
the presence of isolated data makes the EM possibly collapse. Actually, because
of the exponentially decreasing shape of the components it is more likely that
an outlier is generated by a highly improbable isolated component than by a
component consistent with the database. The width of the component is then
driven to zero and the corresponding mixture weight tends to 1/N.

Since ML learning is an ill-posed problem, major problems arise when using
resampling techniques. Maximizing the likelihood favors models of ever increas-
ing complexity. As a result, neither the optimal number of components can be
selected automatically, nor the model parameters can be estimated reliably.
Model selection and parameter estimation on the basis of the data likelihood
can thus only be carried out by learning and validating the model on separate
data sets. However, due to numerical instabilities, this is impractical with the
conventional GMM.
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In order to avoid these numerical instabilities, the covariance matrices are of-
ten constrained, such that the likelihood is bounded. In particular, diagonal
covariance matrices are usually enforced (Abbas and Fahmy, 1994). However,
as shown in Section 3.2.2, diagonal GMM are incapable of modeling arbitrary
densities due to their lack of flexibility. More recently, regularized versions
of GMM were proposed (Borgelt and Kruse, 2004; Archambeau and Verley-
sen, 2003; Archambeau, Vrins and Verleysen, 2004), as well as the maximum
a posteriori GMM (Ormoneit and Tresp, 1998) and variational GMM (Attias,
1999b). These methods are discussed in detail in the following sections.

3.2.2. Learning with the Regularized Mahalanobis Distance

Archambeau and Verleysen (2003) introduced a regularization scheme based
on the regularized Mahalanobis distance (Mao and Jain, 1996). The approach
is closely related to the work of Borgelt and Kruse (2004), who also proposed
shape and size regularization of the mixture components. The main drawback
of their method is that it requires to set many parameters.

The multivariate Gaussian components determine their shape by means of the
Mahalanobis distance. In order to improve the quality and the stability of
the estimator, it is proposed to penalize the component shape by making a
compromise between the Mahalanobis distance, which favors hyperellipsoidal
components, and the Euclidian distance, which favors hyperspherical compo-
nents. This is motivated by the prior belief that the shape of each component
should not be too thin and that a component should include a sufficient num-
ber of data points in order to reliably estimate its covariance matrix. If this
condition is not met, the covariance matrix should be further constrained. At
the end of this section, the power and flexibility of the approach is validated
by experimental results.

The regularized Mahalanobis distance

From (2.27), it can be seen that the multivariate Gaussian component m uses
the Mahalanobis distance A to determine its shape:

A(x|p’m7 Am) = (X - /J’m)T A, (X - N’m) ’ (396)

where a probabilistic notation is abusively used to denote the dependency on
u,, and A,,. When the number of data points contributing to the computa-
tion of the component covariance matrix (and thus also its precision) is small
with respect to the square of the dimension d of the data points, it may be
singular. Moreover, the use of A(x|u,,,, Ar,) tends to produce hyperellipsoidal
components, leading to unusually large and elongated densities. By contrast,
when one considers the Euclidean distance A(x|u,,, I), large data clusters need
to split unnecessarily, as the component densities are constrained to be hyper-
spherical. This is illustrated in Figure 3.7.
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(a) Unconstrained GMM. (b) Isotropic GMM.

FIGURE 3.7. Tlustration of (a) the hyperellipsoidal character
of the unconstrained GMM and (b) the hyperspherical char-
acter of the isotropic GMM. The former uses the Mahalanobis
distance to determine its shape. The latter uses the Euclidean
distance. On the one hand, the use of the Mahalanobis dis-
tance leads to elongated components, which possibly absorb
small data clusters. On the other hand, the use of the Euclid-
ean distance requires a high number of components to model
elongated clusters.

Based on the hyperspherical character of A(x|u,,,I) and the hyperellipsoidal
character of A(x|p,,, Am), we can construct the regularized Mahalanobis dis-
tance as a convex combination of both distances:

A,(x‘p’mJAm) = (1 - T)A(X‘H’mmAﬂl) + TA(X“l’maI) ) (397)

where 7 is in the interval [0, 1]. Parameter 7 controls the trade-off between hy-
perspherical and hyperellipsoidal character of the components. It adjusts the
effective number of parameters that determine the shape of the mixture com-
ponents. Therefore, when the covariance matrices cannot be estimated reliably,
a large value of 7 should be used in order to enforce spherical components. In-
deed, spherical components only require to estimate a single parameter. This
will be illustrated experimentally below.

Modified M-step

Consider again the M-step (3.69-3.71) of the unconstrained GMM. Introduc-
ing the regularized Mahalanobis distance consists in adapting, at each iteration
step, the precision A,, of each component density according to (3.97). There-
fore, update rule (3.70) of the kernel precisions becomes:

SN pum ’ (3.98)

Em = Zﬁ:l ﬁnm(xn—ﬂm)(xn—#m)T
(1=7)(Zm + eI)_1 TSN

A
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Parameter € is called the safety factor and A the scaling factor. The role of €
is to stabilize the learning process when needed (especially when 7 = 0, i. e.
no regularization), by converting a singular matrix to a non-singular one. As a
result, using different values of € does not make much difference as long as they
are significantly smaller than the variance of the data points (see experimental
results below).

The scaling factor A takes the range of the data into account. It is computed
according to a rule-of-thumb that reflects our prior belief about the expected

precision of each kernel:
. —2
ox
A= (2(1, #M> , (3.99)

where ¢ x is the empirical standard deviation of the observed data. Parameter A
is thus inversely proportional to the total variance of the data and proportional
to the d*" root of the number of components. By including the dependency
on the dimension d, more overlapping is enforced when moving to a higher
dimension. However, a careful choice of A does not make much difference
either, as the amount of prior belief included in the model depends mainly on
the value of 7.

Experimental validation

First, let us illustrate the difference between the GMM using unconstrained
precisions, the GMM using diagonal constrained precisions (DGMM) and the
GMM using the regularized Mahalanobis distance (RGMM). The data is sam-
pled from the noisy spiral described in Appendix A. The number of compo-
nents in the mixture is 12. Figure 3.8 shows the best estimators out of 20 runs.
The ordinary kernel density estimator (KDE) is also constructed. Clearly, the
DGMM fails to provide a good model for the data. Using diagonal precisions is
thus not suitable in practice. Next, it can be observed that the standard GMM
may be too sensitive to local variation in the data. It can for example be seen
in the lower left corner of (b) that one of the components is not aligned along
the spiral. This results from the fact that too few data points are assigned
to the misaligned component. By contrast, it can be observed from (d) that
this problem is avoided in RGMM. Comparing the RGMM estimator to the
other estimators, it can be seen that the RGMM provides a much smoother
estimator than the other techniques. In particular, the oscillations appearing
in the estimator of the KDE are avoided.

Next, the quality of the RGMM estimator is compared to that of the KDE,
the SKDE, the weighted VQKDE, the GMM and the DGMM. Three 2D toy
examples are considered. The first one is a mixture of a Gaussian distribu-
tion and a Gaussian-Gamma distribution. By Gaussian-Gamma distribution
is meant that the data is Gaussian distributed in one direction (horizontally)
and Gamma distributed in the orthogonal direction (vertically). The Gamma
distribution is defined as G(u|a, ) = /T’ (a)u®"1 exp(—Bu), where I'(-) is the



Chapter 3. Finite Mixture Models 87

e v

(a) KDE. (b) GMM.

o o “:\.
‘|
e
el a
:"..
VY 4
s

®eong® o

(c) DGMM. (d) RGMM.

FI1GURE 3.8. Density estimators obtained from the KDE, the
GMM, the DGMM and the RGMM for the noisy spiral. The
number of components in the mixtures is fixed to 12. The
kernel width in KDE is set to 0.0676x and the regularization
parameter in RGMM to 0.26. Both were optimized by 10-fold
cross-validation, the ANLL being used as performance mea-
sure.

gamma function. The target distribution is given by
p(x) = 0.4N (x|p, A) + 0.6N (21]0, \)G(z2]a, B) (3.100)

where p = (2,-1), A~ = diag{1.25,0.75}, a = 2, 3 = 0.7 and \~! = 2.25.
The training set for this first toy example contains 250 data points. The second
and the third toy examples are respectively the ring and the spiral data. Both
are described in Appendix A. In the three experiments 1,000 test points are
used in order to obtain reliable results. The parameters of the estimators are
optimized by 10-fold cross-validation. The performance measure is the average
negative log-likelihood (ANLL) and the results are averaged over 20 training
runs.
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TABLE 3.1. Mixture of a Gaussian and a Gaussian-Gamma
distribution. The ANLL is evaluated on the test set and aver-
aged over 20 runs.

M ANLL std. err.
KDE oc=0.35 250 4.15 0.001
SKDE c=0.29 250 4.11 0.001
VQKDE w =250 38 4.12 0.002
GMM 3 4.14 0.001
DGMM 4 4.12 0.003
RGMM 7 =0.10 3 4.11 0.001

Figures 3.9 and 3.10 show the density estimators provided by each method. The
darker the color, the higher the density is. For each example, the contour levels
are identical across the methods. The grid size was chosen sufficiently small in
order to avoid visual artifacts. When comparing the Gaussian mixture models,
we can see that the DGMM (dramatically) fails to provide good estimates when
the target densities are not aligned with the coordinate axes. It is also clear
that the RGMM provides the smoothest estimators. The main drawback of
the Gaussian mixture models compared to the kernel estimators is that, when
no data clusters effectively exist, the arbitrary densities are approximated by a
broken shape. In contrast, the kernel-based methods provide estimators with
lots of oscillations.

Tables 3.1, 3.2 and 3.3 show the optimal parameters for each method and
the average ANLL of the test set, as well as the standard errors. The kernel
density estimators perform similarly. As expected, the ordinary GMM and
the DGMM perform worse when the target distribution is not a mixture. By
contrast, the RGMM is competitive with the kernel methods, but has a much
lower model complexity. Since the parameters are learnt by an iterative scheme,
the method is sensitive to local maxima in the objective function, resulting in
higher standard errors.

Influence of 7 and ¢

In this section, the influence of the value of parameters 7 and e is further
discussed. The first column of Figure 3.11 shows the influence of an increasing
number of components for each data set in the case of the RGMM. One can see
that for each toy example, the higher the complexity, the higher the optimal
value for 7 is. The (slight) shift to the right of the minimum of the error
curve expresses an increasing need for prior knowledge. When the number
of components is high, compared to the number of learning data points or in
presence of atypical observations, prior information is essential for obtaining
reliable estimates of the covariance matrices.
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(a) Mixture. (b) Ring. (c) Spiral.
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(j) VQKDE. (k) VQKDE. (1) VQKDE.

Ficure 3.9. Optimal density estimators obtained for the
KDE, the SKDE and the VQKDE. The first data set is a
mixture of a bivariate Gaussian distribution and a Gaussian-
Gamma distribution. The second and the third data sets are
respectively the ring and the noisy spiral. The test set is shown
on top.

Finally, let us discuss the role of the safety factor e. As suggested in Sec-
tion 3.2.2, provided € is chosen sufficiently small, it has no influence on the
optimal performance of the RGMM. This is illustrated in the second column
of Figure 3.11 for the three toy examples. When ¢ is sufficiently small, the iso-
ANLL contours are independent of the value of ¢, but only depend on the choice
of 7. As a matter of fact, the safety factor just avoids the possible numerical
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FIGURE 3.10. Optimal density estimators obtained for the
GMM, the DGMM and the RGMM. The first data set is a
mixture of a bivariate Gaussian distribution and a Gaussian-
Gamma distribution. The second and the third data sets are
respectively the ring and the noisy spiral. The test set is shown

on top.

instabilities for a bad choice of 7. For example, a value of 0 corresponds to the
classical multivariate GMM, which is known to be problematic in practice.
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F1GUrRE 3.11. For each experiment, the first column shows
the expected ANLL (20 trials) of the test set with respect to
7, for different model complexities. The second column shows
the iso-ANLL contours versus 7 and e. The model complexity
is fixed to its optimal value.



92 3.2. Finite Gaussian Mixture Models

TABLE 3.2. The ring data. The ANLL is evaluated on the
test set and averaged over 20 runs.

M ANLL std. err.
KDE oc=0.16 150 4.88 0.001
SKDE oc=0.15 150 4.89 0.002
VQKDE w=1.60 23 4.93 0.004
GMM 6 4.98 0.006
DGMM 5 5.03 0.002
RGMM 7=030 6 4.89 0.005

TABLE 3.3. The noisy spiral data. The ANLL is evaluated on
the test set and averaged over 20 runs.

M ANLL std. err.
KDE oc=0.07 250 3.59 0.001
SKDE o =0.07 250 3.60 0.002
VQKDE w=1.50 38 3.64 0.004
GMM 10 3.71 0.013
DGMM 13 3.88 0.007
RGMM 7=040 13 3.61 0.010

Concluding remark

As the unconstrained GMM, the RGMM can model arbitrary densities, pro-
vided a sufficient number of components. The method can be used in conjunc-
tion with resampling or model averaging techniques (e.g., Breiman’s bagging
(Breiman, 1996)) in a practical and natural way, as the numerical difficulties
encountered by EM are avoided. Besides, the approach provides high quality
estimators as shown experimentally, as the amount of prior information needed
to reliably estimate the kernel precisions is adapted by adjusting 7.

The RGMM also provides a flexible alternative compared to the DGMM, which
are commonly used in practice. Diagonal constrained covariance matrices make
GMM less sensitive and avoid components in the mixture to collapse, because
their shape is determined by fewer parameters, but fail to provide high quality
estimators.

Another regularization scheme is the maximum a posteriori GMM (Ormoneit
and Tresp, 1998). In this approach, the covariance matrices are penalized
according to a Wishart prior. Although the maximum a posteriori GMM have
a stronger theoretical background, the main advantage of our approach is that,
on the one hand, we only need to optimize one additional parameter 7, and
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on the other hand, that its optimal value is in a closed interval. By contrast,
the Wishart distribution is sensitive to two additional parameters (one of them
being a d-dimensional matrix), which can range from zero to infinity. In the
next section, the maximum a posteriori GMM is discussed in more detail and a
variant is proposed in order to adjust the amount of penalization in a practical
way.

3.2.3. Maximum a Posteriori Learning

A less heuristic way to deal with the problems encountered with ML learn-
ing and to obtain more consistent PDF estimators is to use a maximum a
posteriori (MAP) approach. Maximizing the data likelihood by means of the
EM algorithm does not necessarily correspond to computing the best possible
model given the observed data. As the available data set is finite, it may be
corrupted by noise and it is possibly sparse. In order to improve the quality
of the estimators, MAP learning constraints the data likelihood according to
some prior knowledge on the problem, and thus avoids poor local maxima of
the unconstrained likelihood. As discussed in Section 3.2.5, it is essential in
MAP learning to choose adequate priors for the model parameters. In general,
they are chosen according to some belief on the form of a suitable solution.

Ormoneit and Tresp (1998) applied the MAP framework to the GMM by choos-
ing the priors to be conjugate to the GMM. For a given density p(x|@), a prior
p(0) is said to be conjugate to p(x|@) if it gives rise to a posterior p(0]x)
having the same functional form as p(@). In other words, conjugacy is the
property that the posterior distribution follows the same parametric form as
the prior distribution. A nice property of conjugate priors is that they include
non-informative priors as a limiting case. This property will be important in
Section 3.2.5, where Bayesian learning of GMM is discussed.

The conjugate prior on the mixture proportions is a Dirichlet distribution (see
for example Gelman, Carlin, Stern and Rubin, 1998):

M
D(rlr) = ep(k) [ mn™ ", (3.101)
m=1

with w = {7, }M_ | and & = {k,}*_;. The normalizing constant cp(k) is
defined as

F M— m
ep (k) = 7%:’:}1(;)) : (3.102)

where T'(+) is the Gamma function. In addition, k satisfies the following con-
straints:

M
Vm: kw20, Y k=N, (3.103)
m=1

The conjugate prior on the mean and the precision of a single multivari-
ate Gaussian component is the Gaussian-Wishart distribution (Gelman et al.,
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1998):
NW (s A [Onw,, ) = N (B (M, 10 A )V (A [V Si) 5 (3.104)
with Oaryy,, = (Dm, My, Yin, S ). The Wishart distribution is given by

Ym—d—1

, 1
W(A | Yms Sm) = cw (Ym, Sim) [Am| ™ 2 exp (—2tr{SmAm}) , (3.105)

where 7,, > d, S,, is symmetric and positive definite, tr{-} is the trace op-
erator and ¢y (Vm, Sy) is a normalizing constant. The normalizing constant
cw (Ym, Sm) is defined as

—d(d—1) Im
e 4

msSm) = Bm| 2__ 3.106
Cw (/7 ) 2%5111 Hf=1 F(’Ymglii) ( )

Based on this choice of priors, we can write the penalized data log-likelihood
as follows:

log Laiap (Ox|X) = log p(X|Ox) + log p(O.n) (3.107)
=log L(Ox|X) + log D(m|k)
+ M 10g NW (tts MmO, (3.108)

where p(0,r) denotes the joint prior on the parameters of the GMM. This joint
prior is given by

M
p(Ox) = D(x|r) [[ NW (s AilOrw,,) - (3.109)
m=1
Similarly as in the ML case, the penalized log-likelihood cannot be maximized
directly. However, defining the responsibilities as before,

m n 7Am
Pom = — N (i, M) . Yn, Vm, (3.110)

Zm’:l //Tm’N(X‘IJ’m’V Am’)
and keeping these fixed during the maximization step leads to the following
update rules for the component means, precisions and weights:

N _
— Zun=a P ¥ M0 3.111
p’m - N _ 9 ( . )
anl Pnm + Nm

A — {Zg—l Prm (Xn - P‘m) (Xn - p’m)T

N _
Zn:1 Prm + Ym —d

T —1
m - m - m Sm
Zn:l an + lym - d
N _
nm m 1
= L=t Prm (3.113)

- N"'Zi\n/['ﬂ“m’ - M
MAP learning of the GMM consists thus in iteratively computing the respon-

sibilities (E-step) and then maximizing the resulting penalized log-likelihood
(M-step). Comparing the M-step of MAP (3.111-3.113) to the M-step of ML
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(3.69-3.71), it can be observed that they are closely related. Obviously, the
MAP step is a ML step that is penalized according to the hyperparameters
of the priors. The choice of these parameters is therefore crucial in order to
obtain a good model in practice.

Latent Variable Viewpoint

Consider again the latent variable model of the GMM:

M
P(Xn, Zn |On) = H T N (X [y s A)*7™ (3.114)
m=1

As discussed in Section 3.1.2, it is straightforward to extend the EM algorithm
to the MAP case, since the prior does not depend on the latent variables
Z = {z,}Y_,. As a consequence, the E-step is unchanged and EM iteratively
maximizes a penalized version of the expected complete data log-likelihood
(subject to the constraint on the mixture proportions):

Ez{log Lc(0x]X, Z)} + Ez{logp(6x)} (3.115)

N M
= Z Z Prm {108 T + IOgN(Xn|#ma An)} +logp(Oy) -
n=1m=1

3.2.4. Modified Maximum a Posteriori Learning

The main drawback in standard MAP learning is the prohibitive number of
hyperparameters to set. For example for the GMM, up to d(d + 3)/2 + 1
hyperparameters per component can be chosen. Usually, the same prior is
imposed on the parameters of each component in the mixture. However, this
still does not resolve the problem. Ormoneit and Tresp (1998) limited therefore
their discussion to the effect of the Wishart prior on the precisions, the penalty
terms due to the other priors being excluded from their simulations. A side
effect of this analysis is that the power of the approach could not be fully
appreciated, especially in the case of small learning sets.

Next, we propose to use the practical MAP framework presented in the second
part of Section 3.1.2. In this approach, particular values are chosen for the
hyperparameters of the joint prior (3.109) of the parameters. The amount of
penalization is adjusted through the use of the regularization vector a.

Consider again the penalized log-likelihood defined in (3.108). Let 9}, =
(K2, Bj\/wm) be a particular choice of the hyperparameters for component m
and the regularization vector a be equal to (ap, aaryy), due to the factorized
form of the joint prior. The modified MAP log-likelihood is then

log Leymap (Oa|X) =log L(Ox|X) + aplog D(7|k™)
+ anw Yom—y G NW (i, Am|Orryy,) - (3.116)
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Applying the EM algorithm leaves the E-step unchanged, while the M-step
becomes:

N
. Zn:1 PnmXn + O‘/\/Wn:nm*m
,, = L’ — (3.117)
Zn:l pnm + aNan

N
A { St P (% = ) (X = P
22]21 Pnm + anw (7:71 - d)

)T

T —1
* _ * _ * S*
+ apryy T (B = 003,) (1, = m3,) " + m} 1)
Zn:l Prm + a/\/W(’Y;@ - d)

o Pum o (s, — 1)

N+ (S i = M)
ML is recovered for a = 0 and the standard MAP is obtained for a = 1.
When o gets larger, the amount of penalization further increases until the
prior information dominates. Thus, additional degrees of freedom are inserted
in the estimation problem by means of a, such that the hyperparameters of the
conjugate priors can be fixed according to some prior belief, while the amount
of penalization can still be adjusted by learning the regularization vector in
a classical way (e.g., resampling techniques). We discuss next how to choose
these hyperparameters.

(3.119)

Tm

Prior on the mixture proportions

The Dirichlet distribution is the conjugate prior over the parameters of the
multinomial distribution (see for example Gelman et al., 1998). The latter gives
the probability of choosing a given collection of K items from a set of M items,
with repetitions, and the probability of each item is given by m = {m,, }}_,.
Therefore, we can easily see that for K = N and since X is assumed i.i.d., the
distribution of the mixture proportions is the multinomial distribution.

Parameter k can be viewed as the vector of “prior observation counts” for
events governed by m. Therefore, an intuitive choice is to assign a priori the
same number of data points to each component:

., N
Ym : Ky, = A (3.120)

This choice can be further motivated as follows. First, recall that Z%Zl Ky =
N. The resulting expected value of the mixture proportions is given by
Ky 1
E{mp}=—""2—=—. 3.121
e W )
Second, the marginal distribution of each mixture proportion is the Beta dis-
tribution B(7, |Km, Z%Zl Km — Km) (Ferguson, 1973). Tts mode is defined as
Ky —1 1
Mode{m,} = ———+—— ~ — . 3.122
(=t =y (3.122)

m'=1Fm
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This approximation is valid as long as M < N, which is usually the case.
Thus, imposing (3.120) allows us to incorporate the prior information that the
components are equiprobable with the highest probability. In this way, the prior
probability of each component matches its most likely value to its expected
value. However, some probabilistic relaxation is still permitted around this
particular value of the mixture proportions.

An interesting feature of this penalization scheme is that it indirectly acts
on the location of the components by keeping them inside the data cloud.
Our prior belief states that each Gaussian component is a priori equally likely.
As a result, approximatively 1/M* of the data points are associated to each
component. Therefore, the approach prevents (to some extent) that infinite
probability mass is put on a single datum and thus that a mixture proportion
becomes too small. As discussed by Archambeau, Lee and Verleysen (2003),
the collapsing mechanism is initiated when one of the component densities
becomes highly improbable. By means of this penalization scheme on 7, we
prevent the collapsing to happen.

Prior on the mixture means

In general, it is very delicate to introduce some prior belief in the GMM by
choosing particular values for the hyperparameters {m,,}»_,. In fact, we usu-
ally have little prior information about the location of the mixture components.
It is therefore recommended to use non-informative priors, i.e. broad priors, on
the mixture means. This can be achieved by setting the parameters {n} }M_,
to a small value, e.g. 107°, and m}, ~ 0, Vm.

Prior on the mixture precisions

As mentioned in Section 3.2.2; the multivariate Gaussian distribution uses the
Mahalanobis distance to determine its shape:

Ay M) = (% = p1,)" A (x = p1,,) - (3.123)
In general, the problems faced with the unconstrained GMM are due to a singu-
lar covariance matrix when computing A(x|g,,,, A,,). This is likely to happen
when the number of data points assigned to the corresponding component is
less than or not considerably larger than the dimensionality of the feature
space. As detailed above, this problem is indirectly addressed by introducing
a penalization term on the mixture proportions. Nevertheless, penalizing the
precisions directly is often more effective.

The penalization term on the precisions (or conversely on the covariance ma-
trices) should achieve a tradeoff between hyperspherical and hyperellipsoidal
component shapes (Mao and Jain, 1996; Archambeau and Verleysen, 2003). As
already discussed in Section 3.2.2, the FEuclidean distance favors hyperspheri-
cally shaped components of equal size. This leads to the undesirable effect of
splitting large, as well as elongated data clouds unnecessarily. On the contrary,
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the use of the Malahanobis distance causes components to absorb nearby small
data clusters. This leads to unnatural large components, or forms unusually
thin ones (for example when outliers exist in the database). According to this
prior belief, regularity conditions are imposed on the shape of the components
by means of the Wishart prior, resulting in a smoothness constraint on the
estimator.

Consider again the Wishart prior on the component precisions. The following
property holds:

Sm

E{A,, '} = —02— .

(3.124)
By choosing S,,, and -,,, properly, the covariance matrix of each component can
be penalized, such that it is unlikely that they are too elongated. Our prior
belief suggests thus covariance matrices being diagonally shaped. In addition,
for scaling purposes they should be proportional to the variance of the data and
inversely proportional to the number of components. Furthermore, in order to
achieve good generalization, they should sufficiently overlap. Accordingly, some
dependency on the dimensionality of the data is included, and the following
parameter values are proposed:

. 2
%

Vm: vy =d+2, S:n:('y;—d—l)<2{i/)](\7[> I, (3.125)
where I is the d-dimensional identity matrix and 6x is the empirical standard
deviation. The choice for 7 corresponds to the less informative prior that
is admissible (i.e. for which the expected value of the covariance matrix is
positive). This is a natural choice as the goal of the modified MAP approach is
to adjust the strength of the prior belief (and thus the penalization) by means
of a.

Experimental validation

Consider the three toy examples used to assess the quality of the RGMM.
Again, the aim is to do nonparametric-like density estimation. The estimators
are shown in Figure 3.12. The test ANLL is shown in Tables 3.4, 3.5 and 3.6.
In general, just imposing a prior on the mixture proportions prevents com-
ponents to collapse. However, the quality of the estimator is similar to the
quality of the estimator of the unconstrained GMM. By contrast, penalizing
the precisions significantly improves the results. In fact, the resulting estima-
tors are competitive with the standard kernel density estimators (KDE), while
not making an intensive use of the memory resources. Note also that the re-
sults are slightly better than the estimators obtained with the RGMM. Finally,
penalizing the mixture proportions and the precisions does not further improve
the estimators.
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(a) Mixture. (b) Ring. (c) Spiral.

(d) axw =0. (e) axw =0. (f) anw =0.

’ L)
'
\ —
(g) ap = 0. (h) ap = 0. (1) ap = 0.
£ (.,
a ./
(j) Full MAP. (k) Full MAP. (1) Full MAP.

FIGURE 3.12. Optimal density estimators obtained for the
MAP GMM. Three variants are considered. First, the mixture
proportions are penalized; second, the precisions are and third
both are. The data sets are the mixture of a bivariate Gaus-
sian distribution and a Gaussian-Gamma distribution, the ring
data and the noisy spiral data. The test set is shown on top.

