
Université Catholique de Louvain
Faculté des Sciences Appliquées
Laboratoire de Microélectronique

UCL Crypto Group

Block Ciphers: Security Proofs,
Cryptanalysis, Design, and Fault Attacks

Gilles-François Piret

Thèse soutenue en vue de l’obtention du grade de
Docteur en Sciences Appliquées

Composition du jury:
Pr. Jean-Jacques Quisquater (UCL Crypto Group) - Promoteur

Pr. Philippe Delsarte (UCL/INGI)
Pr. Alphonse Magnus (UCL/ANMA)

Pr. Jacques Patarin (Université de Versailles, France)
Pr. Bart Preneel (KUL, COSIC)

Pr. Vincent Rijmen (TU Graz, IAIK, Austria)
Pr. Luc Vandendorpe (UCL/TELE) - Président

Janvier 2005

3

Abstract.

Block ciphers are widely used building blocks for secure communication
systems; their purpose is to ensure confidentiality of the data exchanged
through such systems, while achieving high performance. In this con-
text, a variety of aspects must be taken into account. Primarily, they
must be secure. The security of a block cipher is usually assessed by test-
ing its resistance against known attacks. However as attacks may exist
that are currently unknown, generic security proofs are also tried to be
obtained. On the other hand, another attack methodology is also worth
considering. Contrary to the others, it aims at the implementation of
the algorithm rather than the cipher itself. It is known as side-channel
analysis. Finally, performance of a block cipher in terms of throughput
is very important as well. More than any other cryptographic prim-
itive, block ciphers allow a tradeoff to be made between security and
performance.

In this thesis, contributions are given regarding these various topics. In
the first part of the thesis, we deal with two particular types of attacks,
namely the square attack and key schedule cryptanalysis. We also con-
sider security proofs in the so-called Luby-Rackoff model, which deals
with adversaries having unbounded computation capabilities. More pre-
cisely, we are interested in the Misty structure, when the round functions
are assumed to be involutions.

The second part of the thesis is devoted to design and implementation
aspects. First, we present a fault attack on substitution-permutation
networks, which requires as few as two faulty ciphertexts to retrieve the
key. We also study the security of DeKaRT , which is an algorithm
intended to protect smart cards against probing attacks. Finally we
present the design of ICEBERG, a block cipher deliberately oriented to-
wards good performance in hardware, and give an adequate analysis of
its security.

5

Acknowledgements

It is my pleasure to thank all the people who helped me throughout the
achievement of this thesis.

In first place, I would like to thank my advisor Pr Jean-Jacques Quisqua-
ter for introducing me to cryptography, for giving me the opportunity
to carry out this research in his laboratory, for his trust and his kind
support.

I am grateful to Pr Jacques Patarin and Pr Vincent Rijmen for having
accepted to be members of my thesis committee. I would also like to
thank Pr Philippe Delsarte, Pr Alphonse Magnus, Pr Bart Preneel for
serving in the jury, and Pr Luc Vandendorpe who accepted to preside
the committee. Their presence was an honor for me.

I am also grateful to the European Commission and to the Walloon
Region, for their financial support throughout several research projects.
In other respects, I also thank the system administration team at the
microelectronics laboratory.

I would like to thank all members of UCL Crypto Group, past and
present, for the nice working (and more...) atmosphere. Special thanks
to my coauthors and to all those with whom I had fruitful technical
discussions.

I am also grateful to all the persons who accepted to have a critical look
at preliminary versions of this thesis, in alphabetical order: Philippe
Bulens, Mathieu Ciet, Christophe Giraud, François Koeune, François
Macé, Marine Minier, François-Xavier Standaert. Special thanks to
Sylvie Baudine who corrected my English mistakes in this thesis as well
as in my papers, where I too often forgot to thank her.

There is a life beside cryptography. It is why I would finally like to thank
all the persons with whom I spent time when trying to escape from my
PhD work...

Contents

Introduction 13

Chapter I. Preliminaries 17
I.1. What is a Block Cipher? 17
I.2. Substitution-Permutation Networks and Feistel Ciphers 19
I.3. Distinguishers and Their Use to Retrieve the Key 21
I.4. Linear Cryptanalysis 23
I.5. Differential Cryptanalysis 25
I.6. The DES and the AES 26
I.7. Conclusion 27

Part 1. Security Proofs and Cryptanalysis 29

Chapter II. Security Proofs in the Luby-Rackoff Model 31
II.1. Introduction 31
II.2. Basic Concepts and Notations 32
II.3. An Introductory Example: the 3-round Feistel Structure 35
II.4. The Coefficient H Method 38
II.5. The Misty Scheme 40
II.6. Conclusion 57

Chapter III. Square Attacks 59
III.1. Introduction 59
III.2. The Original Square Attack 60
III.3. Basic Definitions and Properties 62
III.4. Description of Skipjack 64
III.5. Truncated and Impossible Differential Attacks 64
III.6. Square Versus Truncated Differential Characteristics 66
III.7. Square Attacks on Skipjack 67
III.8. Truncated Differential vs. Square Distinguishers:

Conclusion 69
III.9. Square Attacks on SAFER++ 70
III.10. Towards Extensions of the Square Attack ? 78
III.11. Conclusion 82

Chapter IV. Key Schedule Cryptanalysis 85
IV.1. Introduction 85
IV.2. Notations 86

7

8 CONTENTS

IV.3. Related Key Slide Attacks 86
IV.4. Slide Attacks 95
IV.5. Differential Related Key Attacks 104
IV.6. Using Related Key Attacks Against Multiple Encryption 105
IV.7. Link Between the Attacks 108
IV.8. Conclusion 110

Part 2. Side-Channel and Implementation Aspects 113

Chapter V. Differential Fault Attacks - Application to SP-
Networks 115

V.1. Introduction 115
V.2. An Introductory Example: Fault Attack Against a CRT

Implementation of RSA 116
V.3. Fault Model 117
V.4. Fault Attacks on Block Ciphers 118
V.5. Our Attack on Substitution-Permutation Networks 122
V.6. Application to KHAZAD 127
V.7. Application to the AES 128
V.8. Countermeasures 132
V.9. Conclusion 134

Chapter VI. Scrambling Functions:
On the Security of DeKaRT 137

VI.1. Introduction 137
VI.2. On the Use of Bit Permutations for Data Scrambling 138
VI.3. A New Paradigm: DeKaRT 139
VI.4. Specification of a Concrete Instance of DeKaRT and

Notations 140
VI.5. Analysis of an Elementary DeKaRT Block 141
VI.6. The Attack 142
VI.7. Computing Probability Distribution for a Linear Relation

Through a 5-Round Cipher 143
VI.8. Searching for Other Linear Relations Through 5 Rounds 148
VI.9. Implementation of the Attack 149
VI.10. Conclusion 150

Chapter VII. ICEBERG 153
VII.1. Introduction 153
VII.2. FPGA Architectures: an Introduction 155
VII.3. Design Rationale and Specifications of ICEBERG 158
VII.4. Security Analysis 165
VII.5. Performance Analysis 168
VII.6. Comparisons with Other Block Ciphers 172
VII.7. ICEBERG Software Implementations 175
VII.8. Conclusions 177

CONTENTS 9

Conclusion and Open Problems 179

Appendix A. Publication List 183

Appendix B. Description of Algorithms 185
B.1. AES 185
B.2. DES 187

Appendix C. ICEBERG: Proof of Theorem 34 189

Appendix D. ICEBERG Tables 191

Appendix E. Generation of the ICEBERG S-box 195

Appendix. Bibliography 197

Notations

⊕ : the exclusive-or operation or addition modulo 2.
Zn

2 : the group of which the elements are n-bit words, with
group operation ⊕.

x : for x ∈ Zn
2 , x denotes the one’s complement of x, that

is, x⊕ x = 2n − 1.
x • y : for x, y ∈ Zn

2 , x•y is the usual scalar product of x and
y.

Fn,p : the set of all functions from Zn
2 to Zp

2.
Pn : the set of all permutations on Zn

2 .
GF(2p) : the Galois field with 2p elements.
0x : the value which follows is in hexadecimal notation.
x ¿ t : for x ∈ Zn

2 , x left-shifted by t bits, t ≤ n. The t
leftmost bits are discarded and the t rightmost bits
are filled with 0.

x ≪ t : for x ∈ Zn
2 , x left-rotated by t bits, t ≤ n.

x À t : for x ∈ Zn
2 , x right-shifted by t bits, t ≤ n. The t

rightmost bits are discarded and the t leftmost bits
are filled with 0.

x ≫ t : for x ∈ Zn
2 , x right-rotated by t bits, t ≤ n.

{S : the complement of the subset S.
|X| : depending on the context, either the absolute value of

the integer X, or the cardinality of the set X.
MT : the transpose of matrix M .
n! : for a positive integer n, n! = n · (n − 1) · ... · 1. By

convention 0! = 1.
f · g or g ◦ f : the composition g(f) of two functions f and g.
P[A] : the probability of event A.
A : the complementary event of A.

List of Abbreviations

AES : Advanced Encryption Standard
ASIC : Application Specific Integrated Circuit
CLB : Configurable Logic Block
CRT : Chinese Remainder Theorem
DES : Data Encryption Standard
DSA : Digital Signature Algorithm
ECB : Electronic Code Book
ECDSA : Elliptic Curves DSA
E/D : Encryption/Decryption
EEPROM : Electrically Erasable Programmable Read-Only Memory
FIPS : Federal Information Processing Standard
FPGA : Field Programmable Gate Array
Gbps : Gigabits per second
IDEA : International Data Encryption Algorithm
I/O : Input/Output
LFSR : Linear Feedback Shift Register
LUT : Look-Up Table
MB : MegaByte
NBS : National Bureau of Standards
NESSIE : New European Schemes for Signatures, Integrity, and Encryption
NIST : National Institute of Standards and Technology
NSA : National Security Agency
RAM : Random Access Memory
RAMB : Random Access Memory Block
RSA : Rivest-Shamir-Adleman cryptosystem
S-boxes : Substitution boxes
SPN : Substitution-Permutation Network
XL : eXtended Linearization
XOR : eXclusive OR

Introduction

The expansion of the digital society has implied a big increase of the
amount of data exchanged through long distance channels. These data
must be protected in several ways: when two parties are communicat-
ing, they want to ensure that the data they share are not eavesdropped
(confidentiality), that they are not modified by a third-party (data in-
tegrity), and that the sender is actually who he claims he is (entity
authentication). Cryptology is the science that addresses these various
concerns.

In this thesis we are interested in the way confidentiality can be reached.
This is performed by encryption: the sender of a message (or plaintext)
enciphers it by applying to it an algorithm that depends on a small piece
of secret information, called key. The piece of enciphered information
that is obtained (called ciphertext) is sent to the receiver. The latter
applies another algorithm parameterized also by a key in order to recover
the plaintext. In the context of this thesis the keys used for encryption
and decryption are the same: we speak of symmetric encryption.

This model requires for the sender and the receiver to be able to share a
key. For this purpose we assume they are able to access a secure channel
which cannot be eavesdropped. But for some reason (because using it
is too costly, or because it is only temporary) it is not convenient to
exchange a big amount of data on this channel. It is why the secure
channel is used only to agree on a key. Then an insecure channel, which
can be eavesdropped, is used. Figure 1 summarizes this framework.

EAVESDROPPER

SECURE CHANNEL

INSECURE CHANNEL

SENDER

Plaintext
Ciphertext

ENCRYPT

Key

Plaintext

RECEIVER

DECRYPT

Figure 1. Symmetric encryption: framework.

13

14 INTRODUCTION

In this thesis we focus on an important class of symmetric encryption
algorithms: block ciphers (the other class being the one of stream ci-
phers). A variety of aspects must be taken into account when studying
block ciphers:

• Primarily, they must be secure, in the sense that an attacker
cannot get any information about the plaintexts by observing
the ciphertexts. More than that, she should not be able to find
the key faster than by exhaustively searching the key space,
even knowing several plaintext-ciphertext pairs (possibly a lot
of them).
Exotic attack contexts are sometimes considered. As a matter
of fact, the attacker can be assumed to have access to plaintext-
ciphertext pairs encrypted under two unknown keys with a
given known relationship between them; we speak of related-
key attacks.
Assessing security of a block cipher is usually done by proving
its resistance to all known attacks. However it is not fully sat-
isfactory, as attacks may exist that are currently unknown. It
is why generic security proofs on block ciphers are tried to be
obtained. But nowadays such security proofs only exist under
very specific assumptions.

• Another concern is related to the context in which a block ci-
pher is applied. Unprotected implementations of block ciphers
offer opportunities to side channel attacks: by observing the
behavior of a computing device, such as a smart card, through
various channels (such as power consumption, or time of com-
putation), an attacker can be able to deduce the secret key.
Among them, fault attacks try to tamper with the correct exe-
cution of a cryptographic algorithm and use the faulty results
obtained in order to retrieve the key.

• Finally, performance of a block cipher in terms of through-
put is very important as well. An important factor that influ-
ences performance is how well the cipher fits with the platform
on which it is used (home PC, smart card, dedicated hard-
ware...); some ciphers are more adapted to some platforms.
Moreover, when designing a block cipher it is always possible
to improve its performance by lowering the security margin,
and vice-versa. Therefore designing a good block cipher is a
real security-performance tradeoff.

In this thesis, contributions regarding these various aspects are given:

• Chapter I provides the basics of block cipher analysis and de-
sign. We present the basic components of a block cipher, and

INTRODUCTION 15

two widely used structures: the Feistel and Substitution-Permu-
tation networks. We define the notion of distinguisher, and
describe two well-known attacks: linear and differential crypt-
analysis. Finally, the history and overall structure of the DES
and AES block ciphers are given.

• Chapter II deals with security proofs in the Luby-Rackoff model
[108], which assumes the attacker has unbounded computation
capabilities. More precisely, we prove security bounds for the
structure underlying to the Misty [114] block cipher, when the
round functions are involutions without fixed point.

• Chapter III analyzes a particular type of attack: the square
attack. It is applied to reduced-round versions of both algo-
rithms Skipjack and SAFER++ [112]. Possible extensions of
the square attack are also discussed.

• Chapter IV describes related-key attacks, and makes a survey
of existing attacks in the field of key schedule cryptanalysis.

• Chapter V deals with fault attacks. It presents a generic fault
attack against substitution-permutation networks, and applies
it to the standard AES.

• Chapter VI analyzes the security of DeKaRT , which is a scram-
bling function; scrambling functions are encryption functions
with much weaker security requirements than block ciphers,
but much better efficiency as well. They are used on smart
cards to counter some side-channel attacks.

• Chapter VII presents ICEBERG, a block cipher we designed such
as to obtain excellent performances when implemented in hard-
ware; it also offers good opportunities to defeat side-channel
attacks. Although we are not specialists in hardware and hard-
ware implementations, in a care of completeness we also de-
scribe implementation results for ICEBERG and compare them
to those obtained for other recent block ciphers.

CHAPTER I

Preliminaries

Abstract. In this chapter we discuss the fundamentals of block
cipher design and analysis. We present the basic components of an
iterated block cipher and describe the Substitution-Permutation
Network and Feistel Network design paradigms. We then explain
the notion of distinguisher and its use for key retrieval. Finally
we briefly describe the two best-known attacks on modern block
ciphers, linear and differential cryptanalysis, and design principles
to counter them.
This chapter is not intended to be a review on block ciphers, but
rather to provide the non-specialist reader with the basics neces-
sary to (hopefully) understand the other chapters of this thesis.

I.1. What is a Block Cipher?

A block cipher is a pair of functions

E : Zk
2 × Zn

2 → Zn
2

and D : Zk
2 × Zn

2 → Zn
2 .

(1)

It is intended to provide confidentiality of data circulating over an inse-
cure channel. E is the encryption function, that turns a n-bit plaintext
onto a n-bit ciphertext under control of a k-bit key K; D is the decryp-
tion function, that turns a n-bit ciphertext onto a n-bit plaintext under
control of a k-bit key K. n is the block size; its usual value is 64 or
128 bits. k is the key size; nowadays the most classical value for k is
128. For each key K, define EK : Zn

2 → Zn
2 by EK(P) = E(K,P), and

DK(P) = D(K, P). EK must be invertible for all K, with E−1
K = DK .

Furthermore, both E and D should be easily computable. Note that, as
their name suggests, block ciphers encrypt data partitioned in blocks.
On the contrary, stream ciphers encrypt data one bit at a time1.

Most block ciphers are iterated block ciphers. It means that they consist
in the repetition of the same function F (sometimes up to minor differ-
ences, mainly in the first and last rounds) a certain number of times R
(typically from 6 to 32). However each application of F is parameter-
ized by a different round key. Round keys are derived from the master
key K using a key scheduling algorithm; we obtain the expanded key

1With the notable exception of RC4, which generates random bytes.

17

18 I. PRELIMINARIES

R
k

Key Scheduling

k
21

k

K

P . . . FFF C

Figure 1. Overall structure of an iterated block cipher.

(k1, k2, ..., kR). Usually the key schedule derives the round keys itera-
tively: first k1, then k2, ... The sequence of operations that permits
to obtain a new round key ki is sometimes called key round. Figure 1
pictures the overall structure of an iterated block cipher.

The construction of the F function relies on the principles of confusion
and diffusion edicted by C. Shannon in his seminal work [157]. In-
formally, confusion consists in making the relation between input bits,
output bits, and key bits, as complex and tricky as possible; diffusion
aims at spreading out the bits of the message. Basically, three different
types of components are used:

• Key mixing layers incorporate key material. It is usually done
using a simple addition, such as exclusive or (⊕) or addition
mod 2m for some m.

• Non-linear layers achieve confusion. They usually consist in the
parallel application of highly nonlinear functions called S-boxes,
and operating on a small number of bits, typically from 4 to
82. By a p× q S-box we mean a function S from Zp

2 to Zq
2.

• Diffusion layers, which are usually linear.

Note that the components of some iterated block ciphers do not ex-
actly comply with this description, although the three basic principles
(key mixing, confusion and diffusion) remain present. We think of the
IDEA [105, 106] algorithm for example.

A trivial way to find the unknown key of a block cipher is an exhaustive
search: provided the attacker knows a few plaintext-ciphertext pairs
(Pi, Ci) encrypted with the unknown key K, she tries to encrypt P1

under every possible key K ′, until she obtains C1 as the ciphertext.
Then K ′ = K with a “high” probability3; she can check using the other

2The size of these S-boxes is limited by the fact that they are usually implemented
in software using table lookups. As storing a m×n S-box requires n·2m bits of memory,
the S-boxes must be kept small.

3The exact probability depends on the ratio between the sizes of the block and
the key space. If they are equal, the probability is indeed high.

I.2. SUBSTITUTION-PERMUTATION NETWORKS AND FEISTEL CIPHERS 19

i
k

S . . .

θ

SSS

Figure 2. One round of a Substitution-Permutation network.

plaintext-ciphertext pairs. This attack permits her to find the key with
an average of 2k−1 trial encryptions.

A consequence of this attack is that it gives an upper bound on the work
we can expect for an attack to work: if it is greater or equal than the
one required by exhaustive search, it is useless. On the other hand, a
block cipher is academically considered as broken as soon as an attack
faster than exhaustive search is found against it.

I.2. Substitution-Permutation Networks and Feistel Ciphers

Substitution-Permutation Networks (SPNs) are block ciphers with
a very simple structure. Nevertheless they can be secure and efficient, as
testified by the large number of good ciphers built using this paradigm.
The round of a SPN is made out of three layers:

• The key addition layer σ[k], usually performed using exclusive
or (⊕): σ[k](a) = a⊕ k.

• The diffusion layer θ, which is linear with respect to ⊕ (or
more generally with respect to the group operation used for
key addition)4.

• The non-linear layer γ, which is made out of the parallel ap-
plication of S-boxes (not necessarily all identical, although it is
often the case).