3.2.5. Variational Bayesian Learning

In Section 3.1.3, we have investigated how to learn latent variable models in
the Bayesian framework. More specifically, it was shown how the variational
Bayesian approach leads to EM-like update rules for the the posterior distri-
bution of the latent variables and the model parameters by treating these as
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TABLE 3.4. Mixture of a Gaussian and a Gaussian-Gamma
distribution. The ANLL is evaluated on the test set and aver-
aged over 20 runs.

M ANLL std. err.
KDE o =0.35 250  4.15 0.001
GMM 3 4.14 0.001
MAP GMM  ap =50, ayw =0 3 4.12 0.001
MAP GMM  ap =0, ayyw =0.1 3 4.12 0.003
MAP GMM  ap =50, apyyy =0.1 3 4.11 0.003

TABLE 3.5. The ring data. The ANLL is evaluated on the
test set and averaged over 20 runs.

M ANLL std. err.
KDE o =0.16 150  4.88 0.001
GMM 6 4.98 0.006
MAP GMM  ap =10, ayyw =0 5 4.97 0.010
MAP GMM  ap =0, ayw =1 7 4.87 0.003
MAP GMM  ap =30, oy =1 7 4.88 0.009

TABLE 3.6. The noisy spiral data. The ANLL is evaluated on
the test set and averaged over 20 runs.

M ANLL std. err.
KDE o =0.07 250  3.59 0.001
GMM 10 371 0.013
MAP GMM  ap =20, ayyy =0 11  3.71 0.009
MAP GMM  ap =0, apy =01 14  3.58 0.017
MAP GMM  ap =20, ayyw =0.1 14 3.58 0.020

random latent variables as well. The main advantage of Bayesian inference is
that the uncertainty on the model parameters is taken into account and that
this approach allows to determine the optimal model complexity without hav-
ing to resort to statistical resampling techniques. In this section, variational
Bayes (VB) is applied to the GMM. As already mentioned, the GMM can be
viewed as a latent variable model in the sense that we do not know by which
component a data point is generated. The corresponding graphical model is
shown in Figure 3.13. Since the model parameters are treated as random vari-
ables, they appear as nodes in the graph.
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Ficure 3.13. Graphical representation of the Bayesian
GMM. In this model, it is assumed that the distribution on the
mixture proportions and the joint distribution on the means
and the precisions factorize, and that the means are condition-
ally dependent on the precisions.

In Bayesian learning, the quantity of interest is the incomplete data likelihood
or model evidence. For a fixed model structure Hj; of the GMM, this quantity
is obtained by integrating out the latent variables Z and the parameters 6, :

(X [Har) = Z/p(X, 2,05 Har)dO (3.126)
A

For the GMM, this quantity is intractable. However, for any arbitrary density
q(Z,0,r) a lower bound on the logarithm of the evidence can be found using
Jensen’s inequality:

log p(X[Har) = logp (X|Har) — KL [g(Z,05)llp (Z, 05| X, Har)] - (3.127)

The bound is made tight when ¢(Z,0,) is equal to the joint posterior
p(Z,0x|X, Har) of the latent variables and the parameters. In VB learn-
ing, the variational posterior approximates the joint posterior by assuming the
latent variables and the parameters are independent:

1(2,0x) = qz(Z)qo5 (O ) - (3.128)

Given this factorization, the lower bound on the log-evidence is tractable and
the gap is minimized by minimizing the KL divergence between the true and the
variational posterior. This is done iteratively by means of the VBEM algorithm
(see Section 3.1.3):

VBE-step : ¢,,(2,) < exp (Eg, {log p(xn,2n|0x, Har)}) , Vn.  (3.129)
VBM-step : g, (0p7) X p(Ox|Has) exp (Ez{logﬁc(0N|X, Z, 'HM)}) .
(3.130)

In these equations, Ez{-} and Eg, {-} are respectively the expectation with
respect to qz(Z) and gg, (07). Remark that the posterior qz(Z) factorizes,
since X are i.i.d.
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The complete data likelihood in the case of the GMM is given by

N
Lo(On|X,ZHar) = [ p(%n 20|00 Har) (3.131)
n=1
with
M
P(Xn, Zn|On7, Har) = H T N (X | gy s A ) o7 (3.132)
m=1

being the latent variable formulation of the GMM, in which the dependency
on Hys is made explicit. Noting that p(x,,2, |0, Has) factorizes, it is likely
that {g,, (z,)}Y_; factorize similarly:

M
Gz, (Zn) = H Az (Znm)™™™ . V. (3.133)
m=1
Due to this factorized form, the VBE-step for the GMM simplifies to
Gz (Znm = 1) o exp (Eg,, {log T, + log N (X |ty Am) }) (3.134)

These quantities correspond to the responsibilities in ML and MAP learning.
Each of them is proportional to the posterior probability of having a component
m when x,, is observed.

In order to compute the VBE-step, we need to know g¢g, (0n). Looking at
the VBM-step, one can see that taking the prior p(6,|Hs) on the parameters
as being conjugate to the exponential family is particularly attractive. In this
case, the posterior and the prior have the same functional form. As a result, the
VBM-step consists in simply updating the hyperparameters of the prior to the
parameters of the posterior. As discussed in Section 3.2.3, the joint conjugate
prior for the GMM is the product of a joint Dirichlet prior on the mixture
proportions and Gaussian-Wishart distributions on the component means and
precisions:

M
p(OxHar) = Diwlko) [T NW (ks ArnlOnowry) (3.135)

m=1

where Oy, = (10, M0, Y0, Sp) are particular values for the hyperparameters.
In practice, they are chosen such that broad priors are obtained. Since the
prior is a conjugate prior, the joint posterior has the same functional form and
is thus also the product of a Dirichlet and Gaussian-Wishart distributions:

M
qox (On) = D(w|k) [[ NW(tt, A O, (3.136)

m=1

where Oaryy,, = (D, My, Vim, Sin). At this point, the expectation in the VBE-
step can be computed since the form of the posterior is known. Recall that

E{(x—m)TA(x—m)} = (g —m)TA(p —m) + tr{ AL} . (3.137)
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If x ~ N(:|p, A) and given that Eg, {A;,} = %S,,,” " under the Wishart prior,
we have

2

d
_ _VTT”(XH - m,,)"S,, '(x, — m,,) — TR (3.138)

Substituting this result in (3.134) leads to the VBE-step for the GMM:

B {500 = ) Al = 1)}

An? (3.139)

m d
X exp (_'7 (xp — mm)T Sm_1 (xp, —myy,) — o ) ,

where the special quantities are defined as follows:

log T, = Eg {log T} = Y(km) — ¥ (SM_, kor) s (3.140)

d
l0g A = Eo, {log | A} = > ¢ (2m42=1) 4+ dlog2 — log|Sy,| . (3.141)

i=1

In these equations, 9 (-) is the digamma function. Taking into account the
fact that ¢, (z,) must be normalized for each data point x,, results in the
responsibilities:

Brom = Dz (Znm = 1)
S it Qo (s = 1)

. Vo, Vm. (3.142)

Remark that the responsibilities have a very similar form as the quantities
computed in the E-step (3.67) in ML learning.

Next, let us compute the VBM-step. Since
Ez{log L(On|X, Z, Hn)}
= 22[:1 Zivrf:1 ﬁnm{log T, + logN(xn“l’m? Am)} , (3~143)

we can identify from (3.130) the VBM update rules for the hyperparameters
after some algebra:

bm = NTm + ko, (3.144)

Dm = NTm+10, (3.145)
N, +nom

m,, = N’; e ZE 0 (3.146)

Y = NTm + 70 , (3.147)

Sy = NimSo+ 2Tm0 o) (i, —mo) T+ S0, (3.148)

I
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where we have

N
ﬂm _ anzvl pTi’an 7 (3149)
2 n=1Pnm
N = _ \T
5, = 2 n1Prm (XnN lim) (Xn = Hy) : (3.150)
Zn:1 Prnm
1 N
Tm = > o - (3.151)
n=1

Note that A,, = 3,7, Vm. The quantities (3.149-3.151) are the means of
the posterior distributions and identical to the ML estimates of the parameters
computed in the M-step of the ordinary EM algorithm. In fact, when N — oo,
the posteriors collapse onto their means, and also 7, = T, Am = [As], Y.
Thus in the limit, standard EM is recovered. Moreover, according to Attias
(1999a), when the number of data points assigned to component m is 1 or
less, i.e. @, < 1/N, VBEM sets 7, to zero, declaring the component non-
existent. This property is important, as it protects the algorithm from putting
infinite probability mass on a single data point, which is a well-known problem
with ordinary EM. However, there will typically be multiple maxima in the
variational bound, so different initializations may be beneficial in order to find
a good maximum.

Predictive distribution

The variational predictive distribution is obtained by marginalizing the joint
distribution p(x, x| X, Har), using the variational posteriors instead of the
true posteriors:

p(x| X, Hpyr) = /p(x|0N,HM)q9N(0N)d0N (3.152)
M

= FmS(xmyy, eS8, 1y, (3.153)
m=1

where v, = v —d+ 1 and 7 = K/ va\/{’:l K. Parameter 7 is the ex-
pectation of 7, under the Dirichlet posterior. The distribution S(x|u, A, v)
is the Student-t distribution with v degrees of freedom, mean p and precision
A (see Section 3.3 for a formal definition). Since in Bayesian learning overfit-
ting is avoided by averaging over all models and weighting each model by its
approximate posterior, it is rather intuitive that the predictive distribution is
a mixture of Student-t distributions. Indeed, a Student-t distribution can be
viewed as an infinite mixture of Gaussian distributions with the same mean
and different precisions. When N — oo, the predictive distribution becomes a
GMM.
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Choosing the number of components

Before concluding this section, let us mention that the number of components
in the mixture can be selected as the one maximizing the lower bound on the
log-evidence p(X|Hys). This approach is appealing as it avoids the use of
resampling techniques, which are wasteful of learning data.

Consider again the variational lower bound for the GMM:

Fru(az(Z),q65 (Ox)) = Z/‘IZ(Z)%N(@N)IO p(X, Z,0x|Hu)
zZ

— = " df
5 0 (D)gan ()

= Z/QZ(Z)qu(BN)Ing(X\Z, O, Hor)d6 s
Z
+Z/qz(2)qu(9N) log p(Z|0x, Har)dO
zZ

+ / Qo (Ox) Log (O [Har) A0

_ZQZ )log qz(Z)

- / G0 (03108 4o, (0r) 00, - (3.154)

The functional form of all the distributions appearing in this expression are
known:

N M
p(X|Z,0n, Hu) = H H N (Xn| s Arm)™™ (3.155)
n=1m=1
N M
p(Z|0x Har) = [ T] 7™ (3.156)
n=1m=1
M
p(Ox[Har) = D(wko) [ NW (ks AlOnws,) (3.157)
m=1
N M
H H L (3.158)
- M
dor (On) = D(w|w) [[ NW(tts An|Onw,,) - (3.159)
m=1

Each term of the lower bound can therefore be evaluated:

3 / 02(Z) 0, (Bn) 108 p(X|Z, O, Har )6,
7

= En 12 1an{ — %logQﬂ'—i— %logf\m

~ Y (x, — my)TS,, " (x, — my,) — L} , (3.160)

2 2Mm
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>~ [ a2(Z)a0. () 08 Z10 Har)Ox
Z

= 3y Yoot P 108 T (3.161)
/qu(HN) log p(Ox[Har)dO

=logep (ko) + Z%Zl(lio —1)log T + Zn]\fle { — %log 21

nod
20m

+ log enw (70, So) + 7°;d log A, — e tr{SOSm_l}} . (3.162)

ZQZ(Z) log qz(Z)

Z

+ 2logno — 221 (m,, — mg)T'S,, "} (m,, — mg) —

= S0y Yoy P 108 Prm (3.163)
[ 1003110800, 00

=logep(k) + Z%Zl(/im —1)log T + Z%:l { — %log 2r

+ glognm — % + log exrw (Yim, Sin) + va—d log[\m — %d}

(3.164)
The last two terms are the entropies of the variational distributions.

In order to illustrate the approach, the illustrative example shown in Figure 3.5
is considered. It is a mixture of three Gaussian distributions with different
mean and different precisions. Hundred fifty data points are drawn from each
component. The VBEM algorithm is run 10 times. The model complexity
ranges from 1 to 5 components. Figure 3.14 shows the average lower bound
on the log-evidence. One can observe that the number of components that
maximizes the lower bound corresponds to the true number of components.

3.2.6. Related Approaches

An active field of research, yet unresolved, is the automatic selection of the
number of components in the mixtures. For example, in VB learning, the num-
ber of components is selected according to the lower bound on the log-evidence
(e.g., Attias, 1999b; Winn, 2003). However, the VB approximation leads in
practice to favor too simple models as it tends to underestimate the variance
of the true posterior. Moreover, VB assumes that the KL divergence between
the variational posterior and the true posterior are the same for different model
complexities. This is of course not true in practice.

A related approach was proposed by Corduneanu and Bishop (2001) in order
to obtain sparse GMM. In this work, the mixture proportions are treated as
parameters (thus not as latent variables). They are computed by maximizing
the variational lower bound, which is conditioned on them. It is also assumed
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FI1GURE 3.14. Lower bound on the log-evidence versus the
number of components M. The curve shows the average over
10 trials. The maximum of the lower bound is obtained for
3 components, which is the true number of components from
which the original data was drawn (see Figure 3.5).

that the joint prior on the means and the precisions, as well as their variational
posterior further factorize. Note that the approach was only validated exper-
imentally. In addition, it is worth mentioning that the standard variational
GMM already prunes out excess components by setting the mixture weight of
components having insufficient support equal to zero.

Apart from the VB approach, it was proposed to approximate the evidence, ei-
ther directly in order to obtain model selection criteria (e.g., Roberts, Husmeier,
Rezek and Penny, 1998), or by means of sampling techniques (e.g., Roeder
and Wasserman, 1997). In particular,Green (1995) introduced reversible jump
Markov chain Monte-Carlo (MCMC), which is capable of jumping between pa-
rameter spaces of different dimensionality. Applying this approach to mixture
modeling (Richardson and Green, 1997) allows a fully Bayesian treatment of
both, the parameters and the number of components, as the algorithm is able
to jump between the parameter spaces of mixtures having a different number
of components. However, it was argued that reversible jump MCMC, and sam-
pling techniques in general, are rather slow (Figueiredo and Jain, 2002; Verbeek
et al., 2003). In addition, it is difficult to assess convergence of MCMC and the
posterior distribution is stored as a set of points, which can be inefficient.

A different approach was proposed by Figueiredo and Jain (2002). Rather than
selecting one among a set of candidate models, the “best” model is directly
selected in the entire set of available models on the basis of the minimum
message length (MML) principle (Wallace and Freeman, 1987). In fact, the
algorithm performs component annihilation such that excess components are
pruned out of the mixture, not requiring multiple runs. The resulting objective
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function takes the following form:

k N,
I%MMWMm—bMWMM—§;;M B
M* N M*(k+1)
——log— - ———- 1
5 og D 5 , (3.165)

where £(6|X) is the incomplete likelihood defined in (3.66), M* is the current
number of components and k is the number of parameters specifying one Gaus-
sian component. When using unconstrained precisions, k is equal to d(d+3)/2.
Maximizing the MML objective function leads to update rules identical to the
ones for standard EM, except for the mixture weights:

N
max{0,> " Pnm — g}
M N _ :
Y= max{0,> ) Pnms — é}

In practice, the algorithm is initialized with a large number of components.
During training, the weights of the excess components are driven to zero. How-
ever, the component annihilation (3.166) does not take into account the ad-
ditional increase in Lyr (7| X) caused by setting a component that is not
annihilated to zero. Therefore, when a stable maximum of the objective func-
tion is attained, the least probable component is removed and the algorithm is
rerun until convergence. This procedure is repeated until M* = 1. The estima-
tor is then chosen as the one that leads to the maximum value of Lyvr, (Oa] X).
In practice, this approach may require an important amount of processing time.

(3.166)

T =

It is worth mentioning that the MML approach is related to the MAP as, for a
fixed number of components M™, it corresponds to imposing a flat prior on the
means and precisions, and a Dirichlet-type prior (with negative parameters) on
the weights:

M
p(m) H L (3.167)
m=1

Interestingly, this framework can be extended to a MAP setting, i.e imposing
informative priors on the means and the precisions. Consider a Gaussian-
Wishart prior on these parameters. The resulting penalized log-likelihood takes
the following form:

k
log Layap (Onr|X) = log L(On|X) — B Z log 7,

T >0

+ > og NW(pty, AmlOnw,,) - (3.168)

T >0

Maximizing this objective function leads to the same E-step and update rules
for the means and the precisions as in MAP learning, while the update rule for
the mixture proportion is identical to the one of the MML approach. Therefore,
this MAP scheme is still sparsity inducing, for given hyperparameters, as most
of the weights are driven to zero.
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FIGURE 3.15. Objective function for (a) MML and (b) sparse
modified MAP versus the number of iterations. With the sec-
ond method, the true number of components maximizes the
objective function. The figure shows one trial. However, the
algorithm was run 10 times. For each run, the true number
of components was found. By contrast, the MML approach
generally found 5 or 6 components.

Consider again the example of Figure 3.5 and let us apply the MML based
GMM and the sparse modified MAP GMM. Figure 3.15 shows the correspond-
ing objective functions as function of the number of iterations. It can be ob-
served that when the number of data points is limited (in this example 150
per component), the MML approach fails to select the right number of compo-
nents, which is 3. However, by using the MAP approach, the true number of
components can be recovered. In this example, the regularization constant «
is set to 3.

In a sense, the greedy EM of Verbecek et al. (2003) works opposite to the MML
or sparse MAP approach. Indeed, the former starts with a small number of
components and further builds the mixture component-wise. As a result, an
interesting feature of the greedy approach is that it does not require to update
a large number of parameters at the start of the algorithm.

Finally, note that a standard approach for choosing the number of mixture
components is still applicable. The optimum is then chosen as the one mini-
mizing a well-defined error criterion, e.g. the ANLL, which can be estimated
by means of resampling techniques. Of course, this approach is wasteful of
training data in some way.

3.3. Finite Student-t Mixture Models

A major limitation of the GMM is its lack of robustness to outliers. Providing
robustness to outlying data is essential in many practical problems, since the
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F1GURE 3.16. Univariate Student-t distribution with zero
mean and unit precision. The robustness of the distribution
increases for decreasing v, i.e. the tails get heavier.

estimates of the means and precisions can be severely affected by atypical
observations. In addition, in the case of the GMM, the presence of outliers or
any other departure of the empirical distribution from Gaussianity can lead to
selecting a false model complexity. More specifically, additional components
are used (and needed) to capture the tails of the distribution.

Robustness can be introduced by embedding the Gaussian distribution in a
wider class of elliptically symmetric distributions, called the Student-t distrib-
utions, which provide a heavy-tailed alternative to the Gaussian family:
(4~) 1 1 T -
S(x|p, A v) = — 2L A2 |1+ = (x—p) A(x—p) , (3.169)
T (%) (vr)2 v

where p and A are respectively the component mean and precision and T'(-)
denotes the gamma function. Parameter v > 0 are the degrees of freedom
(df) and it can be viewed as a robustness tuning parameter. Its effect on the
thickness of the distribution tails is shown in Figure 3.16. The smaller v is,
the heavier the tails are. When v tends to infinity, the ¢-distribution tends to
a Gaussian one.

A finite Student-t mixture model (SMM) is defined as follows:

M
p(x|60s) = Z TS (X| My, Ay Vi) (3.170)

m=1
where Os = (T1,... sy bys- s ass A1y ooy Ay vn, .o, var). The mixing

proportions {7, }*_, are non-negative and must sum to 1.

3.3.1. Maximum Likelihood Learning

The SMM can be viewed as a latent variable model in the sense that the
component label associated to each data point is unobserved. As for the GMM,
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the set of indicator vectors are denoted by Z = {z,}_;, with 2z, € {0,1}
and such that 2%21 Zpnm = 1, Vn. Furthermore, in the case of the SMM,
the observed data X augmented by the indicator vectors Z is still incomplete.
Indeed, the Student-t distribution can be written in the following form

+oo
Sx|p, A, v) = ; N (x|, uh)G(ul%, §)du (3.171)

where v > 0 and the Gamma distribution is given by

ﬂa

I(c)

with @« > 0 and § > 0. Equation (3.171) can easily be verified by noting that
the Gamma distribution is conjugate to the Gaussian distribution. Under this
alternative representation, the Student-¢ distribution is thus an infinite mixture
of Gaussian distributions with the same mean, but different precisions. The
scaling factor u of the precisions is following a Gamma distribution with pa-
rameters depending only on v. In contrast to the Gaussian distribution, there
is no closed form solution for estimating the parameters of a single Student-¢
distribution based on the maximum likelihood principle. However, as discussed
by Liu and Rubin (1995), the EM algorithm can be used to find an approximate
ML solution by viewing u as an implicit latent variable, on which a Gamma
prior is imposed. This result was extended to mixtures of Student-¢ distribu-
tions by Peel and McLachlan (2000). Here, for each data point x,, and for each
component m, the scale variable u,,, given z,,, is unobserved. In the sequel,
the set of scale vectors is denoted by U = {u,, }V;.

G(ula, B) = u®™texp(—fu) | (3.172)

The SMM is completely specified as follows:

M
p(zal0s) = [ 7 (3.173)
m=1
M
p(un|zn795) = H g(unm %a %)an y (3174)
m=1
M
p(Xp|Up, Zn, 0s) = H N (X | oy s Ui A )57 (3.175)
m=1

Marginalizing over the latent variables results indeed in (3.170):

p(xn]0s) :/ZP(Xn|umzmOS)p(un|znvOS)p(anS)dun (3.176)

Zn

M
- /Z H {ﬂ-mN(anﬂ’maunmAm)g(Unm|VTm7 %)}ZmndUn
m=1

Zn

(3.177)
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Ficure 3.17. Graphical representation of the SMM. The
shaded node is observed. The plate indicates N indepen-
dent copies. The arrows represent conditional dependencies
between the random variables.

M
_ / S TN Gl s i Ao ) G |5, %), (3.178)
m=1
M
= TS (Xn |ty A V) - (3.179)
m=1

Figure 3.17 shows the directed acyclic graph of the SMM. Each observation
X, depends on the indicator vector z, and the scale vector u,,, which are both
unobserved. The scale vectors are also conditionally dependent on the indicator
variables.

As discussed in Section 3.1.1, the EM algorithm finds local ML estimates for
the model parameters by alternating between an expectation and a maximiza-
tion step. The E-step consists in computing the posterior distribution of the
latent variables given the observations and the model parameters. The M-
step maximizes the expected complete data log-likelihood with respect to the
model parameters, the expectation being taken with respect to the posterior
distributions computed in the E-step.

First, let us compute the posterior probability of the indicator variables. Since
the marginal distribution p(xy,|znm = 1,0s) is equal to S(Xn |ty Ams Vi )s
applying Bayes’ rule leads to the posterior probability P(z,., = 1|x,,0s),
termed responsibility:
rm = J’”S(X”WWA”“”’”) . Yn, Vm. (3.180)
Zm:l Wms(xn‘ﬂm, Ama Vm)

These quantities correspond to the probability of having component m if x,, is
observed.

Second, let us compute the posterior distribution of the scale variables. Using
Bayes’ rule we have:

P(Unm[Xn, 2nm = 1,0s) N(Xn|l‘mvunmAm)g(unm|%a %) . (3.181)
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Since the Gamma distribution is conjugate to the Gaussian distribution, the
posterior of each scale variable has the form of a Gamma distribution as well.
It is then straightforward to show that

p(unmlx7uznm =1 05)
= G(Unm | T2, 3 (%0 — ) A (X — ) + %) . (3.182)

The E-step for the scale variables consists thus in simply updating the para-
meters of the prior to the parameters of the posterior.

Next, let us compute the M-step. Given the latent variable formulation of the
SMM, the complete data log-likelihood is given by

log L.(0s|X,U, Z)
N
=log [ [ p(xn. un, 2,10s) (3.183)

n=1

=logl1(m|Z) + log bs(V|U, Z) + 10g€3(051, .. .,gleX, U,7Z), (3.184)

where 7 = {7, }M_,, v = {v,}*_, and 05, = (u,,, Amm), Ym. The partial
log-likelihood terms in (3.184) are defined as follows:

log by (m|Z) = Z Z Znm 108 T (3.185)
n=1m=1
N M
log Lo(W|U, Z) = > Y 2 10g Gunm| 2=, 45 (3.186)
n=1m=1

N M
logl3(Bs, ... ,05,|X.U.2) =Y Z Znm 10g N (X | > Ui A ) 5 (3.187)
n=1m=1

Taking expectations with respect to the posterior distribution of the latent
variables leads to:

EUyZ{logﬁl(ﬂZ)}

- Zn 1 Zm 1 ﬁ’ﬂm log Tm (3188)
EU}Z{IOgEQ(IAU, Z)}

N Mo - i v .
=D =1 Dm=1 an{7 log %= —logI’ (7)

+ (VTM - )1ogﬂnm - %ﬂﬂnm} ) (3.189)
EU,Z{IOggg(OSU N 0$M |X, U, Z)}

- Zn 1 Zm 1 an{ - %10g271’—|— glogﬂnm
108 [ M| = 252 (0 — p1) " A (0 — p1) }, (3.190)

where we use the fact that Ez{z,m} = pnm and where the special quantities
Upm and log @y, are respectively equal to Ey{unm,} and Ey{log ., . These
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quantities can be computed using the properties of the Gamma distribution:
d+ vy,

- 3.191
tnm (Xn - p’m)TAm(X’ﬂ - l*l’m) + Um ' ( )
d+uv,, 1 m
10g tpm = ( +2V ) — log {Q(Xn = ) T A (X — ) + 1/2}
(3.192)

Finally, maximizing Ey z{L.(0s|X,U, Z)} with respect to s and subject to
the constraint on the mixture proportions results in the M-step for the SMM:

N _ _
= 2n=1 PrmTnmXn , (3.193)

N _ _
anl PrnmUnm

N Ty 1
A, = { Zn:l PrnmUnm (f}n __,U'm) (Xn - Nm) } : (3'194)
Zn:l Prnm
1 N
Tm =~ Y Pm - (3.195)
N n=1

For the df however, there is no closed form solution. Therefore, we should seek,
at each iteration and for each component, the root of the following equation:

N

log 5" +1 - (%”") + N%Tm 7; B {108l — G } =0 . (3.196)
Liu and Rubin (1995) proposed to solve this equation by line search in the case
of a single Student-t distribution, but noted that the EM algorithm converges
slowly. In addition, the approach is computationally expensive. When it can be
assumed that the df is identical for all the components, resampling techniques
can be used. Shoham (2002), who discussed a deterministic annealing EM
scheme for the SMM, proposed a heuristic for approximating (3.196) when
using the same df for all components:

2.1971
+ 0.0416 {1 + erf (0.6594 log ) } . (3.197)

v —
y+logy — 1 y—logy—1

where

N M
y = f% SN om {108 linm — T} - (3.198)
n=1m=1
In practice, this approximation turns out to be relatively accurate. Inter-
estingly, the rule can be generalized to the case where the components have
different df by simply replacing y with y,,:

N
1 Z _ - _
Ym = 7N7Tm n=1 Prm 1108 Unm — Upm} , VM . (3.199)

While this heuristic is more flexible in practice, it is also less robust in very
noisy environments. This is due to the fact that fewer data points contribute
to the computation of y,, than to the computation of y.
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When looking at (3.193) and (3.195), the resemblance with the M-step of the
GMM is obvious: the means and the precisions are computed by weighting the
data points according to the responsibilities and when v,,, tends to infinity, the
M-step of the GMM is recovered since

lim Uy, =1 (3.200)

Vi —+00

However, in contrast to the GMM, outliers are here downweighted due to the
factor @y,,. From (3.191) it can be seen that the downweighting (and thus the
robustness) increases when v, decreases. A related approach was proposed
by Markatou (2000), which is based on the weighted likelihood methodology
(Green, 1984; Markatou, Basu and Lindsay, 1998). In this method, robust-
ness is introduced by weighting the likelihood of each observation according
to a weight function, which is defined in terms of the Pearson residuals. The
approach was only established in the context of univariate mixture models.

To conclude, note that the convergence rate of the EM algorithm for the SMM
can be improved. In case of a single Student-¢ distribution, Kent, Tyler and
Vardi (1994) proposed to replace the normalizing constant in (3.194) by

N
> Prmnm - (3.201)
n=1

It was reported that the resulting EM steps converge faster (e.g., Kent et al.,
1994; Meng and van Dyk, 1997). The approach was also used in the context of
SMM by Peel and McLachlan (2000) and Shoham (2002).

3.3.2. Learning with the Regularized Mahalanobis distance

When approximating an unknown PDF by increasing the number of compo-
nents arbitrarily, numerical difficulties might occur with the SMM as well. As
in the case of the GMM, maximizing the data log-likelihood in the context of
SMM is an ill-posed problem, since the width of a component may still tend to
zero when it comes near an isolated data point (see for example Archambeau,
Lee and Verleysen, 2003). With SMM, this only happens when a component
is badly initialized or when the learning set contains lots of outliers. Yet, if
sufficient data are available and the singularities of the likelihood function can
be avoided, we may approximate the true PDF arbitrarily well. In order to
recover from singular precisions, Archambeau, Vrins and Verleysen (2004) pro-
posed to extend the use the regularized Mahalanobis distance in the frame of
the SMM.

Modified M-step

As the Gaussian distribution, the Student-¢ distribution uses the Mahalanobis
distance to determine its shape. For each component we have

A by M) = (x = p1,)" A (x = p1,,) - (3.202)
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In Section 3.2.2, a regularized distance is constructed like the convex com-
bination of the Euclidean distance A(x|u,,,I), which favors hyperspherical
components, and the Mahalanobis distance A(x|u,,,, A;,), which favors hyper-
ellipsoidal components. A similar approach is used here:

A/(X“l’ma Am) = (1 - T)A(X“l’ma Am) + TA(X“l’va) ’ (3203)

where 7 € [0,1] controls the trade-off between both distance measures. Next,
consider the M-step of the unconstrained SMM. The regularized Mahalanobis
distance is introduced in the M-step by adapting, at each iteration step, the
precision A, of each component according to (3.203). Therefore, the update
rule of the component precisions becomes:

> — 27]:,]:1 PrmUnm (xnfﬂm)(xnfllm)T
m SNy Pt ’ (3.204)
A, = (1=7)(Bn+e)  +7AL.

Parameter ¢ is the safety factor. The scaling factor \ takes the range of the
data into account. This parameter can be computed according to (3.99), which
is a rule-of-thumb reflecting our prior belief about the expected precision of
each kernel.

3.3.3. Maximum a Posteriori Learning

As mentioned in the previous section, although the SMM is robust to outliers,
it may still be attractive to constrain its parameters in order to improve the
generalization capabilities of the resulting estimator. In fact, the SMM is suc-
cessful when few atypical data occur in the data set, but their quality reduces
when the number of atypical data increases or when the data set is sparse.

Alike the GMM, some prior information can be introduced when using the
SMM. Besides, this is particularly suited when using SMM for nonparametric-
like PDF estimation. Assuming a Dirichlet prior on the mixture proportions,
Gaussian-Wishart priors on the component means and precisions and expo-
nential priors on the df, the joint prior on the parameters takes the following
form:

M M
p(eg) = D(W|K') H NW(HvamWNWm) H E(Vmp‘m) ’ (3205)

m=1 m=1
where k = {#,, }M_, and Onyy,, = (N> My, Yim, S ), ¥Ym. The exponential
distribution is given by
E(W|N) = Nexp(—Av) , (3.206)
with v > 0 and A\ > 0.
When using the EM algorithm for MAP learning, it maximizes iteratively the

expected complete data log-likelihood, augmented by a penalization term equal
to the logarithm of the prior on the parameters:

Ey.z{log L.(05|X,U, Z)} +log p(0s) . (3.207)
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Since this term does not depend on the latent variables U and Z, the E-step is
unchanged. The M-step is obtained by maximizing this expression with respect
to the parameters (and subject to the constraint on the mixture proportions).
The MAP update rules for the SMM are:

N _ _
Y et PrmlnmXn + NmMy,

Fom = : 3.208
" Zr]yzl PrnmUnm + Nm ( )
s P (% = Bn) (%0 = )
Am = N
Zn:l pnm + ’Ym - d
T, g -1
R e
Zn:l Pnm + Ym — d
N
nm m ]-
= St bom T : (3.210)
N+ Zm’:l K — M
The M-step for the df is given by
N
1% . 1 A
1 - 1- (ﬂ) _nm l ~'nTrL - _nm - i -
og‘2+ (0 5 +Nﬁm;p‘ {log @, U } N 0
(3.211)

3.3.4. Modified Maximum a Posteriori Learning

The main drawback in MAP learning is the prohibitive number of hyperpa-
rameters. Let us therefore handle the problem in a practical way by means
of the modified MAP (see Section 3.1.2). In this approach, particular values
are chosen for the hyperparameters of the joint prior of the parameters, the
amount of penalization being adjusted by the regularization vector .

Consider again the expected penalized complete data log-likelihood defined
in (3.207). Let ¥ = (k),,0nw, ,A5) be a particular choice of the hy-
perparameters for component m and the regularization vector a be equal to
(ap, anw, ag). The objective function for modified MAP is given by

Ev z{log L.(05|X,U, Z)} + aplogD(w|k")

M M
+oanw > 10g NW(p, A Oy, ) + e > logE(vm|A;,) . (3.212)
m=1 m=1

Applying the EM algorithm leads to a modified M-step:

N — — * *
En:l PrnmUnmXn + ANWT), ML,
= Azn=t Pl Lo (3.213)
Zn:l PrmUnm + ANWT,
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Ficure 3.18. Graphical model of the Bayesian SMM.

o {EEptn
m N
Zn=1 Prm + axw (v, — d)
T —1
* _ * _ * S*
+ apw (“TV ) P = 0) ’"} : (3.214)
anl Pnm + NV (7;1 - d)
N _
= L lom 1 : (3.215)
N+> ki, —M
1% V., 1 N A
1 - 1- (ﬂ) 771771 1 ~’rwn_7n'1n - o :0
og o +1-v( +Nwm;p {log @ Uy } aE
(3.216)

The corresponding ML and MAP steps are respectively recovered for a« = 0
and a = 1. The choices proposed in Section 3.2.4 for «}, and Oj\/wm can still
be used for the SMM. For df, using ae does not simplify the problem, so it is
adviced to optimize A, directly. In practice, the same choice is made for all
the components.

3.3.5. Variational Bayesian Learning

The SMM is a latent variable model. Both the indicator variables and the
scale variables are unobserved. In this section, we discuss how to estimate the
parameters of the SMM in the Bayesian setting, and more specifically by means
of the VBEM algorithm. In the Bayesian approach, the parameters are treated
as latent random variables as well. The graphical model of the Bayesian SMM
is shown in Figure 3.18. Note that the parameters appear as nodes in the graph.
In contrast to the work of Svensén and Bishop (2004), it is not assumed that
the scale variables are independent from the indicator variables. Therefore,
the correlation between the indicator variables and the scale variables are not
unnecessarily neglected, leading to different update rules for the variational
distributions.

Recall that the aim in Bayesian learning is to compute (or approximate) the
evidence. This quantity is obtained by integrating out all the latent variables.
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For a fixed model structure Hj; of the SMM, this quantity is given by
P(X[Hy) = / / (X, U, Z,05|Hp)dUdOs . (3.217)
z

As in the case of the GMM, the evidence is intractable in practice. However,
by assuming a factorized approximation of the joint posterior of the latent
variables and the parameters, a tractable lower bound on the logarithm of the
evidence can be constructed. Using Jensen’s inequality we have

log p(X[Har) > logp (X|Har) — KL [q(U, Z,05)l|lp (U, Z,05|X, Har)] -
(3.218)
In VB learning, the arbitrary distribution ¢(U, Z,0s) is chosen as a factor-
ized approximation of the joint posterior p (U, Z,0s|X,Hpr). The resulting
variational posterior is given by
qU,Z,0s) = qu,z(U,Z)qes(0s) . (3.219)
Given this factorized form, the lower bound on the log-evidence is tractable.
Furthermore, since X are i.i.d., qu,z(U, Z) factorizes as well. As discussed in
Section 3.1.3, VBEM minimizes iteratively the KL divergence between the true
and the variational posterior by alternating between the following two steps:
VBE-step :
Gu, .z, (Un, Zn) X exp (Egg {log p(xn, un, 2,|0s, Har)}) . Vn . (3.220)
VBM-step :
qos (05) o p(08|HM) exp (EU’Z{IOg EC(05|X, U, Z, H]\/[)}) . (3221)
In these equations, the expectations are taken with respect to the variational
distributions. The complete data likelihood for the SMM is given by

N
Le(0s|X,U, Z, Har) = || pkns i, 2010, Har) (3.222)
n=1

where we have

p(xn7un7zn|HM)
M
= H T N (X [ By s Ui A )™ G (U | P32, B ). (3.223)
m=1
Due to the factorized form of p(x,,u,,2,|0s, Har), it is likely that
{qa, (2,)}N_ and {qu, (u,)}N_; factorize similarly:

n=1
M
G2 (20) = [ @z (zom)™ . 0. (3.224)
m=1
M
Qu,, (un|zﬂ) = H Gy (unm)znm , Vn . (3225)
m=1

Following the same approach as in the GMM case, the prior on the mixture
proportions, the means and the precisions are chosen conjugate to the expo-
nential family. The joint prior is thus the product of a Dirichlet distribution
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and Gaussian-Wishart distributions. Since there is no conjugate prior for the
set of df {v,,}*_,, no prior is imposed on them. Instead, a ML estimate is
used. The resulting joint prior is:

M M
p(03|H1\4) = D<77|K‘0) H NW(IJ’maAm|0NW0) H 6(”771) ; (3226)
m=1 m=1

where 0(-) denotes the Dirac pulse and @y, = (170, mo, Y0, So). These para-
meters are chosen such that they give broad priors. The joint posterior has the
same functional form as the prior:

M M
402(8s) = D(rclr) [ NW (st AlOw,) T 60m) s (3:220)
m=1 m=1
where k = (K1,...,fm) and Oy, = (N, My, Y, Sim)-

Given these specific choices for the priors and the posteriors, the VBE-step can
be computed. Taking expectations with respect to the posterior distribution
of the parameters leads to:

Ees {log p(xm Unmy Znm |H]V[)}

d d 1 -
= znm{ log T — 5 log 27 + 3 log tpm + 3 log A,

nm /m — nmd
L o — ) S, (6 — ) —
2 20,
Vm Um Um Um Vm
+ - log 25 logT’ (7) + (7 — 1) log Upm — 7unm} ,(3.228)
where
log T, = Egg{logmm} = ¥(km) — ¥ (SM_, ks (3.229)
d
log Ay, = Egg{log [Ap|} = > (2241=%) + dlog2 —log[S,| . (3.230)
i=1

On the one hand, substituting (3.228) in (3.220) and integrating out the scale
variable leads to the VBE-step for the indicator variables:

D(m) ooy
Gz (Zm = 1) < Ty ————=——7 A ® (3.231)
T () (vmm)®
d _d+um
2
X 1 + h (X’ﬂ - m’m)T Smil (X’n - an) + -
Um UmMm

Since the distribution g, (z,) must be normalized for each data point x,,, we
have
Gz (Znm = 1)

ﬁnm = M
Zm/:1 9z (an’ = 1)
These quantities are termed responsibilities and are very similar to the E-step
of the indicator variables in ML learning.

, Vn, Vm. (3.232)
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On the other hand, it can be seen from (3.228) that the variational posterior on
the scale variables qu,, (Unm|2nm = 1) has the form of the following Gamma
distribution:

G (U |Znm = 1) = G(tnm|nm, Bam) (3.233)
with
d m
iy = +2” , (3.234)
Bnm = %(Xn - mm)TSm_l(Xn - mm) + 277% + % . (3235)

Again, the VBE-step of the scale variables shows a striking similarity to the
corresponding E-step in ML learning. Moreover, this step simply consists in

updating the hyperparameters {an’m}ﬁ[”,ﬁil and {ﬁnm}g’;ﬁ/f:l.

Next, let us compute the VBM-step. Using (3.188-3.188), the expected com-
plete data log-likelihood is given by

EU,Z{log Ec(98|Xa U7 Z)}

SR d d 1
= Z Z ﬁnm{lOg’frm - 510g27r+ 510ganm+ 510g|Am|

n=1m=1
T . Vi | VUm
v v v
-1 F(ﬂ) (ﬂ_1>1 ~nm_7minm} ) .
og 5 + > ogu 5 U (3.236)
where m = {7, M, v = {vp M, and 0s,, = (K, An), Ym. In this

equation, we use the fact that Ez {2z, } = pnm and equate the special quantities
Unm and 10g Uy, respectively to Ey{unm  and Ey{log u,m, }. These quantities
can be computed using the properties of the Gamma distribution:

a7lm
B (3.237)
log tnm = ¥ (@nm) — 10g Brm - (3.238)

Using these results, the VBM update rules for the hyperparameters can be
identified from (3.221) after some algebra:

Em = NTm + ko, (3.239)
Dm = Nom, +n9 , (3.240)
m,, = N“’;g :Izzmo : (3.241)
Y = Nitm +70 , (3.242)

S, = NopSm + (i, —mg) (2, —mg)" +Sg , (3.243)

Im
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where
N
0= Zn]=vl Prmtnm¥n (3.244)
D et Prmnm
N - - = _ \T
5, = Zn:l pnmunml\gxni /J:m) (Xn — My, ’ (3.245)
anl PrnmUnm

1 N

Tm = nz::l Prm (3.246)
1 N

Om = > P - (3.247)

3
I
-

These quantities are weighted averages. All, except the last one are identical
to the ML parameter estimates computed in the M-step of the EM algorithm.
Note that the normalizing factor of the covariance matrices corresponds to the
one proposed by Kent et al. (1994) in ML learning, in order to accelerate the
convergence of the algorithm.

Finally, maximizing (3.236) according to the df leads to the same update rule
as in ML learning:

Vm

N
m 1 -
log % +1—9 (7> + N E Prnm {log Unm — ﬂnm} =0. (3'248)
M op=1

Predictive distribution

For the SMM, the predictive distribution based on the variational posterior of
the model parameters is still intractable. Therefore, the predictive distribution
is approximated as follows:

p(X|X, Har) = p(x[6s) , (3.249)
where

0s = / 05405 (05)d0s . (3.250)

The resulting predictive distribution is given by
M
p(x[0s) = > FmS (XM, mS,, " vm) (3.251)
m=1
where 7,;, = K/ Z%:l B! -

Choosing the number of components

Let us conclude this discussion of the SMM by indicating how the optimal
model complexity can be chosen on the basis of the lower bound on the log-
evidence p(X|Has).
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Consider the variational lower bound for the SMM:

Fru (QU z(U, Z), d6s (03))

(X U, Z, OS\HM)
‘Z/ | 40120220 (05) s w0 (U1 2)0z(Z)ae, (85) " 0%

=3 [ [ a0V12)02(2)a0 (65) 1ogp(X1V. 2,05, Has)dUdos

+ 3 [ [ a0 012)42(2)10.05) 108 (V2. 65, Har U dos
Z

+Z/qz(Z)qos(Gs)logp(ZIHS,HM)d(?s
zZ

+/QQS(03) 10gp(05|HM)d03

-3 [ @12)a2(2)a0, 05 g a0 (V1 2)aU

- ZQZ )logqz(Z)

— /QQS(OS) loquS(Os)dGS . (3252)

All the distributions appearing in this expression are known:

N M
p(X|U, Z,0s, Har) = [ T] N nlttns tomAm)* (3.253)
n=1m=1
N M
p(U|Z,0s, Har) = [ TT GCunmlt, ), (3.254)
n=1m=1
N M
p(Z10s,Ha) = [T T 7™ (3.255)
n=1m=1
M M
p(Os|Har) = D(m|ko) [ NW (ko AmlOnwo) [T 6(vm) - (3.256)
m=1 m=1
U|Z H H g Unm‘Oénm;/Bnm)zmn 5 (3257)
N M
9z(Z) = [[ TI po™ (3.258)
n=1m=1
M M
405 (0s) = D(w|K) [[ NW (ks AnlOnw,) T] 5(vm) - (3.259)

m=1 m=1
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Therefore, each term of the variational bound can be computed as follows:

S [ [ a0V12)a2(2)a0: (65) 10 (XU, 2,65, Har)dU dos
Z

= 22;1 2%21 ﬁnm{ — glog 21 + %log Upn, + %log /~\m

— e (x, — ) TS, T —m) — Bl L (3.260)
S [ [ 0(V12)a2(2)a0(65) 1025012, 05, Har) U a0
Z
= 22;1 Zf\r{ﬁ ﬁnm{VTm log %+ —logI' (%)
+ (% = 1) 10g i — % | (3.261)
Z/QZ(Z)QBS(BS)Ing(Z|087HM)98
Z
= 3y Yot P 108 T (3.262)

/ qos(0s)logp(0s|Har)dOs
=logep (ko) + Zf\f:l(/io —1)log T + Z%:l { — %log 27

+ %log no — 110 (m,,, — mg)"'S,, ! (m, —mg) —

nod
20m

+log earw (0, So) + 2254 log A, — VTmtr{sosm—l}} . (3.263)

Z/qU(U|Z)qZ(Z) log qu (U|Z)dU

— 27]:]:1 2%21 /Snm{ - IOgF (anm) + (anm - 1) 1/} (anm)

+ IOg ﬁnm - anm} 9 (3264)
> qz(2)logqz(2)
Z
=N M Brm 108 P (3.265)

/ 402 (05) 108 go (05)d0s

=logep(k) + Z%Zl(lim — 1) log mp, + Z%Zl { — 2log 2

+ glognm - % + 10gCNW(’Ym, Sm) + %ﬂllogﬁm _ mgd}

(3..266)

The approach is illustrated on the same example as the one used for the GMM,
now corrupted by 25% of atypical observations (uniform random noise). The
data are shown in Figure 3.19. Hundred fifty data points are drawn from each
component. The VBEM algorithm is run 10 times. The model complexity
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FIGURE 3.19. Training set. The data consists in a mixture of
three Gaussian distribution with different mean and precision.
The data is corrupted by 25% of atypical observations.
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Ficure 3.20. Lower bound on the log-evidence versus the
number of components M. The solid and the dashed lines
correspond respectively to the GMM and the SMM. The curves
show the average on 10 trials. The model complexity is selected
according to the maximum of the lower bound.

ranges from 1 to 5 components. Figure 3.20 shows the average lower bound
on the log-evidence, both in absence and presence of atypical observations.
When there are no atypical observations, the GMM and the SMM perform
similarly. Both methods select the correct number of components. In contrast,
when there are atypical observations only the SMM selects the right number
of components.

Effect of the factorization of the latent variables’ posterior

As already mentioned, Svensén and Bishop (2004) also applied variational
Bayesian inference to Student-t mixture models. In particular, they assume
that the variational posterior on the latent indicator variables and the latent
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scale variables factorize. However, we have shown in Section 3.3.5 that this
factorization is not necessary. Taking into account the correlations between
the indicator and the scale variables leads to a model with an increased ro-
bustness to atypical observations. Furthermore, it is expected that the lower
bound on the log-evidence is tighter. This is important, since the lower bound
is used as a model selection criterion. However, by doing so, it is assumed that
the gap between the log-evidence and the variational lower bound is identical,
after convergence, for models of different complexity. Of course, this is not
true in practice. Usually, variational Bayesian inference tends to overpenalize
complex models, as the factorized approximations lead to a posterior that is
more compact than the true posterior. Therefore, when we want to perform
model selection based on the lower bound, it is essential to avoid any unnec-
essary approximations. Next, we give some experimental evidence to illustrate
these remarks.

Let us consider the Old Faithful Geyser data (see Appendix A). The data
is normalized and then corrupted by a certain amount of outliers. These are
simulated by uniform random noise on the interval [—10, 10] in each direction
of the feature space. Figure 3.21 shows the variational lower bound for the
variational GMM, the variational type-I SMM, which assumes that the vari-
ational posterior on the indicator variables and the scale variables factorize,
and the variational type-II SMM, which does not make this assumption. The
number of components vary from 1 to 6. For each model complexity 20 runs are
considered. Note that in some cases components are automatically pruned out
when they do not have sufficient support. In absence of outliers, the bound of
the three methods is maximal for two components. In presence of 2% outliers
the type-I SMM has solutions for both two and three components with almost
identical values of the bound. This was also observed by Svensén and Bishop
(2004). For the type-II SMM, the bound is still maximal for two components.
The GMM however favors 3 components. When the amount of noise further
increases (25%), only the type-II SMM selects 2 components. As a matter of
fact, the value of the bound seems almost not affected by an increase of the
noise. Thus, not neglecting the correlation between the indicator variables and
the scale variables clearly increases the robustness. This can easily be veri-
fied when looking to Figure 3.22, where it is shown how the outliers affect the
quality of both SMM.

In Figure 3.23, the typical variational posterior of a single data point is shown.
It can be observed that the type-I SMM assigns the probability mass almost
exclusively to one component (here to component 2) and that the posterior
for that component is more peaked than the posterior of the type-II SMM.
This suggests that the empirical variance is (even more) underestimated when
assuming that the scale variables are independent from the indicator variables.
Since the uncertainty is underestimated, the robustness of the model is reduced.
In general, the variational posterior is more compact than the true posterior.
This can be understood by seeing that maximizing the lower bound is done by
minimizing the KL divergence between the variational posterior and the true
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Ficure 3.21. Old Faithful Geyser data. The lower bound
on the log-evidence for the variational GMM and the varia-
tional type-I and type-II SMM for each run. Twenty runs
are considered. The number of components vary from 1 to 6.
An increasing number of outliers is successively added to the
training set.

posterior. However, the KL divergence is taken with respect to the support
of the variational distribution and not with respect to the support of the true
posterior.

In order to further assess the robustness of the type-II SMM, consider the 3-
component bivariate mixture of Gaussian distributions from Ueda and Nakano
(1998). The mixture proportions are all equal to 1/3, the mean vectors are
(0,-2)", (0,0)T and (0,2)T, and the covariance matrix of each component is
equal to diag{2,0.2}. The labeling (colors) of the data points are presented in
Figure 3.24. Two situations are investigated. In presence of a small proportion
of outliers (2%), both variational SMM perform similarly. However, note that
the type-II SMM assigns a blue label to all outliers, while the type-I SMM
partitions the feature space in three parts. In presence of lots of outliers (25%)
only the type-II SMM provides a satisfactory solution. Still all outliers are
assigned a blue label, i.e. the blue component has very heavy tails.

In conclusion, we have shown that the alternative variational update rules that
we derived for a Bayesian mixture of Student-¢ distributions lead to a model
that has a higher robustness against outliers. Our derivation is based on a
different formulation of the latent variable model. As a result, it is possible to
avoid the use of a factorized variational posterior on the indicator and the scale
variables. Taking the correlation between these latent variables into account
leads to a variational posterior that is less compact than the one obtained
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(a) Noisy training data. (b) Zoom on type-I SMM

(¢) Zoom on type-II SMM

Ficure 3.22. Old Faithful Geyser data. The dashed curves
correspond to the model in absence of outliers. The solid
curves are obtained when 25% of outliers are added to the
training set. Clearly, the type-II SMM (b) is less affected by
the outliers than the type-I SMM (a). The models are con-
structed with 2 components.
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F1GURE 3.23. The typical joint variational posterior of the
indicator and the scale variable for a single data point. The
mixture has two components. The data is the Old Faithful
Geyser data. The solid curve does not neglect the correlation
between both latent variables (type-II SMM), while the dashed
curve does (type-I SMM).
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FIGURE 3.24. Label (color) assigned to the data points by the
variational type-I and type-II SMM, using 3 components. (a)
and (b) are the models obtained when 2% of outliers is added
to the training set, while (c) and (d) are the ones obtained in
presence of 25% of outliers.

in previous approaches; therefore it underestimates less the uncertainty in the
latent variables. Although the resulting lower bound does not seem tighter, the
correct model complexity is selected in a more consistent way and the model
is less sensitive to local maxima.

3.4. Manifold Constrained Mixture Models

In many machine learning applications, the data is living in a high dimensional
space. Due to the curse of dimensionality, this can lead to serious problems in
practice. Fortunately, the data is in many cases also concentrated on an implicit
manifold, of lower dimension than the dimension of the feature space. Subse-
quently, we show how to take advantage of the intrinsic geometrical arrange-
ment of the data during the training of the models.

Recently, manifold kernel density estimation (Vincent and Bengio, 2002) was
introduced in order to improve standard nonparametric kernel density estima-
tion (KDE) in this context. Since the true density mass in the vicinity of a
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data point is oriented along the manifold rather than along all the directions in
the input space, estimating the unknown density by conventional techniques is
suboptimal. It tends to give too much probability mass to irrelevant directions
of space (i.e. perpendicular to the local manifold orientation) and too little
along the manifold. Instead of placing a spherical kernel on each data point as
in KDE, Vincent and Bengio (2002) compute for each of them a local covari-
ance matrix based on the closest neighbors. Furthermore, in order to obtain
a more compact (i.e. a lower dimensional) representation of the Gaussian ker-
nels, only the eigenvectors associated to the largest eigenvalues are kept. As a
result, the density mass is oriented along the principal directions of the data
in the vicinity of each data point.

In this section, a related technique for finite mixture models is introduced. Both
ML/MAP and Bayesian mixtures are considered (Archambeau and Verleysen,
2005a,b). When the data manifold is of lower dimension than the dimension
of the feature space, it is proposed to take this additional information into
account during training. In this perspective, the responsibilities computed in
the E-step are penalized according to some prior belief on the discrepancy
between the FEuclidian and the geodesic distance. The latter is measured along
the manifold and not through the embedding space. Here also, the key idea is to
favor the directions along the manifold when estimating the unknown density,
rather than wasting valuable density mass in directions perpendicular to the
manifold orientation. How to achieve this in the case of ML and variational
Gaussian mixtures is explained below. It is straightforward to extend these
results to other mixture models.