Therefore the round of a SPN is described as

ρ[k] = σ[k] ◦ θ ◦ γ. (2)

However it makes no sense to begin encryption with a component other
than key addition (as it could be undone). Therefore a key addition

4Strictly speaking, the designation substitution-permutation network implies that
the diffusion layer is a bit permutation. However, it becomes more and more used to
refer also to ciphers with a more complex diffusion layer. So do we.

20 I. PRELIMINARIES

f

Figure 3. One round of a Feistel network.

layer is added before the first round. Also, as σ[k] ◦ θ = θ ◦ σ[θ−1(k)],
the last θ layer is not cryptographically useful (it can be undone as well).
Thus a whole R-round substitution-permutation network is described as

σ[kR] ◦ γ ◦ (
R−1
©
r=1

σ[kr] ◦ θ ◦ γ) ◦ σ[k0], (3)

where k0, k1, ..., kR are round keys.

The main advantage of substitution-permutation networks is that their
simple structure makes them easy to analyze, which minimizes the prob-
ability for a design flaw to remain hidden because of a too intricate
structure. Examples of block ciphers complying with this structure are
the AES [47] (see section I.6), Serpent [2], Noekeon [45], ICEBERG [161]
(see Chapter VII),...

Another structure is widely used: the Feistel Network . It is due
to H. Feistel [54]. The data X entering a Feistel round is divided into
two equal parts: X = 〈L,R〉. The round is defined as

φ(f)(〈L,R〉) = 〈R, L⊕ f(R)〉 (4)

where f is the round function. It is made out of diffusion and confusion
layers, and a key mixing layer.

The two advantages of using a Feistel Network are the following:

• The function f does not need to be bijective5. It allows more
freedom in its design.

• More importantly, the inverse of φ(f) is s ◦ φ(f) ◦ s, where s
denotes the swap of both parts: s(〈L,R〉) = 〈R, L〉. Therefore
decryption distinguishes from encryption by the order of the
round keys and by initial and final swaps only, which is a big
advantage for implementation in hardware and in constrained
environments.

5Although the fact that it is not “close” enough to surjective could lead to attacks,
as demonstrated by V. Rijmen et al. [147].

I.3. DISTINGUISHERS AND THEIR USE TO RETRIEVE THE KEY 21

Examples of Feistel ciphers are the former standard DES [164] (see sec-
tion I.6) or LOKI [31, 30]. Several other ciphers use the Feistel struc-
ture in their design, but are not “pure” Feistel ciphers; examples are
Twofish [154], Misty [114], or Camellia [5].

I.3. Distinguishers and Their Use to Retrieve the Key

A block cipher can be viewed as a family of permutations, indexed by a
key. The strongest property we can expect from it is to be indistinguish-
able from a completely random permutation, when the key is selected
uniformly at random. We define a distinguisher A for a given block
cipher (EK , DK) as an algorithm which is given black-box access to a
certain permutation F . It means that the only way it can access F is
by querying it to obtain m plaintext-ciphertext pairs (Pi, Ci) such that
F (Pi) = Ci. Based on {(Pi, Ci)}i=1,...,m, it decides whether the permuta-
tion which produced these pairs was most probably selected by random
drawing6 from the set Pn of all permutations of Zn

2 , or by randomly6

choosing a key K and selecting (EK , DK). It outputs 1 in the first case,
0 in the second.

Let s ∈R S denote the fact that the random variable s is drawn from set
S with respect to the uniform probability distribution. Let AF denote
the output of A when querying permutation F (even for fixed F , AF

can be a random variable if A is not deterministic). Then the advan-
tage AdvA algorithm A has in distinguishing (EK , DK) from a random
permutation is defined as

AdvA = |P[AF = 1|F ∈R Pn]− P[AF = 1|F = EK ,K ∈R Zk
2]|. (5)

Informally speaking, a distinguisher is efficient if it achieves a non-
negligible advantage for a “low enough” number m of queries and a
“small enough” number of computations. The type of the attack de-
pends on the way pairs (Pi, Ci) are selected:

• Known plaintext attacks: The distinguisher has no control on
the plaintexts Pi that are encrypted to ciphertexts Ci. A priori,
they are assumed to be uniformly distributed.

• Ciphertext-only attacks: The distinguisher only gets a certain
number of ciphertexts Ci, without the corresponding plaintexts.
It only knows the probability distribution of these plaintexts
(for an attack to work, it has to be non-uniform).

• Chosen plaintext attack : The distinguisher chooses the pool
{Pi}i=1,...,m of plaintexts that are encrypted. All plaintexts
are chosen simultaneously before receiving the corresponding
ciphertexts {Ci}i=1,...,m.

6with respect to the uniform probability distribution

22 I. PRELIMINARIES

• Adaptive chosen plaintext attacks: The distinguisher chooses
the pool {Pi}i=1,...,m of plaintexts that are encrypted. More-
over, it is allowed to adapt the encryption queries it makes as
a function of the ciphertexts already obtained.

• (Adaptive) chosen ciphertext attacks: They are similar to the
two previous attacks, but the distinguisher is allowed to make
decryption queries instead of encryption queries.

• (Adaptive) chosen plaintext and ciphertext attacks: In this case,
both encryption and decryption queries are allowed.

Many distinguishers are statistical distinguishers. It means that they
compute some statistic using the plaintext-ciphertext pairs {(Pi, Ci)}i=1,...,m.
Then they decide whether the value obtained is more likely to correspond
to a random permutation or to the cipher considered, using hypothesis
testing. The advantage of such distinguishers is that, besides the final
decision, they give a “score” (the value of the statistic) indicating the
reliability of the decision. It is useful when a distinguisher is used to
retrieve key material, as we will now explain.

As a matter of fact, besides the theoretical interest of finding an efficient
distinguisher for a given block cipher, it often permits the retrieval of
key material. Consider a distinguisher A against a given block cipher
of which the first and last rounds have been removed. Denote X1 the
state after the first round and XR−1 the state before the last round.
Usually knowledge of only a few bits of X1 and XR−1 is necessary for
the distinguisher to work; let us denote them by X

(1)
1 , X

(2)
1 , ..., X

(a)
1 and

X
(1)
R−1, X

(2)
R−1, ..., X

(b)
R−1. Therefore an attacker can use A to retrieve some

bits of the first and last round keys as follows:

(1) She obtains a certain number of plaintext-ciphertext pairs
{(Pi, Ci)}i=1,...,m.

(2) She guesses the key bits of k1 and kR that are necessary to
compute X

(1)
1 , X

(2)
1 , ..., X

(a)
1 and X

(1)
R−1, X

(2)
R−1, ..., X

(b)
R−1. Then

for each guess, she uses the distinguisher to accept or reject the
key guess. In the case where a statistical distinguisher is used,
a ranking of the key candidates, from the most likely to the less
likely, is possible7.

Once bits of the round keys are found (or assumed to be found), the
other key bits can be retrieved by repeating the attack targeting other
key bits, or by exhaustive search.

Sometimes key guesses are made on more than one round at each end of
the algorithm; or they are made at one end of the algorithm only. When
key guesses are made on l rounds on the whole, we speak of a lR-attack.

7The work of P. Junod formally deals with this problem [84, 83].

I.4. LINEAR CRYPTANALYSIS 23

In the next two sections we present two well-known attacks based on
the notion of distinguisher. It will make the concepts presented in this
section clearer.

I.4. Linear Cryptanalysis

The discovery of linear cryptanalysis is usually attributed to M. Mat-
sui [113]. However the first appearances of the idea can be found in
the paper of A. Tardy-Corfdir and H. Gilbert [62]. In order to build a
linear distinguisher on a block cipher, the cryptanalyst tries to identify
a relationship between some plaintext bits, some ciphertext bits, and
some key bits:

µP • P ⊕ µC • C = µK •K (6)

where µP , µC , µK are masks and • denotes the scalar product over Za
2.

This equation must hold with a probability p far enough from 1/2 in
order to allow the attacker to distinguish between the block cipher and
a random permutation. Therefore we define the bias of a linear rela-
tionship Λ as the distance of p with 1/2:

εΛ = |p− 1/2|. (7)

We also define the correlation between two Boolean functions:

Definition 1. Let f, g : Zp
2 → Z2. The correlation between f and g

is
c(f, g) = 21−p · |{x|f(x) = g(x)}| − 1.

The problem is to identify relations holding with a high enough bias. For
this purpose, the cryptanalyst first computes the bias of all non-trivial
linear relations at the S-box level: for a p × q S-box, she computes the
bias for all pairs of masks (α, β), with α ∈ Zp

2\{0} and β ∈ Zq
2\{0}:

εα,β =
|c(lα, lβ ◦ S)|

2
, (8)

where for α ∈ Zn
2 , lα is defined as

lα : Zn
2 → Z2 : lα(x) = α • x. (9)

Linear relations with a high bias are naturally particularly interesting.
The attacker then tries to combine linear approximations of these S-
boxes through several rounds, such that the bits of the intermediate
states cancel by summation. If t linear relations of respective biases
ε1, ε2, ..., εt are summed, the bias ε of the linear relation obtained can
be computed using the piling-up lemma :

24 I. PRELIMINARIES

Theorem 2 (Piling-up Lemma). Let (xi)i=1,...,t be independent random
variables of which the value is 0 with probability pi and 1 with probability
1− pi. Then the probability that x1 ⊕ x2 ⊕ ...⊕ xt = 0 is

1
2

+ 2t−1
t∏

i=1

(
pi − 1

2

)
.

Therefore if we assume the t linear relations to be independent, their
sum’s bias is

ε = 2t−1 ·
t∏

i=1

εi. (10)

The distinguishing algorithm is very simple:

(1) Obtain a certain number of plaintext-ciphertext pairs (Pi, Ci).
(2) Estimate the bias of µP • P ⊕ µC • C by evaluating it for all

(Pi, Ci). Let ε′ be the estimated bias. If ε′ is close to ε, conclude
that pairs (Pi, Ci) have been generated by the block cipher.
If it is close to 0, conclude that a random permutation has
been used. Determining the threshold is a statistical hypothesis
testing problem.

In order for the distinguisher to be efficient, the number m of pairs
(Pi, Ci) must be Θ(ε−2). Note that it is a known-plaintext attack, as
any pair (Pi, Ci) can be exploited (however chosen plaintext variants can
improve the attack’s complexity, see [97]).

This distinguisher can be used to retrieve key bits using a 2R-attack,
as described in section I.3: the attacker finds a good linear equation Λ
holding for the whole cipher except the first and last rounds:

(
a⊕

i=1

X
(i)
1

)
[k(1)

1 , ..., k
(α)
1]⊕

(
b⊕

i=1

X
(i)
R−1

)
[k(1)

R , ..., k
(β)
R] =

c⊕

i=1

k(i) (11)

where k
(1)
1 , ..., k

(α)
1 are the round key bits needed to evaluate

⊕a
i=1 X

(i)
1 ,

and k
(1)
R , ..., k

(β)
R the ones needed to evaluate

⊕b
i=1 X

(i)
R−1. k(1), ..., k(c)

are other round key bits used somewhere between round 2 and R− 1.

Then she obtains a set of pairs {(Pi, Ci)}i=1,...,m. She guesses bits k
(1)
1 , ...,

k
(α)
1 , k

(1)
R , ..., k

(β)
R and estimates the bias of the left side of (11) for these

m pairs. The most likely candidate for (k(1)
1 , ..., k

(α)
1 , k

(1)
R , ..., k

(β)
R) is the

one with the highest estimated bias; the second most likely is the one
with the second highest estimated bias, and so on. Note that the value
of

⊕c
i=1 k(i) is also obtained. Then for each candidate, from the most

to the less likely, the remaining key bits are exhaustively searched, until
the right key is found.

I.5. DIFFERENTIAL CRYPTANALYSIS 25

Note that it is desirable for the number a + b of bits in the input and
output masks to be small enough, so that the number α + β of round
key bits on which the guess is made is also small enough.

From the designer’s point of view, one strategy to prevent efficient linear
cryptanalysis is to upper-bound the bias for all linear relations of a S-
box. We define the λ-parameter of a p× q S-box S as

λS = max
α∈Zp

2\{0}
β∈Zq

2\{0}

|c(lα, lβ ◦ S)|. (12)

Thus roughly speaking, the λ-parameter is equal to two times the max-
imal bias of the S-box.

Also, the more S-boxes the attacker must approximate to obtain a linear
relation over the whole cipher, the more difficult it will be to find a good
linear relation. Therefore maximizing the linear branch number [146,
46] of a linear transform θ is also a good strategy for the designer to
prevent linear attacks.

Definition 3. The block Hamming weight Wi(x) of a bit string
x with respect to a partition of x in blocks of i bits is its number of
non-zero blocks.

Definition 4. The linear branch number of a linear transform θ is
defined as

Bl(θ) = min
α 6=0,β

α·x=β·θ(x)

Wi(α) + Wi(β).

The length of the blocks considered in this context is equal to the size
of the S-boxes. If we describe θ using a matrix M : θ(x) = Mx, then the
linear branch number can equivalently be expressed as

Bl(θ) = min
α 6=0

Wi(α) + Wi(MT α).

I.5. Differential Cryptanalysis

Differential cryptanalysis has been introduced by E. Biham and A.
Shamir in 1991 [19]. It is based on identifying a plaintext difference
∆I which results in a ciphertext difference ∆O with some “high” prob-
ability p.

By “high” we mean: “much higher than 1/2n”. As a matter of fact,
1/2n is the mean probability that some differential (∆I , ∆O) holds for a
random permutation of Pn.

Similarly to the case of linear cryptanalysis, such a differential is found
by first evaluating the probability of all possible differentials for a single
S-box, and then trying to join these differences together in order to fi-
nally obtain a differential (∆I , ∆O) for the whole cipher. A table giving

26 I. PRELIMINARIES

the probability associated to all pairs of input and output differences of
an S-box is called XOR distribution table. Moreover we can define
a parameter measuring the resistance of S-boxes to differential crypt-
analysis, as we did for linear cryptanalysis; the δ-parameter of a q× r
S-box S is the probability of the best differential through this S-box.
More formally

δS = 2−q · max
06=a∈Zq

2
b∈Zr

2

|{x ∈ Zq
2|S[x⊕ a]⊕ S[x] = b}|. (13)

Moreover the differential branch number [146, 46] of a linear trans-
form plays in this context the same role as the linear branch number
does against linear cryptanalysis:

Definition 5. The differential branch number of a linear transform
θ is defined as

Bd(θ) = min
x 6=0

Wi(x) + Wi(θ(x)).

The distinguishing algorithm is the following:

(1) Encrypt m pairs (Pi;P ∗
i) of plaintexts with Pi ⊕ P ∗

i = ∆I .
(2) Among the corresponding pairs (Ci; C∗

i) of ciphertexts, count
the number N of them for which Ci ⊕ C∗

i = ∆O. Then use
hypothesis testing to obtain a decision: if N/m is close to p,
conclude that the function that outputted the ciphertexts was
an instance of the block cipher. If it is close to 2−n, conclude
that it was a random permutation.

The data complexity of the algorithm is Θ(p−1). As pairs with a given
difference must be chosen, it is a chosen plaintext attack. However if
enough known plaintexts are available, the attacker can find enough
pairs with the required difference among them. As in the case of linear
cryptanalysis, a differential distinguisher can be used in the context of
a lR-attack.

I.6. The DES and the AES

The two best-known block ciphers are the DES (Data Encryption Stan-
dard) and the AES (Advanced Encryption Standard).

A preliminary version of DES was submitted by IBM in 1974 in response
to a public call of the U.S. National Bureau of Standards8. After a review
by the NSA9 resulting in a few changes, it was adopted as a U.S. Federal
Information Processing Standard in 1977 (FIPS 46 [164]).

8NBS, now NIST, National Institute of Science and Technology.
9the U.S. National Security Agency.

I.7. CONCLUSION 27

The DES algorithm is a 16-round Feistel Network operating on blocks of
64 bits. Its key size is 56 bits. Some attacks exist against DES which are
not really practical, such as linear cryptanalysis (see section I.4), which
requires 239 known plaintexts to be successful [113, 82]. However the
major security concern regarding DES is its small key size. Nowadays a
key space of size 256 can be searched exhaustively10. It is why current
implementations of DES use it in triple encryption mode. It means
that three independently-keyed DES are applied one after the other, the
second one being a decryption:

C = DESK3(DES−1
K2

(DESK1(P))). (14)

We speak of 3-key Triple-DES . Sometimes K3 is equal to K1; we then
speak of 2-key Triple-DES .

Because of DES’s small key size, the NIST published a request for candi-
dates to become the next encryption standard in 1997. The candidates
should support block size of 128 bits and key sizes of 128, 192 and
256 bits. Moreover, there should not be any shortcut attack against
them allowing a retrieval of the key faster than exhaustive search. 15
submissions were originally accepted. In 1999, NIST selected five of
them as finalists: Mars [32], Rijndael [47], RC6 [149], Serpent [2], and
Twofish [154]. In October 2000, NIST decided after three years of a
public review process to select the Rijndael algorithm, developed by the
Belgian researchers J. Daemen and V. Rijmen, as the new AES (FIPS
197).

Rijndael is a substitution-permutation network. Its 128-bit key 128-bit
block version has 10 rounds. The currently best known attacks against
Rijndael deal with reduced-round versions (7 or 8 rounds) of it. They are
due to N. Ferguson et al. [55] and H. Gilbert and M. Minier [61]. Nowa-
days there is no attack on the full-round Rijndael faster than exhaustive
search.

As references to DES and AES will be made in several chapters, we give
their description in Appendix B.

I.7. Conclusion

We have presented the basic concepts in block cipher analysis and de-
sign. Note that several attacks, as well as several variants to linear and
differential cryptanalysis, have not been covered.

In the first part of this thesis, a few topics will be discussed in more de-
tails. Chapter II deals with distinguishers having unlimited computation
capabilities. Chapter III discusses the square attack, while Chapter IV
extensively discusses attacks on the key schedule of block ciphers.

10In fact only 255 trial encryptions are needed, due to complementation properties
of DES.

28 I. PRELIMINARIES

The second part of the thesis will first deal with physical attacks on
computing devices through Chapters V (faults attacks) and VI (probing
attacks); finally in Chapter VII we present the design of a block cipher
deliberately optimized for hardware efficiency.

Part 1

Security Proofs and
Cryptanalysis

CHAPTER II

Security Proofs in the Luby-Rackoff Model

- Introducing Random Involutions -

Abstract. In this chapter we deal with security proofs of block
ciphers in a very specific context: the Luby-Rackoff model. Af-
ter a brief description of the model, of the proof techniques
in this model, and of previous results, we focus on the Misty
structure. Two schemes are considered: the L-scheme, which is
widely used in the Misty [114] block cipher, and the R-scheme,
which is its inverse. We show that the previously known security
bounds [121] on these schemes remain essentially the same when
the inner random permutations are replaced by random involu-
tions (i.e. permutations c such that c(c(x)) = x) without fixed
points (@x : c(x) = x).
These results have originally been published in [142]. It is the first
paper to consider involutions in the context of the Luby-Rackoff
model.

II.1. Introduction

Proving the security of block ciphers has been a long-standing problem,
and it is not solved yet. Usually, the “proof” is limited to showing
or arguing that the cipher is resistant against the well-known attacks
(linear and differential cryptanalysis, square attack (see Chapter III),
slide attack (see Chapter IV),...). The seminal paper of M. Luby and
C. Rackoff [108] is an attempt to build some kind of generic proof on
the security of constructions1. However as we will see it has severe
limitations.

The Luby-Rackoff model deals with distinguishers whose aim is to differ-
entiate whether a given function has been randomly drawn in accordance
with the uniform probability distribution, or in accordance with another
(given) distribution. As a matter of fact, indistinguishability from a ran-
dom permutation family is one of the strongest security notions one can
expect from a block cipher. The specificity of the distinguishers con-
sidered in the Luby-Rackoff model is that they are assumed to have

1Although we do not deal with them in this thesis, there are other ways to obtain
partial security proofs on block ciphers. Knudsen and Nyberg [127] analyzed resis-
tance against differential cryptanalysis. Thereafter Vaudenay introduced the theory
of decorrelation [167, 168] which deals with security proofs in a wider setting.