3.4.1. Constructing the Data Manifold

The basic principle of nonlinear data projection techniques, such as ISOMAP
(Tenenbaum, de Silva and Langford, 2000), Locally Linear Embedding (LLE)
(Roweis and Saul, 2000) or Curvilinear Distance Analysis (CDA) (Lee, Len-
dasse and Verleysen, 2003), is to find the lower dimensional data manifold (if
any) embedded in the input space and unfold it. An essential building block
for constructing this manifold is the geodesic distance. This metric is measured
along the manifold and not through the feature or embedding space, akin to
the Euclidean distance. As a result, the geodesic distance less depends on the
curvature of the manifold and takes thus the intrinsic geometrical structure of
the data into account. This is illustrated in Figure 3.25.

Geodesic distances

Consider two data points x; and x; of the p-dimensional manifold M of lower
dimensionality than the embedding space. The manifold M is parameterized
as follows:

m:R” - McR?:y—x=m(y),
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Data Manifold

Ficure 3.25. The data is located on a 1D manifold. In con-
trast, the dimension of the feature space is 2. The Euclidean
and the geodesic distance between x; and x; are respectively
denoted by 6°(x;,x;) and I(x;,%x;). The geodesic distance is
measured along the manifold and is therefore larger than the
Fuclidean distance.

where d is the dimension of the embedding space. Different paths may go from
point x; to point x;. Each of them is described by a 1D submanifold 7?2»(’];) of
the multidimensional manifold M with parametric equations:

pk:]RHPf,’;)C]Rp:tHyzpk(t).

The geodesic distance between x; and x; is then defined as the minimal arc
length connecting both data points:

tj

txis2) = min [ 13, (m(pr()]dt
pr(t) Je,

where || - || is the Ly-norm and J;(-) is the Jacobian with respect to ¢. In prac-

tice, this minimization is difficult and often intractable since it is a functional

minimization and the parametric equations of the submanifolds are generally

unknown; only noisy observations of points on M are available.

Graph distances

Even though geodesic distances cannot be computed in practice, they can easily
be approximated by minimum graph distances (Bernstein, de Silva, Langford
and Tenenbaum, 2000). The problem of minimizing the arc length between two
data points on the manifold M reduces to the problem of minimizing the length
of path (i.e., broken line) between these data points, while passing through a
certain number of other data points of M. In order to follow the manifold, only
the smallest jumps between successive points will be permitted. This can be
achieved by using, either the K-rule, or the e-rule. The former allows jumping
to the K nearest neighbors, K being a constant. The latter allows jumping to
points lying inside a ball of pre-determined radius e. In the following, we only
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consider the K-rule as the choice for € is more difficult in practice than the one
for K (Lee, 2004).

The data and the set of allowed jumps constitute a weighted graph G(Vy, E),
the vertices Vy being the NV data points, the edges E the allowed jumps and
the edge labels (or weights) the Euclidean distance between the corresponding
vertices. This graph is called the neighborhood graph. The Euclidean distance
between x; and x; is

6% (i, ;) = s — ;1] - (3.267)
A path in the graph G is an ordered subset of vertices of Vy such that the edges

linking these vertices belong to E/. The path k between x; and x; is defined as
follows:

Ak

,Pi(J) = {Xi,Xi/,Xi//, cen ,Xj/,Xj} - VN
s.t.

(xivxi’)v(x’i’axi”),"'a(xj/vxj) €E.

The path length is then found by adding the edge weights, corresponding to
the length of the successive jumps in the path:

lengthP?) = |lx; — x| + [|xir —xir || + ... + |50 — x| - (3.268)

In order to be a distance, the path length must satisfy the properties of non-
negativity, symmetry and triangular inequality. The first and the third prop-
erty are satisfied by construction. Symmetry is ensured when the graph is
undirected. In the case of the K-rule, this is gained by adding some missing
edges: if x; belongs to the K mnearest neighbors of x;, but x; is not a neighbor
of x; then the corresponding edge is added. The graph distance between x; and
x;, which approximates the corresponding geodesic distance, is then defined as
the minimum path length between these points:

l(xi,x5) = 07(x4,%x5) = I;l(ikr)l lengthﬁi(f;-) . (3.269)
K2V}

When necessary, extra edges are added to the graph in order to avoid discon-
nected parts. For this purpose, a minimum spanning tree is used. A minimum
spanning tree (MST) of a graph G'(Vx, E’) is an undirected, acyclic and con-
nected subgraph of G’ containing all the vertices Viy and having the minimal
total weight. As a result, there is only one path in the subgraph connecting
each pair of vertices and the sum of all the weights of the edges is minimal.
Minimum spanning trees are commonly constructed by using either Prim’s, or
Kruskal’s algorithm (see for example West, 1996). Prim’s algorithm builds the
MST by adding one vertex at a time. Starting at any vertex of G’, the algo-
rithm picks the vertex connected to the start vertex with minimal edge weight.
Next, it finds the least costly vertex connection to one of these two vertices
without creating a cycle. The procedure continues until all the vertices of G’
are connected without any cycles. In contrast, Kruskal’s algorithm is a greedy
algorithm that keeps adding any edge of G’ with the least weight, while avoid-
ing the creation of cycles. Suppose this graph has N vertices. The iterative
procedure stops when (N — 1) edges have been added.
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At this point, the data manifold can be described through the distance matrix
of the weighted undirected graph. This matrix is symmetric, of size N x N for a
graph with IV vertices and contains the distances, i.e. the length of the shortest
paths, between all pairs of vertices in this graph. The shortest paths between all
data points are generally computed by repeatedly applying Dijkstra’s algorithm
(Dijkstra, 1959). Dijkstra’s procedure computes the shortest path between a
source vertex and all other vertices in a weighted graph, provided the edge labels
are non-negative (which is the case here). The algorithm begins at a specific
vertex and extends outward within the graph, until all vertices are reached.
The total minimum cost, i.e. the minimal sum of the edge weights, from the
source vertex to the current vertices is stored during the procedure. This means
that Dijkstra’s algorithm ends up with the minimum cost or shortest path to
all vertices.

3.4.2. Manifold Constrained E-step

In this section, it is shown how to constrain the E-step in ML or MAP learning
according to the implicit information of the data manifold (Archambeau and
Verleysen, 2005a). The idea is to downweight the contribution of the data
points which are lying far away from the component centers on the manifold.
The approach is applied to the GMM as a particular case, but its extension to
the SMM is straightforward.

Let us respectively denote the Euclidian and the graph distance between point
X, and component mean p,, by 0°(Xp, tt,,,) and 69(Xy, it,,,). The graph dis-
tance 69 (X, i,,) approximates the corresponding geodesic distance I(xy,, ft,,)-

Consider the exponential distribution with location parameter v and scale pa-
rameter A:

E(ylv, \) = Aexp(=A(y —v)) , (3.270)
where y > v and A > 0. Figure 3.26 shows the shape of the exponential distri-
bution for different values of the location parameter. Setting v to §¢(x,, i,,)>
and y to 89(x,, ,,)? provides an appropriate measure of the mismatch be-
tween both distances since 6¢(x,, i,,) < 09(Xn, i,,). If the component means
are held fixed during the E-step, we can bias the posterior distribution of the
latent variables as follows:

p/(znm = 1|Xn79./\/')
X TN (X By s A )E (69 (s )2 [0 (R, 1) Am) 5 (3.271)

where Opnr = (71, s Tars gy« s Bopgs Ay oo, Apr). As before, the posterior
distribution of the latent variables needs to be normalized as for each x,, the
posterior probabilities must sum to one. The responsibilities are thus given by
/
P = =1 (enm = 1, On) (3.272)
Zm/:1 P (Znm' = 1]%Xn, Ox)
Choosing A, equal to 1 leaves the posterior probability unchanged when both
distances are identical. However, when the discrepancy between the distances
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FIGURE 3.26. Exponential distribution with different location
parameters and a scale parameter equal to 1.

increases, the posterior p/(zpm = 1|xp,0x) decreases. This means that it is
less likely that data point x,, was generated by component m because its graph
(and thus geodesic) distance to u,, is large, compared to its Euclidean distance
to p,,. This results in weaker responsibilities. As a consequence, data points
lying far from the component means in terms of geodesic distance (i.e. along
the manifold) will contribute less to both the update of the means and the
precisions of the corresponding component during the M-step.

As discussed in Section 3.1.1, the EM algorithm maximizes iteratively the ex-
pected complete data log-likelihood. Recall that the expectation of the indi-
cator variables is equal to their responsibilities; the expected complete data

log-likelihood is given by
M

> P {108 T + 108 N (X |ty M)} -

m=1

N
Ez{log Lo(On]X,Z)} =
n=1

(3.273)

Maximizing this quantity subject to the constraint on the mixture proportions
leads to the following M-step:

N
n= pnmxn

by = 2onst P el (3.274)

Zn:l Pnm

N Ty !
Am _ Zn:l plnm (XTL - p’m) (X” - y’m) , (3275)
N7
n=1 pnm

1 N
Tm = ; Do - (3.276)
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F1GUureE 3.27. Constrained EM algorithm. In the uncon-
strained E-step the bound is made tight (dotted line). In the
constrained E-step it is not due to the fact that the posterior
distribution of the latent variable is biased according to the
prior belief that data points lying far from a component mean
on the manifold should contribute less to its update.

These update rules are identical to (3.69-3.71), except that when a data point is
far away from a particular component mean on the manifold, the contribution of
that point to the parameters of the corresponding component is downweighted.

The interpretation of the constrained EM algorithm is shown in Figure 3.27.
Recall that the EM algorithm finds a local maximum of the incomplete data log-
likelihood iteratively by alternating between the E-step and the M-step. In the
E-step, the lower bound on the incomplete data log-likelihood is made tight
by equating the arbitrary distribution of the latent variables ¢z(Z) to their
true posterior distribution, while the parameters are held fixed. In the M-step,
the bound is maximized with respect to the parameters, keeping the posterior
distribution of the latent variable fixed. In the constrained EM algorithm,
however, the bound is not made tight, but it is biased according to some prior
belief on the discrepancy between the Euclidian and the geodesic distance.
Subsequently, in the M-step the lower bound (which is not tight) is maximized.
By construction, the bound is still guaranteed to monotonically increase at
each iteration.

Learning algorithm

The learning procedure for manifold constrained finite Gaussian mixtures
(MGMM) can be summarized as follows:

(1) Construct the training manifold (i.e. the neighborhood graph of X)
by the K-rule and compute the associated distance matrix 69(x;,x;)
by Dijkstra’s shortest path algorithm.
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(2) Repeat until convergence:
Update the distance matrix of the component means:
Find for each p,, the K nearest training points {xj}X_, and
compute its graph distance to all training data by

59 (Xn’ “’m) = Inkin{dg (Xn’ Xk?) + 56 (xk'7 /1'7n)} . (3277)

E-step: Compute the manifold constrained responsibilities by
(3.272) using the current parameter estimates.
M-step: Update the model parameters by (3.274-3.276) using the
manifold constrained responsibilities of the E-step.
End.

Remark that the increase of the computational cost at each iteration step is
limited with respect to the conventional GMM. Indeed, the computational over-
head due to the computation of the distance matrix of the component means
does not require to recompute the data manifold, nor to re-apply Dijkstra’s
algorithm. However, additional computational effort is required for construct-
ing the training manifold and the computation of its distance matrix; both are
performed only once (in step 1), but can nevertheless be time consuming.

Experimental results

In this subsection, the quality of the MGMM density estimators is assessed on
three 2D artificial data sets. The MGMM is compared to the ordinary GMM
and the KDE. The performance measure that we use is the average negative
log-likelihood of the test set.

The first distribution is distributed along a cross. The data points are gen-
erated from a uniform distribution 4/(—0.5,40.5) in horizontal or vertical di-
rection with probability 1/2. Gaussian noise with zero mean and standard
deviation o, = 0.03 is added in the transversal direction. The training set and
the validation set both contain 100 points, and the test set 500 points. For
comparison purposes, M is fixed a priori to 4 for both mixture models. The
density estimators using the optimal kernel width for the KDE (o4, = 0.03)
and the optimal number of neighbors for the MGMM (K,,, = 3), as well as
the ANLL are shown in Figure 3.28.

The second data set is a noisy spiral (generated similarly as the one described
in Appendix A). The data are generated as follows:

{ x1 = 0.04tsint + €7

Xy = —0.04t cost + eg , (3.278)

where t ~ U(3,15) and € ~ N(0,1/0,°I) is zero-mean Gaussian noise. A
training set of 300 points, a validation set of 300 points and a test of 1,000
points were generated. The standard deviation of the Gaussian noise o, is
equal to 0.025. The number of components in the mixtures is fixed to 10,
the optimal kernel width for the KDE is 0.025 and the optimal number of
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neighbors for constructing the learning manifold is 4. The results are shown in
Figure 3.28.

The third distribution has an S-shape. A training , validation and test set

of respectively 100, 100 and 1,000 points are generated from the following
distribution:

x1 =3cos(t) +3(—1)* + ¢ ,

{ xo = 10sin(t)(=1)' "% + &2 , (3.279)

where t ~ U(0,7), € ~ N(0,1/0.25I) and z ~ Br(0.5) (Bernouilli distribution
with parameter 0.5). The results for M = 6, oop, = 0.5 and Kop = 10 are
shown in Figure 3.28.

Visually, the MGMM gives the best results for the three experiments, the grid
step being chosen sufficiently small to avoid visual artifacts. First, the MGMM
provides smoother estimates than the KDE. Second, the geometric arrangement
of the data is better respected with the MGMM than with the conventional
GMM. In the case of the spiral, the GMM completely fails to provide a good
estimate, as one component mixes two branches. Numerically, the MGMM
generalizes better than the GMM in the three examples, as we observe a lower
ANLL on the test set (see Fig. 3.28). Note also that the MGMM is not (too)
sensitive to few unhappy edges in the learning manifold, e.g. the S-shape.

Figure 3.29 shows the evolution of the lower bound for the noisy spiral as a
function of the number of training iterations. Both the unconstrained GMM
and the MGMM are considered. In both cases the lower bound monotonically
increases at each iteration. A similar behavior was observed for the noisy cross
and the S-shape.

3.4.3. Manifold Constrained VBE-step

A similar approach can be used in the context of Bayesian mixtures, and more
specifically variational mixtures (Archambeau and Verleysen, 2005b). Again,
the GMM is considered as a particular case, but the approach can be readily
extended to the SMM.

The exponential distribution is also used as a measure of the discrepancy be-
tween the Euclidean and the geodesic distance. However, in the Bayesian
framework the model parameters are viewed as random variables. Therefore,
the expectation of the component mean E{u,,} = m,, is used to test whether
a data point is far from the corresponding component on the manifold or not.
Let us denote the Euclidean and the graph distance (i.e. approximate geodesic
distance) between sample x,, and the expected component mean m,, respec-
tively by 0¢(xy,, m,,) and 09 (X, m,,). The biased variational posterior can be
constructed as follows:

q;nm(znm =1) xqz,,, (Znm = 1)5(59(xn,mm)2|56(xn,mm)2,)\m) , (3.280)
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F1GURE 3.28. The density estimators for the noisy cross, the
noisy spiral and the S-shape. Fach column shows successively
the estimators of the KDE, the GMM and the MGMM. The
last line is the training manifold. For each model, the ANLL
of the test set is in parentheses.

where q,,  (2nm = 1) is given by (3.139). Since the responsibilities should sum
to one for each x,,, they are normalized:

Q,/znm (znm = 1)

- M
Zm'=1 q./znm/ (an’ = 1)

. (3.281)
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likelihood for the GMM (solid) and the MGMM (dashed) as a
function of the number of training iterations.

For all components, choosing A, equal to 1 leaves the posterior distribution
unchanged when both distances are identical. However, when the mismatch
increases, ¢'(znm) decreases, which means that it is less likely that x, was
generated by m. This results in a weaker responsibility, reducing the influence
of x,, when updating the variational posterior of the parameters of m in the
VBM step.

Using the biased responsibilities, the expected complete data log-likelihood is
Ez{log L.(On|X, Z, Hr)}
= Yn Yot P {108 0 + 106 N (Kt A)} . (3.282)

The VBM update rules for the hyperparameters of the variational distributions
are still given by (3.144-3.148). The intermediate quantities however take the
following forms:

N
= Zn:l PrmXn

sy (3.283)
Zn:1 pglm
N s = T
Sm — Zn:l Pnm (xﬂN #’jn) (Xn “’m) ; (3284)
Zn:l p{nm
1 N
Tm = > o - (3.285)
n=1

Learning algorithm

The training procedure for manifold constrained variational Gaussian mixtures
(MVBGMM) can be summarized as follows:
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(1) Construct the training manifold, i.e. the neighborhood graph of X,
by the K-rule and compute the associated distance matrix 69(x;,x;)
by Dijkstra’s shortest path algorithm.

(2) Repeat until convergence:

Update the distance matrix of the expected component means:

Find for each m,, the K nearest training samples {x;}% ;| and
compute its graph distance to all training data as follows:

09 (xp, myy,) = mkin{ég(xn, Xk) 4+ 0 (xp, My ) . (3.286)

VBE-step: Compute the manifold constrained responsibilities us-
ing (3.281).

VBM-step: Update the variational posteriors by first computing
{i, M AS, M and {7, }M_,. Next, update the hyperpa-
rameters of the variational posteriors given by (3.144-3.148).

End.

The computational overhead at each iteration step is limited with respect to the
standard variational GMM, as the number of components in the mixture is usu-
ally small and updating 69 (x,,, m,,) does not require to recompute the distance
matrix of the manifold 0°(x;,%;). Note however that computing §°(x;,x;) can
be time consuming when the training set is large.

Experimental results

We end this section by briefly assessing the quality of the density estimators.
The ANLL of the test set is used as performance measure. In the following, the
MVBGMM is compared to the standard VBGMM and nonparametric kernel
density estimation (KDE) on artificial and real data.

The first example is presented for illustrative purposes. The data are generated
from a 2D noisy spiral:

x1 = 0.04tsint + €
{ Xo = —0.04t cost + €3 , (3.287)
where ¢ ~ U(3,15) and € ~ N(0,1/0.03I) is zero-mean Gaussian noise. The
training, validation and test sets have respectively 300, 300 and 10,000 data
points. The optimal parameters are M = 15 and K = 5. The estimators
are shown in Figure 3.30. On the one hand, the MVBGMM avoids manifold
related local minima in which the standard VBGMM may get trapped into.
This is achieved by forcing the expected component centers to move through
the training manifold and the covariance matrices to be oriented along it. On
the other hand, the MVBGMM clearly produces smoother estimators than the
KDE.
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FiGURE 3.30. Training manifold of a noisy spiral, as well as
the MVBGMM, the standard VBGMM and the KDE. For each
one, the ANLL of the test set is in parentheses (and the best
is underlined).

In order to assess the performance of the MVBGMM on a real data set, the
density of the Abalone data® is estimated after normalization. Note that the
information regarding the sex is not used. The available data is divided in 2,500
training, 500 validation, and 1,177 test points. The optimal parameters are
M =7 and K = 20. The optimal width of the Gaussian kernel for the KDE is
0.17. The ANLL of test set for the KDE, the VBGMM and the MVBGMM are
respectively 2.49, 0.84 and 0.37. The improvement of the MVBGMM compared
to the VBGMM is statistically significant (the standard error of the ANLL is
0.025).

3.4.4. Related Approaches

Related approaches include mixture of probabilistic principal component ana-
lyzers (Tipping and Bishop, 1999; Bishop, 1999) and mixture of factor analyzers
(Ghahramani and Beal, 1999), which were for example used for character and
digit recognition. In these approaches, the data is assumed to be generated
in a low dimensional latent space and then embedded in the high dimensional
feature space. However, due to noise, the observed data deviate from the em-
bedded linear subspace. In order to formalize the latent variable model, it

2The Abalone data is available from the UCI Machine Learning repository:
http://www.ics.uci.edu/~mlearn.
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is convenient to introduce a set of additional latent variables Y = {y,}3_;,
which represent the p-dimensional latent coordinate vector associated to the
data vectors. Denoting the offset by p,, and the factor loading matrix by €2,,,
which is of size d x p with p < d, results in the following latent variable model:

p(yn) = N(yn|071) ) (3288)
PXnlYn: o Qs ®) = N (X[, + Qenyn, €1) (3.289)

where W is the covariance matrix of the noise. Integrating out the latent vari-
ables leads to the standard expression for the Gaussian mixture components,
where the precisions are constrained to have a particular form:

P(Xn By M) = N (X5 (R Q"+ ¥) 71 (3.290)

where A,, = (QQOT + W)~1 ¥V m. Under this standard form, the model
is termed mixture of factor analyzers. When the noise covariance matrix is
further constrained to be isotropic, we obtain mixtures of principal component
analyzers. The parameters of both models can be estimated by means of the
EM algorithm or its extensions.

Unlike the approach that we proposed in the previous section, which defines
a global coordinate system associated to the manifold, the main drawback of
these techniques is that the local latent spaces are not necessarily compatible
with each other, meaning that the neighboring coordinate systems may have
different dimensionalities or may be differently oriented. This is problematic
when one wants to predict new data points as it requires to move from one factor
or principal component analyzer to the other. This problem was also addressed
by Verbeek, Vlassis and Krose (2002) by forcing the successive subspaces to
agree with respect to a global coordinate system. In this approach, the level of
agreement is implemented by means of a penalized log-likelihood optimization
problem (see for example Roweis, Saul and Hinton, 2001).

3.5. Summary

In this chapter, we first presented a unified methodology for learning latent
variable models. The EM algorithm for maximum likelihood and maximum a
posteriori learning was described. A modified MAP approach was also intro-
duced in order to ease the learning procedure in practice. Next, Bayesian learn-
ing was discussed. More specifically, we showed how the variational Bayesian
framework leads to an EM-like algorithm in the case of latent variable models.

Subsequently, we applied these approaches to finite Gaussian mixture models.
We proposed to use the regularized Mahalanobis distance instead of the ordi-
nary Mahalanobis distance in the maximum likelihood framework, providing
an alternative to standard MAP. In general, regularization is essential when the
learning set is very noisy and limited in size. The MAP approach was described
in detail, emphasizing on practical solutions and discussing all aspects of the
various regularization possibilities. In this context, an MML approach was also
proposed for selecting the model complexity automatically. When combined to
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the MAP scheme, this approach is particularly powerful. Variational Bayesian
mixture models were also described. Since Bayesian methods take the un-
certainty of the parameters into account, numerical difficulties encountered in
maximum likelihood are avoided. Furthermore, the model complexity can be
inferred without having to split the learning data in a training and a validation
set.

Next, we focused on Student-t mixture models. Although Gaussian mixture
models are used in many applications, they are sensitive to outliers. By con-
trast, finite Student-¢ mixture models are robust to those atypical observations.
It was shown at length that most of the techniques used with Gaussian mix-
tures can be extended to Student-t mixtures. Furthermore, we proposed a new
variational Bayesian EM learning algorithm for Bayesian Student-t mixtures,
which does not assume that the posterior on the indictor variables and the scale
variables factorize. In practice, the method leads to better and more robust
estimators.

Finally, we introduced manifold constrained (Bayesian) mixture models. Tt
was shown that the knowledge that the data is lying on a manifold of lower
dimension than the dimension of the embedding space can be exploited when
learning mixture models. By penalizing the posterior distribution of the latent
indicator variables, the responsibilities are biased according to a discrepancy
measure between the Euclidean and the geodesic distance. Experimentally,
the resulting estimators are superior to standard variational approaches, as
unacceptable local maxima of the log-likelihood function are avoided.

Through our discussion, we emphasized that finite mixture models can be used
in a nonparametric-like framework. More specifically, they can be viewed as a
limiting case of adaptive kernel density estimators. At various occasions, it was
shown that mixture models are competitive with the most elaborate nonpara-
metric density estimation techniques (in terms of likelihood), and are thus a
powerful alternative. Furthermore, they have a much lower model complexity
and can thus handle much larger data sets in practice.






CHAPTER 4

Regularization Networks

The primary aim of this chapter is to provide a comprehensive probabilistic
view of regularization networks (RN) for regression. These techniques will be
used in the next chapter in order to predict the characteristics of the visual
sensations generated electrically in the visual field of blind patients.

The goal in regression is to infer the parameters w of a specific model y(x; w)
from a set of real valued input-target pairs {x,,t,}._,; in order to generalize
well on new data. RN are commonly used for this purpose (Haykin, 1999;
Evgeniou, Pontil and Poggio, 2000). This regressor family includes the well-
known radial basis function networks (Broomhead and Lowe, 1988; Moody and
Darken, 1989), the popular support vector machines (SVM) (Vapnik, 1998;
Cristianini and Shawe-Taylor, 2000) and many related methods. The predic-

tions are expressed as a weighted sum of nonlinear basis functions {¢,, (-)}2_,
centered on learning prototypes (e.g., the input data):
M
y(x;w) = Z Wiy, P (X) + wo = WT¢(X) ) (4.1)
m=1

where wy is a bias term, w = (wo, ..., war)T and ¢(x) = (1, ¢1 (%), ..., dar(x))T.
In practice, a wide variety of basis functions can be used. For example, in
support vector machines, the kernels should satisfy Mercer’s condition. In this
work, we only consider basis functions (or kernels) having a Gaussian shape:

om0 =exp (=22 x = xl?) (1.2

where {x,,, }21_, is the set of learning prototypes and {\,,}_; determine the
widths of the basis functions.

In the first part of the chapter, we discuss the well-known radial basis function
networks. Subsequently, we make the link with the probabilistic formulation
of the RN, introducing maximum likelihood and maximum a posteriori learn-
ing for regression. Next, we move on to a hierarchical Bayesian formulation.
This leads to the relevance vector machines (Tipping, 1999), which are sparse
Bayesian regressors. Two learning algorithms are considered. The first one is
based on the evidence framework (MacKay, 1992a,b), also known as type-II
maximum likelihood (Berger, 1985). The second one uses variational Bayes,
which was extensively discussed in the previous chapter in the context of latent
variable models. As a matter of fact, the probabilistic techniques used to learn
145
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the parameters in regression problems are closely related to the ones discussed
in Section 3.1. Finally, we end the chapter by discussing an alternative sparsity
inducing algorithm, which is also based on the hierarchical Bayesian approach.

The main advantage of probabilistic regression is that the more elaborate tech-
niques provide highly sparse approximators, which are competitive with the
state-of-the-art SVM, but have fewer parameters to set. Furthermore, in the
variational Bayesian formalism, we propose to select the width of the Gaussian
kernels on the basis the the variational lower bound. This allows us to opti-
mize the kernel width, which greatly influences the quality of the regressors,
in a single data run. It is thus not necessary to use computationally intensive
resampling techniques such as cross-validation or the bootstrap. Another ad-
vantage of the Bayesian techniques is that they provide a confidence measure,
expressed as error bars in regression, for the prediction they make. This is
very important in practice, especially when humans are involved such as in
(bio-)medical applications.

4.1. Radial Basis Function Networks

Radial basis function networks (RBFN) have their origins in techniques for
performing exact interpolation of a set of data points, which are called interpo-
lation networks (Micchelli, 1986; Powell, 1987). Since these networks are prone
to overfit, they require some form of regularization (Poggio and Girosi, 1990).
Regularization techniques allow controlling the smoothness properties of the
mapping function. Next, we will present how to learn the parameters of the
RBFN and then discuss two types of regularization schemes.