31

32 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

unbounded computation capabilities. In this context, indistinguisha-
bility against adversaries allowed to make adaptively chosen encryption
queries is called pseudorandomness. When adaptively chosen decryption
queries are allowed as well, we speak of superpseudorandomness. Equiv-
alence between these notions and other security notions for symmetric
ciphers such as semantic security, left-or-right indistinguishability, or
find-then-guess indistinguishability [10] has been proven in [49, 138, 68].

The random functions considered in the framework of the Luby-Rackoff
model are usually obtained from actual block cipher structures (such as
the Feistel Network), by replacing the round functions by completely
random functions or permutations. Thus the validity of these security
proofs is relatively limited, as it does not deal with actual block ci-
pher round functions. On the other hand, these proofs ensure that the
structure used to construct a cipher is not flawed from the beginning.
Furthermore, trying to prove a given security level for a structure some-
times results in finding an attack against it!

In this chapter, we deal with two schemes which originate in the Misty
block cipher [114]. Security proofs for these schemes have already been
given in [121, 77, 76]. The originality of our work is to consider the
case where the round functions are involutions without fixed points. The
motivation of this hypothesis originates in the fact that involutions are
more and more used in the construction of block ciphers, for implemen-
tation reasons; examples are the block ciphers KHAZAD [8], Anubis [7],
Noekeon [45], or ICEBERG [161](see Chapter VII). Furthermore, the fact
that involutions are used could potentially lead to attacks, as suggested
by A. Biryukov [21]. We will show that the security bounds on the
Misty schemes proved in [121] remain essentially the same when the
inner permutations are replaced by involutions without fixed points.

II.2. Basic Concepts and Notations

Formally, a pseudorandom distinguisher is defined as follows:

Definition 6. Let N1, N2 > 1. A pseudorandom distinguisher is a
deterministic algorithm A with unbounded (but finite) computation ca-
pabilities, which given a function F : ZN1

2 → ZN2
2 can query it by asking

values x ∈ ZN1
2 of which it obtains the image y = F (x). Depending on

the answers y ∈ ZN2
2 it obtains, A outputs either 0 or 1.

It follows from the definition that pseudorandom distinguishers are al-
lowed to make adaptively chosen encryption queries. In practice we
will always deal with functions of same domain and range. Thus N =
N1 = N2. As a shortcut, we speak of a random function to designate a
function randomly drawn in accordance with a fixed probability distri-
bution. We also define a perfect random function (resp. permutation)

II.2. BASIC CONCEPTS AND NOTATIONS 33

to be a random function (resp. permutation) drawn in accordance with
the uniform distribution.

The following notations will be used in the remaining of this chapter:

• In denotes the Zn
2 set.

• Fn,p is the set of all functions from In to Ip.
• Pn is the set of all permutations on In.
• The transition probability P[x F7→ y], where F is a random

function in Fn,p, x ∈ Im
n ,y ∈ Im

p , is the probability that ∀i ∈
{1, ...,m} : F (xi) = yi. With an abuse of notation, this event
is sometimes written F (x) = y.

• Af denotes the output of A when querying function f .
• m is the number of queries made by A.
• F ∗ (resp. C∗) denotes a perfect random function F (resp. per-

mutation C). In some contexts, we also use F ∈R Fn,p to
denote a perfect random function.

We define the advantage a distinguisher A has in distinguishing a ran-
dom function F from a perfect random function F ∗:

Definition 7. Let F be a random function, and F ∗ be a perfect ran-
dom function. The advantage a pseudorandom distinguisher A has in
distinguishing F from F ∗ is

AdvA(F, F ∗) := |P[AF ∗ = 1]−P[AF = 1]|.

In the following we will note p∗ = P[AF ∗ = 1] and p := P[AF = 1].

Assume we flip a coin to obtain a random bit b, and provide A with a
random function F if b = 0, and with a perfect random function F ∗ if
b = 1. If we denote by b′ the output of A we have:

AdvA(F, F ∗) =|P[AF ∗ = 1]− P[AF = 1]|
=|P[AF ∗ = 1]− 1 + P[AF = 0]|
=|2 · P[b = b′]− 1|

(15)

which is a much more intuitive view of the advantage.

Pseudorandom distinguishers as defined above are allowed to make en-
cryption queries only. Superpseudorandom distinguishers are al-
lowed to make decryption queries as well:

Definition 8. Let N > 1. A superpseudorandom distinguisher is
a deterministic algorithm A with unbounded (but finite) computation
capabilities, which can query a given permutation C ∈ PN by providing
it with values x ∈ IN of which it obtains to its choosing either the image
y = C(x), or the inverse image y = C−1(x). Depending on the answers
y ∈ IN it obtains, A outputs either 0 or 1.

34 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

The advantage a superpseudorandom distinguisher has in distinguish-
ing a random permutation C from a perfect random permutation C∗ is
defined similarly to the case of pseudorandom distinguishers.

The non-perfect random functions we want to distinguish from the per-
fect ones are practically built by embedding perfect random functions
f∗1 , f∗2 , ..., f∗r into a global structure Φ. The domain and range of f∗1 , ..., f∗r
have variable size; it is smaller than the size of the domain and range
of Φ(f∗1 , ..., f∗r). Such a structure Φ is sometimes called function (or
permutation) generator . An example is the Feistel structure consid-
ered in section II.3; to r functions f1, f2, ..., fr ∈ Fn,n it associates a
permutation F = φ(f1, f2, ..., fr) ∈ P2n. A proof of security for such
a structure in the Luby-Rackoff model consists in upper-bounding the
advantage for all possible distinguishers A as a function of the number
of queries m and the block size 2n.

Consider a function generator Φ. Let N denote its block size. Φ is
said pseudorandom if for all pseudorandom distinguishers A of which
the number of queries m is polynomial in N , the advantage remains
“polynomially small” (for N big enough). More formally:

Definition 9. A function generator Φ is pseudorandom if for all
polynomials P (N), Q(N), there is an integer N0 ∈ N such that:
∀N ≥ N0, for all pseudorandom distinguishers A allowed to make m ≤
Q(N) queries,

AdvA(Φ(f∗1 , ..., f∗r), F ∗) ≤ 1
P (N)

.

Superpseudorandom permutations generators are defined simi-
larly with respect to superpseudorandom distinguishers.

At this point, one could wonder why we restrict ourselves to determinis-
tic distinguishers, while we could also consider probabilistic algorithms
using a random tape to generate a value ω ∈ Ω (without loss of general-
ity, the probability distribution on Ω is assumed to be uniform), of which
the choices x submitted to the encryption oracle and the final output
depend. Let A be such a probabilistic distinguisher. Then probabilities
p and p∗ are computed not only on the distributions (P[F = F])F∈Fn,p

and (P[F ∗ = F])F∈Fn,p
anymore, but also on the probability distri-

bution of ω ∈ Ω. Note that fixing ω to a chosen value ω̄ defines a
deterministic distinguisher, let Aω̄. We also define pω̄ = P[AF

ω̄ = 1] and
p∗̄ω = P[AF ∗

ω̄ = 1].

It is now easy to show that there exists a ω̄ such that Aω̄ achieves an
advantage |pω̄ − p∗̄ω| equal or better than the one of A. Ex absurdo, let
us assume it is not the case, i.e. ∀ω̄ ∈ Ω : |pω̄ − p∗̄ω| < |p− p∗|. Then we
have:

II.3. AN INTRODUCTORY EXAMPLE: THE 3-ROUND FEISTEL STRUCTURE 35

f

Figure 1. One round of a Feistel structure.

|p− p∗| = |∑ω̄∈Ω pω̄ −
∑

ω̄∈Ω p∗̄ω|
|Ω|

=
|∑ω̄∈Ω(pω̄ − p∗̄ω)|

|Ω|
≤

∑
ω̄∈Ω |pω̄ − p∗̄ω|

|Ω| < |p− p∗|

which is a contradiction.

The conclusion is that we gain nothing by considering probabilistic dis-
tinguishers: deterministic ones perform as well.

II.3. An Introductory Example: the 3-round Feistel Structure

In this section we give a demonstration of the pseudorandom character
of the 3-round Feistel structure. The initial demonstration of this result
has been given in [108], but a clearer demonstration appeared in [115].
The demonstration we give here is very similar to this last. We choose
to give it in this thesis in order to give the reader an intuitive view of
the fundament of this type of result. As a matter of fact, in section II.4
efficient tools will be given to prove them, but they are at the price of
loosing a part of the intuition.

II.3.1. Description of the Feistel Structure

Remember that a 1-round Feistel is a 2n-bit permutation φ taking a
n-bit function f as a round function and such that

φ(f)(〈L,R〉) = 〈R,L⊕ f(R)〉.
It is depicted in Figure 1. An r-round Feistel structure is simply the
composition of r 1-round Feistel, transforming r n-bit functions f1, ..., fr

into a 2n-bit permutation:

φ(f1, f2, ..., fr) = φ(fr) ◦ ... ◦ φ(f1).

36 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

iTiV

f *

f *

2

3

L i iR

iS

1
f *

Figure 2. 3 rounds of a Feistel structure.

II.3.2. The 3-round Feistel Structure is Pseudorandom

We prove the following theorem:

Theorem 10. Let f∗1 , f∗2 , f∗3 ∈ Fn,n be independent perfect random func-
tions. Let F ∗ ∈ F2n,2n be a perfect random function. For any pseudoran-
dom distinguisher A allowed to make m adaptive encryption queries,we
have

AdvA(φ(f∗1 , f∗2 , f∗3), F ∗) ≤ m(m− 1)
2n

.

Proof. Consider a pseudorandom distinguisher A allowed to make
m adaptive encryption queries. Without loss of generality, we assume
A never makes two times the same query. As a matter of fact, it will
learn nothing more by repeating a query.

Let 〈Li, Ri〉 denote the ith query of A. Let 〈Vi, Ti〉 be the corresponding
output. Moreover we define the intermediate state Si = Li⊕f∗1 (Ri) (see
Figure 2). As Si, Vi, Ti depend on the output of random functions, they
are random variables. For i = 2, ..., m, 〈Li, Ri〉 is a random variable as
well, as it is a function of the previously obtained outputs 〈Vj , Tj〉 for
j = 1, ..., i − 1 (remember that A is an adaptive distinguisher). Let ES

denote the event that S1, ..., Sm are all distinct, and ET denote the event

II.3. AN INTRODUCTORY EXAMPLE: THE 3-ROUND FEISTEL STRUCTURE 37

that T1, ..., Tm are all distinct. Then we have:

P[ES ∧ ET] = 1− P[ES ∨ ET] ≥ 1− P[ES]− P[ET]

≥ 1− P[
∨

i<j

Si = Sj]−P[
∨

i<j

Ti = Tj]

≥ 1−
∑

i<j

P[Si = Sj]−
∑

i<j

P[Ti = Tj]

(16)

For given i < j:

• Either Ri = Rj , which implies Li 6= Lj (as the distinguisher is
assumed not to repeat the same query), and thus Si 6= Sj .

• Or Ri 6= Rj . Then f∗1 (Ri) and f∗1 (Rj) are random and indepen-
dent, thus P[Si = Sj] = P[Li ⊕ f∗1 (Ri) = Lj ⊕ f∗1 (Rj)] = 2−n.

We can apply the same reasoning to the Ti. Therefore

P[ES ∧ ET] ≥ 1− m(m− 1)
2n

. (17)

When ES and ET both occur, then V1 = S1 ⊕ f∗3 (T1), ..., Vm = Sm ⊕
f∗3 (Tm) and T1 = R1 ⊕ f∗2 (S1), ..., Tm = Rm ⊕ f∗3 (Sm) are completely
random, because f∗1 and f∗2 are random functions. Thus they are indis-
tinguishable from the output of a random function.

Therefore the distinguishing probability is upper-bounded by m(m−1)
2n ,

as announced. ¤

The basic principle of the proof is to prove that φ(f∗1 , f∗2 , f∗3) behaves
randomly “almost always”. The “almost” permits for a distinguisher to
achieve a non-zero advantage. The philosophy underlying to the coeffi-
cient H method suggested by Patarin in order to prove pseudorandom-
ness (see section II.4) is not different.

II.3.3. Other Results on the Feistel Structure

The Feistel structure is the most widely studied in the Luby-Rackoff
model. On the one hand, its security bounds were tried to be im-
proved [130, 132, 133, 134, 135]; a good summary of the best current
results can be found in [135]. On the other hand, slightly modified
constructions were examined. For example, constructions were some of
the round functions are identical [131], or are replaced by hash func-
tions [109, 125], were considered. Feistel networks were exclusive or is
replaced by another group operation are also considered in [136].

38 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

II.4. The Coefficient H Method

It seems natural that the distinguishing probability of the best distin-
guisher is bound to the probability P[x F7→ y]. As a matter of fact,
if ∀x,y ∈ Im

N : P[x F7→ y] = 1/2Nm as it is the case for a perfectly
random function, F cannot be distinguished from such a function. If
now probability distribution P[x F7→ y] is “close enough” to the uniform
distribution, it should be possible to draw some conclusion on the best
distinguishing probability. Several results were stated by J. Patarin re-
garding this problem [130, 131]. They are known as the “coefficient H
method”, because J. Patarin denoted by H(x,y) the number of func-
tions F such that F (x) = y; up to a constant factor, this number is
equal to the transition probability P[x F7→ y].

In this section we describe J. Patarin’s main theorems on the subject.
Although it is already done in other works [130, 120], we give a proof
of the first one, as we think it helps the reader to have a better under-
standing. Demonstration of the other theorems is similar.

Before going to the theorems themselves, we restate a few observations
about distinguishers:

• The distinguishers considered being adaptive and deterministic,
the vector x ∈ Im

N of queries is a function of the vector y ∈ Im
N

of answers (only). We can thus write it as x(y). Note that in
the case of a superpseudorandom distinguisher, the direction of
the queries (encryption or decryption) is determined by y as
well.

• Similarly, the output of a distinguisher A is also a function of
y ∈ Im

N only.
• Without loss of generality, we may assume that the distin-

guisher never makes two times the same query. As a matter
of fact, a distinguisher would learn nothing more by repeat-
ing a query. We denote by X the subset of Im

N such that
∀x ∈ X : ∀i 6= j : xi 6= xj .

A first theorem is the following. We give it in its full generality, i.e. when
the domain and range of the functions considered may be different.

Theorem 11 (Patarin). Let F ∈ FN1,N2 be a random function; let F ∗ ∈
FN1,N2 be a perfect random function. Let m be an integer. If there exists
a subset Y of Im

N2
and two positive real numbers ε1 and ε2 such that

(1) |Y| ≥ (1− ε1) · |IN2 |m
(2) ∀x ∈ X ⊂ Im

N1
∀y ∈ Y : P[x F7→ y] ≥ (1− ε2) · 1

|IN2
|m

II.4. THE COEFFICIENT H METHOD 39

Then for any distinguisher A using m encryption queries

AdvA(F, F ∗) ≤ ε1 + ε2.

Proof. Consider the subset S of elements of Im
N2

for which the dis-
tinguisher answers 1. Then one can write:

p∗ =
∑

y∈S
P[x(y) F ∗7→ y]

p =
∑

y∈S
P[x(y) F7→ y]

(18)

Then

p∗ − p =
∑

y∈S∩Y
P[x(y) F ∗7→ y] +

∑

y∈S∩Y
(−P[x(y) F7→ y])

+
∑

y∈S
y 6∈Y

P[x(y) F ∗7→ y] +
∑

y∈S
y 6∈Y

(−P[x(y) F7→ y]).
(19)

P[x(y) F ∗7→ y] is trivially equal to 1/|IN2 |m. Also, hypothesis (2) implies
that ∀y ∈ Y : −P[x(y) F7→ y] ≤ (ε2 − 1) · 1/|IN2 |m. Finally, the fourth
term is less than 0. Then equation (19) implies

p∗ − p ≤
∑

y∈S∩Y
ε2/|IN2 |m +

∑

y∈S
y 6∈Y

1/|IN2 |m

≤ ε2 + |{Y| · 1/|IN2 |m,

(20)

where {Y denotes the complementary of subset Y.

From hypothesis (1) we have

|{Y| = |IN2 |m − |Y| ≤ |IN2 |m + (ε1 − 1)|IN2 |m = ε1|IN2 |m. (21)

Thus finally: p− p∗ ≤ ε1 + ε2.

Consider now the inverse distinguisher, i.e. the one that answers 1 if
and only if the original one answers 0. Associated probabilities are
p′∗ = 1− p∗ and p′ = 1− p. Applying to it the same reasoning as above,
we obtain p′ − p′∗ ≤ ε1 + ε2, which is equivalent to p− p∗ ≤ ε1 + ε2.

We conclude that |p− p∗| = AdvA(F, F ∗) ≤ ε1 + ε2, as announced. ¤

Theorem 11 has dealt with random functions. The following theorem
deals with permutations. It will be useful as well to prove our results
regarding the Misty structure.

40 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

Theorem 12 (Patarin). Let C ∈ PN be a random permutation; let
C∗ ∈ PN be a perfect random permutation. Let m be an integer, and
ε > 0. If for all x,y ∈ X : P[x

f7→ y] ≥ (1 − ε) · 1
|IN |m , then for any

distinguisher A allowed to make m encryption or decryption queries

AdvA(C,C∗) ≤ ε +
m(m− 1)

2 · 2N
.

II.5. The Misty Scheme

II.5.1. Description of the Structures

In this section we will consider two different structures. The first one is
the L-Scheme ; it is used at various levels in the design of the Misty [114]
and Kasumi [1] block ciphers. The R-Scheme is (almost) its inverse
(we follow the terminology used by H. Gilbert and M. Minier [121]).

We define a 1-round L-scheme as a 2n-bit permutation ψL taking a n-bit
permutation c as a round function and such that

ψL(c)(〈L,R〉) = 〈R, c(L)⊕R〉.
It is depicted in Figure 3. An r-round L-scheme is simply the composi-
tion of r 1-round L-schemes, transforming r permutations c1, ..., cr ∈ Pn

into a 2n-bit permutation:

ψL(c1, c2, ..., cr) = ψL(cr) ◦ ... ◦ ψL(c1).

A 1-round R-scheme transforms a n-bit permutation c into a 2n-bit
permutation ψR(c) too. It is defined as (see Figure 3)

ψR(c)(〈L,R〉) = 〈c(L)⊕R, c(L)〉.

The composition of r 1-round R-schemes is a r-round R-scheme

ψR(c1, c2, ..., cr) = ψR(cr) ◦ ... ◦ ψR(c1).

In this chapter we sometimes consider variants of the ψL and ψR schemes,
where the last XOR operation is omitted, as well as the last swap. We
call them ψ′L and ψ′R.

Remark 1. Cryptographically speaking, ψ′L and ψ′R are equivalent re-
spectively to ψL and ψR.

Remark 2. ψ′L(c1, c2, ..., cr) and ψ′R(c−1
r , c−1

r−1, ..., c
−1
1) are inverses of

each other. It implies that their security against superpseudorandom
distinguishers is the same, as these distinguishers are allowed to encryp-
tion as well as decryption queries.

II.5. THE MISTY SCHEME 41

c

RL

c

RL

Figure 3. 1-round L-scheme at left, 1-round R-scheme at right.

II.5.2. Previous Results

II.5.2.1. Sakurai-Zheng (1997). The first results on pseudorandom-
ness of the Misty schemes are due to K. Sakurai and Y. Zheng [153],
who presented several negative results (i.e. non-pseudorandomness and
non-superpseudorandomness) on the L-scheme:

• {ψL(f, g, h)|f, g, h ∈R Pn} is not pseudorandom.
• {ψL(f1, f2, f3, f4)|f1, f2, f3, f4 ∈R Pn} is not superpseudorandom.
• {ψL(f, f2, f, f)|f ∈R Pn} is not pseudorandom.
• ∀i, j ≥ 0 : {ψL(f i+j , f j , f i, f i)|f ∈R Pn} is not pseudorandom.
• ∀i, j ≥ 0 : {ψL(g, f i+j , f j , f i, f i)|f ∈R Pn} is not pseudorandom.