Let us define the prediction error as the sum-of-squares:

1 N
E(w) = ) Z{y(xnaw) - tn}2 . (4.3)
n=1

Since this error function is quadratic with the parameters, its (unique) mini-
mum can be found in terms of the solution of a set of linear equations. Mini-
mizing this expression with respect to the parameters leads to

N

M
Z {tn - Z wm’¢m’(xn)} ¢m(xn) =0, Vm, (4'4)
m’=0

n=1

which can be written in matrix notation as

(@Te)w =&t . (4.5)
Matrix @ of size N x (M + 1) with lines ¢(x,,)" is the design matrix. Vector t
is the vector of targets (t1,...,tx)". Provided the square matrix ®*® is non

singular, it can be inverted. This leads to the least squares solution for the
parameters:

wrs = ®'t (4.6)
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(a) Least squares approximator. (b) Error function.

FIGURE 4.1. (a) shows the least squares approximator (solid)
obtained for the sinc function (dashed). The number of train-
ing data (crosses) is 50. The standard deviation of the Gaus-
sian noise is 0.1. The precision of the kernels is set to 1/36. (b)
shows the prediction error on the validation set as a function
of the kernel precision.

where &' = (@T@)*1<I>T is the pseudo-inverse of ®. In practice, the equations
defined by (4.5) are rather solved by singular value decomposition in order to
avoid problems due to a possibly ill-conditioned matrix ®.

If we associate a basis function to each training data, the linear equation sys-
tem (4.5) is underdetermined. As a consequence, the least squares solution
does not lead to an exact interpolator, but to an approximator that has an
oscillatory character. In other words, the approximator overfits the training
data. From a machine learning perspective, this is undesirable as the model
generalizes poorly on new data. Figure 4.1 illustrates the unregularized RBFN.
The regression target is the sinc function: f(x) = sin(z)/z, x € [-10,10]. The
kernel precision is set to 1/36, which corresponds to the minimum of the pre-
diction error on a validation set of 1,000 points. Remark that slightly better
approximations are found for very small values of the kernel precision (or con-
versely very large values of the kernel standard deviation). These solutions are
unacceptable however, as they lead to extreme values for the parameters. The
local character of the approximator is lost and the solutions are very sensi-
tive to numerical instabilities (as we are summing and subtracting very large
numbers). Nevertheless, by introducing a number of modifications to this un-
regularized RBFN smooth approximators are obtained. This can be done by
either constraining the parameters or reducing the number of prototypes.
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4.1.1. Regularized Radial Basis Function Network

One of the simplest ways to obtain a smooth approximation function is to
penalize the prediction error by the sum of squares of the parameters:

M
E(w) = BE(w) + g 3 w2 (4.7)
m=0

Parameter n regulates the amount of penalization. This simple regularizer
is commonly known as ridge regression (Hoerl and Kennard, 1970) or weight
decay. The approach penalizes large values of the parameters, which are to
be avoided in practice. Indeed, it was observed experimentally that large pa-
rameter values correspond to large curvatures, which mainly occur when the
approximation function overfits the data.

Minimizing (4.7) leads to the following set of linear equations:

N M
Z {tn — Z wmxgﬁm/(xn)} Om(Xn) +nwy, =0, Ym . (4.8)
n=1 m’=0

In matrix notation, the global minimum of the prediction error is then given

by
WwD = (‘I’T@ + T]I)iléTt . (49)

The approximator for the sinc function is illustrated in Figure 4.2. Weight de-
cay is used to control the effective complexity of the approximator. Clearly, the
resulting model has a higher generalization capability than the unregularized
RBFN. The kernel precision is set to the same value as before. The regular-
ization parameter is selected as the one that minimizes the prediction error on
the same validation set.

Although weight decay allows tuning of the effective complexity of the regres-
sion model, the size of the matrix to invert increases linearly with the number
of learning prototypes (which are often chosen to be the training data). As a
result, computing the optimal parameters may be very costly for large data-
bases. In practice, it is therefore advised to limit the number of prototypes as
discussed below.

4.1.2. Vector quantization-based Radial Basis Function Network

A simple method for reducing the number of prototypes is to select a random
subset of the training data. Of course, this leads to a suboptimal choice. Yet,
another approach is to select the subset based on orthogonal least squares
(Chen, Cowan and Grant, 1991). The basic principle of the approach is to
select successively the basis function associated to the training datum which
gives rise to the smallest residual prediction error. In order to be efficient, the
sequential addition of basis functions is done by constructing a set of orthogonal
vectors in the space spanned by the N-dimensional vectors associated to each
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(a) Regularized RBFN. (b) Error function.

FIGURE 4.2. (a) shows the weight decay RBFN approximator
(solid) obtained for the sinc function (dashed). The number
of training data (crosses) is 50. The standard deviation of the
Gaussian noise is 0.1. The precision of the kernels is set to
1/36. The optimal value for the regularization parameter is
0.029. (b) shows the prediction error on the validation set as
a function of this hyperparameter.

basis function. At some point, the procedure should be stopped in order to
avoid overfitting. For further details we refer to (Chen et al., 1991).

Instead of choosing a subset of the training data, vector quantization (VQ) can
be used (Moody and Darken, 1989) in order to find a set of prototypes that bet-
ter reflects the distribution of the training set. Among the most popular ones,
we have M-means' (MacQueen, 1967), discussed in Section 3.2, competitive
learning (Grossberg, 1987; Ahalt et al., 1990), discussed in Section 2.3.3, and
neural-gas (Martinetz et al., 1993). Other unsupervised techniques that can
be used for this purpose include Kohonen’s self-organizing maps (Kohonen,
1995) and finite Gaussian mixture models. The latter were extensively dis-
cussed in the previous chapter. Note that in the case of the Gaussian mixture
models, once the component means and precisions are estimated, the mixture
proportions can be discarded as they are no longer needed for regression.

The training algorithm of the VQ-based RBFN is split into two steps:

(1) The kernel centers, i.e. the training prototypes, and the kernel preci-
sions are estimated by vector quantization techniques.
(2) The model parameters are computed by (4.6).

The first step is unsupervised, meaning that the kernel parameters are adjusted
without taking the values of the training targets {t,, }\_; into account. In prac-
tice, vector quantization often minimizes a reconstruction error. By contrast,

IRecall that we denote the complexity by M rather than by K.
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the second step is supervised. The parameters minimizing the prediction error
are computed. In this step, the parameters of the kernels are fixed.

Two alternatives are typically considered for the estimation of the kernel pre-
cisions. The first one consists in taking the precisions equal to a constant for
all basis functions (see for example Park and Sandberg, 1991; Haykin, 1999).
Haykin (1999) sets the precisions as follows:

Ao \ 7
Am = , Vm 4.10
( TM) m (4.10)

where dyax is the maximum distance between the prototypes. Such a proce-
dure fixes the degree of overlapping of the Gaussian basis functions a priori. It
allows finding a compromise between locality and smoothness of the approx-
imator. This choice would be close to the optimal solution if the data were
uniformly distributed in the input space, leading to a uniform distribution of
the prototypes. Unfortunately, most real-life problems show non-uniform data
distributions. The method is thus inadequate in practice and an identical pre-
cision for all the kernels should be avoided. The precisions should depend on
the position of the prototypes, which in turn depends on the data distribution
in the input space.

The second option consists in estimating independently the precisions of the
Gaussian basis functions to take the variations in the distribution of the data
into account. This can be done by simply computing the inverse variance
of the distances between the data and their closest prototype. Verleysen and
Hlavackova (1996) suggested an iterative procedure for estimating this standard
deviation. Moody and Darken (1989), in contrast, proposed to compute the
precisions by the r nearest neighbors heuristic:

2

- _
Am = % ; Hxl(.m) — XmH2 , Ym | (4.11)

where {xgm)}f:l are the r-nearest neighbors of prototype x,,. In general,
these methods provide indeed locally adjusted precisions, but in some cases
the overlap of the basis functions is not sufficient, possibly leading to poor
generalization.

More recently, it was proposed to combine the advantages of both approaches in
a more principled way (Benoudjit, Archambeau, Lendasse, Lee and Verleysen,
2002). After having computed the M empirical standard deviations of the
distances between the data points and their closest prototype, these quantities
are multiplied by a common scaling factor w, which is termed width scaling
factor. The resulting precisions are given by

A = (WGm) 72, Ym . (4.12)
In this equation, {6,,}}_, are the standard deviations associated to the pro-

totypes. A different precision is thus used for each prototype, but the amount
of smoothing, i.e. the overlap of the basis functions, is further controlled by
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(a) VQ-based RBFN. (b) Error surface.

FIGURE 4.3. (a) shows the VQ-based RBFN approximator
(solid) obtained for the sinc function (dashed). The prototypes
are found by competitive learning. Their location is indicated
by circles at the bottom of the figure. The number of training
data (crosses) is 50. The standard deviation of the Gaussian
noise is 0.1. The number of prototypes is 9 and the width
scaling factor is set to 6.5. (b) shows the prediction error on
the test set (1,000 points) as a function of the number of basis
functions and the width scaling factor. The curve is an average
on 20 training runs.

means of a common tuning parameter. This parameter can be optimized by
resampling techniques, such as cross-validation, in order to have the lowest
residual prediction error.

Figure 4.3 shows the approximator obtained for the VQ-based RBFN. The
target is the sinc function. Both the number of prototypes and the width scaling
factor are selected as values that minimize the prediction error (4.3) on the
validation set. It can be observed that although the number of basis functions
is much smaller than for weight decay, the approximator has a comparable
accuracy.

4.2. Probabilistic View of Regularization Networks

In the regularization networks (RN) presented in the previous section, the
number of basis function is either equal to the number of training data, or
is selected by resampling techniques. Furthermore, these approaches do not
provide any measure of the confidence of the prediction they make. In this
section, a probabilistic view of RN is presented. In particular, probabilistic RN
include unconstrained RBFN and ridge regression as special cases. However,
probabilistic RN also capture the uncertainty of the predictions they make in
the form of error bars. In addition, when considering the Bayesian framework,
sparse solutions can be obtained, meaning that parameters that are irrelevant
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are driven to zero during the training procedure. This is important, as the
degree of sparseness, which is also a key idea behind support vector machines,
improves the generalization abilities of the approximation functions (Cristianini
and Shawe-Taylor, 2000).

4.2.1. Maximum Likelihood Learning

Following a standard probabilistic formulation, the noisy targets can be de-
composed as follows:

tn = y(Xn; W) + €, , (4.13)

where y(x;w) is the regression model defined in (4.1). The error terms
{e,}]_, are assumed to be independently drawn from a Gaussian distribution
N(€,|0,7). Note that T is the noise precision or inverse variance. Using this
noise model and assuming the input-target pairs are i.i.d., the joint distribution
or (target) likelihood is given by

L(w,T|t) = p(t|w, 1) Nt |ly(xp; w), ) . (4.14)

u::lz

Remark that the conditional dependency on the input data X = {x,})_; is
omitted for the sake of simplicity and that M is equal to N.

When the width of the basis functions is fixed a priori, maximizing the likeli-
hood (or equivalently the log-likelihood) w.r.t. the parameters w and the noise
precision 7 leads to the following equations:

dlog L .
85, —0 = wy=®t, (4.15)
Odlog L t— dw|2) "

The predictive distribution is then given by

p(t‘t) ~ p(t|WML,’TML) = N(t\y(x; WML); TML) . (417)

From (4.6), we note that the maximum likelihood (ML) solution for the pa-
rameters is the same as the one obtained in the case of the unregularized
RBFN. Observe also that the estimated noise variance is nothing else than
the average prediction residual or unexplained variance, since ||t — ®w||? =

EnN:1{tn - WT¢(Xn)}2-

As shown experimentally in the previous section, using unconstrained approx-
imators leads to severe overfitting. As a result, maximizing the likelihood
L(w,T|t) does not provide an acceptable solution, unless an additional regu-
larization term is introduced to constrain the model towards a simpler form.
This is addressed in the next section.
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4.2.2. Maximum a Posteriori Learning

In order to take the uncertainty of the parameters into account, a prior proba-
bility distribution is imposed on them. Here, we consider a Gaussian prior on
the parameters. Furthermore, a Gamma prior is imposed on the noise precision.
This leads to the following priors:

p(7‘|(l()7 bo) = Q(T|a0,b0) 5 (418)
M

p(wla) = J] N (w0, ) . (4.19)
m=0

where the hyperparameters are ag, by and & = (g, ..., apr) L.

The maximum a posteriori (MAP) likelihood, which is proportional to the
posterior distribution of the parameters p(w|t), is obtained by applying Bayes’
rule. Taking the logarithm leads to

log Lyiap (W, T|t) = log p(t|w, 7) + log p(7|ao, bo) + log p(w|a) (4.20)
= log L(w, 7|t) + log p(7|ag, bo) + log p(w|cx) . (4.21)

For a fixed kernel width and fixed hyperparameters, a set of coupled equations
is obtained by maximizing the penalized log-likelihood (or log-posterior) w.r.t.
the parameters w and the noise precision 7:

1 -1

M =0 = w7 <T<I>T<I> + A) o't ) (4.22)
ow

dlog Larap [t — ®w]||? + 2bg -1

Olog Lyviap 4.2
5y 0 = 7'<—{ N+ 2(ag — 1) (4.23)

Matrix A is diagonal, its non-zero elements being equal to the vector of hyper-
parameters a. Applying both equations alternatively converges to the MAP
solution wyap and mvap. Plugging these estimates in (4.17) leads to the MAP
predictive distribution. When {a,,, }2_, are constrained to be equal, the well
known weight decay regularizer for the RBFN is found. The regularization
constant 7 is then equal to «/Tyap-

Figure 4.4 shows the approximator for the sinc function, as well as the pre-
diction surface versus ag and by. The algorithm converges after few iteration
steps (less than 10). For appropriate values of the hyperparameters, a smooth
approximation function is found. In addition, the amount of noise can be
estimated. The true noise value is underestimated in this example.

The main drawback of this method is the high number of hyperparameters to
optimize, so all elements of o are usually set to the same value. Moreover,
instead of optimizing ag and by, they are rather set to small values in order
to express our ignorance about the scale of the noise precision. The resulting
prior is flat and it approaches Jeffrey’s noninformative prior (see for example
Berger, 1985):

p(T) o % - (4.24)
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(a) MAP RN. (b) Error function.

FIGURE 4.4. (a) shows the MAP RN approximator (solid) ob-
tained for the sinc function (dashed). The true noise standard
deviation (0.1) is underestimated (0.085). The noise tube (one
standard deviation) is also shown with thin dashed lines. The
number of training data (crosses) is 50. The precision of the
kernels is set to 6 and each regularization parameter to 3.4,
which is the optimal value in terms of prediction error. (b)
shows the error surface of the test set (1,000 points) as a func-
tion of ag and by. These parameters are respectively set to 2
and 0.008.

Note that this prior is improper, meaning that it does not integrate to one.
Interesting facts about this prior is that it is parameter-free and scale invariant.
Using Jeffrey’s prior on the noise precision instead of a Gamma prior leads to
the following update formula for the noise precision:

dlog Lyiap [t — dw|2) "
o 07 T<_{N2 :

Observe that the estimate of the noise variance is biased downwards, especially
for small data sets.

(4.25)

4.2.3. Bayesian Learning: the Relevance Vector Machine

In MAP learning, we do not deal properly with the uncertainty of the parame-
ters. Predictions are made on the basis of point-estimates, rather than using
the posterior distribution of the parameters. Furthermore, in order to deal
more efficiently with the uncertainty of the hyperparameter vector a, which
plays a crucial role in the quality of the approximator, and address the prob-
lem of model selection, a hierarchical Bayesian approach is used. Since the
hyperparameters are scale variables, a Gamma hyperprior is imposed on them:

M
p(a) = H g(am|cm07dm0) . (426)

m=0
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When using a different hyperparameter «,, for each w,,, sparsity is achieved
because the posterior distribution of most parameters is sharply peaked around
zero (Tipping, 2001). The predictive distribution is obtained by integrating out
all the parameters and the hyperparameters:

p(tlt) = / / / pltlw, o, 7, t)p(w, ov, 7]t dwdeedr (4.27)
_ ///p(t|w,7)p(w,a,ﬂt)dwdadr, (4.28)

where it is assumed that the prediction ¢ is independent of t and a given w
and 7. Unfortunately, this integral is intractable in practice. This can be
understood by looking to the second factor on the right-hand-side in (4.28),
which is the posterior distribution of the parameters and the hyperparameters.
This distribution can be decomposed by the product rule as follows:

p(w,a, 7|t) = p(wl|a, 7, t)p(a, T[t) . (4.29)

First, the posterior distribution of the parameters p(w|a, 7,t) can be com-
puted analytically, as the normalizing integral is a convolution of two Gaussian
distributions:
plwle,m ) = ATV gy oty a0)
S p(tlw, 7)p(wla)dw
where p(t|w, ) = N (t|®w, 7I) and p(w|a) is defined in (4.19). The posterior
mean g and the posterior covariance matrix 3 are respectively given by

pw=r28Tt (4.31)
—1
> = (T<I>T<I> + A) , (4.32)
where A = diag{ag,...,an}. Note that the form of the posterior mean is

identical to the form of the MAP estimate of the parameters in (4.22).

Second, using Bayes’ rule we may write the posterior of the hyperparameters
and the noise precision as follows:

p(tla, 7)p(a)p(7)

p(t)

This distribution cannot be computed analytically as the integral involved in
the normalizing factor is untractable. Therefore, we need to make some approx-
imations. Below we investigate two approaches. The first method is based on
evidence maximization (MacKay, 1992a), which is also known as type-IT max-
imum likelihood (Berger, 1985), and the second one is a variational Bayesian
approach, of which the general principle was discussed in detail in Section 3.1.3.

pla, Tt) = (4.33)

Evidence maximization

Since we cannot compute the exact posterior p(a, 7|t), we seek its mode. By
doing so, we assume that the corresponding point-estimates of a and 7 are
representative of the posterior, in the sense that the approximator using these
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values is nearly identical as the one using the full posterior. It is important
to realize that this does not require the entire mass of the posterior be accu-
rately approximated by the corresponding delta function. According to Tipping
(2001), this approximation is effective in practice.

The marginal likelihood or evidence p(t|a,7), which is also the normalizing
constant in (4.30), is given by

p(tla, ) = N(t/0,871) , (4.34)
where

S=7"1+®A'®". (4.35)

Following a MAP approach, we maximize p(e, 7|t) x p(t|e, 7)p(a)p(T) w.r.t.
« and 7. This leads to a set of coupled update rules:

dlog p(a, Tt) P + S + 2o |
D = Qyp — T 2(Cm0 — 1) ( )
-1
1 t t — Spl|? 23" P} 42
Ologplavrlt) _ )l = ®pl”+0r{ P2l
orT N+ 2((10 — 1)

where tr{-} is the trace operator and {%,,,}M_, are the diagonal elements
of 3. Successively applying (4.36) and (4.37), while updating the posterior
mean (4.31) and the posterior covariance matrix (4.32) leads to a highly sparse
Bayesian approximator: the relevance vector machine (RVM) (Tipping, 1999).
Note that in contrast to the approach followed here, Tipping (2001) takes the
derivatives with respect to the logarithm of the scale variables {cv, }M_; and
7, as he assumes uniform hyperpriors over the logarithmic scale. As a result,
the independent term in the denominator of (4.36) and (4.37) vanishes. The
update equations are then identical to the ones obtained in variational RVM,
which will be discussed shortly.

An attractive property of the training algorithm for RVM is that it is guar-
anteed to maximize locally (4.33), as it is equivalent to apply the EM algo-
rithm. Indeed, if we treat w as a “hidden” variable, the quantity on the right-
hand-side in (4.33) can be considered as a penalized incomplete likelihood.
The E-step consists then in computing the posterior distribution p(w|a, 7,t).
This is done by updating the posterior mean (4.31) and the posterior co-
variance matrix (4.32). In the M-step, the expected complete log-posterior
Ew{logp(t|w, 7)p(w|a)p(a)p(7)} is maximized with respect to o and 7. This
leads to (4.36) and (4.37). The graphical representation of the RVM is shown
in Figure 4.5.

The main disadvantage of RVM is the computational complexity of the learning
algorithm. Following MacKay (1992a) in defining the quantities ~,, = 1 —
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F1GURE 4.5. Graphical model of the RVM. Note that n €
{1,...,N} and m € {0,..., M}.

Qm Emm,, the updates (4.36) and (4.37) can be rewritten as follows:

2 —1
Ay «— §—— =~ , 4.38
{'Ym + 2(Cm0 - 1) ( )
1
t — Ppl|? + 2b
e It = pul” 1 2bo . (4.39)
N =3 —ovm+2(ap —1)

Although these updates do not guarantee a local maximization of the penalized
log-likelihood, they were observed to lead to much faster convergence (Tip-
ping, 2001). Furthermore, each 7, can be interpreted as a measure of how
well-determined its corresponding w,, is by the data (Gull, 1989). This can
be understood by looking at (4.32) and seeing that when a,, is large, the pos-
terior of w,, is highly constrained by the prior, such that ¥,,,, ~ «,,~! and
consequently 7, ~ 0. Conversely, when «,, is small, the posterior w,, fits to
the data and ~,, =~ 1. More recently, a greedy variant was also proposed in
order to accelerate the learning algorithm when dealing with large data sets
(Tipping and Faul, 2003).

As mentioned before, the central idea behind RVM is to associate a different
hyperparameter «,, to each parameter w,,. When imposing a Gamma prior
on each a,, the marginal prior p(w,,) is a Student-¢ distribution. This prior
resembles the Laplacian prior, which is equivalent to the Li-regularizer when
taking the logarithm. As the Laplacian distribution, the Student-¢ distribution
is symmetric and has heavier tails than the Gaussian one. It is well known
that the zero-mean Laplacian prior induces sparsity (see for example Williams,
1995; Tibshirani, 1996). In the RVM context, this prior is thus approximated by
adopting a hierarchical Bayesian approach. As a result, the marginal posterior
distribution of each parameter p(w,, |, T) is highly peaked around zero. The
corresponding hyperparameter is therefore driven to infinity (or rather very
large values). Note that since the expected value of the parameters is non-zero
(but very small), sparsity is realized in practice through thresholding.

The approximators for the sinc function is shown in Figure 4.6. The ordinary
and the fast learning algorithm is used. The second one tends to provide sparser
solutions. The estimate of the hyperparameters as a function of the number of
training iterations is also shown. It can be observed that the modified learning
algorithm converges much faster than the ordinary one, while the quality of
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FIGURE 4.6. (a) and (c) show respectively the RVM approx-
imator and the one obtained with the fast learning rule. The
solid curves indicate the approximators and the dashed curves
the target function. The true noise standard deviation (0.1)
is only slightly underestimated (0.098) by both algorithms.
The noise tube (one standard deviation) is also shown with
thin dashed lines. The number of training data (crosses) is 50.
The precision of the kernels is set to 1/6. The hyperparameters
{ao,bo} and {0, dmo }M_, are set to small values, resulting in
broad priors. The number of relevance vector (circles) found
by the algorithm is respectively 10 and 8, the threshold being
set to 1072, (b) and (d) show the evolution of {a,, }M_, as a
function of the number of training iterations. Most of them
are driven to infinity during the training process.

the solutions that are obtained are very close in terms of log-evidence (see
Figure 4.7).
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FIGURE 4.7. Log-evidence of the hyperparameters and the
noise precision as a function of the number of training iter-
ations. The RVM learnt by the ordinary and the modified
updates correspond respectively to the solid and the dashed
curve.

Finally, the predictive distribution of an unseen target on a new data point is
obtained by marginalizing over the parameters:

pmwzp@aﬂﬁ¢>:/¢mWnﬂmWMﬁﬁmmW, (4.40)

where a® and 7* denote respectively the values of the hyperparameter vector
and the noise precision that maximize the evidence. The first distribution in
this expression is the likelihood. The second is obtained by plugging a* and

7* in the posterior distribution of the parameters. Since both are Gaussian
distributions, the integral is tractable:

p(tla™, 7, t) = N (e, Ne) (4.41)
with
e = y(x;p) (4.42)
1 - -1
&:{ﬂ+¢w>zam} | (4.43)

The predictive mean u; is thus a prediction based on the posterior mean g of
the parameters. The predictive variance 1/)\; is called error bar. It provides a
confidence measure in each prediction the model makes. The error bars contain
two terms. The first is an estimate of the noise variance. It corresponds to the
unexplained variance by the model as in MAP learning. The second is an
uncertainty measure on the parameters w.

Variational Bayes

An alternative to evidence maximization for learning the RVM is the variational
Bayesian approach (Bishop and Tipping, 2000). For a detailed discussion of
the variational Bayesian framework, we refer to Section 3.1.3. Figure 4.8 shows
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FIGURE 4.8. Graphical model of the variational RVM.

the graphical representation of the variational RVM. In this approach, the
hyperparameters and the noise precision are considered as latent variables as
well.

Consider again the marginal likelihood p(t), which is the normalizing constant
in (4.33). This quantity is in practice intractable. However, for any distribution
q(w, o, 7) the logarithm of p(t) can be lowerbounded using Jensen’s inequality
(Jensen, 1906):

log p(t) // (w,a, 7)log (Ewwaaqj)—)d dodT . (4.44)

The bound is made tight when equating ¢(w, ¢, 7) to the joint posterior distrib-
ution p(w, e, 7|t). In the variational Bayesian setting, this bound is iteratively
maximized through a factorized approximation of the joint posterior distribu-
tion of the parameters:

4(W, @, 7) = gw(W)ga(@)gr(T) - (4.45)

Treating the parameters as the hidden variables leads to the following varia-
tional update equations:

VBE-step : qw(w) x exp (Ea,-{logp(t,w,a,7)}) . (4.46)
VBM-step : ga(a) o p(c) exp (Ew - {logp(t, w, 7|@)}) , (4.47)
47 (7) < p(7) exp (B o {log p(t, w, a|7)}) - (4.48)

In these equations, the expectations are taken with respect to the variational
distributions.

The VBE-step leads to a variational posterior of the parameters which is in
agreement with the exact posterior (4.30):

Qo (W) = N (wp, £7) . (4.49)
The posterior mean and the posterior covariance matrix are given by
p=7reTt (4.50)

> = (%@T‘I' + A)_l , (4.51)
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where the special quantities are 7 = E. {7} = a/b and A = diag{ay,...,ar}
with &, = Eq{am} = ¢m/dm, ¥m. The values that are used to compute the
parameters of the posterior distribution are thus the mean of the noise precision
and the means of the hyperparameters. In contrast, the values that are plugged
into the true posterior in the maximum evidence framework correspond to the
mode of the evidence p(e, 7|t).

Since the priors p(a) and p(7) are conjugate to the exponential family, com-
puting their posterior consists in updating their parameters. The resulting
VBM-step is then given by

N t— dpl?+tr{ZdTP
s=a+ Y. b:b0+\\ pl* + tr{ }7

4.5

5 5 (4.52)
1 245,

em =m0+ 5+ don = o + % . (4.53)

Figure 4.9 shows the approximator for the sinc function. The RVM learnt by
the variational Bayes is very close to the one learnt by maximum evidence.
Note that when considering different training sets, both algorithms select on
average 7 to 8 relevance vectors. By contrast, it was reported by Bishop and
Tipping (2000) that the standard SVM selects on average 28 support vectors on
this example for a similar accuracy. The RVM provides thus sparser solutions
than the standard SVM.