These results can be proved by mounting simple attacks.

II.5.2.2. Gilbert-Minier (2001). Four years later H. Gilbert and M.
Minier [121] presented the first positive results:

Theorem 13 (Pseudorandomness of 4-round L-scheme).
Let n be an integer, c1, c2, c3, c4 ∈R Pn and F ∗ ∈R F2n,2n. Let F =
ψL(c1, c2, c3, c4) ∈ P2n. Then for any adaptive pseudorandom distin-
guisher A allowed to make m queries we have

Advm
A (F, F ∗) ≤ 7

2
· m2

2n
.

Theorem 14 (Superpseudorandomness of 5-round L- and R-schemes).

Let n be an integer, c1, c2, c3, c4, c5 ∈R Pn and C∗ ∈R P2n. Let C =
ψL(c1, c2, c3, c4, c5) ∈ P2n (resp. C = ψR(c1, c2, c3, c4, c5) ∈ P2n). Then
for any adaptive superpseudorandom distinguisher A allowed to make m
queries we have

Advm
A (C,C∗) ≤ 9

2
· m2

2n
.

Theorem 15 (Pseudorandomness of 3-round R-scheme).
Let n be an integer, c1, c2, c3 ∈R Pn and F ∗ ∈R F2n,2n. Let F =

42 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

ψR(c1, c2, c3) ∈ P2n. Then for any adaptive pseudorandom distinguisher
A allowed to make m queries we have

Advm
A (F, F ∗) ≤ 3m2

2n
.

On the other hand, Gilbert and Minier mounted an attack on a 4-round
scheme, which requires only 2 encryption and 2 decryption queries. Thus
such scheme is not superpseudorandom.

II.5.2.3. Iwata et al. (2001-2002). In addition to the proof of su-
perpseudorandomness for the 5-round Misty structure, T. Iwata et al.
consider in [77] the case where some of the round functions are uniform
ε-XOR universal permutations. They also assume the distinguisher has
oracle access to some of the round functions (following the model of Z.
Ramzan and L. Reyzin [145]).

Definition 16. Let Hn be a keyed permutation family over Zn
2 .

• Hn is uniform if ∀x, y ∈ Zn
2 , |{h ∈ Hn : h(x) = y}| = |Hn|

2n .
• Hn is ε-XOR universal if

∀x 6= x′ ∈ Zn
2 , y ∈ Zn

2 : |{h ∈ Hn : h(x)⊕ h(x′) = y}| ≤ ε|Hn|.

Furthermore in [76] they show that the second round function of a 5-
round Misty need not be cryptographic at all to achieve superpseudo-
randomness, it can be a public an constant function g satisfying the
condition ∀x 6= x′ : g(x)⊕ x 6= g(x′)⊕ x′.

II.5.3. A Few Additional Notations

In the remaining of the section devoted to the Misty structure, we use
the following notations:

• I := Im
n (remember that m is the number of plaintext-ciphertext

pairs considered).
• For x,y ∈ I: x ∼ y informally means that x and y could

be the inputs and outputs of a permutation. More formally:
x ∼ y ⇔ ∀i, j ∈ {1, 2, ...,m} : Xi = Xj ⇔ Yi = Yj .

• I 6= := {x ∈ I|@i 6= j ∈ {1, 2, ..., m} : Xi = Xj}.
• I= := I\I 6=.

II.5.4. The Gilbert-Minier Bounds on 4 rounds are Tight

In this section, we prove that the bounds given in theorems 13 and 15
are tight, by showing very simple attacks when m ' 2n/2.

II.5. THE MISTY SCHEME 43

B

A

RL

1c

2c

3c

4c

S T

Figure 4. The 4-round L-scheme.

II.5.4.1. The 4-Round L-Scheme. The 4-round L-scheme (see Fig-
ure 4) has the following remarkable property:

Property 1. Consider a m-element input vector 〈L,R〉 to a function
ψ′L(c1, c2, c3, c4), where L ∈ I 6= and R is constant (i.e. R1 = R2 = ... =
Rm). Then the corresponding output vector 〈S,T〉 is such that T ∈ I 6=.

Proof. As L ∈ I 6= and R is constant, we have A ∈ I 6=. Then
B = A⊕ c2(R) ∈ I 6=, and finally T ∈ I 6=. ¤

This property is exploited by the following distinguishing algorithm A:

(1) Pick one value R ∈ In, and m different values Li ∈ In(i =
1, ..., m).

(2) Submit the m values 〈Li, R〉 to the encryption oracle F . m
outputs 〈Si, Ti〉 are obtained.

(3) Look whether all values Ti are different. Output “1” if and only
if it is the case.

If F = ψ′L(c∗1, c
∗
2, c

∗
3, c

∗
4), then P[Aψ′L(c∗1,c∗2,c∗3,c∗4) = 1] = 1. If F is a perfect

random function F ∗, then P[AF ∗ = 1] < 1 − 0.3m(m−1)
2n , as shown by

Theorem 17.

Theorem 17. Let (Ti)i=1,...,m ∈ Im
n be a random m-uple chosen in ac-

cordance with the uniform probability distribution. Then the probability
that all Ti are different is smaller than 1− 0.3m(m−1)

2n .

44 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

Proof. Let Dj be the event that there is no collision amongst
T1, T2, ..., Tj . Then P[Dj+1|Dj] = 1− j

2n . We can bound P[Dm] by:

P[Dm] =
m−1∏

j=1

P[Dj+1|Dj] =
m−1∏

j=1

(
1− j

2n

)
≤

m−1∏

j=1

e−j/2n
= e−

∑m−1
j=1 j/2n

= e
−m(m−1)

2n+1 ≤ 1− (1− e−1)
2

· m(m− 1)
2n

< 1− 0.3
m(m− 1)

2n
.

where we applied the fact that for any x with 0 ≤ x ≤ 1 we have
(1− e−1)x ≤ 1− e−x ≤ x. ¤

Therefore

AdvA(ψ′L(c∗1, c
∗
2, c

∗
3, c

∗
4), F

∗) > 0.3
m(m− 1)

2n
. (22)

The conclusion is that the 4-round L-scheme can be distinguished from
a perfect random function with a non negligible advantage as soon as
the number of queries m is Θ(2n/2). Thus the bound given by H. Gilbert
and M. Minier [121] is tight.

II.5.4.2. The 4-Round R-Scheme. This scheme satisfies a property
similar to the one of the 4-round L-scheme:

Property 2. Consider a m-element input vector 〈L,R〉 to a function
ψ′R(c1, c2, c3, c4), where L is constant (i.e. L1 = L2 = ... = Lm) and
R ∈ I 6=. Then the corresponding output vector 〈S,T〉 is such that
S ∈ I 6=.

Using this property, a distinguishing algorithm A can be built, such that
AdvA(ψ′R(c∗1, c

∗
2, c

∗
3, c

∗
4), F

∗) > 0.3m·(m−1)
2n . Thus once again the bound

claimed by H. Gilbert and M. Minier [121] is tight.

II.5.5. Some Combinatorial Facts

Before proving new results on the Misty scheme, we give two useful
properties about involutions.

Property 3. The number of involutions c from In to In without fixed
points (i.e. ∀x : c(x) 6= x) is

2n!
22n−1 · (2n−1)!

.

Property 4. The number of involutions c from In to In without fixed
points, and such that a pairs (x, y) with c(x) = y and c(y) = x are fixed
is

(2n − 2a)!
22n−1−a · (2n−1 − a)!

.

II.5. THE MISTY SCHEME 45

II.5.6. Pseudorandomness of 4R L-Scheme with Involutions

We now consider a 4-round L-scheme were the four permutations have
been replaced by involutions without fixed points. In section II.5.7 we
will prove this lemma:

Lemma 1. Let m,n > 0. Let 〈L,R〉 ∈ X ⊂ Im
2n, 〈S,T〉 ∈ I × I 6=. Then

the probability for a 4-uple (c1, c2, c3, c4) of involutions without fixed
points to satisfy ψ′L(c1, ..., c4)(〈L,R〉) = 〈S,T〉 is lower bounded by

(
1− 63m2

5 · 2n

)
· 1
22nm

.

It allows us to prove the following theorem:

Theorem 18. Let c∗1, ..., c
∗
4 be independent perfect random involutions

without fixed points on In. Let C := ψL(c∗1, ..., c
∗
4). Let F ∗ ∈ F2n,2n

be a perfect random function. Then for any pseudorandom distinguisher
A allowed to make m queries, we have

AdvA(C, F ∗) <
131m2

10 · 2n
.

Thus ψL(c∗1, ..., c
∗
4) is pseudorandom, and secure as long as m ¿ 2n/2.

Proof. It is an immediate application of theorem 11. The con-
straint T ∈ I 6= in lemma 1 implies a non-zero ε1. More precisely, ε1 is
equal to the probability for a (perfect) random T ∈ I to belong to I=.
It can be shown to be smaller than m2

2·2n :

P[T ∈ I=] = P[
∨

i<j

Ti = Tj] ≤
∑

i<j

P[Ti = Tj] ≤ m2

2 · 2n
.

Lemma 1 gives the corresponding ε2. ¤

The proof of lemma 1 will require the following lemma:

Lemma 2. Let a ∈]0, 1[and b > 0. Then (1− a)b > 1− ba
1−a .

Proof. (1− a)b = exp(b ln(1− a)) = exp
(
−∑∞

k=1
bak

k

)

> exp
(−∑∞

k=1 bak
)

= exp
(
−ba
1−a

)
> 1− ba

1−a .
¤

46 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

II.5.7. Proof of Lemma 1

For a given (L,R,S,T), we define λ and ρ as the number of independent
equalities of the form Li = Lj and Ri = Rj (i 6= j), respectively.

We define two intermediate states during the computation of ψ′L(c1, ..., c4),
namely (see Figure 4):

A := c1(L)⊕R
B := c2(R)⊕A

Let P〈L,R〉
〈S,T〉 be the probability that a random 4-uple (c1, c2, c3, c4) is such

that ψ′L(c1, c2, c3, c4)(〈L,R〉) = 〈S,T〉. Then

P〈L,R〉
〈S,T〉 =

∑

A,B∈I

P[(c1(L)⊕R = A) ∧ (c2(R)⊕A = B)

∧ (c3(A)⊕B = S) ∧ (c4(B) = T)].
(23)

We consider the following conditions (C) on (A,B):

(C1) A⊕R ∼ L and @i, j s.t. Li = Aj ⊕Rj .
(C2) A⊕B ∼ R and @i, j s.t. Ri = Aj ⊕Bj .
(C3) B⊕ S ∈ I 6= and @i, j s.t. Ai = Bj ⊕ Sj .
(C4) @i, j s.t. Bi = Tj .

Then equation (23) implies

P〈L,R〉
〈S,T〉 ≥

∑

A,B∈I 6=

(A,B) satisfies (C)

P[(c1(L)⊕R = A)] · P[c2(R)⊕A = B]

· P[c3(A)⊕B = S] · P[c4(B) = T].
(24)

The number of A such that (C1) is satisfied is (2n−m+λ)!
(2n−2m+2λ)! . For a (per-

fect) random such A we have

P[A ∈ I 6=|(C1)] = 1− P[
∨

i<j

Ai = Aj |(C1)] ≥ 1−
∑

i<j

P[Ai = Aj |(C1)].

(25)
Consider given 1 ≤ i < j ≤ m, and assume Li 6= Lj and Ri 6= Rj .
As there are (2n −m + λ)(2n −m + λ − 1) possible values for (Ai, Aj)
satisfying (C1), among which 2n −m + λ satisfy Ai = Aj , we get

P[Ai = Aj |(C1)] =
2n −m + λ

(2n −m + λ)(2n −m + λ− 1)
≤ 2

2n
. (26)

If Li = Lj or Ri = Rj , it is easy to see that P[Ai = Aj |(C1)] = 0.

Then we have

P[A ∈ I 6=|(C1)] ≥ 1− m(m− 1)
2

· 2
2n

≥ 1− m2

2n
. (27)

II.5. THE MISTY SCHEME 47

Similarly, the number of B such that (C2) is satisfied is (2n−m+ρ)!
(2n−2m+2ρ)! , and

P[B ∈ I 6=|(C2)] ≥ 1 − m2

2n . Finally for a (perfect) random (A,B) we
compute:

P[B satisfies (C3) ∧ B satisfies (C4) ∧ A ∈ I 6= ∧ B ∈ I 6=|(C1) ∧ (C2)]

≥ 1− P[
∨

i<j

Bi ⊕ Si = Bj ⊕ Sj |(C1) ∧ (C2)]

− P[
∨

i,j

Ai = Bj ⊕ Sj |(C1) ∧ (C2)]− P[
∨

i,j

Bi = Tj |(C1) ∧ (C2)]− 2 · m2

2n

≥ 1− m(m− 1)
2

· 2
2n
− 4m2

2n
− 2 · m2

2n
≥ 1− 7m2

2n
.

Thus the number of (A,B) ∈ I 6= satisfying (C) can be lower bounded
by

(2n −m + λ)!
(2n − 2m + 2λ)!

· (2n −m + ρ)!
(2n − 2m + 2ρ)!

· (1− 7m2

2n
). (28)

Under these conditions on (A,B) we can evaluate

P[(c1(L)⊕R = A)] ·P[c2(R)⊕A = B] ·P[c3(A)⊕B = S] ·P[c4(B) = T]

and we obtain

(2n−2m+2λ)!

22n−1−m+λ·(2n−1−m+λ)!
· (2n−2m+2ρ)!

22n−1−m+ρ·(2n−1−m+ρ)!
·
[

(2n−2m)!

22n−1−m·(2n−1−m)!

]2

[
2n!

22n−1 ·(2n−1)!

]4 .

(29)
After multiplication of (29) by the number of terms (28):

24m−λ−ρ · (2n −m + λ)! · (2n −m + ρ)!
(2n−1 −m + λ)! · (2n−1 −m + ρ)!

· (2n−1)!4

(2n)!4
·
[

(2n − 2m)!
(2n−1 −m)!

]2

·
(

1− 7m2

2n

)

= 24m−λ−ρ ·
∏m−λ−1

i=0
2n−1−i
2n−i ·∏m−ρ−1

i=0
2n−1−i
2n−i ·

(∏m−1
i=0

2n−1−i
2n−i

)2

(∏2m−1
i=m 2n − i

)2 ·
(

1− 7m2

2n

)
.

By lower bounding the products, this expression can be shown to be
greater or equal than

24m−λ−ρ ·
(

2n−1 −m

2n −m

)4m−λ−ρ

· 1
22nm

·
(

1− 7m2

2n

)
. (30)

It is easy to show that 2n−1−m
2n−m = 1

2 − 1
2

∑∞
k=1

mk

2nk . Then (30) is greater
or equal than

(
1−

∞∑

k=1

mk

2nk

)4m

· 1
22nm

·
(

1− 7m2

2n

)
. (31)

48 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

We evaluate the first factor. First, we have
∞∑

k=1

mk

2nk
=

m/2n

1−m/2n
. (32)

Without loss of generality, we may assume m/2n ≤ m2/2n ≤ 1/7. So
we have (

1−
∞∑

k=1

mk

2nk

)4m

≥
(

1− 7m

6 · 2n

)4m

. (33)

Applying lemma 2, we obtain
(

1− 7m

6 · 2n

)4m

> 1−4m

(
7m
6·2n

1− 7m
6·2n

)
≥ 1−4m

(
7m
6·2n

1− 7
6 · 1

7

)
= 1−28m2

5 · 2n
.

(34)

Finally, immediate calculations show that (31) is greater or equal than
(

1− 63m2

5 · 2n

)
· 1
22nm

, (35)

which concludes the proof.

II.5.8. Pseudorandomness of 3R R-Scheme with Involutions

We prove a result similar to theorem 18 for a 3-round R-scheme where
the three round functions c1, c2, c3 are involutions without fixed points
(see Figure 5). In the next section the following lemma will be proved:

Lemma 3. Let m,n > 0. Let 〈L,R〉 ∈ X ⊂ Im
2n, 〈S,T〉 ∈ I 6=× I 6=. Then

the probability for a 3-uple (c1, c2, c3) of involutions without fixed points
to satisfy ψ′R(c1, ..., c3)(〈L,R〉) = 〈S,T〉 is lower bounded by

(
1− 9m2

2n

)
· 1
22nm

.

It implies the following theorem:

Theorem 19. Let c∗1, c
∗
2, c

∗
3 be independent perfect random involutions

without fixed points on In. Let C := ψR(c∗1, c
∗
2, c

∗
3). Let F ∗ ∈ F2n,2n be

a perfect random function. Then for any pseudorandom distinguisher A
allowed to make m queries, we have

AdvA(C, F ∗) <
10m2

2n
.

Thus ψR(c∗1, c
∗
2, c

∗
3) is pseudorandom, and secure as long as m ¿ 2n/2.

II.5. THE MISTY SCHEME 49

L R

A

B

1c

2c

3c

S T

Figure 5. The 3-round R-scheme.

Proof. We apply theorem 11. As 〈S,T〉 is assumed to belong to
I 6= × I 6=, ε1 is equal to the probability for a (perfect) random 〈S,T〉 ∈
I × I that 〈S,T〉 /∈ I 6= × I 6=. We obtain

ε1 = P[S ∈ I= ∨T ∈ I=] ≤ P[
∨

i<j

Si = Sj] + P[
∨

i<j

Ti = Tj]

≤
∑

i<j

P[Si = Sj] +
∑

i<j

P[Ti = Tj] ≤ m2

2n
.

Lemma 3 gives the corresponding ε2. ¤

The proof of lemma 3 will require the following lemma:

Lemma 4. Let x, y ∈ In, 0 6= ∆ ∈ In. The probability for a random
involution without fixed points c to satisfy

c(x)⊕ c(y) = ∆

is at most 4/2n.

Proof. If x = y the probability is trivially 0. Thus in the following
we assume x 6= y.

P[c(x)⊕ c(y) = ∆] =
∑

a∈In

P[c(x) = a ∧ c(y) = a⊕∆]

=
∑

a∈In
a/∈{x,y,x⊕∆,y⊕∆}

P[c(x) = a ∧ c(y) = a⊕∆] + p,

where p = P[c(x) = y] = 1
2n−1 if ∆ = x⊕ y, else p = 0.

50 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

Under the assumption that a /∈ {x, y, x⊕∆, y⊕∆}, we use properties 3
and 4 of section II.5.5 to compute:

P[c(x) = a ∧ c(y) = a⊕∆] = 4 · 2n−1!
(2n−1 − 2)!

· (2n − 4)!
2n!

=
2n − 2

(2n − 1)(2n − 2)(2n − 3)

≤ 1
22n−1

,

provided that n ≥ 4.

Thus finally P[c(x)⊕ c(y) = ∆] ≤ (2n − 4) · 2
22n + 1

2n−1 ≤ 4
2n . ¤

II.5.9. Proof of Lemma 3

We define two intermediate states during the computation of ψ′R(c1, c2, c3),
namely (see Figure 5):

A := c1(L)⊕R
B := c1(L)⊕T

Let P〈L,R〉
〈S,T〉 be the probability that a random 3-uple (c1, c2, c3) is such

that ψ′R(c1, c2, c3)(〈L,R〉) = 〈S,T〉. Then

P〈L,R〉
〈S,T〉 =

∑

A,B∈I

P[(c1(L)⊕R = A) ∧ (c1(L)⊕T = B)

∧ (c2(A) = T) ∧ (c3(B) = S)].
(36)

We consider the following conditions (C) on (A,B):

(C1) @ i, j s.t. Li = Aj ⊕Rj .
(C2) @ i, j s.t. Ai = Tj .
(C3) @ i, j s.t. Bi = Sj .

(36) is greater or equal than
∑

A,B∈I 6=

(A,B) satisfies (C)

P[(c1(L)⊕R = A) ∧ (c1(L)⊕T = B)]

· P[c2(A) = T] · P[c3(B) = S].