To conclude, we approximate the predictive distribution by replacing the true
posterior by its variational approximation:

p(tlt) = /p(t|w,7")qw(w)dw ) (4.54)

Note that we have used the fact that ¢,(7) is highly peaked around its mean
value. This is indeed the case for large training sets. Since p(t|w,7) and gw (W)
are both Gaussian distributions, the integral is tractable:

p(ﬁl&,f,t) :N(ﬂutv/\t) s (455)

where
e =yx;p) (4.56)
A\ = {i + ¢(X)Tz¢(x)} : (4.57)

4.2.4. Bayesian selection of the basis functions’ precision

When using the RVM or the variational RVM, one problem remains: the opti-
mization of the basis functions precisions. The precision greatly influences the
quality of the approximator. Unfortunately, no simple reestimation formula
exists as for the other hyperparameters. Since isotropic basis functions are
used in practice, it is common to select the precision by resampling techniques,
such as cross-validation or the bootstrap. In the Bayesian context, however, we
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FIGURE 4.9. (a) shows the variational Bayesian RVM approxi-
mator (solid) obtained for the sinc function (dashed). The true
noise standard deviation (0.1) is only slightly underestimated
(0.098). The noise tube (one standard deviation) is also shown
with thin dashed lines. The number of training data (crosses)
is 50. The precision of the kernels is set to 1/6. The hyper-
parameters {ag,bp} and {cmo, dmo}M_, of the priors are set
to small values in order to non-informative. The number of
relevance vector (circles) found by the algorithm is 10 for a
threshold set to 1072, (b) shows the evolution of {a,, }M_, as
a function of the number of training iterations. Most of them
are driven to infinity during the training process.

could think of an additional level of inference. Indeed, making the dependency
on the precision A explicit, we have

p(Alt) o< p(t[A)p(A) - (4.58)

The first factor on the right-hand-side of this equation is the marginal likelihood
or evidence of A. This quantity is defined as follows:

p(t]A) = //p(t|a,7',)\)p(a,r|t,/\)dad7' . (4.59)

If we assume a flat prior p()\), the value of the precision A can be selected as
the one that maximizes p(t|\). Unfortunately, this requires to approximate the
integrals in (4.59), which are intractable. This approach was already used in
Bayesian support vector regression (Law and Kwok, 2001), which is a Bayesian
version of support vector machines. A similar technique was also applied by
MacKay (1992b) for selecting the number of hidden units in multi-layer percep-
trons. Here, we propose to rather use the variational lower bound for selecting
the optimal precision.

Let us denote the variational lower bound, which is given in (4.44), by
F(gw (W), ga(a),q-(7)). Since we know the functional form of the variational
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posteriors, the bound can be computed:

Flaw(w):ta(@),0:(7) = [ [ du(wac () og (el 7)awdr
+ [ [ twlwta (@) log pwlaiveda
+ [ gat@) o p(a)da
.

q- (1) log p(7)dr

qw (W) log gw (W)dw

Ja () log g (a)da

q-(7)log g, (T)dT | (4.60)

—

where the individual terms are given by
// Gw (W) g (7)log p(t|w, 7)dwdr
N N T
= log2m+ = logF — ~ (||t @)+ tr{zch@}) . (4.61)
2 2 2
[ [ wlw)ta(@) o plwlaivwda
M
M+1 1 ~ _
= ——5—log2m + 5 > {logdm = am (i + Smm)} . (4.62)
m=0
/ qa(a)log p(a)do
M
= Z {CmO log dpno — log F(Cmo) + (CmO - 1) log évy, — dmoam} ,
m=0
(4.63)
/ q-(7)log p(7)dr
= ag log by —log'(ag) + (ap — 1)log 7 — boT , (4.64)
/qw(w) log gw (W)dw
M+1 1
— ; log 2 — - log|[E| = (M +1), (4.65)
/qa(a) log g (a)da

M
= Z {emlogd,, —logT(em) + (¢ — 1) log &y, — dpp@in} ., (4.66)
m=0
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FIGURE 4.10. Variational lower bound (solid) and root mean
square error estimated by 10-fold cross-validation (dashed)
versus the kernel precision for (a) the sinc function and (b)
the Abalone data. The results are averaged over 10 runs. For
the sinc function, random data sets are generated, while for the
Abalone data, 10 random splits are performed (2,133 learning
and 1,044 test data).

/qT (1) log g, (T)dT
=alogb—logI'(a) + (a —1)log7 — b7 . (4.67)

The special quantities in these equations are log 7 = E,{log 7} = ¥(a) — log(b)
and log & = Eq{log a } = ¥(cm) — log(dyn).

Figure 4.10 illustrates the approach on the sinc function and the Abalone data?.
In both cases, the variational bound is correlated to the estimated root mean
square error and the optimal values for the precision of the basis functions are
in agreement. The results obtained for the sinc function are comparable to
the ones obtained by Law and Kwok (2001). The Abalone data is normal-
ized component-wise. The gender, which is encoded by {m,1, f} and stands
for male, infant and female, is respectively mapped onto {(100), (010), (001)}.
The objective is to predict the age of the abalone from physical measurements.
The average number of relevance vectors is 13.3. In order to reduce the com-
putational effort, the training set is first reduced by vector quantization to 150
points. The results obtained here (MSE=0.423 +£0.008) are slightly better than
the ones reported in a recent study of Bayesian support vector regression (Chu,
Keerthi and Ong, 2004, MSE=0.441 £+ 0.021 or MSE=0.428 + 0.022 depending
on the method).

The attractive property of the variational Bayesian approach is that compu-
tationally intensive resampling techniques are not needed. We should however
be aware that minimizing the prediction error does not necessarily correspond

2The Abalone data is available form the UCI Machine Learning repository:
http://www.ics.uci.edu/~mlearn
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to maximizing the evidence (MacKay, 1992b; Bishop, 1995). For instance, the
Bayesian approach seeks for the most probable model among a particular fam-
ily of models given the data. This implicitly assumes that the true model is
within this model family, which may be a false assumption. When the models
are poorly matched, ranking them according to their evidence may be mislead-
ing. The test error, by contrast, is evaluated on a finite data set and is thus a
noisy quantity.

4.2.5. Related Approach

As discussed in Section 4.2.3, the learning algorithm for the ordinary RVM
has an EM formulation. By viewing the parameter vector w as unobserved,
the incomplete log-posterior p(a, T|t) x p(t|a, 7)p(a)p(T) can be maximized
iteratively by the EM algorithm. Recently, Figueiredo (2003) proposed an al-
ternative supervised learning algorithm which induces sparsity. Under the same
model assumption, i.e. Gaussian noise on the targets, a Laplacian prior is im-
posed on the parameters w instead of a Gaussian one and the hyperparemeter
vector « is considered as being a hidden variable. As shown below, the incom-
plete log-posterior p(w, 7|t) can then be maximized by the EM algorithm.

The zero-mean Laplacian prior induces sparsity. This was already mentioned
in our discussion of the RVM. By adopting a hierarchical Bayesian approach, a
Laplacian prior on w can be obtained. Consider a Gaussian prior N (w,,|0, i)
on each parameter as in RVM and let us denote each variance 1/, by B,,, such
that p(wm|Bm) = N (w0, 3, ). Now, we impose a zero-mean exponential
hyperprior on [3,,:

P(Bmlem) = E(Bm 0, em) = cm exp(—cmfBm) , (4.68)

with ¢, > 0. Integrating out f,, yields a zero-mean Laplacian prior on the
parameters:

p(wmem) = /Ooop(wmlﬁm)p(ﬁmcm)dﬁm = \/2207mexp(—\/E|wm|) . (4.69)

Next, regarding the set of variances B = {8, }M_, as unobserved, we want to
maximize the log-posterior p(w,7|t). Therefore, the E-step consists in com-
puting the posterior distribution of the latent variables:

_ p(wm |ﬂm)p(ﬁm ‘Cm)
P(Wr|cm)

where in the first equality we have used the fact that 3,, is independent of t and
T given w,,. Subsequently, the expected complete log-posterior is maximized
with respect to w and 7. The complete log-posterior is given by

log p(t|8, w, 7)p(BIw)p(w)p(7) = log p(t|w, 7)p(w|B)p(B)p(T) ,  (4.71)
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FIGURE 4.11. Graphical model of Figueiredo’s (2003) sparse
approximator. Note that a,, = 1/8,,, Ym. The variance vec-
tor B3, which is unobserved (thus neither ), is independent of
t given w. The parameter vector w is a deterministic quantity
and therefore does not appear in the graph.

where we use the fact that t is independent of B given w and

M
p(w|B) = N(w|0,A) = [ p(wn|6m) , (4.72)
; m=0
p(B) = [ p(Bmlem) - (4.73)
m=0

Matrix A is equal to diag{ﬁofl, e ,ﬁMfl}. Since B, = Eg{Bn} = (1/2¢m +
|win|/v2¢m) and @, = Eg{B3,,"'} = v2¢m/|wnl, taking expectations and
then maximizing (4.71) w.r.t. the parameters w and the noise precision 7
results in the following M-step:

N 1
We—T (T@T«b + A) 3Tt (4.74)
[t — ®w|2 +2bp) '
. 4.
TH{ N +2(ap — 1) (475)

Following this approach leads thus to the same update rules as in MAP learning,
except for A, which is replaced by A = diag{ay,...,ax}. The graphical
model associated to this formulation of the sparse approximator is shown in
Figure 4.11.

In order to get rid of the hyperparameters {c,, }}_,, which control the de-
gree of sparseness, Jeffrey’s non-informative prior can be used instead of the

exponential one:
1
p(Bm) x — , Vm . (4.76)
Brm
The resulting marginal distribution for {w,,}¥_, is no longer the Laplacian
prior, but is equal to the following (improper) distribution:

P(W,) = L , VYm. (4.77)

W]
This prior strongly induces sparseness (Figueiredo, 2003). In fact, as Jeffrey’s
prior is a limiting case of the Gamma distribution, the resulting prior on the
parameters is a limiting case of the zero-mean Student-¢ distribution, which in
turn is sharply peaked around zero like the Laplacian prior. This is illustrated
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FIGURE 4.12. Comparison of the improper prior p(wpy,)
(solid), which is obtained by integrating out the nuisance pa-
rameter (3,,, with the corresponding Laplacian priors for dif-
ferent values of the hyperparameter c¢,,,. The improper prior is
sharply peaked around zero and it has very heavy distribution
tails.

in Figure 4.12. Using the improper prior leads to the same M-step, except that
now ay, = Eg{f,, '} = 1/|wn,|>. However, since most of the parameters are
driven to zero during learning, it is convenient to use the following equivalent
M-step for w in practice:

-1
W TW (TW@TQW + I) waTt (4.78)

where W = diag{|wo|, ..., |war|}. This avoids having to deal with arbitrarily
large numbers and allows solving the corresponding linear system by singular
value decomposition.

Figure 4.13 shows the sparse approximator for the sinc function. In general, the
training algorithm leads to very sparse solutions, which are expected to exhibit
very good generalization abilities. In addition, unlike most other techniques,
the method does not require to set additional parameters, such as regularization
constants or a threshold. Nevertheless, the algorithm is sensitive to the initial-
ization of w and the problem of choosing the precision of the basis functions
remains. As usual, the value of the precision may have a significant influence
on the quality of the approximator and needs to be optimized by resampling
techniques. Finally, as the algorithm provides point estimates of w and 7, no
local error bars can be constructed, which is of course a drawback compared
to the RVM.

4.3. Summary

In this chapter, we put regularization networks for regression into a proba-
bilistic perspective. The link with the standard radial basis function network
was highlighted and a vector quantization-based variant was introduced. The
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FIGURE 4.13. Figueiredo’s (2003) sparse approximator (solid)
obtained for the sinc function (dashed). The true noise stan-
dard deviation (0.1) is only slightly underestimated (0.098).
The noise tube corresponds to one standard deviation. The
number of training data (crosses) is 50. The precision of the
kernels is set to 1/6. The number of relevance vector (circles)
found by the algorithm is 5.

latter adjusts locally the precision of the basis functions, while the amount of
smoothing is controlled by a common width scaling factor. The core of the
chapter discusses several probabilistic approaches to regularization networks.
In particular, the Bayesian approaches are attractive as they allow us to obtain
very sparse solutions, which are expected to generalize well. Finally, we showed
that the variational framework is especially appealing as it allows to determine
the precision of the basis functions based on the variational lower bound.



CHAPTER 5

Probabilistic Models of the Electrical
Stimulation of the Human Optic Nerve

Since the early eighties cochlear implants are an active field of research in bio-
medical engineering, mainly to rehabilitate patients with hearing loss for whom
there is no other potential treatment. In recent years, most patients with mod-
ern cochlear implant systems can understand speech using the device alone,
at least in favorable listening conditions. For example, these implants allow
deaf patients to hear and even talk over the phone (Clark, McAnally, Black
and Shepherd, 1995; Cray, Allen, Stuart, Hudson, Layman and Givens, 2004).
The hearing quality reached by the existing devices justifies their use in less
severely affected patients and is even advocated as a treatment to prevent lan-
guage deficit in pre-lingual deaf children (Gstoettner, Hamzavi, Egelierler and
Baumgartner, 2000). Currently, an increasing research effort has also been di-
rected towards implant users’ perception of nonspeech sounds, especially music
(see McDermott (2004) and references therein).

Further to this success, several multidisciplinary teams were established during
the past decade with the goal to restore partial vision to the blind. The human
visual system, which extracts relevant visual information from images of the
environment that are projected on the retina, is a far more complex informa-
tion processing system than the auditory system. Despite promising results in
animal experiments, there are still several major obstacles to overcome before
visual prostheses can be used clinically (Zrenner, 2002).

Blindness can result from damage to any processing step in the visual path-
ways. First, the retina is a thin layer of cells at the back of the eyeball, which
converts light into nervous signals. The light enters the eye through the pupil
and is focused by the lens on the retina (see Figure 5.1). Millions of photore-
ceptor cells, called rods and cones, are excited by the local luminance and color.
The cones respond to bright light and mediate high-resolution and color vision.
The rods respond to dim light and mediate lower-resolution, black-and-white
night vision. Both these photoreceptors transform the visual information into
electrical and chemical signals and activate the retinal neurons: horizontal,
bipolar, amacrine and ganglion cells (see Figure 5.2). Second, after compres-
sion of the visual information, the corresponding electrical signals are carried
by the optic nerve, which bundles the axons of the ganglion cells (and few
amacrine cells). So far, the compression mechanism is not fully understood.
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FIGURE 5.1. Schematic cross-section of the human eye. Light
enters the eye through the pupil and is projected on the
retina. The eyeball is filled with the vitreous fluid. (Mod-
ified from the website of the U.S. National Eye Institute:
http://www.nei.nih.gov/health/macularhole)

However, one should realize that the amount of compression is enormous since
the number of photoreceptors is roughly 100 million, while there are only ap-
proximatively 1 million axons (Meister and Berry, 1999). Third, the visual
information is transmitted to the brain (primary visual cortex) via the lateral
geniculate nucleus.

From the basic physiology of the visual pathways, artificial vision can be en-
visioned based on the following facts: (i) most causes of blindness do not lead
to a destruction of the entire visual system, (ii) electrical stimuli (electrons)
can be substituted to light stimuli (photons) to create visual perception, and
(iii) the retinotopy, i.e. the spatial organization of the visual information along
the visual system, tells us how to arrange electrical stimulations to produce ra-
tional visual sensations. At present, this means that a low-resolution artificial
vision can be expected after extensive training. It is thus important to realize
that it would be unreasonable to expect from visual prostheses to fully restore
vision. However, it is hoped that they will help the blind patient with simple
tasks such as object recognition, spatial localization, obstacle avoidance and
that they will improve the quality of his/her everyday life. This very last point
is worth some caution. Indeed, the acceptability and attractiveness of visual
prostheses must not be taken for granted. As a matter of fact, some profoundly
blind people have developed excellent strategies for coping with their condition
and may not look with favor on a prosthesis unless it is quite safe, readily
affordable and provides a useful visual sense.

The current visual prostheses are based on the neuronal electrical stimulation
at different locations along the visual pathways, within the central nervous
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FIGURE 5.2. Axial organization of (a) the retina and (b) its
schematic view. The light comes from below. The top layer
(outer retina) contains the rods and the cones. The axons
of the ganglion cells (bottom layer of inner retina) come to-
gether in the optic nerve. (Modified from the online neuro-
science tutorial of the Washington University School of Medi-
cine: http://thalamus.wustl.edu/course)

system. According to this location, the different prostheses are called cortical,
optic nerve or retinal ones. For a comprehensive introduction to visual prosthe-
ses, we refer to recent review papers by Maynard (2001) and by Margalit, Maia,
Weiland, Greenberg, Fujii, Torres, Piyathaisere, O’Hearn, Liu, Lazzi, Dagnelie,
Scribner, de Juan and Humayun (2002). The general principle consists in im-
planting a neural prosthesis, either intracranially or intraoccularly, and bypass
neurons that have become non-functional by electrical stimulation. The very
first attempt to create a light perception in the visual field comparable to the
perception resulting from a light stimulus was made by Foerster (1929). He
noted that the electrical stimulation of the visual cortex caused his subject to
see a spot light. This electrically induced visual sensation is termed phosphene.
It is convenient to view phosphenes as pixels, since they are usually perceived
as white, round or oval points of light, which can have different sizes and show
short persistence. In recent experiments, other shapes and colors were also
reported (Veraart, Raftopoulos, Mortimer, Delbeke, Pins, Michaux, Vanlierde,
Parrini and Wanet-Defalque, 1998). Foerster’s work already demonstrates that
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a small area of the neuronal tissue can be stimulated in order to get a light
perception (Foerster, 1929); however, this perception is not comparable to the
light stimulation the sighted know. As a result, the following questions arise:

(1) Can we reconstruct a whole visual scene by stimulating many small ar-
eas of the neuronal tissue, i.e. activating many pixels (or phosphenes)?

(2) How many pixels should we use and how should we combine them?

(3) What are the electrical stimulus parameters (amplitude, duration,
shape, etc.) needed for each pixel to make it safe and effective?

These questions are critical, as little is known about the coding scheme of the
visual information along the visual pathways. The present knowledge of the
visual system remains limited and only crude models of the bypassed parts
can be considered. Induction of visual perception using these models remains
therefore questionable and this is even more the case when a substantial part of
the visual system is being bypassed. As a consequence, we will use non-linear
statistical tools instead of crude neurophysiological models and try to answer
the questions mentioned above, at least partially. We will make extensive use
of the probabilistic techniques discussed in the previous chapters.

In this chapter, we first review the different types of visual prostheses that are
currently under development and focus on the optic nerve visual prosthesis.
Next, we present both neurophysiological and probabilistic models predicting
the characteristics of the visual perceptions based on the parameters of the
electrical stimuli. Subsequently, we describe techniques for classifying these
perceptions based on their location in the visual field. Finally, these building
blocks are put together and an efficient stimulation strategy is proposed.

5.1. Visual Prostheses

To date three types of visual implants exist: cortical, retinal and optic nerve
implants. Each one of them is discussed below.

5.1.1. Cortical Prosthesis

Cortically-based prosthetic vision is based upon the retinotopic organization
of the visual neural system. The concept of retinotopy says that neighboring
cells in the retina transmit information to (more or less) neighboring cells in
the visual cortex, meaning that the retinal output is mapped directly onto the
visual cortex. However, due to the nonuniform distribution of photoreceptors
across the retina, magnification occurs. In other words, the central part of
the visual field is represented to a far greater extent in the cortex than in the
peripheral retina (Hubel and Wiesel, 1974; Horton and Hoyt, 1991).

The earliest visual implants, which used surface cortical electrodes, are due to
Brindley and Lewin (1968) and were further studied by Dobelle and Mlade-
jovsky (1974). The experiments showed that chronical electrical stimulation
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was possible, that phosphenes are stable over time, that repeated stimulation
of the same location of the visual cortex leads to a phosphene at the same
location in the visual field and that the amount of current required to obtain
a light perception is also fairly stable. Moreover, stimulating several points on
the cortex caused the subject to see a set of phosphenes. However, as these
early experiments included interactions between phosphenes and inconsistency
of phosphenes, as well the use of high currents, the development of intracorti-
cal, i.e. penetrating, electrodes came about (Bak, Girvin, Hambrecht, Kufta,
Loeb and Schmidt, 1990; Schmidt, Bak, Hambrecht, Kufta, ORourke and Val-
labhanath, 1996; Normann, Maynard, Guillory and Warren, 1996). These elec-
trodes are much smaller and close to the target neurons. As a result, the
current thresholds are lower and localized stimulations are possible. Schmidt
et al. (1996) produced visual perceptions in a 42-year-old woman, who had
been totally blind for 22 years secondary to glaucoma. It was reported that
the brightness of the phosphenes could be modified by adjusting the ampli-
tude, the frequency and pulse duration of the electrical pulses. Usually, the
phosphenes did not flicker. Near stimulation threshold, the phosphenes were
often reported to have colors. The duration of the perception could be increased
by interrupting a long stimulation train with brief pauses in stimulation. In
addition, intracortical microelectrodes spaced 500um apart generated separate
phosphenes, while microelectrodes spaced 250um did not. Finally, most of the
phosphenes were located within a relatively small area of visual space.

Recent studies demonstrate that the traditional view of retinotopy is only valid
at a very coarse level. The relationship between the photoreceptors and the
corresponding locations on the visual cortex is extremely complex, i.e. highly
nonlinear and non-conformal (Warren, Fernandez and Normann, 2001). This
result has implications for the design of cortical prostheses, as it requires to
remap the visual space to accommodate the scatter in the phosphene loca-
tions. In addition, individual neurons encode many specific features of the
visual image. For example, cortical neurons respond best to particular colors
and shapes, manifest eye-related dominance and may be sensitive to particular
orientations due to their receptive fields. Finally, serious drawbacks to cortical
implants are the surgical risks of an intracranial procedure. In particular, sur-
gical complications can have devastating results, including death, on healthy
subjects.

5.1.2. Retinal Prostheses

The main advantage of cortical prostheses is that they are able to treat blind-
ness secondary to retinal or optic nerve diseases. Nevertheless, the approach
needs to deal with the complex geometry of the brain and requires to per-
form an intracranial surgical procedure with high risks. By contrast, ocular
prostheses avoid these risks, but they can only be applied in cases where the
optic nerve is still functional and would thus not be helpful in diseases such as
glaucoma.
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In the industrial countries, the leading cause of inherited blindness is retini-
tis pigmentosa (RP). About 1.5 million people are affected by RP worldwide
(Margalit et al., 2002). Another common cause of visual loss in the western
countries is age-related macular degeneration (AMD), which is the most com-
mon form of blindness in the elderly. Both diseases are due to a degeneration of
the outer retina, i.e. the photoreceptors die off. This means that the capacity
of the retina to transduce light into biologic signals is diminished. Morpho-
metric analyzes (Stone, Barlow, Humayun, de Juan and Milam, 1992; Santos,
Humayun, de Juan, Greenberg, Marsh, Klock and Milam, 1997; Kim, Sadda,
Pearlman, Humayun, de Juan E, Melia and Green, 2002) showed however that
the inner retinal layers are still functional and can be stimulated electrically.
Therefore, a viable alternative to cortical implants are retinal ones.

An implantation at the level of the retina has the advantage to benefit from
the fine retinotopic organization of the retina. More importantly, it allows ex-
ploiting the natural processing of the rest of the visual pathways. Retinal pros-
theses stimulate the inner retina. They are either subretinal (Chow and Chow,
1997; Zrenner, Stett, Weiss, Aramant, Guenther, Kohler, Miliczek, Seiler and
Haemmerle, 1999; Zrenner, 2002) or epiretinal (Humayun, Propst, de Juan E,
McCormick and Hickingbotham, 1994; Humayun, de Juan, Dagnelie, Green-
berg, Prost and Phillips, 1996; Wyatt and Rizzo, 1996; Eckmiller, 1997; Rizzo
and Wyatt, 1997), according to the location of fixation of the stimulation array.

In the first approach, high-density microphotodiodes arrays are implanted be-
hind the retina in order to replace the lost photosensitive cells, i.e. the outer
retina, by an artificial one. The adjacent retinal neurons are then stimulated
through multi-site injection of photocurrents generated by locally absorbed
light (Zrenner et al., 1999). In this approach, the optics of the eye need to be
intact. Although it was demonstrated that the retinal neurons could be electri-
cally stimulated using this method, the required retinal illuminance (between
10 and 100kLux) to stimulate the inner retina is far above the ones naturally
occurring (approximately 8Lux). Therefore, it is likely that active electronics,
and thus an external power supply is needed. Furthermore, histological eval-
uation has shown that there is an ongoing degenerative process of the inner
retina under the device. So far, it is not fully understood why this occurs,
but according to Zrenner et al. (1999), this may be due to the fact that the
microphotodiode array is flat, rigid and not perforated. As a result, the inner
retina could be mechanically damaged and the transport of nutrients to it could
be reduced.

In the second approach, the stimulating device is placed intraocularly on the
inner retina, while most of the electronics is located off the retinal surface in
the vitreous body. Since this is a fluid filled cavity, it helps dissipating heat.
The implanted retinal microchip receives information from outside the body via
a telemetry link (Liu, Vichienchom, Clements, DeMarco, Hughes, McGucken,
MS, de Juan, Weiland and Greenberg, 2000). The carrier signal is either radio
frequency or laser modulated. The external part of the system consists in a
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camera and an electronic image-processing unit. Experiments demonstrated
that the electrical stimulation of the retinal surface elicits visual sensations in
blind individuals (Humayun, de Juan, Weiland, Dagnelie, Katona, Greenberg
and Suzuki, 1999) and that the location of the visual perceptions is directly
related to the retinal area that is stimulated. In addition, it was reported that
the stimulation threshold depends on the targeted retinal area of the subjects.
Because of the rotational ocular movements, the main disadvantage of epiretinal
prostheses is the way the stimulation array is fixed, such that it remains in place
for a prolonged period of time without damaging the retina. Another concern
is the viability of the tissues under the implant (Maynard, 2001) and possible
activation of unwanted axons, which passes nearby the activation sites.

5.1.3. The Optic Nerve Visual Prosthesis

In case of outer retina pathologies such as RP and AMD, the electrical stim-
ulation of the peripheral visual system can be considered at two different lo-
cations: the retina, as described in the previous section, or the optic nerve
(Veraart et al., 1998). As noted by Maynard (2001), one issue when electri-
cally stimulating the retina, as well as the visual cortex, is that the visual field
is represented over a relatively large area, making coverage of the entire visual
field nearly impossible with current electrode array technologies. By contrast,
the optic nerve is one place where the entire visual field is represented in a rel-
atively small area. Unfortunately, as with cortical implants, there we have to
deal with the fact that the retinotopic organization of the human optic nerve is
possibly not fully respected (Ding and Marotte, 1997). Furthermore, it might
be difficult to achieve focal stimulation, and therefore detailed perception.