(37)

When A,B ∈ I 6= and (A,B) satisfies (C), we have

P[c2(A) = T] · P[c3(B) = S] =

(2n−2m)!

22n−1−m·(2n−1−m)!

2n!

22n−1 ·(2n−1)!

2

. (38)

II.5. THE MISTY SCHEME 51

It is easy to show that (38) is greater or equal than

22m ·
(

2n−1 −m

2n −m

)2m

· 1
22nm

. (39)

Thus P〈L,R〉
〈S,T〉 is greater or equal than

22m·
(

2n−1 −m

2n −m

)2m

· 1
22nm

·
∑

A,B∈I 6=

(A,B) satisfies (C)

P[(c1(L)⊕R = A)∧(c1(L)⊕T = B)],

(40)
where the sum is equal to

P[c1(L)⊕R ∈ I 6= ∧ c1(L)⊕T ∈ I 6= ∧ @i, j : Li = c1(Lj)

∧ @i, j : Ti = c2(Tj) ∧ @i, j : Si = c3(Sj)]

≥ 1−P[c1(L)⊕R ∈ I=]− P[c1(L)⊕T ∈ I=]−P[∃i, j : Li = c1(Lj)]

− P[∃i, j : Ti = c2(Tj)]− P[∃i, j : Si = c3(Sj)]

≥ 1−
∑

i<j

P[c1(Li)⊕Ri = c1(Lj)⊕Rj]−
∑

i<j

P[c1(Li)⊕ Ti = c1(Lj)⊕ Tj]

−
∑

i<j

P[Li = c1(Lj)]−
∑

i<j

P[Ti = c2(Tj)]−
∑

i<j

P[Si = c3(Sj)]

Using lemma 4 to bound the first two sums (note that if Ri = Rj then
by hypothesis Li 6= Lj which implies P[c1(Li)⊕Ri = c1(Lj)⊕Rj] = 0):

≥ 1−m(m− 1)
4
2n
− 3 · m(m− 1)

2
· 1
2n − 1

≥ 1− 4m2

2n
− 2m2

2n
= 1− 6m2

2n
.

Then

P〈L,R〉
〈S,T〉 ≥ 22m ·

(
2n−1 −m

2n −m

)2m

· 1
22nm

·
(

1− 6m2

2n

)

=

(
1−

∞∑

k=1

mk

2nk

)2m

· 1
22nm

·
(

1− 6m2

2n

)
.

(41)

Using lemma 2 and assuming without loss of generality m/2n ≤ 1/6, we
make a development similar to the one of section II.5.7. We get

(
1−

∞∑

k=1

mk

2nk

)2m

> 1− 3m2

2n
, (42)

which implies

P〈L,R〉
〈S,T〉 >

(
1− 9m2

2n

)
· 1
22nm

. (43)

52 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

II.5.10. Superpseudorandomness of 5-round Schemes with
Involutions

The following lemma is proved in the next section:

Lemma 5. Let m,n > 0. Let 〈L,R〉, 〈S,T〉 ∈ X ⊂ Im
2n. Then the proba-

bility for a 5-uple (c1, c2, c3, c4, c5) of involutions without fixed points to
satisfy ψ′L(c1, ..., c5)(〈L,R〉) = 〈S,T〉 is lower bounded by

(
1− 12m2

2n

)
· 1
2nm

.

Using theorem 12, it implies superpseudorandomness for a 5-round scheme
with the inner functions being perfect random involutions without fixed
points:

Theorem 20. Let c∗1, c
∗
2, ..., c

∗
5 be independent perfect random involu-

tions without fixed points of In. Let C := ψL(c∗1, c
∗
2, ..., c

∗
5) (resp. C :=

ψR(c∗1, c
∗
2, ..., c

∗
5)). Let C∗ be a perfect random permutation of I2n. Then

for any superpseudorandom distinguisher A allowed to make m queries,

AdvA(C, C∗) <
12m2

2n
+

m2

2 · 22n
.

II.5.11. Proof of Lemma 5

We use the following intermediate states (see Figure 6):

A := c1(L)⊕R
B := c2(R)⊕A
C := c3(A)⊕B

Let P〈L,R〉
〈S,T〉 be the probability that a random 5-uple (c1, c2, c3, c4, c5) of in-

volutions without fixed points is such that ψ′L(c1, c2, c3, c4, c5)(〈L,R〉) =
〈S,T〉. Then

P〈L,R〉
〈S,T〉 =

∑

A,B,C∈I

P[(c1(L)⊕R = A) ∧ (c2(R)⊕A = B)

∧ (c3(A)⊕B = C) ∧ (c4(B)⊕C = T) ∧ (c5(C) = S)].
(44)

We define the following three conditions (C) on (A,B,C):

(C1) @i, j : Li = Aj ⊕Rj and @i, j : Ri = Aj ⊕Bj .
(C2) @i, j : Ai = Bj ⊕ Cj and @i, j : Bi = Cj ⊕ Tj .
(C3) @i, j : Ci = Sj .

II.5. THE MISTY SCHEME 53

S T

B

A

C

RL

1c

2c

3c

4c

c5

Figure 6. The 5-round L-scheme.

Then P〈L,R〉
〈S,T〉 is greater or equal than
∑

A,B∈I 6=

A,B satisfy (C1)

(
P[(c1(L)⊕R = A) ∧ (c2(R)⊕A = B)]

·
∑

C∈I
C satisfies (C2),(C3)

P[c3(A)⊕B = C] · P[c4(B)⊕C = T] · P[c5(C) = S]
)
.

(45)

We first evaluate the inner sum for given A,B ∈ I 6= satisfying (C1).
Adding constraints C ∼ S, C ⊕T ∈ I 6= and B⊕C ∈ I 6= only removes
zero terms from the sum. Thus it is equal to∑

C∼S
C⊕T∈I 6=, B⊕C∈I 6=

C satisfies (C2),(C3)

P[c3(A)⊕B = C]·P[c4(B)⊕C = T]·P[c5(C) = S]. (46)

It is easy to see that

|{C ∈ I : C ∼ S ∧ (C3)}| = (2n −m + σ)!
(2n − 2m + 2σ)!

. (47)

54 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

Moreover we compute

P[C⊕T ∈ I 6= ∧B⊕C ∈ I 6= ∧ (C2)|C ∼ S ∧ (C3)]

≥ 1−
∑

i<j

P[Ci ⊕ Ti = Cj ⊕ Tj |C ∼ S ∧ (C3)]

−
∑

i<j

P[Bi ⊕ Ci = Bj ⊕ Cj |C ∼ S ∧ (C3)])

−
∑

i,j

P[Ai = Bj ⊕ Cj |C ∼ S ∧ (C3)]

−
∑

i,j

P[Bi = Cj ⊕ Tj |C ∼ S ∧ (C3)].

(48)

We evaluate the first sum. Consider given 1 ≤ i < j ≤ m, and assume
Si 6= Sj and Ti 6= Tj . Then the value of Cj is fixed by the one of Ci.
As there are (2n −m + σ)(2n −m + σ − 1) possible values of (Ci, Cj)
satisfying C ∼ S and (C3), we get

P[Ci ⊕ Ti = Cj ⊕ Tj |C ∼ S ∧ (C3)] =
1

2n −m + σ − 1
≤ 2

2n
. (49)

If Si = Sj or Ti = Tj , it is easy to see that the probability is 0, thus the
inequality of equation (49) still holds. Therefore

∑

i<j

P[Ci ⊕ Ti = Cj ⊕ Tj |C ∼ S ∧ (C3)] ≤ m(m− 1)
2

· 2
2n

≤ m2

2n
. (50)

The second sum can be bounded similarly.

We now consider the third sum. Let 1 ≤ i, j ≤ m. As there are 2n−m+σ
possible values of Cj satisfying C ∼ S and (C3), we obtain

P[Cj = Ai ⊕Bj |C ∼ S ∧ (C3)] =
1

2n −m + σ
≤ 2

2n
. (51)

Therefore
∑

i,j

P[Ai = Bj ⊕ Cj |C ∼ S ∧ (C3)] ≤ m2 · 2
2n

. (52)

The fourth sum can be bounded similarly.

Putting these inequalities together, we finally get

P[C⊕T ∈ I 6= ∧B⊕C ∈ I 6= ∧ (C2)|C ∼ S ∧ (C3)] ≥ 1− 6m2

2n
. (53)

The probabilities in (46) are easy to evaluate. Thus using (47) and (53),
(46) is lower bounded by

[
(2n−2m)!

22n−1−m·(2n−1−m)!

]2
·
[

(2n−m+σ)!

22n−1−m+σ ·(2n−1−m+σ)!

]

[
2n!

22n−1 ·(2n−1)!

]3 · (1− 6m2

2n
), (54)

II.5. THE MISTY SCHEME 55

which is greater or equal than

23m−σ ·
(

2n−1 −m

2n −m

)3m−σ

· 1
2nm

≥
(

1−
∞∑

k=1

mk

2nk

)3m

· 1
2nm

. (55)

It remains to evaluate
∑

A,B∈I 6=

A,B satisfy (C1)

P[(c1(L)⊕R = A) ∧ (c2(R)⊕A = B)], (56)

which is equal to

P[c1(L)⊕R ∈ I 6= ∧ c1(L)⊕ c2(R)⊕R ∈ I 6=

∧ @i, j : c1(Li) = Lj ∧ @i, j : c2(Ri) = Rj]

≥ 1−
∑

i<j

P[c1(Li)⊕ c1(Lj) = Ri ⊕Rj]

−
∑

i<j

P[c1(Li)⊕ c2(Ri)⊕Ri = c1(Lj)⊕ c2(Rj)⊕Rj]

−
∑

i<j

P[c1(Li) = Lj]−
∑

i<j

P[c2(Ri) = Rj].

Let 1 ≤ i < j ≤ m. P[c1(Li)⊕ c1(Lj) = Ri ⊕Rj] is easy to evaluate. If
Ri ⊕Rj = 0, then Li 6= Lj and the probability is 0. If Ri ⊕Rj 6= 0, we
can apply lemma 4. Thus in any case

P[c1(Li)⊕ c1(Lj) = Ri ⊕Rj] ≤ 4/2n. (57)

For shortness, let us denote Z(Ri, Rj) := c2(Ri)⊕c2(Rj)⊕Ri⊕Rj . The
terms of the second sum can be written:

P[c1(Li)⊕ c1(Lj) = Z(Ri, Rj)]
= P[c1(Li)⊕ c1(Lj) = Z(Ri, Rj)|Z(Ri, Rj) = 0] · P[Z(Ri, Rj) = 0]

+P[c1(Li)⊕ c1(Lj) = Z(Ri, Rj)|Z(Ri, Rj) 6= 0] · P[Z(Ri, Rj) 6= 0]
= P[c1(Li)⊕ c1(Lj) = 0] · P[Z(Ri, Rj) = 0]

+P[c1(Li)⊕ c1(Lj) = Z(Ri, Rj)|Z(Ri, Rj) 6= 0] · P[Z(Ri, Rj) 6= 0].

If Ri = Rj then Li 6= Lj and the first term is 0. Else by lemma 4 it
is not greater than 4/2n. Using lemma 4 again, the second term is also
not greater than 4/2n. The conclusion is that

P[c1(Li)⊕ c2(Ri)⊕Ri = c1(Lj)⊕ c2(Rj)⊕Rj] ≤ 8
2n

. (58)

56 II. SECURITY PROOFS IN THE LUBY-RACKOFF MODEL

Finally using (57) and (58), (56) is greater or equal than

1− m(m− 1)
2

· 4
2n
− m(m− 1)

2
· 8
2n
− 2 · m(m− 1)

2 · (2n − 1)

≥ 1− 8m2

2n
. (59)

Multiplying (55) and (59), we get

P〈L,R〉
〈S,T〉 ≥

(
1−

∞∑

k=1

mk

2nk

)3m

· 1
2nm

·
(

1− 8m2

2n

)
. (60)

Using lemma 2 again, (60) can be shown to be greater than
(

1− 4m2

2n

)
· 1
2nm

·
(

1− 8m2

2n

)
>

(
1− 12m2

2n

)
· 1
2nm

. (61)

II.6. CONCLUSION 57

II.6. Conclusion

In this chapter we showed that replacing the inner permutations of a
Misty structure by involutions without fixed points, without changing
the number of rounds, does not significantly affect the previously known
security bounds.

Several open problems remain: first, one could wonder whether the hy-
pothesis “without fixed points” is important. Intuitively it is clearly not,
as taking the inner permutations from a (much) bigger set increases the
variety of functions one can generate, and hence the difficulty to distin-
guish them from perfect random functions. But it is only a conjecture.
Moreover the number of involutions without fixed points is asymptot-
ically negligible compared to the number of involutions, which makes
us think that our proofs cannot be easily adapted to the case where
involutions are used.

Also, it is an open question whether in some cases involutions achieve
significantly weaker security bounds than permutations; in other words,
it is not clear whether the fact that the inner functions are involutions
can in some cases be used in an attack. This problem is also worth
considering in structures different from the Misty one.

Basically, the limitations of the Luby-Rackoff model are twofold: the
first limitation is due to the fact that it is difficult to do security proofs
on real-life round functions. As we have seen, passing from permutations
to involutions implied much trickier computations. But the second lim-
itation is much more fundamental. Paradoxically, it owns to the fact
that Luby-Rackoff proofs ensure security even against adversaries with
unbounded computation capabilities. The consequence is that Luby-
Rackoff security results cannot longer be proved as soon as the number
of queries allowed to the adversaries permits an attack similar to exhaus-
tive key search (i.e., to consider all possible r-uples of inner functions,
and check whether they can generate the plaintext-ciphertext pairs ob-
served).

CHAPTER III

Square Attacks

Abstract. This chapter deals with square attacks. First we
briefly describe the original attack on SQUARE introduced by J.
Daemen, L. Knudsen, and V. Rijmen [44]. We give a few defini-
tions, and formalize the attack.
We then show the similarities between the way truncated differ-
ential distinguishers and square distinguishers are built. These
similarities are used to derive square distinguishers on 16-round
and 20-round Skipjack. We also present a square distinguisher on
SAFER++, which allows attacking up to 4 rounds of this cipher.
Finally, we suggest possible extensions of square distinguishers.
Among other things, we discuss the feasibility of applying square
attacks to bit-oriented ciphers.
We originally published part of the results of this chapter in [139,
141].

III.1. Introduction

The square attack (also named saturation attack, or integral attack)
was introduced by J. Daemen, L. Knudsen, and V. Rijmen when they
published the algorithm of the same name [44]. It was presented as a
dedicated attack. Square attacks were then applied to reduced-round
Rijndael [47, 55, 61] and Crypton [107, 50], which is not surprising,
as their structure is very close to the one of SQUARE. However four
years later, S. Lucks applied the square technique to a non-square-like
cipher, namely Twofish [110]. This way he managed to break up to eight
rounds of Twofish, which is at present the best known attack against it.
Since then, the square attack has been applied to several algorithms
with various structures: examples are Hierocrypt [9], Camellia [171],
Misty [99].

In this chapter we analyze the way square distinguishers are built; we
show the similarities and differences such distinguishers have with trun-
cated and impossible differential distinguishers. Section III.2 describes
the original attack on SQUARE, and introduces the basic concepts of the
square attack. These concepts are summarized in section III.3. Then
section III.5 presents the principles of the truncated and impossible dif-
ferential cryptanalysis. In section III.6 the link between both attacks

59

60 III. SQUARE ATTACKS

Table 1. The state during a SQUARE encryption.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

is discussed. This link is exploited in section III.7 to mount a square
attack on Skipjack.

Another application of this type of attacks to SAFER++ is described in
section III.9. Finally, possible extensions of the technique are considered
in section III.10.

III.2. The Original Square Attack

The SQUARE algorithm was designed by J. Daemen, L. Knudsen and V.
Rijmen in 1997 [44]. The state during a SQUARE encryption is usually
described by a 4× 4 square of bytes; these 16 bytes are denoted by ai,j ,
0 ≤ i, j ≤ 3 (see Figure 1). SQUARE is a SP-Network made up of four
different components:

• a mixing linear transform θ comparable to Rijndael’s MixColumns.
It is described by the following equation:

b = θ(a) ⇔ bi,j = cjai,0 ⊕ cj−1ai,1 ⊕ cj−2ai,2 ⊕ cj−3ai,3,

where the multiplication is in GF(28) and the indices of c must
be taken modulo 4. Note that θ could be described equivalently
using a modular polynomial multiplication.

• an S-boxes layer γ, in which each byte passes through a 8× 8
S-box.

• a byte permutation π: b = π(a) ⇔ bi,j = aj,i.
• a round key addition σ[kt], which XORs key kt to the state.

A round is defined as ρ[kt] = σ[kt] ◦ π ◦ γ ◦ θ. Then the whole cipher is

SQUARE[K] = ©8
r=1ρ[kr] ◦ σ[k0] ◦ θ−1.

We do not describe how k0, ..., k8 are computed from K, as it is of no
relevance for the attack.

A chosen plaintext attack on SQUARE (reduced to up to 6 rounds) is
the following. Consider a set Λ of 256 plaintexts {P (n)}n=1,...,256 =
{(P (n)

i,j)i,j=0,...,3}n=1,...,256 which are constant in all bytes but one; this

III.2. THE ORIGINAL SQUARE ATTACK 61

Table 2. Propagation of the active/passive character
through 3 rounds of SQUARE.

1st round:

A p p p
p p p p
p p p p
p p p p

θ◦σ◦θ−1−−−−−→
A p p p
p p p p
p p p p
p p p p

σ◦π◦γ−−−−→
A p p p
p p p p
p p p p
p p p p

2nd round:

A p p p
p p p p
p p p p
p p p p

θ−−−−−→
A A A A
p p p p
p p p p
p p p p

σ◦π◦γ−−−−→
A p p p
A p p p
A p p p
A p p p

3rd round:

A p p p
A p p p
A p p p
A p p p

θ−−−−−→
A A A A
A A A A
A A A A
A A A A

σ◦π◦γ−−−−→
A A A A
A A A A
A A A A
A A A A

particular byte takes all possible values. Let us assume its position is
(0, 0). Thus more formally:

p
(n)
i,j = pi,j ∀(i, j) 6= (0, 0),∀n ∈ {1, 2, ...256}

p
(n)
0,0 = Π(n) ∀n ∈ {1, 2, ...256},

where Π is a permutation of {1, 2, ...256}.
Bytes which have the same value for all plaintexts are said passive or
constant. Bytes for which all possible values appear the same number
of times are said active. Bytes which are neither passive nor active are
garbled.

For the set Λ of plaintexts, we trace the evolution of the active/passive
state for the 16 bytes through the encryption process. γ and σ do not
change the state of the bytes, and π only changes their position. The
behavior of θ is easy to figure as well. The evolution is as pictured in
Table 2, where A means active and p passive. After the θ layer of the
fourth round all bytes are garbled. However one can show they still have
an interesting property. Let {A(n)}n=1,...,256 = {(a(n)

i,j)i,j=0,...,3}n=1,...,256

denote the state after round 3 corresponding to the set {P (n)}n=1,...,256

of plaintexts. Let B(n) = θ(A(n)). Then

256⊕

n=1

b
(n)
i,j =

256⊕

n=1

3⊕

k=0

cj−ka
(n)
i,k =

3⊕

l=0

cl

256⊕

n=1

a
(n)
i,j−l =

3⊕

l=0

cl · 0 = 0.

62 III. SQUARE ATTACKS

In other words, the bytes at the output of θ in the fourth round have
sum 0 when taken over the 256 plaintexts. A byte with such property
is said balanced.

By doing guesses on key k4 of the fourth round, this distinguisher can be
used to retrieve the key of a 4-round SQUARE. More costly key guesses
allow attacking up to 6 rounds of SQUARE using the same distinguisher.

III.3. Basic Definitions and Properties

In this section we collect basic definitions and properties related to the
square attack.