The optic nerve contains roughly one million fibres, which are clustered into
bundles and are surrounded by connective tissue. It can be accessed either
intracranially, near the optic chiasm, or directly behind the eye, via the eye
cavity after having carefully removed the eye. After dissection of the dura, a
spiral cuff electrode, as the ones used in neuromuscular stimulation (Naples,
Mortimer, Scheiner and Sweeney, 1988; Veraart, Grill and Mortimer, 1993), can
be wrapped around the optic nerve. In fact, by using a multi-contact electrode,
subsets of axons can be stimulated selectively by complex patterns of electrical
stimulation (Parrini, Delbeke, Legat and Veraart, 2000).

The MIVIP (microsytems based visual prosthesis) and OPTIVIP (optimization
of the wisual implantable prosthesis) projects funded by the European Com-
mission aim to investigate the feasibility and the prospects of an optic nerve
based visual prosthesis. A 59-year old female was selected among six totally
blind candidates in order to assess the electrical excitability of the visual path-
ways and the viability of the optic nerve by using surface electrodes (Delbeke,
Pins, Michaux, Wanet-Defalque, Parrini and Veraart, 2001). The volunteer,
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who gave her informed consent!, has been chronically implanted with a self-
sizing spiral cuff electrode around her right optic nerve in February 1998. The
blind patient was affected by RP. She was left with a mere light perception
at the age of 40 and diagnosed totally blind at 57. It was demonstrated ex-
perimentally that the optic nerve can be safely interfaced with a four-contact
electrode and that the elicited phosphenes, of various shapes and colors, were
broadly distributed in the visual field (Veraart et al., 1998). After training, the
patient could recognize different shapes, line orientations, and even letters (Ve-
raart, Wanet-Delfalque, Gerard, Vanlierde and Delbeke, 2003). Furthermore,
no acute or chronic side effect was noted.

Prosthetic device

The three levels of hierarchy in the sensory systems, i.e. receptor organ, sensory
pathways and perception, suggest a similar architecture for artificial and pros-
thetic sensory systems. Accordingly, complete artificial systems should include
a transducer corresponding to the receptor organ, an encoder corresponding to
the sensory processing system, and an interpreter corresponding to perceptual
functions (Margalit et al., 2002). In the case of the optic nerve prosthesis, the
transducer is bypassed, as well as a substantial part of the encoder. Therefore,
the prosthetic device should compensate for this such that the electrical signals
arriving in the visual cortex are meaningful.

Figure 5.3 shows a picture of the microelectronic prototype of the prosthesis
(Doguet, Mevel, Verleysen, Troosters and Trullemans, 2000). Images of the
environment are captured by means of a small camera, which is fixed on the
branch of a pair of glasses. These images are processed by the portable ex-
ternal processor, which extracts the relevant information and encodes it into a
restricted data stream, which in turn is sent to the implanted stimulator. The
transcutaneous antenna and its driver are used for telemetry and power supply.
Of course, the amount of power needed for the implant should be kept as small
as possible. The antenna is an inductive link and therefore avoids wires through
the skin, which may be a source of infection. The stimulator decodes the data
streams of 3Mbit/s and transforms them into adequate electrical stimuli to be
applied to the optic nerve via the self-sizing cuff electrode.

Figure 5.4 shows X-rays of the head to the blind volunteer after implantation.
The stimulator is located behind the right ear. As it is chronically implanted,
biocompatibility of the implanted material and hermetic sealing from the cor-
rosive biological fluid are of major concern. In particular, the connectors are
the most vulnerable leakage points of the system. The stimulator is connected
on one side to the electrode and on the other side to the secondary coil of the
antenna. Both coils are kept in place by means of a little magnet.

1Both MIVIP and OPTIVIP projects fully comply with the declaration of Helsinki
and have been approved by the ethical committee (comité hospitalo-facultaire) of St-Luc
University Hospital, Université catholique de Louvain, Brussels, Belgium.
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(b) Spiral cuff electrode.

FIGURE 5.3. (a) shows the prototype of the optic nerve visual
prosthesis. The camera, for example fixed on spectacles, cap-
tures an image of the environment and sends it to the portable
external signal processor. The processor extracts the informa-
tion to be transmitted to the stimulator via the inductive link
(antenna). Finally, the stimulator sends electrical pulses to
the four-contact self-sizing cuff electrode wrapped around the
optic nerve of the blind volunteer. (b) is a zoom of the elec-
trode.

Electrical stimulation principle

The visual information captured by the camera has to be translated by the
external processor into a spatiotemporal stimulation pattern of electrical im-
pulses that can be understood by the brain’s visual cortex. More specifically,
the stimulation principle relies on the selective response of the human optic
nerve to adequately chosen electrical stimuli. In other words, phosphenes with
the desired features will be generated by tuning the stimulation parameters.

The electrical stimulation of neurons elicits an electro-chemical response, called
action potential, according to an all-or-one mechanism (Lapique, 1907; Hodgkin
and Huxley, 1952). This means that neural excitation only occurs when the
minimum excitation threshold, depending on the shape, the amplitude and the
duration of the electrical stimulus, is exceeded. In fact, it is not directly the
amplitude and the duration of the current pulse that matters, but the charge
that is injected. For example, if the pulse duration decreases, the threshold
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connector

electrode

F1GURE 5.4. X-rays of the implanted part of the prosthetic
device. One can see the secondary coil of the antenna, the
stimulator and the connector of the wires to the electrode.
When taking a closer look, the wire running from the stimu-
lator to the electrode can also be observed.

current will increase. The relationship between stimulus amplitude and dura-
tion is described by the well-known strength-duration curve (Hill, 1936). An
example of this curve is shown in Figure 5.5 and its mathematical form is given
by

I

1 —exp <7%) '

Im(D) = (5.1)

c

In this equation, I, and D, are respectively the rheobase and the chronaxie.
The rheobase is the minimum current amplitude required to trigger the neuron
when the stimulus is a square pulse of infinite duration. The chronaxie is the
minimum duration required to trigger the neuron when the pulse has an am-
plitude equal to 2I,. In order to excite the axons of the optic nerve, one should
thus use, for a given stimulation duration, appropriate and safe current ampli-
tudes. It was also reported that the rate of stimulation affects the threshold as
well (Bak et al., 1990; Veraart et al., 1998).

The electrode of the prototype has four contacts (see Figure 5.3). Each of them
is driven by an independent current source of the stimulator. These current
sources send biphasic square pulses, i.e. with charge recovery. For safety rea-
sons, it is important to use balanced electrical stimuli, such that the net charge
supply after each stimulation is zero. Therefore, any net DC current, which
would lead over time to irreversible electrolyte reactions in the neuronal tissue,
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Ith

FIGURE 5.5. Example of a strength-duration curve. The
rheobase and the chronaxie are respectively I, and D.. For
a given pulse duration D, a current amplitude below I will
not trigger the neuron and thus not generate an action poten-
tial.

is avoided. The time resolution of the pulses is 21.3us and the current ampli-
tude ranges from 10pA to 3mA (with a nonlinear resolution). Besides, since
higher currents are required to reach threshold with anodic stimulation, the
preferred polarity is the cathodic one. In conclusion, the stimulation parame-
ters characterizing the electrical pulse trains and thus controlling the features
of the phosphenes are the current amplitude I, the duration of the pulse D,
the frequency of the pulse train f and the number of pulses in the train N.

5.2. Prediction of Phosphenes

In order to establish the features of the visual perceptions, a large number
of experiments have been conducted with the blind volunteer (Veraart et al.,
2003). Before and during stimulation, the subject’s head is stabilized in front
of a hemispheric surface, her right eye being located at the center. Meridians
and parallels are traced on the hemisphere. When ready for stimulus, she is
asked to gaze right in front of her, which is important as the apparent location
of the perceptions depend on the gaze direction. Of course, she does not know
the kind of stimulation she might expect. When single or short current pulses
are delivered to the optic nerve, phosphenes light up in the black visual field
of the patient. These perceptions are (quasi) instantaneous and comparable to
a flash. Right after stimulation, she is asked to point the location where she
perceived the phosphene, which is then drawn by an operator on a grid with
azimuth and elevation coordinates. Subsequently, the perceived phosphenes are
documented in terms of brightness, color, size, texture and motion following
the subject’s description.

The light perceptions are spatially organized in the volunteer’s visual field
according to a coarse retinotopic map. This means that each contact around
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the optic nerve activates fibres located in a certain area of the optic nerve cross-
section, which in turn corresponds to a well-defined area in the visual field of
the blind. Figure 5.6 shows the location of the phosphenes in the visual field of
the patient. We consider single electrode contact stimulations, meaning that
only one contact is activated in each stimulation. The contacts are identified by
their angular position around the optic nerve. Although there is some overlap,
it can be observed from the figure that the phosphenes are roughly elicited in
one quadrant of the visual field, which depends on the electrode contact. We
can also see that the region in which the phosphenes are perceived ranges from
—30° to +30° horizontally and from —50° to +30° vertically.

The complexity of the neurophysiological process, whereby the electrical pulses
applied to the optic nerve generate phosphenes, makes it difficult to study the
entire process at a biological level. For instance, some unknown parameters
might influence it to a large extent. Furthermore, it must be stressed that
the optic nerve of the patient is probably damaged to some unknown degree
due to RP. Finally, the characteristics of the phosphenes are a description of
subjective perceptions by a human being, leading inevitably to inaccuracies and
even errors. As a consequence, the collected data set can be expected to be
very noisy. For these reasons, even if partial decoding can be achieved by using
neurophysiological knowledge, a mathematical identification of the undecoded
part of the process might be very helpful.

One of the main building blocks of a meaningful stimulation strategy are
patient-dependent models that can reliably and accurately predict the char-
acteristics of the phosphenes. Obviously, correctly predicting the location of
the phosphenes is of utmost importance for reconstructing visual scenes and
we will therefore focus exclusively on this problem. By “correctly” is meant
that the position of the phosphene is understood in a natural way by the blind.
For example, this information can be used to reconstruct contours in the visual
field of the subject. Besides, having effective and flexible prediction tools is
very helpful for further guiding the data acquisition and better understanding
the underlying neurophysiology.

The prediction (or regression) problem is summarized in Figure 5.7. The target
is the unknown neurophysiological process which links the stimulation parame-
ters {I, D, N, f} to the position (zp,x,) of the corresponding phosphene. In
the remaining of this chapter, the azimuth x;, and the elevation x, will be
examined separately. Once the neurophysiological process is modeled with a
satisfactory accuracy, it may be reversed, for example by means of a simple
lookup table implemented in the external processor. In other words, when we
want a light perception at a certain location in the visual field, it is sufficient
to select the appropriate stimulation parameters in the table (as well as the
appropriate electrode contact). Note however that several sets of stimulation
parameters may lead to the same (or a very similar) phosphene and would thus
be equally suitable. In this case, additional criteria such as reliability or safety
can be used to select specific parameters.
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FIGURE 5.6. Location of the phosphenes recorded during the
experiments in the visual field of the blind patient. The
posphenes that were elicited by a stimulation strength smaller
than —100 or larger than 1,000 are discarded. For a for-
mal definition of this quantity, we refer the reader to Sec-
tion 5.2.1. The azimuth and elevation coordinates are denoted
by (xp,2,). The resolution of the measurements’ grid is ap-
proximately 1°. In each panel a different electrode contact is
activated. The electrode contacts are named by their position
around the optic nerve.

Next, three predictive models are presented. The first one, which is due to
Delbeke, Oozeer and Veraart (2003) is a neurophysiological model. The second
one follows a standard machine learning approach and is therefore purely of the
black-box type (Archambeau, Delbeke, Veraart and Verleysen, 2004). Finally,
a hybrid predictive model is proposed. This model tries to combine the advan-
tages of both previous approaches in order to obtain high quality predictive

models.
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FIGURE 5.7. Prediction problem. The primary aim is to
model the unknown neurophysiological problem, linking the
stimulation parameters to the position of the phosphenes. In
addition, unknown parameters may significantly influence this
process. The ultimate goal is to reverse the predictive model
in order to select the stimulation parameters corresponding to
the desired visual sensation.
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5.2.1. Neurophysiological Predictive Model

The neurophysiological model is depicted in Figure 5.8. It assumes that the
stimulation strength S is the key quantity for predicting the features of the
phosphenes, and in particular their position. The stimulation strength is de-
fined as the useful proportion of the stimulation current to generate a visual
sensation:
I— Iy
Ly,

The perception threshold Iy, is the minimum current required to elicit a
phosphene. In practice, this quantity is estimated experimentally, using a two-
staircase limit method (see for example Delbeke et al., 2001). The strength-
duration relationship (5.1) is only valid for the activation of individual fibres.
Here however, we do not focus on the fibre activation directly, but rather on
the perception of phosphenes which result from the activation of one or more
fibres in the optic nerve. Delbeke, Parrini, Michaux, Vanlierde and Veraart
(2000) showed experimentally that the perception threshold obeys in form to
the classical strength-duration curve. The main difference resides in the fact
that the rheobase now depends on the frequency f of the pulse train and on
the number of pulses N:

S (5.2)

L(N, f)

I(D, N, f) = :
1—exp (—7]311:())52)

(5.3)

In practice, it was noted that the perception threshold decreases when either
the number of pulses or the frequency are increased. These experimental results
suggest the existence of a synaptic-like temporal summation mechanism, i.e.
that the fibres have some sort of memory. Moreover, the phenomenon occurs
although biphasic pulses prohibit electric charge accumulation. Therefore, a
central integration mechanism has been hypothesized (Delbeke et al., 2000).
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Ficure 5.8. Neurophysiological predictive model. The stim-
ulation parameters specify the current pulse train sent to the
electrodes, which produces a visual sensation. The duration D
of the pulses, their number N and the frequency f of the pulse
train determine the perception threshold Ii;,. The stimulation
strength S, which is the useful proportion of the stimulation
current, is then used to predict the phosphene’s position in the
visual field of the blind.

Based on synapse electrophysiology, such a behavior can be roughly mimicked
by a summation of equal sized decreasing exponential curves.

Let us denote the proportion of fibres activated by a single pulse at perception
threshold by Ps and the proportion of fibres activated by N identical pulses
at perception rheobase by Py. If we assume that both stimuli produce an
hypothetical integrating neuron to fire such that a perception is induced, it is
likely that this neuron acts as if the same proportion of fibres is activated. This
yields the following relationship:

N .
Ps =Py exp (szN) , (5.4)

i=1

where 7 is a time constant. As discussed by Delbeke et al. (2003), the propor-

tion Py is directly related to the perception rheobase I;(N, f):

I + (Ipgj2 — 2I1) Py
1— Py

where [; and Ip, /o are respectively the current for which a single axon is

activated and the current for which half the population is.

L(N, f) = : (5.5)

Finally, the neurophysiological model postulates migration of the phosphenes
on the basis of further experimental evidence. By “migration”, it is meant that
the phosphenes follow L-shape trajectories towards the center of the visual field
when the stimulation strength is increased. While the origins of these trajecto-
ries depend on Pg/Py, the end points only depend on the electrode contacts.
The predictions made by the neurophysiological model are shown in Figure 5.9.
These predictions should be compared to the recorded locations shown in Fig-
ure 5.6. Although the areas of the visual field in which each electrode generates
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FIGURE 5.9. Phosphene locations predicted by the neurophys-
iological model. Each panel corresponds to a different elec-
trode contact. Each location corresponds to one of the loca-
tions shown in Figure 5.6.

phosphenes are in accordance with each other, the model only accounts par-
tially for the initial dispersion of the phosphenes. This is easily verified by
standard statistical tools. In order to assess the quality of the neurophysio-
logical model, we construct a linear regressor between the predicted positions
(in each direction) and the observed ones. Table 5.1 shows the coefficients of
determination and their level of significance. The coefficient of determination
r2 is defined as the explained variance by the predictive model divided by the
total variance (see Appendix B for further details on linear regression). As a
consequence, when r2 = 1, the predictive model is perfect, while when 2 = 0,
it has no predictive power. One can thus observe from the table, that the
neurophysiological model has only limited predictive power, except for the 90°
and 180° electrode contacts (in elevation only).

In the next section, we tackle the problem from a machine learning perspective.
It is our hope that the resulting black-box models will have higher predictive
power. Using nonlinear machine learning tools is also motivated by the fact



TABLE 5.1. Coefficient of determination r? and its p-value obtained by means of the F-test. In most cases, the
results are highly significant (p < .01).

0° 90° 180° 270°
Th Ty Th Ty Th Ty Th Ty
Neurophys. model .03 (.00) .04 (.00) .01 (.03) .44 (.00) .01 (.01) .42 (.00) .03 (.00) .02 (.01)
Linear model 03 (.00) .07 (.00) .02 (.00) .28 (.00) .05 (.00) .18 (.00) .06 (.00) .03 (.00)
VQ RBFN 32 (.01) .46 (01) .35 (.01) 58 (.01) .32 (.01) .59 (.01) .42 (.01) .37 (.01)
MAP RN 49 (.00) .58 (.00) .52 (.00) .69 (.00) .43 (.00) .66 (.00) .45 (.00) .45 (.00)
RVM 26 (.00) .47 (.00) .38 (.00) .66 (.00) .34 (.00) .62 (.00) .40 (.00) .40 (.00)
Hybrid RN 43 (.00) .56 (.00) .45 (.00) .68 (.00) .42 (.00) .65 (.00) .44 (.00) .45 (.00)
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FiGUure 5.10. Black-box predictive model. The artificial
neural network is implemented by either linear regression, the
vector quantization-based radial basis function network, the
maximum a posteriori regularization network or the relevance
vector machine.

that the migration of the location of the phosphenes is described in the neuro-
physiological model by a functional form based only on intuition. In addition,
it requires to set many parameters, which are currently estimated by fitting
the model directly to the data.

5.2.2. Black-box Predictive Models

As discussed in the previous section, the neurophysiological process involved
during the electrical stimulation of the optic nerve is largely unknown. It is
therefore proposed to use nonlinear statistical tools (i.e. machine learning tech-
niques or artificial neural networks) in order to build more accurate predictive
models. Preliminary results on this matter were reported by Archambeau,
Lendasse, Trullemans, Veraart, Delbeke and Verleysen (2001).

Statistical methods are black-box approaches, meaning that they link any
input-output relationship based on a set of examples (i.e., the learning set)
and are able to generalize on new data points. These methods can thus model
any underlying process, provided a sufficient number of data is available. The
black-box predictive model used in the case of the optic nerve visual prosthe-
sis is illustrated in Figure 5.10. The main advantage of the approach is that
any unknown process can be captured, without assuming the form of its func-
tional form. Unfortunately, the price we have to pay is that, in general, it does
not provide any (neurophysiological) interpretation. Next, we investigate both
linear and nonlinear techniques.

Linear model

Before investigating the performance of nonlinear tools, we first consider mul-
tiple linear regression, which will be later used as reference model. This model
can be formalized as a particular case of the radial basis function network
(RBFN), which is studied in Section 4.1. In contrast to the RBFN, the design
matrix ® is here defined by linear kernels instead of nonlinear ones. In other
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Ficure 5.11. Phosphene locations predicted by the linear

model. Each panel corresponds to a different electrode con-

tact. Each location corresponds to one of the locations shown

in Figure 5.6.
words, the lines of ® are given by ¢(x,)T = (1,x1,...,%xy). The model para-
meters w can then be computed by using (4.6), which leads to the well-known
least-squares solution from statistics.

The predictions made by the linear model are shown in Figure 5.11. Obviously,
the linear model cannot reproduce the dispersion of the recorded data. When
looking at Table 5.1, it is clear that the linear model has very few predictive
power. However, this result suggests that the underlying neurophysiological
process is rather nonlinear, and thus that nonlinear tools are more suitable as
shown below.

Nonlinear models

Archambeau, Delbeke, Veraart and Verleysen (2004) investigated predictive
models based on the multi-layer perceptron (MLP) and the vector quantization-
based RBFN. The model parameters were optimized by 10-fold cross-validation
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or the bootstrap. Furthermore, due to numerical instabilities, it was advised to
construct the final predictors by model aggregating, such as averaging or bag-
ging (Breiman, 1996). The results with the vector quantization-based RBFN
are reported in Table 5.1 for comparison purposes. The MLP is performing
very similarly and is therefore not further discussed.

In this section, we follow a different approach. We use maximum a posteriori
(MAP) regularization networks (RN) and relevance vector machines (RVM).
The MAP RN is expected to provide stable solutions as a basis function is
placed on each learning data. By contrast, relevance vector machines (RVM)
seek a sparse regressor and may thus be more sensitive to the training set.
Both regressors are described in detail in Chapter 4. The results are reported
in Table 5.1. The kernel precision is optimized by 10-fold cross-validation.
Globally, the RVM performs similarly as the vector quantization-based RBFN,
but only requires to optimize a single parameter: the kernel width. Although
the RVM is able to better capture the dispersion of the data, it can be seen
from Figure 5.12 that it is still unsatisfactory. For example, when considering
the 270° electrode contact, it can be observed that the predictions are mainly
located on a very thin cross, suggesting some form of overfitting; note also the
relatively high number of relevance vectors compared to the number of training
data (see Table 5.2).

By contrast, the MAP RN provides a much more satisfactory predictive model.
This is confirmed visually by Figure 5.13 and numerically by Table 5.1. Note
that the training procedure of the MAP RN is slower, since the regularization
constant « also needs to be optimized in addition to the kernel precision. How-
ever, this is not a problem in practice as the data acquisition is much more
expensive.

Table 5.2 shows the mean square error (MSE) estimated by 10-fold cross-
validation, as well as the number of basis functions used by the predictive
model and the noise estimate. The values obtained for the MSE confirm that
the MAP RN performs better than the RVM in this context. The error bars for
the RVM are approximately constant, meaning that most of the uncertainty is
due to the noise on the data, rather than the uncertainty in the predictions that
are made. The RVM and the MAP RN are basically in agreement regarding
the amount of noise, which is close to the actual precision that can be expected
from the recordings during the experiments. It can also be observed that the
noise is larger in terms of elevation for all electrode contacts.

The main drawback of black-box predictive models is that they are only of little
help for understanding the underlying neurophysiological process. By contrast,
a hybrid predictive model, which combines neurophysiological knowledge and
nonlinear statistical tools, might be more instructive. This model is discussed
in the next section.



TABLE 5.2. Mean square error estimated by 10-fold cross-validation, number of basis functions and expected
noise standard deviation (which is estimated on the training set). These quantities are given for the models in
azimuth (h) and elevation (v).

0° 90° 180° 270°
MSE, M, oy MSE, M, oy MSE, M, oy MSE, M, oy
MAP RN 15.8 665 3.2 20.2 640 3.5 29.4 683 4.6 249 557 44
RVM 16.8 67 3.9 20.8 Tro4.1 31.6 121 5.1 26.1 51 4.8

Hybrid RN 16.7 665 3.3 21.2 640 3.8 30.2 683 4.6 25.0 557 4.5

MSE, M, o, MSE, M, o, MSE, M, o, MSE, M, o,
MAP RN 120.7 665 9.4 78.0 640 7.6 117.8 683 9.2 59.5 557 6.7
RVM 137.6 103 11.0 97.9 104 8.4 120.0 90 9.9 63.2 71 7.2
Hybrid RN 131.9 665 9.6 82.3 640 7.7 114.8 683 9.3 58.1 557 6.7
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FiGURE 5.12. Phosphene locations predicted by the RVM
model. Each panel corresponds to a different electrode con-
tact. Each location corresponds to one of the locations shown
in Figure 5.6.

5.2.3. Hybrid Predictive Model

Hybrid predictive models use the most reasonable physiological knowledge at
disposal, as well as (nonlinear) statistical tools to learn unexpected or ill-
characterized relationships through the use of the data. Therefore, we first
extract the most reliable neurophysiological information, before using the black-
box models.

First, consider again the perception threshold I;;,. This quantity is linked to
the rheobase I, through the strength-duration curve which is given by equation
(5.3). When considering the ratio between Iy, and I,., we obtain a quantity that
only depends on the pulse duration D and the chronaxie D.. This constant
can easily and reliably be fitted to the data (see Delbeke et al., 2000).

Second, the rheobase depends on the number of pulses N in the pulse train
and the frequency f by means of the proportions of fibres Py activated by a
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FIGURE 5.13. Phosphenes’ locations predicted by the MAP
RN model. Each panel corresponds to a different electrode
contact. Each location corresponds to one of the locations
shown in Figure 5.6.

single pulse of the pulse train. Using (5.4), we may rewrite (5.5) as follows:
B o (55) + o 2100,
Ziewn () - Ps

Since Pg is the minimal proportion of fibres to be activated in order to elicit
a visual perception (and is thus a constant for each electrode contact), the
informative part of the rheobase is given by the ratio Ps/Px. In addition, ac-
cording to the neurophysiological model, this ratio determines the origin of the
L-shape trajectories of the phosphenes when the current amplitude increases
and the other stimulation parameters are fixed. Note that the time constant
7 can be fitted to the data by using the volume-conductor model of the optic
nerve (Parrini et al., 2000).

A diagram of the resulting hybrid predictive model is shown in Figure 5.14.
The neural network is implemented by a MAP RN, as this model yields the
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F1cUre 5.14. Hybrid predictive model. The artificial neural
network is implemented by the maximum a posteriori regular-
ization network.

best results in the case of the black-box predictive models. Table 5.1 shows
that the hybrid model has a very similar predictive capability as its black-box
equivalent. Only a slight loss of performance can be noted in terms of elevation.
This is also observed when looking at the MSE in Table 5.2. However, a major
advantage of this model is that 3 inputs are feeded to the neural network
instead of 4. This is very important when planning future data acquisition,
as the number of experiences to conduct in order to cover the entire feature
space grows exponentially with the dimension. Remember that the stimulation
sessions are very time consuming and tiring for both the blind volunteer and
the persons conducting the experiments.

5.3. Classification of Phosphenes

In the previous section, predictive models have been developed in order to pre-
dict the location of a single phosphene. A phosphene is elicited by activating a
single electrode contact at a time. An electrode contact is said to be activated
when it is sent an electrical pulse train. However, it was observed experimen-
tally that in most cases, when several contacts are activated in a short time
period, the same number of phosphenes is perceived. This phenomenon is at-
tractive in practice as it allows us to increase the amount of visual information
transmitted to the volunteer within this time period.

Let us denote the starting times of two pulse trains respectively by t; and 5
and the total duration of the first (reference) pulse train by 77. The electrode
contacts can be combined in three ways, leading to the following stimulations:

[t1 —t2] =0 : synchronous stimulation;
|t1 —t2] <Ty : interlaced stimulation;
|t1 —t2] >T1 : sequential stimulation.

It was established that in 80% to 90% of the experiments, depending on the
type of stimulation combination, the number of perceived phosphenes is equal
to the number of activated electrode contacts. Furthermore, it was found that
in the case of single contact activations, for each contact, a restricted, but
dissimilar area of the visual field is accessible (see Figure 5.6). In practice, it is
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likely that the phosphenes still light up in the corresponding areas of the visual
field when considering combinations of electrode contacts. Based on these
experimental results, it seems reasonable to assume spatial superposition when
electrode contacts are combined. In other words, when a set of pulse trains
is sent to several electrode contacts within a sufficiently short time period, we
may assume that the resulting visual perceptions are a superposition of all
the single visual perceptions. In practice however, a slight influence has been
noticed on the exact phosphene location, but the effect is limited and localized
inside the specific area associated to each electrode contact.