First, we define a notion of set slightly different from the usual one.
Namely, we consider that the elements of a set are always indexed. More
formally:

Definition 21. A n-bit set with e elements is defined as an injective
function φ : {1, 2, ..., e} → Zn

2 .

The notion of “multiset” is often used to describe an n-bit data channel.
Roughly speaking, a multiset is a set whose elements may appear several
times. Compared to the definition of set, it implies that φ is no longer
required to be injective:

Definition 22. A n-bit multiset with e elements is defined as a func-
tion φ : {1, 2, ..., e} → Zn

2 .

In the remaining of this chapter a multiset with e elements will be de-
noted by {{A(i)}}i=1,...,e (note the {{.}} notation instead of {.} for a set).
We define the following properties for a n-bit multiset:

Definition 23. A n-bit multiset with k · 2n elements is said active if
any value in Zn

2 appears exactly k times in it.
A n-bit multiset is said passive if it contains only one fixed value:
|Im(φ)| = 1.
A n-bit multiset is said garbled if it is neither active nor passive.

We will sometimes allow us to write “active/passive word” to designate
an active/passive multiset. The basic principle of a square attack is,
beginning with a set of plaintexts of which the words are either active or
passive, to trace active and passive words along the encryption process
(the rules of propagation for active and passive words will be detailed
below). More formally, we define the following terms:

Definition 24. The state of a word is active, passive, or garbled.
The state of the data at a certain point of an encryption is the descrip-
tion of the state of every word that is relevant for the attack.
A square characteristic is the description of the state of the data
after each round (or even after each block cipher layer).

III.3. BASIC DEFINITIONS AND PROPERTIES 63

It is worth noting that the size of the words considered need not be
the one of one only S-box. It can include several ones, as we will see
in the attacks on Skipjack and SAFER++. In this context, the notion
of restriction of a multiset makes sense. We say that a m-bit mul-
tiset {{B(i)}}i=1,...,e is a restriction of a n-bit multiset {{A(i)}}i=1,...,e if
{{B(i)}}i=1,...,e is obtained by selecting some of the bits of {{A(i)}}i=1,...,e:

Definition 25. Consider a n-bit multiset

φ : {1, 2, ..., e} → Zn
2 : k → A(k) = (a(k)

1 , a
(k)
2 , ..., a(k)

n).

A m-bit (m < n) multiset

φ : {1, 2, ..., e} → Zm
2 : k → B(k) = (b(k)

1 , b
(k)
2 , ..., b(k)

m)

is a restriction of {{A(k)}} if there exists indices 1 ≤ i1 < i2 < ... <

im ≤ n such that ∀j ∈ {1, 2, ..., m}, ∀k ∈ {1, 2, ..., e} : b
(k)
j = a

(k)
ij

.

Moreover, the complementary of a given m-bit restriction {{B(k)}} of a
n-bit multiset {{A(k)}} is defined as the (n−m)-bit restriction of {{A(k)}}
which consists of the bits that are not present in {{B(k)}}. Restrictions
have the following trivial property:

Property 5. All restrictions of an active multiset {{A(k)}} are active.
All restrictions of a constant multiset {{A(k)}} are constant.

This property induces a partial order on the set of all active multisets of
a given state. As a consequence, the state can be completely described
by enumerating all maximal active multisets.

The following notion can be useful to attack some algorithms. An ex-
ample is the attack on Twofish [110].

Definition 26. A multiset {{A(i)}}i=1,...,k·2n is said to be balanced with
respect to some group operation whenever

k·2n∑

i=1

A(i) = 0

(where
∑

and 0 refer to the considered group operation).

Balanced multisets have the following properties:

Theorem 27. An active multiset is balanced. A passive multiset is
balanced. The sum of two balanced multisets is a balanced multiset.

64 III. SQUARE ATTACKS

III.4. Description of Skipjack

In this section we briefly describe the Skipjack algorithm, which will be
dealt with in sections III.5 and III.7.

The algorithm Skipjack has been developed by the NSA and kept secret
until 1998. It is a 64-bit iterated block cipher with a 80-bit key, of
which the input is divided into four words of 16 bits. It is made out of
32 rounds of two types, called A-rounds and B-rounds; Skipjack applies
8 A-rounds, followed by 8 B-rounds, followed by another 8 A-rounds and
finally another 8 B-rounds. In each round one of the four words passes
through a bijective keyed transformation G, and at most two words are
modified; furthermore a counter, which is incremented at each round,
is XORed to one of the words. The G function is a four-round Feistel
permutation of which the round function is defined as an 8 × 8 S-box
preceded by addition of 8 key bits.

The key schedule of Skipjack is very simple. Namely, four bytes of the
key at a time are used to key each G permutation: the first four bytes are
used to key the first G permutation, and each additional G permutation
is keyed by the next four bytes cyclically, with a cycle of five rounds.

Figure 1 pictures 16 rounds of Skipjack. The first eight are A-rounds,
while the last eight are B-rounds.

III.5. Truncated and Impossible Differential Attacks

In this section, we briefly describe the truncated and impossible dif-
ferential cryptanalysis. The results described come from [98, 16]. The
attention of the reader is also drawn to [96, 67].

III.5.1. Truncated Differentials

In some ciphers, usually those of which all components operate on words
of a given length (and never on bits), differential characteristics tend to
cluster. This can be exploited by an attacker by considering only a
part of the difference near the first and the last round. In practice, it
amounts to tracing words having a zero difference through the cipher
(however other characteristics are sometimes used, such as equality of
the difference in different words).

As an example, it is easy to see that a truncated differential with proba-
bility 1 of Skipjack reduced to rounds 5 to 16 (thus including 4 A-rounds
and 8 B-rounds) is (0, a, 0, 0) → (c, d, e, 0), where a, c, d, e 6= 0.

III.5. TRUNCATED AND IMPOSSIBLE DIFFERENTIAL ATTACKS 65

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

10

14

16

15

1

6

5

4

3

2

1

13

12

11

8

7

Figure 1. 16 rounds of Skipjack.

III.5.2. Impossible Differentials

Impossible differentials use truncated differentials with zero probabil-
ity. The attacker does key guessing on the outer rounds of the cipher,
and can discard guesses suggesting that the impossible differential in-
deed occurred. Impossible differential characteristics are usually built
by concatenating two truncated differentials of probability 1 which are
incompatible, which means that the conditions on the difference given

66 III. SQUARE ATTACKS

by both truncated differentials at their meeting point cannot be simul-
taneously fulfilled. It is why this type of attacks is also called miss-in-
the-middle attack.

Still in the case of Skipjack, it is easy to show that if the difference after
round 28 is of the form (b, 0, 0, 0), with b 6= 0, then the difference after
round 16 is of the form (f, g, 0, h), with f, g, h 6= 0.

Consider both truncated differentials:

(0, a, 0, 0) 5→16 (c, d, e, 0) (a, c, d, e 6= 0)

(b, 0, 0, 0) 28→17 (f, g, 0, h) (b, f, g, h 6= 0)

It is clear that differences (c, d, e, 0) and (f, g, 0, h) cannot both hold
after round 16. We conclude that a differential (0, a, 0, 0) → (b, 0, 0, 0)
between rounds 5 and 28 of Skipjack has probability 0. In [16] this
impossible differential is used to attack up to 31 rounds of Skipjack.

Other examples of application of the impossible differential cryptanalysis
are given in [17].

III.6. Square Versus Truncated Differential Characteristics

As we have seen, building a truncated differential characteristic is most
of the time all about tracing the zero and non-zero differences. Square
attacks, as for them, are about tracing active and passive words. We
observe that the rules of propagation are very similar for square attacks
and truncated differential attacks. As a matter of fact, it appears that
active words behave the same way as non-zero differences, while passive
words behave just like zero differences. We summarize these observations
in Table 3, where:

• δ0 (resp. ∆6=0) stands for a zero (resp. non-zero) difference.
• Act, Pas, Bal respectively denote an active, passive, and bal-

anced multiset.
• ⊕ denotes the group operation of the cipher (usually exclusive

or).
• F (resp. f) denotes a bijective (resp. non-bijective) function.

The interesting point with these observations is that it is often possible,
given a truncated differential characteristic, to build a corresponding
square characteristic. And reciprocally, given a square characteristic,
one can often build a truncated differential characteristic. In the next
section, we apply this technique to build a square distinguisher for Skip-
jack, based on the impossible differential distinguisher given in [16].

III.7. SQUARE ATTACKS ON SKIPJACK 67

Table 3. Parallelism between square and truncated dif-
ferential characteristics.

Square attacks Truncated differential attacks
Pas⊕ Pas → Pas δ0 ⊕ δ0 → δ0

Act⊕ Pas → Act ∆6=0 ⊕ δ0 → ∆6=0

Act⊕Act → Bal ∆6=0 ⊕∆6=0 →?

Act
F→ Act ∆6=0

F→ ∆6=0

Pas
F→ Pas δ0

F→ δ0

Act
f→? ∆6=0

f→?

Pas
f→ Pas δ0

f→ δ0

III.7. Square Attacks on Skipjack

In this section we first build a square distinguisher on Skipjack di-
rectly based on the truncated differential distinguisher described in sec-
tion III.5.1. We then show how this distinguisher can be improved.

III.7.1. A 16-Round Square Distinguisher

The truncated differential distinguisher described in section III.5.1 is

(0, a, 0, 0) 5→16 (c, d, e, 0).

Using observations made in section III.6 we “convert” this distinguisher
into a square distinguisher for rounds 5-20 of Skipjack. Thus the initial
state (before round 5) is (p,A, p, p). Table 4 shows the state of the dif-
ferent words after each round. We denote the four 16-bit words obtained
after round r by the quadruplet (ar

0, a
r
1, a

r
2, a

r
3); an active (respectively

passive, balanced, garbled) word is denoted by A (respectively p, b, .).
Observe that the state after round 16 is (A,A, A, p), which was pre-
dictable, as it corresponds to the difference (c, d, e, 0) after round 16 in
the truncated differential characteristic.

Naturally we come to wonder whether we can still apply a miss-in-the-
middle approach to a square-like characteristic. Indeed if the data after
round 28 is in state (A, p, p, p), then the data after round 16 is in state
(A, A, p, A) (we refer to the impossible differential characteristic of sec-
tion III.5.2). Because data after round 16 cannot be simultaneously in
state (A, A,A, p) and (A, A, p, A), we conclude that (p,A, p, p) before
round 5 cannot cause (A, p, p, p) after round 28.

But the problem is the following: what is the probability, for a random
permutation, that a batch of 216 plaintexts with state (p,A, p, p) cause
their ciphertexts to satisfy (A, p, p, p)? In fact, it is so small that we
are almost sure that this event would never occur even if we consider

68 III. SQUARE ATTACKS

Table 4. 16-round square characteristic for Skipjack.

Round number r ar
0 ar

1 ar
2 ar

3

4 p A p p
5 p A p p
6 p A p p
7 p A p p
8 A p p p
9 A p p p
10 A p p p
11 A p p p
12 A p p p
13 A A p p
14 A A p p
15 A A p p
16 A A A p
17 A A A A
18 A A b A
19 A . . A
20 . . . A
21

all the 248 possible batches! Building a distinguisher based on the miss-
in-the-middle technique applied on square characteristics is therefore
impossible.

III.7.2. A 20-Round Square Distinguisher

It has been shown in [74] that the distinguisher described in the previous
section can be extended. For this purpose we consider not only the
four 16-bit words (ar

0, a
r
1, a

r
2, a

r
3), but also 32-bit words made up of the

concatenation of two of the earlier 16-bit words. There are 6 of them,
which are denoted br

ij := (ar
i , a

r
j) with 0 ≤ i < j ≤ 3. 48-bit words

are considered as well; there are 4 of them, which are denoted cr
ijk :=

(ar
i , a

r
j , a

r
k) with 0 ≤ i < j < k ≤ 3.

Consider a batch of 248 plaintexts, such that {{c0
013}} is active, and {{a0

2}}
is passive. Then the state evolves through the first four rounds as de-
scribed in Table 5.

Consider 216 plaintexts such that a4
0 and a4

2 have fixed values, respec-
tively α, β ∈ Z16

2 . As a4
2 and a4

3 are linked by a bijection (because a0
2 is

passive), it implies that for these 216 plaintexts a4
3 is constant as well.

Then the 16-round distinguisher described in the previous section can
be applied to these 216 plaintexts. Summing up on all the 232 batches

III.8. TRUNCATED DIFFERENTIAL VS. SQUARE DISTINGUISHERS 69

Table 5. First 4 rounds of a 20-round characteristic of Skipjack.

Round number r ar
0 ar

1 ar
2 ar

3 cr
012 cr

013

Before 1 A A p A . A
1 A A p A . A
2 A A A A A A
3 A A A A A A
4 A A A A A A

of 216 plaintexts, we conclude that a20
3 is active, from which we obtain

the 20-round distinguisher.

In [74] this distinguisher is used to attack up to 27 rounds of Skipjack.

III.8. Truncated Differential vs. Square Distinguishers:
Conclusion

We have shown how strong is the link between square and truncated
differential characteristics. Although the similarity we showed is factual
rather than conceptual, we think it is interesting. Indeed, one conclu-
sion of this discussion is that one should try to convert every truncated
differential distinguisher into a square distinguisher, and vice-versa. A
good illustration of this was given in section III.7.

However both techniques have advantages and weaknesses. One of the
strong points for square attacks is that the sum of two active words still
has a remarkable property, called balance. Another interesting speci-
ficity of its is property 5: any restriction of an active word is itself
active. These two specificities of the square attack have no counterpart
for truncated differential attacks, and can be useful in order to build the
longest characteristic possible.

On the other hand, truncated differentials can be “missed-in-the-middle”
in order to build impossible differential distinguishers. It virtually dou-
bles the number of rounds attacked. We have seen that the miss-in-the-
middle technique is not applicable to the square attack.

Finally, note that the square attack uses batches of many chosen plain-
texts, and is not probabilistic (the distinguishing property is always
satisfied by the ciphertexts). On the contrary, truncated differential dis-
tinguishers are sometimes probabilistic (although it is not the case in
our example on Skipjack), but every single pair with a right plaintext
difference is useful.

The conclusion is that both attacks can be useful, depending on the
structure of the algorithm. In the case of Skipjack, the impossible dif-
ferential attack wins the challenge. On the other hand, the best known
attacks against the AES [55, 61] or Twofish [110] are fundamentally
square attacks.

70 III. SQUARE ATTACKS

k
2

2r-1
k

1

2r-1

γ

θ

 1
 k

 2r

 2
 k

 2r

 3
 k

 2r

 5

2r-1 2r-1
k

8

2r-1
k

7

2r-1
k

6

2r-1
k

5

2r-1
k

4

2r-1
k

3

 k
 11

 k
 2r

 12
 k

 2r

 13
 k

 2r

 14
 k

 2r
 k

 2r
 k

 2r

 16 15

 2r 2r

 4
 k

 2r

 6
 k

 2r

 7
 k

 2r

 8
 k

 2r

 10
 k

 2r

 9
 k

9 15

2r-1
k

14

2r-1
k

13

2r-1
k

12

2r-1
k

11

2r-1
k

10

2r-1
k k

X L L X X L L X X L L X X L L X

k
16

2r-1

Figure 2. One round of SAFER++.

III.9. Square Attacks on SAFER++

In this section we present several square distinguishers on the SAFER++
algorithm. They allow attacking up to 4.5 rounds of SAFER++. We
published the first known square distinguisher on SAFER++ in [141].
A few months later, other distinguishers were published by A. Biryukov
et al. in [22].

III.9.1. Short Description of SAFER++

The SAFER++ algorithm was designed by J.L. Massey, G.H. Khacha-
trian, and M.K. Kuregian; it was a finalist of the NESSIE European
project [126]. There are three different versions of SAFER++: 128-bit
block 128-bit key (SAFER++128); 128-bit block 256-bit key (SAFER++256);
and 64-bit block 128-bit key. We will deal with the first two versions
only. They only differ by their key schedule and their number of rounds.

III.9. SQUARE ATTACKS ON SAFER++ 71

III.9.1.1. The encryption algorithm: The algorithm makes frequent
use of addition mod 256, denoted by ¢ or +. It also uses exclusive
or (⊕). SAFER++128 has 7 rounds, while SAFER++256 consists of 10
rounds. One round is depicted in Figure 2. It is made out of four layers:
successively, one key addition layer, one S-boxes layer (L and X are two
8 × 8 S-boxes, that are inverses of each other), another key addition
layer, and finally the PHT diffusion layer. We denote the composition
of the first three layers by γ, and the fourth layer by θ. We sometimes
index them by the number r of the round: γr, θr. Note that both key
addition layers alternate the ¢ and ⊕ operations. We denote by Fr,p the
action of γ restricted to the pth byte at round r:

{
Fr,p(x) = X(x⊕ k

(p)
2r−1) + k

(p)
2r if p ≡ 0, 1 mod 4

Fr,p(x) = L(x + k
(p)
2r−1)⊕ k

(p)
2r if p ≡ 2, 3 mod 4

(62)

where k
(p)
i denotes the pth byte of the ith subkey. Note that the 7 (resp.

10) rounds are followed by one final key addition layer. Finally, the state
during the encryption will sometimes be denoted as (a1, a2, ..., a16).

III.9.1.2. The key schedule of SAFER++128:
Let K = (k(1), k(2), ... , k(16)) denote the key (k(i) ∈ Z8

2). To under-
stand our attack, it is sufficient to know the following properties of the
key schedule (the reader interested in a detailed description can refer
to [112]):

• A 17th byte is computed as:

k(0) =
16⊕

i=1

k(i). (63)

• k
(p)
1 = k(p)(p = 1, 2, ..., 16).

• k
(p)
i can be computed as a function of k(i+p−1 mod 17).

We use the notation k
(p)
i ≈ k

(q)
j to denote the fact that two subkey bytes

are derived from the same master key byte.

III.9.1.3. About the linear transform θ: The linear transform can be
described by the matrix multiplication B = A ·M , where A,B ∈ Z16

256

and the computations are done in Z256. The matrix M and its inverse
M−1 are the following:

72 III. SQUARE ATTACKS

M =

1 2 1 1 1 1 1 1 4 2 2 2 1 1 2 1
2 1 1 1 1 1 2 1 1 1 1 1 2 4 2 2
2 2 4 2 2 1 1 1 1 2 1 1 1 1 1 1
1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1
4 2 2 2 1 1 2 1 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 2 4 2 2 1 1 1 1
1 1 1 1 1 2 1 1 2 2 4 2 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1
1 1 2 1 4 2 2 2 1 2 1 1 1 1 1 1
1 1 1 1 2 4 2 2 1 1 2 1 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 2 2 4 2
2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1
1 1 1 1 1 2 1 1 1 1 2 1 4 2 2 2
2 4 2 2 1 1 1 1 2 1 1 1 1 1 2 1
2 1 1 1 2 2 4 2 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1

M
−1

=

0 0 0 −4 1 0 1 0 0 1 0 −1 1 0 0 0
0 0 0 −4 0 0 1 −1 0 1 0 0 1 1 0 0
0 0 1 −4 0 0 1 0 0 1 0 0 1 0 0 −1
0 0 −1 16 −1 0 −4 1 0 −4 0 1 −4 −1 0 1
1 0 0 0 0 0 0 −4 1 0 1 0 0 1 0 −1
1 0 0 −1 0 0 0 −4 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 −4 0 0 1 −1 0 1 1 0
−4 0 0 1 0 0 0 16 −1 −1 −4 1 0 −4 −1 1
1 1 0 0 1 0 0 −1 0 0 0 −4 0 0 1 0
0 1 0 0 1 1 0 0 0 0 0 −4 0 0 1 −1
0 1 0 −1 1 0 1 0 0 0 0 −4 0 0 1 0
−1 −4 0 1 −4 −1 −1 1 0 0 0 16 0 0 −4 1
0 0 1 −1 0 1 0 0 1 0 0 0 1 0 0 −4
0 1 1 0 0 1 0 0 1 0 0 −1 0 0 0 −4
0 0 1 0 0 1 0 −1 1 0 1 0 0 0 0 −4
0 −1 −4 1 0 −4 0 1 −4 0 −1 1 −1 0 0 16

Whereas the designers of SAFER++ claimed it to have a high diffusion
PHT layer, it was proved in [124] that its differential byte branch number
was ≤ 7. It is in fact precisely 5. As

a = 0x00008080000000000000000000000000

implies

θ(a) = 0x80800080000000000000000000000000

and W (a) = 2 while W (θ(a)) = 3, we conclude that Bd(θ) ≤ 5.

By considering the different cases (W (a),W (θ(a))) = (1, 3) or (2, 2) or
(3, 1), and showing that neither of them are possible, it is easy to show
that the differential byte branch number of θ is indeed 5.

It is often a good idea to try integral attacks against ciphers with such
a relatively weak diffusion layer. Indeed, such attacks can exploit weak
diffusions, while the cryptographic strength of the S-boxes and key ad-
dition used are of no relevance against them.

III.9. SQUARE ATTACKS ON SAFER++ 73

III.9.2. A Distinguisher on 2 Rounds of SAFER++

Consider a set of plaintexts of the form

{(A,B, a(i), D; E, F,G, H; I, J,K, L; b(i), N,O, P)}i∈{1,...,216}, (64)

where {{(a(i), b(i))}}i∈{1,...,216} is a 16-bit active multiset, the other bytes
being constants.

As all functions Fr,p are permutations, the action of γ does not change
the active/passive properties. Thus the data after it can be described
by (64) as well. Without loss of generality, we may assume the constants
to be 0. Then at the end of first round, we obtain

{(2a(i) + b(i), 2a(i) + b(i), 4a(i) + b(i), 2a(i) + b(i); 2a(i) + b(i),

a(i) + 2b(i), a(i) + b(i), a(i) + b(i); a(i) + b(i), 2a(i) + b(i), a(i) + 2b(i),

a(i) + b(i); a(i) + 4b(i), a(i) + 2b(i), a(i) + 2b(i), a(i) + 2b(i))}i.

(65)

After the γ layer of the second round, the data can be written as

{X(i)}i =

{F2,1(2a(i) + b(i)), F2,2(2a(i) + b(i)), F2,3(4a(i) + b(i)), F2,4(2a(i) + b(i));

F2,5(2a(i) + b(i)), F2,6(a(i) + 2b(i)), F2,7(a(i) + b(i)), F2,8(a(i) + b(i));

F2,9(a(i) + b(i)), F2,10(2a(i) + b(i)), F2,11(a(i) + 2b(i)), F2,12(a(i) + b(i));

F2,13(a(i) + 4b(i)), F2,14(a(i) + 2b(i)), F2,15(a(i) + 2b(i)), F2,16(a(i) + 2b(i))}i.

(66)

And after the second θ layer, the first byte of the output can be expressed
as
{{4F2,5(2a(i) + b(i)) + 2F2,2(2a(i) + b(i)) + 2F2,15(a(i) + 2b(i))+

2F2,12(a(i) + b(i)) + 2F2,14(a(i) + 2b(i)) + F2,1(2a(i) + b(i))+

F2,11(a(i) + 2b(i)) + F2,8(a(i) + b(i)) + 2F2,3(4a(i) + b(i))+

F2,9(a(i) + b(i)) + F2,6(a(i) + 2b(i)) + F2,16(a(i) + 2b(i)) + F2,13(a(i) + 4b(i))

+ F2,10(2a(i) + b(i)) + F2,7(a(i) + b(i)) + F2,4(2a(i) + b(i))}}i.

(67)

We can summarize the successive states through these 2 rounds by:
(64)

γ1→ (64) θ1→ (65)
γ2→ (66) θ2→ (67).

As all bytes of (66) are active, they satisfy

∀j ∈ {1, 2, ..., 16} :
216∑

i=1

X
(i)
j ≡ 0 (mod 256). (68)

Thus so does sum (67); this is the distinguishing criteria. It is satisfied
with probability 2−8 for a random permutation. As the same reasoning
applies to any byte of the output, by checking whether all of them are

74 III. SQUARE ATTACKS

balanced we obtain a distinguisher that is satisfied with probability 2−128

for a random permutation. It is thus pretty strong.

Note finally that there are other distinguishers similar to the one we
described, but corresponding to sets of 216 plaintexts different from (64).

III.9.3. Three Attacks on SAFER++ Using this Distin-
guisher

III.9.3.1. An attack on 3 rounds of SAFER++128: In this section
we present an attack on 3 rounds of SAFER++, without the final key
addition layer however. It means that the cipher we attack is γ1 · θ1 ·
γ2 · θ2 · γ3 · θ3, which is equivalent to γ1 · θ1 · γ2 · θ2 · γ3. We make a
straightforward use of the distinguisher we just described; it is applied
to the first two rounds.

We consider 216 chosen plaintexts following pattern (64). Then we guess
the subkey bytes of k5 and k6 one after the other, and use the fact that
the data we obtain by decrypting θ3 and γ3 must be balanced in order to
eliminate a large proportion of bad guesses. More precisely, the attack
works this way:

(1) Ask for encryption of 216 plaintexts of the form (64).
(2) • Go through all values of (k(1)

5 , k
(1)
6) ≈ (k(5), k(6)); for each

of them compute the first byte of the data after round
2, corresponding to all 216 ciphertexts. Check balance of
these bytes. Out of the 216 candidates, about 28 pass the
test.

• Guess successively k(7), k(8), ..., k(0), k(1), ..., k(5). Note
that k(i) ≈ k

(i−4)
5 ≈ k

(i−5)
6 (i = 6...16) and k(i) ≈ k

(i+13)
5 ≈

k
(i+12)
6 (i = 0...4). Thus each guess allows us to check

whether one more byte is balanced. After checking bal-
ance, the mean number of candidates for the part of the
key already guessed is 28. Note also that k(4) ≈ k

(16)
6 is ob-

tained ”for free” after all other key bytes were guessed, by
equation (63). Thus after checking balance of the last byte
we can expect to have a very small number of remaining
candidates (about 1 wrong key along with the right one).

(3) If necessary, exhaustive search allows us to distinguish the right
key from the few wrong ones.

The most time-consuming step of this algorithm is the first one. Thus
global time complexity is about 216 encryptions. Memory requirements
are of the same order of magnitude. This attack is thus quite practical.

III.9. SQUARE ATTACKS ON SAFER++ 75

Table 6. Bytes that can be computed at the end of
round 3 (attack on 4-round SAFER++128). The key
bytes in bold are those guessed at step 2 of the attack.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

(i)
7 ≈ k(7) k(8) k(9) k(10) k(11) k(12) k(13) k(14) k(15) k(16) k(0) k(1) k(2) k(3) k(4) k(5)

k
(i)
8 ≈ k(8) k(9) k(10) k(11) k(12) k(13) k(14) k(15) k(16) k(0) k(1) k(2) k(3) k(4) k(5) k(6)

√ √ √ √ √ √ √ √

III.9.3.2. An attack on 4 rounds of SAFER++128: In this section we
adapt our previous attack, if one more round is added at the beginning
of the cipher. Thus neglecting the last linear transform, the cipher we
attack is γ1 · θ1 · γ2 · θ2 · γ3 · θ3 · γ4. The distinguisher is applied to the
rounds 2 and 3. Thus we must find a set of 216 plaintexts such that
the corresponding inputs to the second round look like (64). Applying
the inverse linear layer to the 216 data of pattern (64), and assuming
constants to be 0, we obtain

{(0, 0, a(i) + b(i),−4a(i) − b(i); 0, b(i), a(i), 0;

b(i), a(i), 0, 0; a(i) + b(i), 0, 0,−a(i) − 4b(i))}i.
(69)

As k
(i)
1 ≈ k

(i−1)
2 (i = 2...16), it is easy to see that the corresponding set

of plaintexts can be obtained by guessing on 13 · 8 = 104 key bits. More
precisely, k

(2)
1 ≈ k

(1)
2 , k

(12)
1 ≈ k

(11)
2 , and k

(15)
1 ≈ k

(14)
2 do not need to

be guessed (remember that the 0’s in (69) could as well be replaced by
any constant). Thanks to the guess made on 13 key bytes, it is possible
to compute 8 bytes at the end of the third round. Table 6 illustrates
this. As for a false key guess the test on each byte has a probability 2−8

to succeed, a proportion of about 2−64 of the bad guesses will not be
discardable. Let us detail how the complete attack works:

(1) Ask for encryption of all 264 plaintexts of the form

{(A,B, α
(i)
1 , α

(i)
2 ; C,α

(i)
3 , α

(i)
4 , D; α(i)

5 , α
(i)
6 , E, F ; α(i)

7 , G, H, α
(i)
8)}i, (70)

where A,B, ...,H denote arbitrary constants.
(2) Guess on 104 key bits, not including k(2), k(12), and k(15).
(3) Using the key bits just guessed, compute 216 plaintexts from (69).

These plaintexts belong to set (70).
(4) From the corresponding ciphertexts, compute the 8 bytes 1, 2,

3, 4, 7, 14, 15, 16 after θ3.
(5) Sum up all 216 8-byte data obtained, and check balance of these

8 bytes.
(6) If the test succeeds, check whether it is the right key e.g. by

exhaustive search1.
(7) If it is not, go back to step 2.

1In fact it is possible to do better. See section III.9.3.3 for details (more precisely
step 6 of the attack).

76 III. SQUARE ATTACKS

Table 7. Bytes that can be computed at the end of
round 3 (attack on SAFER++256), using the key bytes
guessed at step 2 of the attack (in bold).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

(i)
1 ≈ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) k(9) k(10) k(11) k(12) k(13) k(14) k(15) k(16)

k
(i)
2 ≈ k(18) k(19) k(20) k(21) k(22) k(23) k(24) k(25) k(26) k(27) k(28) k(29) k(30) k(31) k(32) k(33)

k
(i)
7 ≈ k(7) k(8) k(9) k(10) k(11) k(12) k(13) k(14) k(15) k(16) k(0) k(1) k(2) k(3) k(4) k(5)

k
(i)
8 ≈ k(24) k(25) k(26) k(27) k(28) k(29) k(30) k(31) k(32) k(33) k(17) k(18) k(19) k(20) k(21) k(22)

√ √ √ √ √ √ √

The time complexity of this attack is 264 encryptions and 2104 ·216 = 2120

additions (these are the biggest part of the work). It requires 264 chosen
plaintexts, and 264 memory. By not performing step 1, it is possible
to make the amount of memory needed negligible; in this case, time
complexity becomes 2104 · 216 = 2120 encryptions.

III.9.3.3. An attack on 4 rounds of SAFER++256: The attack is
very similar to the one on 4 rounds of SAFER++128. Only some details
in the key guess change due to a different key schedule. Given a 256-
bit key (k(1), k(2), ..., k(32)), the key schedule of SAFER++256 has the
following properties:

• Two parity bytes are computed: k(0) =
⊕16

i=1 k(i) and k(33) =⊕32
i=17 k(i).

• Odd subkeys only depend on bytes k(0), ..., k(16). More pre-
cisely, k

(p)
i ≈ k(i+p−1 mod 17).

• Even subkeys only depend on bytes k(17), ..., k(33). More pre-
cisely, k

(p)
i ≈ k((i+p−2) mod 17+17).

Table 7 details the subkeys of layers γ1 and γ4. We can see that the 16
bytes we need to guess in order to compute the plaintexts (step 3 of the
attack) allow the computation of 7 bytes at the end of round 3.

The attack is:

(1) Ask for encryption of all 264 plaintexts looking like (70).
(2) Guess the 16 key bytes in bold in Table 2.
(3) Using the key bytes just guessed, compute 216 plaintexts from (69).
(4) From the corresponding ciphertexts, compute the 7 bytes 1, 3,

4, 7, 10, 14, 15 after θ3.
(5) Sum up all 216 7-byte data obtained, and check whether these

7 bytes are balanced.
(6) If the test succeeds, guess two more key bytes such as to check

balance on one more byte at the end of round 3. Keep guessing
new key bytes until one check has failed or the entire key has
been guessed (as done in section III.9.3.1). In the second case,
check by a trial encryption whether it is the right key.

(7) If the right key has not found, go back to step 2.

III.9. SQUARE ATTACKS ON SAFER++ 77

Table 8. A backward distinguisher on 2 rounds of SAFER++.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 (a5, a7)
p p p p A p A p p p p p p p p p A

γ−1

−−→ p p p p A p A p p p p p p p p p A
θ−1−−→ A p p p p p p 4A A p A A p A A A
γ−1

−−→ A p p p p p p A64 A p A A p A A A

As a fraction of about 1/2128 of the keys passes the test, 2128 trial en-
cryptions must be done in order to discard wrong keys. However the
biggest part of the work consists in about 2136 · 216 = 2152 additions
(most of them during step 6).

III.9.4. Other Square Distinguishers on SAFER++

The two following distinguishers are described by A. Biryukov et al.
in [22].

III.9.4.1. A backward distinguisher: The first distinguisher presented
in [22] also deals with 2 rounds, but in the decryption direction. The fact
that the matrix of θ−1 is sparser than the one of θ, makes it easier to
find good square distinguishers. Of course, this also implies that attacks
derived from these distinguishers are chosen ciphertext attacks. Also,
this distinguisher exploits the observation that applying a multiplica-
tion by 4 on an active byte results in a multiset of which all elements
have their 2 rightmost bits equal to 0; thus it takes 64 different values
which appear all the same number of times. Such a property is denoted
by 4A. Applying a (possibly nonlinear) bijection to this multiset results
in a multiset which still has 64 elements. This property is denoted by
A64.

Assume 216 texts such that (a5, a7) is active are fed into the distin-
guisher. Then the state of the data through the 2-round distinguisher
is described in Table 8.

Consider the 14th byte after a new application of θ−1, denoted b14. The
only non passive byte on which it depends before θ−1 is the 8th one,
denoted a8. The link between them is b14 = −4 · a8. Then the number
of possible different values for b14 is at most 64, which would be very
unlikely to happen if the cipher is a random permutation. In fact due to
particular properties of the SAFER++ S-boxes, this number is exactly
48.

This distinguisher is a good illustration of the fact that considering a
linear transform or its inverse is not equivalent when considering resis-
tance against square attacks. It is used in [22] to attack 3 rounds of
SAFER++.

78 III. SQUARE ATTACKS

Table 9. A forward distinguisher on 2 rounds of SAFER++.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

p p p p p p p p p p p p A p p p
γ−→ p p p p p p p p p p p p A p p p
θ−→ p p p p p E p p p p E p E E E E
γ−→ p p p p p E p p p p E p E E E E
θ−→ B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0

III.9.4.2. A forward distinguisher: Biryukov et al. considered a set
of texts of which all bytes are passive except one that is active. They
showed that after two rounds, the lowest bit of each byte is balanced.
The square characteristic used is summarized in Table 9, where:

• E denotes an even multiset, i.e. a multiset of which all values
appear an even number of times.

• B0 denotes a multiset of which the lowest bit is balanced.

We have thus a 2-round distinguisher which only requires 28 encryption
queries, while ours required 216. On the other hand, the probability for
a random permutation to succeed the test is 2−16, while it was 2−128 for
our distinguisher. This distinguisher is used in [22] to attack up to 4.5
rounds of SAFER++.

III.10. Towards Extensions of the Square Attack ?

The best known attacks on the AES [55, 61] are extensions of the square
attack. Structural attacks which are not really square-like also exist [24,
21]. The interested reader may refer to the corresponding papers. In
this section, we discuss two additional ideas to extend the square attack,
and their limitations.

III.10.1. Pushing Square Distinguishers Further?

Let us analyze what happens if we try to extend the distinguisher of
section III.9.2 by one more round. The expressions we obtain at the
output of such 3-round distinguisher (corresponding to equation (67))
can be written as functions of a and b looking like

Φ(j)(a, b) =
16∑

k=1

λ
(j)
k F3,k(

16∑

l=1

µ
(j)
k,lF2,l(ξ

(j)
k,l a + ξ

′(j)
k,l b)) (j = 1, ..., 16),

(71)
where λ

(j)
k , µ

(j)
k,l , ξ

(j)
k,l and ξ

′(j)
k,l are constants. To be formal, note that

some Fr,p have a slightly more general form than given in (62), as they
must incorporate the constants we neglected in section III.9.2.

III.10. TOWARDS EXTENSIONS OF THE SQUARE ATTACK ? 79

Just like we did with equation (67), we would like to find a criteria
(possibly probabilistic) allowing to distinguish functions Φ(j) that can
be written as (71) from random functions. Balance does not longer
work, as it is not preserved by permutations (such as F3,k): while∑16

l=1 µ
(j)
k,lF2,l(ξ

(j)
k,l a+ξ

′(j)
k,l b) is balanced, F3,k(

∑16
l=1 µ

(j)
k,lF2,l(ξ

(j)
k,l a+ξ

′(j)
k,l b))

is not. However it is true that very few functions Z256×Z256 → Z256 can
be written as (71). Indeed, the total number of functions Z256×Z256 →
Z256 is 2219

, while the number of 32-uples of functions Z256 → Z256 (16
functions F2,l and 16 functions F3,k) is 2216

only2. But despite these con-
siderations, it is not clear whether such a criteria exists, with affordable
complexity: as a matter of fact, the general problem of constructing a
distinguisher for a block cipher also amounts to, given the input-output
behavior of a function, deciding whether it matches with a given expres-
sion or not. The difference is that the size of the input and output sets
is much more affordable in our problem than in the general distinguisher
problem, which may make time and data complexity more reasonable.

A potential solution is to consider the number of different values present
in a multiset, or the frequencies of these values. Consider two n-bit active
multisets {{a(i)}}i=1,...,e and {{b(i)}}i=1,...,e, such that the 2n-bit multiset
{{(a(i), b(i))}}i=1,...,e is not active. Then {{a(i) ⊕ b(i)}}i=1,...,e is not active
either, but it is balanced. However this property is not preserved by
application of a S-box S and addition of an unknown key k: {{S(a(i) ⊕
b(i)) ⊕ k}}i=1,...,e is not balanced. On the other hand, the number of
different values in multisets {{a(i)⊕ b(i)}}i and {{S(a(i)⊕ b(i))⊕k}}i is the
same.

The question is thus the following: is the probability distribution of the
number of different values of {{a(i) ⊕ b(i)}}i (where {{a(i)}}i and {{b(i)}}i

are assumed to be random active multisets) different from the probabil-
ity distribution of the number of different values in a random multiset
{{c(i)}}i? We guess it is, but maybe not enough to allow efficient dis-
tinguishing. On the other hand, the fact that {{a(i)}}i and {{b(i)}}i are
not actually truly random active multisets could be enough to make the
probability distribution of the number of values of {{a(i) ⊕ b(i)}}i more
“recognizable” in some cases, and hence such criteria efficient.

III.10.2. Applying the Square Attack to Bit-Oriented Ci-
phers

The square attack usually applies to ciphers operating at the word level,
where a word is defined as having the size of the input and output of a

2If we take into account the fact the Fr,l are permutations, this number reduces

to 2215.7
. In fact, due to their particular form, there is far less possibilities for each

function Fr,l. But a hypothetical distinguisher would probably not be able to take
these particularities into account.

80 III. SQUARE ATTACKS

X0

X
X

X

1

2

3

Figure 3. The state of Serpent.

S-box. Ciphers like SQUARE, SAFER++, or the AES, are designed this
way. The only property of the S-boxes that matters in this context is
for them to be bijective.

On the other hand, ciphers like Serpent [2], Noekeon [45], or ICEBERG [161]
(see Chapter VII) use linear transforms operating at the bit level. There-
fore, if we try to apply the square attack to them, the multiset entering
a given S-box at some point of the encryption will most of the time not
be active. Nevertheless it may happen that its restriction to only some
of the S-box’s input bits is active, while the complementary restriction
is constant. We examine what can be deduced about the state of the
S-box’s output in this case.