Subsequently, we characterize more accurately the activation areas associated
to each electrode contact. Besides, this enables us to tackle the problem of an-
alyzing the data resulting from experiments involving electrode combinations.
Indeed, based on the probability that a phosphene was generated by a par-
ticular electrode contact, we may classify the induced visual perceptions and
assign them to the most probable activated contact. This problem was already
partially investigated by Archambeau, Delbeke and Verleysen (2003).

5.3.1. Activation areas

Describing the activation areas associated to each electrode contact by means of
their probability density function is particularly appealing. It allows determin-
ing the most suitable contact to activate in order to generate a specific visual
perception and with what confidence we may generate this perception. This
information is very important for the setup of an efficient stimulation strategy.

Figure 5.15 shows the estimated density for each contact when using the or-
dinary kernel density estimator (KDE). The darker the color, the higher the
density. The method is described in Section 2.2.2. The kernel precision is
optimized for each contact separately by 10-fold cross-validation. The opti-
mal value is selected as the one minimizing the average negative log-likelihood
(ANLL) of the validation sets.

It can be observed that the density of electrode contact 180° is less localized
than the other ones. Furthermore, one can notice very high peaks in the estima-
tors (cf. very dark spots), especially for contact 0°, suggesting some overfitting.
This result is surprising as we use statistical resampling techniques to avoid this
kind of problem. However, when taking a closer look to the data, this can be
explained as follows. Due to the sampling process and the experimental setup,
the data base contains occasionally data points which are repeated a large num-
ber of times. As a result, these data points bias the estimation of the ANLL,
leading to an overestimated kernel precision. Note that the problem was even
more severe when using adaptive KDE, such as the sample point kernel density
estimator (see Section 2.3.2).

In order to obtain more reliable estimators, we use variational Gaussian mixture
models (GMM). As discussed in Section 3.2.5, the variational GMM avoid
numerical instabilities in contrast to the standard GMM. This is important
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FiGURE 5.15. Nonparametric probability density estimation
of the phosphene location for each electrode contact. The es-
timators are constructed by the kernel density estimator. The
kernel precision is chosen as the one minimizing the average
negative log-likelihood, which is estimated by 10-fold cross-
validation. The data is shown in Figure 5.6.

in this context as the GMM failed to provide consistent estimators due to
numerical instabilities caused by the repetitions in the data. The estimators
provided by the variational GMM are shown in Figure 5.16. Obviously, they
are smoother and thus more intuitive than the ones obtained with KDE. The
number of components in the mixture is optimized for each electrode contact
on the basis of the variational lower bound on the log-evidence. Again, this is
attractive as the model complexity can be optimized in a single run, without
having to split the data in a training and validation set (see Section 3.2.5).

5.3.2. Classification model

The phosphenes can be classified based on the probability of eliciting a
phosphene by a particular electrode contact. The classification problem can
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FIGURE 5.16. Probability density estimator of the phosphene
locations for each electrode contact. The models are con-
structed with the variational Gaussian mixture model. The
number of components is selected as the one maximizing the
variational lower bound. The data is shown in Figure 5.6.

be stated as follows. For each perceived phosphene, we would like to find the
most probable electrode contact among the activated ones. The ultimate goal
of this classification problem is to decompose the perceptions induced by stim-
ulation combinations, in order to further analyze the data and verify if the
predictive models discussed in the previous section are still applicable.

Once the density is estimated, we may perform Bayesian classification using
Bayes’ rule:

p(x[C)P(C)

PO =00

(5.7)
where P(C) is class prior and p(x|C) is the probability of x = (xj,x,) when
assuming it was generated by class C. The probability p(C|x) is thus the
posterior probability of having class C' when x is observed. The normalizing
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FIGURE 5.17. Phosphene classes obtained for (a) the kernel
density estimator and (b) the variational Gaussian mixture
model. The 4 electrode contacts are activated, which are indi-
cated by colors (blue for 0°; red for 90°; green for 180°; grey
for 270°).

constant is given by

p(x) =Y p(x[C)P(C) . (5:8)

c

The classification results based on the density estimators from Figures 5.15
and 5.16 are shown in Figure 5.17. We assume that the 4 electrode contacts
are activated, which is the worst case as the overlap between the different
classes is maximal. To each color corresponds a winning electrode contact.
As expected, the KDE provides rather noisy classification boundaries. By
contrast, the classification result provided by the variational GMM is much
more reassuring. In particular, it confirms the hypothesized (coarse) retinotopic
structure of the optic nerve. Nevertheless, it can be observed that some areas
associated to the electrode contact 90° are doubtful (e.g., lower left corner), but
fortunately, in practice no phosphenes have ever been elicited in those areas.

Table 5.3 takes a quantitative look at the classification results shown in Fig-
ure 5.17. The table represents the empirical confusion matrix when classifying
the phosphenes associated to the single contact stimulation (see Figure 5.6).
The density models are built with the variational GMM. The confusion matrix
counts, for each class, the number of data that are correctly classified and the
number of misclassifications. Each line represents the target (or true) class
and each column the class the data is assigned to. Therefore, the sum of the
proportions of each line is equal to 1. At first sight, the classification results
are poor. This is mainly due to the fact that when the 4 contacts are acti-
vated, the classes are strongly overlapping. However, in practice, most of the
experiments involve 3, and usually only 2 contacts. Of course, the resulting
classification performances increase considerably. Two examples are shown in
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TABLE 5.3. Empirical confusion matrix for the variational
GMM estimators when the 4 electrode contacts are activated.
The proportions of correct classifications are on the diagonal.
The true class labels are indicated in italics, while the assigned
class labels are straight.

0° 90°  180° 270°

o° 0.37 0.29 0.16 0.18
9r 0.18 0.34 0.26 0.22
180° 0.17 0.16 0.56 0.11
270° 0.09 0.14 0.13 0.64

TABLE 5.4. Empirical confusion matrix for the variational
GMM estimators when the electrode contacts 90°, 180° and
270° or 0° and 270° are activated. The proportions of correct
classifications are on the diagonal. The true class labels are
indicated in italics, while the assigned class labels are straight.

90°  180° 270° 0°  270°
9r 0.44 034 0.22 o° 0.74 0.26
180° 0.19 0.68 0.13 270° 0.24 0.76

270° 0.18 0.15 0.67

Table 5.4. The confusion matrices for the other contact combinations are given
in Appendix C.

As a final remark, one may object that the generic approach that we follow is
suboptimal, since we do not solve the classification problem directly as would
be the case with discriminative techniques (e.g., support vector machines).
However, one realize that the generic approach is attractive in this biomedical
application, as it provides us with additional information. On the one hand,
the densities tell us where an activated electrode contact is the most likely to
induce a phosphene. On the other hand, using a Bayesian classifier provides us
with a confidence measure on the classification results. Furthermore, we do not
need to recompute a new model for each of the many electrode combinations,
which is very attractive in practice.

5.4. Stimulation Strategy

Currently, a limited number of phosphenes is used during the stimulation ses-
sions. However, it was recently reported by Brelén, Duret, Gérard, Delebeke
and Veraart (2005) that a better performance is observed in terms of object or
pattern recognition when the number of phosphenes used by the stimulation
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algorithm is increased. Note that in order to achieve these better results, a
longer training period of the blind volunteer is required. In this context, it
is also important to have relevant selection criteria for determining the most
informative phosphenes.

Based on the predictive and the classification models described in the previ-
ous sections, one can think of an enhanced stimulation algorithm, which will
supply meaningful visual information to the blind. The proposed stimulation
algorithm is depicted in Figure 5.18. In order to reconstruct shapes in the visual
field of the blind, we can proceed as follows. After having recorded an image
and having performed some form of edge detection in the external processor,
the set of phosphenes to generate is identified. This is done by superposing the
object contours with a predifined phosphene map. The most suitable electrode
contact to generate each of the selected phosphenes can then be identified by
means of the classification models. In addition, we may rank these phosphenes
according to their probability, as it is more likely that we can generate accurate
predictions in high density regions. Next, using lookup tables implementing the
inverse predictive models, we determine the adequate stimulation parameters
for each visual perception to induce. The corresponding pulse trains are then
sent via the stimulator to the optic nerve. Finally, we remove the phosphenes
that have already been generated from the list to provide new information to
the blind. Note however that after a certain time period, it should be possible
to generate them again.

In conclusion, this new stimulation strategy is particularly useful when one
wants to increase the number of phosphenes to work with. On the one hand,
the classification models provide automatic and appealing selection rules for the
visual perceptions to elicit. On the other hand, the predictive models and in
particular the black-box or hybrid models, predict the phosphene locations with
a sufficient accuracy, such that the corresponding inverse models are expected
to provide adequate stimulation parameters.

5.5. Summary

The probabilistic models described in the previous chapters are here applied to
two modeling problems related to the optic nerve visual prosthesis.

First, predictive models are introduced to model the neurophysiological process
linking the stimulation parameters to the visual perceptions induced in the
visual field of the blind. These visual perceptions are produced by stimulating
electrically the optic nerve. We showed that the black-box models have a
much greater predictive power than the neurophysiological models developed
so far. A hybrid model, combining reasonable neurophysiological knowledge
and black-box models to model the unknown part of the underlying process,
was also proposed. This model has the advantage of reducing the dimension of
the feature space. This is particularly useful when planning future experiments.
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Ficure 5.18. Stimulation strategy based on the predictive
and classification models of the phosphenes.

Second, classification tools are discussed. These techniques enable us to asso-
ciate parts of the visual field to the electrode contacts. In other words, each
electrode contact produces visual perceptions in different areas of the visual
field. On the one hand, the classification models allow us to determine the most
suitable phosphenes to elicit in order to create meaningful visual information
for the blind. On the other hand, they enable us to decompose the perceptions
associated to stimulation combinations. This is required for further analyzing
these experiments in a principled way.

Finally, the predictive and the classification models were combined in order to
build an advanced stimulation algorithm. However, this algorithm needs to be
validated experimentally in the near future.






CHAPTER 6

Conclusion

The primary goal of this thesis was to put probabilistic models into a practical
perspective. More specifically, nonparametric kernel density estimators, finite
mixture models and probabilistic regressors were investigated in the difficult,
but common situation where the data is very noisy and scarce. Most techniques
perform very well on toy examples. However, many of them often fail to provide
meaningful solutions when tackling challenging applications.

First, well-known techniques in nonparametric density estimation were re-
viewed and extensively compared on benchmark data sets. We considered
both the effect of the size of the training set and the amount of noise. We
studied mainly multivariate data. It was shown at length how gradually, in
a time span of approximately two decades, statisticians moved from methods
having fixed parameters across the feature space to locally adaptive ones. As
expected, adaptive methods are more accurate, but they are also less robust to
inconsistencies and inhomogeneities in the data. In practice, this can lead to
problematic situations.

Modern nonparametric approaches are closely related to finite mixture mod-
els and therefore motivate the use of the latter in a more general framework,
which we termed nonparametric-like density estimation. Unfortunately, mix-
ture models have a serious drawback when they are used for this purpose. Their
parameters are estimated iteratively by maximizing the likelihood of the ob-
served data, which is known to be an ill-posed problem. This is a consequence
of the likelihood function being unbounded. As a result, some modifications of
the models are required.

The most widely used finite mixture model is the finite Gaussian mixture model
(GMM). The GMM uses the Mahalanobis distance to determine the shape of
its components. A simple modification to avoid numerical instabilities and
increase the GMM’s generalization abilities is to constrain the shape of the
components through some form of regularization. For instance, this can be
achieved by using the regularized Mahalanobis distance, which is computed as
a weighted average of the FEuclidean distance and the ordinary Mahalanobis
distance. Another, yet more elaborate technique is to estimate the maximum a
posteriori parameters instead of the maximum likelihood parameters. However,
maximum a posteriori learning requires to set many hyperparameters, which
are usually difficult to optimize. Therefore, we proposed a practical maximum
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a posteriori learning scheme. In this approach, the hyperparameters do not
need to be optimized directly, but are set according to a prior belief. The effect
of the prior is then tempered or amplified by means of an additional parameter,
which is optimized in a classical way (i.e., by resampling techniques).

The most recent advances in Bayesian learning made it possible to increase
the robustness of the GMM dramatically. This is due to the fact that in the
Bayesian approach the uncertainty on the parameters is taken into account in
a principled way. Furthermore, one gets for free a lower bound on the log-
evidence, which allows us to determine the model complexity automatically.
Note however that a fully Bayesian approach cannot be used unless one makes
additional assumptions on the form of the solution. As a consequence, too
simple models are favored. A future research direction would be to relax these
assumptions in order to find a tighter lower bound, which in turn is expected
to be more reliable for model selection.

A robust alternative to the GMM is the finite Student-¢t mixture model (SMM).
The Student-¢ distribution has an additional parameter, the degrees of freedom,
which regulates the robustness of the distribution to atypical observations. In
this work, we showed that all the approaches used in the frame of the GMM,
could be extended to the SMM. Furthermore, a new variational algorithm was
introduced for learning Bayesian SMM. This algorithm is particularly attractive
in noisy environments as it leads to very robust models. The reason for this
is that, in contrast to previous approaches, unnecessary approximations are
avoided, leading for example to a tighter variational lower bound.

Although the feature space is in many applications high dimensional, the data
are often living on a lower dimensional manifold. This particular geomet-
ric arrangement can be used in the frame of mixture models by means of a
constrained expectation step. In practice, this corresponds to lower the con-
tribution of a data point to the parameter update of a particular component,
when this point is lying far away on the manifold from that component. It
was shown experimentally that the manifold constrained mixture models are
attractive as they avoid local maxima of the likelihood function the ordinary
mixture models may get trapped into. A possible future research direction is
to extend this approach to other graphical models than finite mixture models.
For example, one could think of variants of the relevant vector machines, which
would exploit this additional information in regression problems.

After having discussed probabilistic regularization networks, which fit the same
latent variable framework as finite mixture models, we applied them to a mod-
eling problem related to the optic nerve visual prosthesis. More specifically,
visual perceptions can be elicited in the visual field of the blind by electrical
stimulation of his/her optic nerve. However, it is unclear how these electrical
pulses induce visual perceptions at the neurophysiological level. These percep-
tions are therefore difficult to predict. Instead of constructing a neurophysi-
ological model where all the input quantities have a neurophysiological inter-
pretation, it was suggested to approach the problem from a machine learning
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perspective. Machine learning tools are powerful (nonlinear) statistical tools,
which can recover any relationship between the input and the target data. We
showed in this thesis that black-box prediction models with sufficient accuracy
can be constructed in order to link the stimulation parameters to the corre-
sponding visual sensations, the ultimate goal being to inverse these models in
order to determine which stimulation parameters should be used to generate
the desired visual perception. A hybrid (or grey-box) model having a com-
parable accuracy was also proposed. In this model, some neurophysiological
quantities are explicitly used. This approach should be further investigated
in the future in order to obtain predictive models that are more instructive
to medical doctors and psychologists. Another important research direction is
the development of patient dependent models. Being able to easily tune the
predictive models such that they are meaningful to other patients is important
in practice. By “easily” is meant that the models can be adjusted without
having to collect a large amount of data.

Another major concern is to increase the amount of visual information trans-
mitted to the blind within a given time period. In this context, Bayesian
classification models were developed. The aim of these models is to identify,
when combinations of electrode contacts are used for stimulation, by which
one the corresponding visual perceptions were generated. The classification
models provide useful information regarding the unknown neurophysiological
process as they indicate where phosphenes might be induced and with which
probability. In addition, they are an important building block for efficient stim-
ulation algorithms. It was shown experimentally that combined stimulations
elicit phosphenes in the same areas of the visual field as simple stimulations.
However, it is still unclear how they interact with each other. A careful study
of the related data will definitely help to understand the underlying neurophys-
iological mechanisms.

Although it is currently an active field of research, very little is known about
the coding scheme of the visual information in the optic nerve or in the visual
pathways in general. A deeper insight into the ways visual information is
encoded will be extremely valuable in the design of future visual prostheses.
Furthermore, sending meaningful information to the blind involves high level
image processing in order to extract the relevant information and send it to
the stimulator. Answering this question will involve psychophysics to determine
what information is the most relevant, as well as engineering tasks to extract
this information in an automated way. In conclusion, one should realize that
there are still many open questions regarding the design of visual prostheses
and their use in practice, including the long term viability of the implanted
system in the human body or the precision visual perceptions can be actually
induced with. Hopefully, some practical clinical systems will appear in the near
future, but there is still a long way to go before these systems will be made
widely available and there are still a lot of obstacles to be overcome...






APPENDIX A

Benchmarks

The data sets used in Chapter 2 are briefly described in this appendix. Some of
them are used in subsequent chapters as well. Most are available form the UCI
Machine Learning repository (http://www.ics.uci.edu/~mlearn) or StatLib
(http://1ib.stat.cmu.edu).

Enzyme data

The first data set concerns the distribution of enzymatic activity in the blood,
for an enzyme involved in the metabolism of carcinogenic substances. The data
was collected on a group of 245 unrelated individuals. The aim is to identify
subgroups of slow or fast metabolizers as a marker of genetic polymorphism in
the general population. This data set was first analyzed by Bechtel, Bonaiti-
Piellé, Poisson, Magnette and Bechtel (1993), who identified a mixture of 2
skewed distributions using maximum likelihood techniques.

Acidity data

The second data set concerns an acidity index that is measured in a sample of
155 lakes in the Northeastern United States. It was analyzed as a mixture of
Gaussian distributions on the log scale by Crawford, Groot, Kadane and Small
(1992).

Galaxy data

The third univariate data is the galaxy data, which was first described by
Roeder (1990). Tt consists of the velocities of 82 distant galaxies, diverging
from our own galaxy.

Ring data

The ring data is a toy example and was artificially generated. This 2D data
set are used several times in this thesis. They are uniformly distributed in an
annular region centered on the origin. The mid-radius of the ring equals 5 and
its width 2. The data set contains 150 data points.
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Noisy spiral data

Another 2D toy data set is the noisy spiral. The data are distributed along a
spiral of Archimedes. The radius is defined as follows:

r=af , (A1)

where a is a constant (chosen equal to 1) and @ is the radius angle. The angular
T 5w

position 6 along the spiral follows the uniform distribution ¢ (0|7, 5-) and the
spiral width w has the Gaussian distribution A (w|0,2). The data set contains

250 data points.

Old faithful geyser data

A popular 2D data set is the old faithful geyser data. It consists in the waiting
time between eruptions and the duration of the eruption for the Old Faithful
geyser in Yellowstone National Park, Wyoming, USA.

Wine recognition data

The wine recognition data are the results of a chemical analysis of wines grown
in the same region in Italy, but derived from three different cultivars. The
analysis determined the quantities of 13 constituents (alcohol, magnesium, acid-
ity, ash, etc.) found in each of the three types of wines. The data set contains
178 data points.

NO? pollution data

The data set contains 500 observations. It originates from a study of air pol-
lution near a road, relating it to the traffic volume and several meteorological
variables. It was collected by the Norwegian Public Roads Administration.
The predictive quantity consists of the hourly values of the logarithm of the
concentration of NO? particles, measured at Alnabru in Oslo, Norway, between
October 2001 and August 2003. The features are the logarithm of the num-
ber of cars per hour, the temperature 2 meter above ground, the wind speed,
the temperature difference between 25 and 2 meters above ground, the wind
direction, the hour of the day, and the day number from October 2001.

Iris plant data

The iris plant data is probably the best known database in the field of Pattern
Recognition (Duda and Hart, 1973). It contains 3 classes of 50 instances each,
where each class refers to a type of iris plant: Iris Setosa, Iris Versicolour, Iris
Virginica. One class is linearly separable from the others. The latter are not.
The features of the plant type are the sepal length, the sepal width, the petal
length and the petal width, all being measured in centimeters.
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Boston housing data

The features of the Boston house-price data (Harrison and Rubinfeld, 1978) are
the following: the crime rate per capita by town, the proportion of residential
land zoned for lots over 25,000 sq.ft., the proportion of non-retail business
acres, the nitric oxides concentration (parts per 10 million), the average number
of rooms per dwelling, the proportion of owner-occupied units built prior to
1940, the weighted distances to five Boston employment centers, the full-value
property-tax rate, pupil-teacher ratio, the proportion of black men and women
by town and the proportion of lower status of the population. The index of
accessibility to radial highways and the dummy variable indicating if the house
is close to Charles river are not used. The predictive quantity is the median
value of owner-occupied homes. The data contains 506 data points.

Liver disorder data

The Liver Disorder data was gathered by BUPA Medical Research. The data
constitutes the record of 345 male individuals. Five features are blood tests
thought to be sensitive to liver disorders that might arise from excessive alco-
hol consumption: the mean corpuscular volume, alkaline phosphotase, alamine
aminotransferase, aspartate aminotransferase and gamma-glutamyl transpep-
tidase. The sixth feature is the number of half-pint equivalents of alcoholic
beverages drunk per day.

Body fat data

The body fat data lists estimates of the percentage of body fat determined
by underwater weighing and various body circumference measurements for 252
men. The percentage of body fat for an individual can be estimated once the
body density has been determined. Usually, one assumes that the body consists
of two components: lean body tissue and fat tissue. The volume, and hence the
body density, can be accurately measured in a variety of ways. The technique
of underwater weighing computes body volume as the difference between body
weight measured in air and weight measured during water submersion. In other
words, body volume is equal to the loss of weight in water with the appropriate
temperature correction for the water’s density. The data features are the fol-
lowing: the density determined from underwater weighing, the age, the weight,
the height and the circumference of the neck, the chest, the abdomen, the hip,
the thigh, the knee, the ankle, the biceps, the forearm and wrist. Finally, the
predictive quantity is the percent of body fat.






APPENDIX B

Linear Regression

In this appendix, we introduce linear regression for two scalar variables. This
standard statistical tool is particularly suited for assessing the quality of the
predictive models in Chapter 5. The idea is to test how informative the predic-
tions made by the models are with respect to the recorded data. The approach
is used for the azimuth and elevation coordinates independently as separate
models are used for each direction.

Consider the independent and the dependent continuous random variables X
and ). Given sets of observations X = {z,}Y ; and Y = {y,}_;, we would
like to know if the following linear model can explain the relationship between
both random variables:

yn:ﬁmn+a+€n> n . (Bl)

The parameters o and 3 are respectively the intercept and the slope of the linear
model. The errors {e, }_, take the departure from linearity into account and

are assumed to have zero mean and variance o2.

A standard statistical approach for estimating the parameters o and (3 is to
minimize the sum of squared errors:

N N
Z 5n2 = Z{yn — Bz, — a}2 ) (B.2)
n=1 n=1

Minimizing this expression leads to the following estimators for the parameters
(see for example Hérdle and Simar, 2003):

f=2 (B.3)
SXX
G=7y—pt. (B.4)

The special quantities in these equations are the empirical means and
(co)variances:

1 1

_ B \2

‘T*ﬁnglxna SXX*N;(Iix) ) (B5)
1 1Y

ﬂZNZyn, SXY_NZ(y—g)(x—f) (B.6)
n=1 n=1
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Ficure B.1. Graphical illustration of the parameter estima-
tors in a linear regression model. The estimated slope ( is
given by sxy/sxx and the offset & by § — (7.

As shown in Figure B.1, the solutions (B.3) and (B.4) have an intuitive graph-
ical interpretation. The estimator of (3 corresponds indeed to a slope as it
measures the empirical variation of ) with respect to X', normalized by the
empirical variation of X'. The estimator of o measures the empirical offset
once the slope is estimated.

Next, we would like to evaluate the goodness-of-fit of the linear model § =
Bx + &. First, let us consider the observed total variation of the dependent
variable V:

n=1
Second, the variation explained by the linear model is given by
N
n=1
Third, the total and the explained variation can be linked to the unexplained
variation by using elementary statistics:

N N N
Z(yn - QH)Q = Z yn Z yn — n (Bg)
n=1 n=1 n=1

Using these expressions the quality of the linear model and the confidence we
have in it can be readily assessed.

In order to measure the quality of the model, it is appealing to compute the
ratio of the explained variation and the total variation, which is called the
coefficient of determination:

N N ~
r2 = 2n=1(Un — Jn)* —1_ 2on=1(Yn — 9n)*

B.10
22[:1(%1 — Yn)? Z;V 1( — Yn)? ( )
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This quantity is in the closed interval [0,1]. When 72 = 1, all the variation
is explained by the linear model. When r? = 0, it can be concluded that the
relationship (if there is one) between both variable is not linear.

In order to evaluate the confidence we may have in the linear model, we compare
it to a prediction by the mean. In other words, we test if the linear model,
which uses the observations of X', is more informative than just predicting )
by its empirical mean. Let us term the linear model the “full model” and the
prediction by the mean the “reduced model”. The residual variations, i.e. the
variations that are not explained by the models, correspond respectively to the
unexplained (B.9) and the total variation (B.7). The F-statistic is commonly
used in this context to test how significantly the variation is reduced when
predicting the data with the full model rather than with the reduced one:

N _ N ~
anl(yn - y”)Q - anl (yn - yn)Q

dfred - dfful TQ/(dfred - dfful)
7= — . (B
S W — i) (1—r2)/dfsu (B-11)
dfful

where dfieq and dfs, are the degrees of freedom of each model. They are
essential as they define the shape of the F-distribution and have a simple
interpretation: the degrees of freedom are equal to the number of observations
(here N) minus the number of parameters (here 1 and 2 for the reduced and
the full model respectively). Note also that 72/(1 — r2) is nothing else than
the ratio of the explained variation and the unexplained variation. The F-
statistic tests thus whether the explained variation is significantly higher than
the unexplained variation (for given degrees of freedom).






APPENDIX C

Phosphene Classification Results

In this appendix, the confusion matrices resulting from the classification of the
phosphenes for different combinations of the electrode contacts are reported.
The density models are all constructed with variational GMM estimators.

TABLE C.1. Empirical confusion matrix when the 4 electrode
contacts are activated.

0° 90°  180° 270°

o° 0.37 0.29 0.16 0.18
9r 0.18 0.34 0.26 0.22
180° 0.17 0.16 0.56 0.11
270° 0.09 0.14 0.13 0.64

TABLE C.2. Empirical confusion matrices when 3 electrode
contacts are activated.

0° 90°  180° 0° 90°  270°

o° 0.51 031 0.18 o° 0.56 0.20 0.24
9r 0.27 0.44 0.29 9r 0.25 0.62 0.13
180° 0.20 0.21 0.59 270° 0.17 0.14 0.69
0°  180° 270° 90°  180° 270°

or 0.42 0.38 0.20 9r 0.44 034 0.22
180° 0.23 0.53 0.24 180° 0.19 0.68 0.13

270° 0.10 0.19 o0.71 270° 0.18 0.15 0.67
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TABLE C.3. Empirical confusion matrices when
contacts are activated.

2 electrode

0° 90° 0°  180°

r 0.58 0.42 o° 0.77 0.23
9r 0.31 0.69 180° 0.33 0.67
0°  270° 90°  180°

0° 0.74 0.26 9r 0.64 0.36

270° 0.24 0.76 180° 0.29 0.71
90°  270° 180° 270°

9r 0.74 0.26 180° 0.83 0.17
270° 0.25 0.75 270° 0.25 0.75
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