We give an example on Serpent to make things clearer. Serpent is a 128-
bit block 128-bit key block cipher. It has a Substitution-Permutation
Network structure with 32 rounds. The state of Serpent is usually rep-
resented as four 32-bit words X0, X1, X2, X3; it is pictured in Figure 3.
The non-linear layer is made out of 32 copies of the same 4 × 4 S-box,
each of them being applied to one column of the state; but 8 different
S-boxes are used, depending on the number of the round: round i uses
S-box i mod 8. Algorithm 1 describes the linear layer of Serpent.

Algorithm 1 Linear layer of Serpent.
X0 := X0 ≪ 13
X2 := X2 ≪ 3
X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 ¿ 3)
X1 := X1 ≪ 1
X3 := X3 ≪ 7
X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 ¿ 7)
X0 := X0 ≪ 5
X2 := X2 ≪ 22

Consider a set of 256 plaintexts such that the bits in dark grey in the
state at the top of Figure 4 form a 56-bit active multiset, while the other
bits are constant. The first key addition and S-box layer do not change
this property. Then passing the data through the linear layer θ results
in a state as pictured at the bottom of Figure 4, where bits in dark

III.10. TOWARDS EXTENSIONS OF THE SQUARE ATTACK ? 81

θ

Figure 4. Passing an active set through the linear layer.

grey form a 47-bit active multiset3, bits in light grey are all individu-
ally active (we mean that each of them is a 1-bit active multiset), and
the others are constant. Consider the three columns marked by arrows;
each of them form a 4-bit multiset entering one S-box S1. They are
such that their restriction to their first and third bits (i.e. those from
X0 and X2) is active, while the complementary restriction is passive.
Let {{(a(i)

0 , a
(i)
1 , a

(i)
2 , a

(i)
3)}}1≤i≤256 denote the multiset at the input of one

of these S1, with its restriction to {{(a(i)
0 , a

(i)
2)}}1≤i≤256 being active and

{{(a(i)
1 , a

(i)
3)}}1≤i≤256 being constant. Let {{(b(i)

0 , b
(i)
1 , b

(i)
2 , b

(i)
3)}}1≤i≤256 de-

note the multiset at its output. We would like to identify which are the
active restrictions of {{(b(i)

0 , b
(i)
1 , b

(i)
2 , b

(i)
3)}}1≤i≤256 . The problem is that

it depends on the value of (a1, a3), which is unknown to the attacker, as
it depends on key bits. Therefore for each of the four 1-bit restrictions
and the six 2-bit restrictions of {{(b0, b1, b2, b3)}}, and each of the four
possible values for (a1, a3), we check whether the considered restriction
is active. Then we can give a probability that it is active, computed on
the 4 possible values for the constant bits. The results for all 2-bit active
restrictions of {{(a0, a1, a2, a3)}} (when the complementary restriction is
constant) are given in Table 10. As an example, the second of the six
columns gives the results we were looking for in our example. Similar
results when one bit only of the input is active (and the other three con-
stant) are given in Table 11. When a 3-bit restriction of the input to S1

is active, it is easy to see that if a multiset at the output of S1 is active
for a given value of the constant remaining bit, it is active for the other
value as well. It is a consequence of the fact that S1 is a permutation
of Z4

2. Thus in this case an output multiset is active with probability

3Although only one is pictured on Figure 4, note that there are many large active
multisets after θ.

82 III. SQUARE ATTACKS

Table 10. Active output multisets of S1, when 2 bits of
its input are active.

Act. multiset {{(a0, a1)}} {{(a0, a2)}} {{(a0, a3)}} {{(a1, a2)}} {{(a1, a3)}} {{(a2, a3)}}
{{(b0, b1)}} 1/4 1/4 1/2 1/2 1/2 0
{{(b0, b2)}} 1/2 0 0 1/2 1/2 0
{{(b0, b3)}} 0 1/4 0 0 0 1/2
{{(b1, b2)}} 1/4 1/2 1/4 1/2 1/2 0
{{(b1, b3)}} 1/2 1/2 1/2 1/4 1/4 0
{{(b2, b3)}} 0 0 1/4 0 0 1/2
{{(b0)}} 1/2 1/2 1/2 1/2 1/2 1/2
{{(b1)}} 1 1 1 1 1 0
{{(b2)}} 1/2 1/2 1/2 1/2 1/2 1/2
{{(b3)}} 1/2 1/2 1/2 1/2 1/2 1

Table 11. Active output multisets of S1, when 1 bit of
its input is active.

Active multiset {{(a0)}} {{(a1)}} {{(a2)}} {{(a3)}}
{{(b0)}} 3/4 1/2 3/4 1/2
{{(b1)}} 1 1 1/2 1/2
{{(b2)}} 3/4 1/2 1/2 3/4
{{(b3)}} 1/2 1/2 3/4 3/4

Table 12. Maximal active output multisets of S1, when
3 bits of its input are active.

Input active multiset Maximal active output multisets
{{(a0, a1, a2)}} {{b1}}
{{(a0, a1, a3)}} {{b1}}
{{(a0, a2, a3)}} {{(b1, b3)}}
{{(a1, a2, a3)}} {{(b0, b1, b2)}}, {{(b0, b2, b3)}}

either 0 or 1. Table 12 gives the maximal active output multisets for the
four possible 3-bit active restrictions of {{(a0, a1, a2, a3)}}.
These considerations are interesting because they could a priori lead to
square attacks on bit-oriented ciphers. Moreover, such square distin-
guishers have the originality to be probabilistic, while classical square
distinguishers on word-oriented ciphers are not. However, our experi-
ments on Serpent and Noekeon tended to show that such distinguishers
could not be found for more than very few rounds of a cipher.

III.11. Conclusion

In this chapter we discussed the square attack and applied it to block
ciphers Skipjack and SAFER++. Possible extensions of the attack were
also suggested.

In spite of the simplicity and intuitiveness of square attacks, it seems
that no proof of security exists against them. Theory of provable security
against attacks such as linear and differential cryptanalysis for example
is much more developed.

III.11. CONCLUSION 83

However a few good design principles should prevent most of the attacks
of this style. Mainly, it seems that a “reasonably good” diffusion layer
iterated over a not too small number of rounds achieves good resistance
against square attacks. But “reasonably good” remains to be defined;
the branch number is not the best criteria in this context, as attested by
the fact that a diffusion layer can be stronger if taken in one direction
rather than in the other. Besides, our experiments suggested that ci-
phers which operate at bit-level seem to have a naturally good resistance
against square attacks. But once again, there is no proof.

The conclusion is that, as it is (and, even more, was) often the case in
block cipher theory, the current state-of-the-art regarding square attacks
is that we know them enough to have a reasonably good feeling on what
to do to prevent them, but no proof of security.

CHAPTER IV

Key Schedule Cryptanalysis

Abstract. In this chapter we survey the most important results
developed in key schedule cryptanalysis during the last fifteen
years. Namely, we deal with related key slide attacks [13, 94],
differential related key attacks [89, 90], and slide attacks [25, 26].
We try to focus on the general methods and concepts, rather than
develop the technical details of the attack of such and such algo-
rithm. The related key slide attack is presented in a more general
framework than in the paper of Biham. Emphasize is given on the
conditions under which an algorithm is vulnerable to related key
or slide attack. We discuss relevance of these results to cryptanaly-
sis of multiple encryption modes (triple encryption, Even-Mansour
construction [52, 91], ...). Finally, the link between these attacks,
and the possibility of devising new related key variants of attacks,
are discussed.

IV.1. Introduction

The most well known attacks on block ciphers are those targeting the
encryption itself, for example the linear [113] and differential [19] crypt-
analysis, the interpolation attack [79] or the square attack (see Chapter
III). In this chapter we present three types of attacks which are par-
ticular in the sense that they focus on the key schedule. Firstly, the
related key attack introduced by L. Knudsen in 1992 [94] and E. Biham
in 1993 [13], secondly the differential related key attack presented by J.
Kelsey, B. Schneier, and D. Wagner [89, 90] and finally different variants
of the slide attack developed by A. Biryukov and D. Wagner [25, 26].
The attacks of Biham and Knudsen and the slide attack have a sur-
prising particularity, namely that their efficiency is independent of the
number of rounds. We consider all these attacks in a general framework,
and analyze under which conditions an algorithm is vulnerable to such
or such attack.

Related key attacks work under a very unusual hypothesis: we suppose
that encryption is performed under two different keys that have a partic-
ular (known) relationship, with the keys themselves unknown. However
E. Biham presented in [13] a variant of his related key attack, that allows
a reduction of the complexity of exhaustive key search, in the classical
context where we are searching for an unique unknown key; this variant

85

86 IV. KEY SCHEDULE CRYPTANALYSIS

is actually an improvement of an attack from L. Knudsen [94]. In this
chapter, we study whether variants of other related key principles can
also be used for reducing the complexity of exhaustive search.

Also regarding the slide attack, we give a minor improvement to the
sliding with a twist, and when dealing with strong (round) functions.

We discuss application of these techniques to multiple encryption modes;
we point out some attacks which are not correct in the literature. This
discussion raises the question of the necessity to apply a key schedule
algorithm to multiple encryption modes. Finally, the link between these
attacks, and the possibility of devising new related key variants of at-
tacks, are discussed.

IV.2. Notations

In the following of this chapter, we use the following notations:

• n denotes the block length of the block cipher considered. nk

denotes its key length, and r its number of rounds.
• K → (k1, k2, ..., kr−1, kr) means that the key schedule derives

the sequence of round keys (k1, k2, ..., kr−1, kr) from the key K.
• F (x, k) denotes a round function applied to the data x with

round key k. The function F (., k) : x → F (x, k) is sometimes
denoted by Fk. Xi denotes the data after i applications of F
(thus X0 is the plaintext and Xr the ciphertext).

• EK denotes a block cipher parametrized by key K.
• P (and P ∗, P∗) always denotes a plaintext, and C (resp. C∗, C∗)

the corresponding ciphertext. Also by P
K→ C we denote the

fact that the encryption of P under key K gives ciphertext C.

IV.3. Related Key Slide Attacks

A related key attack is an attack relying on a very unusual hypothesis:
namely, the attacker has access to plaintext-ciphertext pairs computed
using (at least) two different keys. There is a particular relationship
between these keys, which is known to the attacker; but the keys them-
selves are not.

The first related key attack has been introduced by E. Biham in [13].
It has the remarkable property that it does not depend on the number
of rounds of the cryptosystem. The name “related key slide attack”
came long after, when the slide attack [25, 26] was derived from it (see
section IV.4).

IV.3. RELATED KEY SLIDE ATTACKS 87

For a given block cipher, consider two keys K and K∗ such that
K → (k1, k2, ..., kr−1, kr)

and K∗ → (k2, k3, ..., kr, k1).
(72)

Note that this hypothesis is very restrictive, as for most block ciphers
both sequences of subkeys cannot be derived simultaneously from a key!
However it is the case for ciphers LOKI89 and LOKI91 attacked in [13]
(see Example 1 below).

Consider also two plaintexts P and P ∗ such that P ∗ = F (P, k1). Then
the encryption of P under key K and the one of P ∗ under key K∗ will
process the same way during n− 1 rounds:

P → Fk1 · Fk2 · ... · Fkr−1 · Fkr → C

P ∗ → Fk2 · Fk3 · ... · Fkr · Fk1 → C∗

And as a consequence, the ciphertexts will satisfy the same property as
the plaintexts: C∗ = F (C, k1). Two such pairs (P,C) and (P ∗, C∗) will
be called a slid pair . P ∗ = F (P, k1) and C∗ = F (C, k1) are called slid
equations. Slid pairs are the basis of several attacks we present in this
chapter.

IV.3.1. The Basic Attack

Assume an attacker has access to pairs (P, C) computed under a key K,
and to pairs (P ∗, C∗) computed under a key K∗, such that K and K∗
satisfy (72). Identifying a slid pair among pairs ((P, C); (P ∗, C∗)) is not
evident, as the round key k1 implied in the slid equations is unknown.
However the following attack applies:

• Suppose that 2n/2 pairs (Pi, Ci) encrypted under key K are
known, as well as 2n/2 pairs (P ∗

i , C∗
i) encrypted under key K∗.

• For each pair ((Pi, Ci); (P ∗
j , C∗

j)), try to solve the system of
equations {

F (Pi, k
′) = P ∗

j

F (Ci, k
′) = C∗

j
(73)

until a key k′ satisfying the system is found. With a high
probability this k′ is the subkey k1.

It is important to note that most of the time the equations F (Pi, k
′) =

P ∗
j and F (Ci, k

′) = C∗
j cannot both hold if Pi and P ∗

j do not form a slid
pair, because of the structure of the round function attacked (it is even
sometimes the case that one single equation gives an unique solution for
the key). Thus when we effectively find a solution to the system there
is a high probability that we are dealing with a slid pair, and that the
solution k′ we found is actually k1. The probability for a random pair to

88 IV. KEY SCHEDULE CRYPTANALYSIS

be a slid pair is 2−n, so with 2 · 2n/2 plaintext-ciphertext pairs we may
expect to find one.

Note also that even when we are dealing with a slid pair, the function
F must be weak enough to permit us to retrieve the key k1. Therefore
we give the following definition, that must be satisfied by the round
function F in order for the attack presented to work:

Definition 28. We call F a weak permutation if given both equations
F (x1, k

′) = y1 and F (x2, k
′) = y2 it is “easy” to extract the key k′.

Of course it is informal since the difficulty may vary from one cipher to
the other. The mean complexity of this basic attack is Θ(2n/2) data,
and Θ(2n) work, as there are Θ(2n) pairs to examine.

If the cipher attacked is a Feistel network, the particular form of the
round function allows more efficient attacks. This specific case is dis-
cussed in the next section.

IV.3.2. The Case of Feistel Ciphers

IV.3.2.1. Known plaintext attack: In the case of Feistel ciphers, the
round function F (〈L,R〉) = 〈R, L ⊕ f(R)〉 only modifies one half of its
input. Therefore, the condition F (x, k) = y can be recognized simply by
comparing the right half of x against the left half of y, without knowing
anything about the round key k. This filtering condition eliminates all
but 2−n/2 of the pairs.

This property can be used to improve the efficiency of the attack: indeed,
(P,C) and (P ∗, C∗) form a slid pair if and only if F (P, k1) = P ∗ and
F (C, k1) = C∗. We have a n/2-bit filtering condition for each of these
equalities, and thus globally a n-bit filtering condition.

Therefore, potential slid pairs can be identified using two sorted lists
with 2n/2 entries: we sort the texts (Pi, Ci) encrypted with key K based
on the right half of Pi and Ci, and the texts (P ∗

j , C∗
j) encrypted with

key K∗ based on the left half of P ∗
j and C∗

j . It is then easy to look for
a match between the left halves of P ∗

j and C∗
j and the right halves of Pi

and Ci (respectively).

With this filtering technique, we expect to find no more than one false
match (i.e. a non-slid pair that passes the test) along with one good
slid pair. The false match(-es) can be easily eliminated in a second
phase. While we still need Θ(2n/2) plaintext-ciphertext pairs, the time
complexity is now reduced to Θ(n · 2n/2) offline work.

IV.3. RELATED KEY SLIDE ATTACKS 89

IV.3.2.2. Chosen plaintext attack: In the previous section, the fact
that the round function F (〈L,R〉) = 〈R, L ⊕ f(R)〉 modifies only one
half of its input has been used as a filtering condition. In the context of
a chosen plaintext attack, it can be used to select appropriate plaintexts
in order to reduce data complexity.

Suppose that we choose a pool of 2n/4 plaintexts Pi = 〈PLi, PR〉 (with
PR an arbitrary constant) encrypted under key K, and another pool of
2n/4 plaintexts P ∗

j = 〈PR, P ∗
Rj〉 encrypted under key K∗. Thus we have

2n/2 pairs of plaintext (Pi; P ∗
j). A slid pair occurs with probability 2−n/2

(namely, when f(PR) = PLi ⊕ PRj), so we expect to find one slid pair
with only Θ(2n/4) chosen plaintexts and Θ(n · 2n/4) work rather than
Θ(2n/2) known plaintexts and Θ(n · 2n/2) work; it can be recognized
using the n/2-bit filtering condition on the ciphertexts.

Note that such a chosen plaintext attack can be performed only when
we know something about the round function, as the structure of the
set of plaintexts we chose depends on the particular structure of the
round function. However both attacks we presented in sections IV.3.2.1
and IV.3.2.2 are not restricted to Feistel ciphers. It is often possible
to exploit the particular structure of a given round function, especially
if the cipher is “more or less Feistel-like”, rather than a substitution-
permutation network.

IV.3.2.3. Probable-plaintext attack: When plaintexts contain some
redundancy, the data complexity of the related key slide attack can
often be significantly reduced.

Let us consider a simple model: the plaintext source emits blocks where
the four most significant bits of each byte are always zero, so that the
resulting n-bit plaintext only has n/2 bits of entropy.

We show that with 23n/8 known plaintext-ciphertext pairs (Pi, Ci) en-
crypted with K, and 23n/8 known pairs (P ∗

j , C∗
j) encrypted with K∗, we

can expect to find one slid pair:

• There are 23n/4 pairs ((Pi, Ci); (P ∗
j , C∗

j)).
• Let us consider one pair Pi = 〈Li, Ri〉, P ∗

j = 〈L∗j , R∗
j 〉. We

compute the probability that F (Pi, k1) = P ∗
j .

• P[L∗j = Ri] = 2−n/4, due to the redundancy in the plaintexts.
• P[R∗

j = Li⊕f(Ri, k1)] = 2−n/2, assuming f behaves randomly.
• We conclude that F (Pi, k1) = P ∗

j with probability 2−3n/4, so
we can expect to find about one slid pair.

Thus the attack needs Θ(23n/8) plaintext-ciphertext pairs, and its time
complexity is Θ(n · 23n/8) work.

90 IV. KEY SCHEDULE CRYPTANALYSIS

IV.3.2.4. Probable-plaintext attack - ciphertext-only variant: This at-
tack can be converted to a ciphertext-only attack. We consider 23n/8+1

ciphertexts encrypted under key K, and 23n/8+1 encrypted under K∗.
Following the reasoning above, we expect to find about 4 slid pairs
among these.

Using the n/2-bit filtering condition on the ciphertexts, we come up with
a set of 2n/4+2 potential slid pairs. The list of potential slid pairs can
be identified with Θ(n · 23n/8) steps by sorting them.

Next, we make a guess at a correct slid pair (Ci; C∗
j). For each remaining

potential slid pair (Ci′ ;C∗
j′), we compute the key value k′ suggested by

equations {
F (Ci, k

′) = C∗
j

F (Ci′ , k
′) = C∗

j′
(74)

We store all these values in a table, in which we search for collisions.
If our guess at (Ci; C∗

j) was a correct slid pair, the right key value will
be suggested about three times (corresponding to the three other slid
pairs). If not, the probability for a wrong key value to be suggested
three times is negligible.

Note that this algorithm uses a lot of key recoveries (by key recovery, we
mean the problem of finding the key k′, given F (u, k′) = v, F (u′, k′) =
v′). It is thus important that such key recovery be fast. The attack
takes Θ(2n/2) work (Θ(2n/4) guesses of (Ci; C∗

j), performing Θ(2n/4)
operations per guess to build the table) and needs Θ(2n/4) space.

As a final remark, note that the complexity of these two probable-
plaintext attacks widely depends on the exact plaintext distribution.

IV.3.2.5. Attacking more general key schedules: It must be noted
that the attack presented in section IV.3.1 works only if the key K∗ is
derived from key K by a perfect rotation of the subkeys:

K → (k1, k2, ..., kr−1, kr) ⇔ K∗ → (k2, k3, ..., kr, k1). (75)

We call this type of relationship between K and K∗ the strong as-
sumption .

Suppose now that the relationship between K and K∗ is slightly weaker,
i.e. that we only have

K → (k1, k2, ..., kr−1, kr) ⇔ K∗ → (k2, k3, ..., kr, kr+1), (76)

where kr+1 is not necessarily equal to k1. This second type of rela-
tionship will happen every time the key schedule consists in iteratively
applying a given function φ: ki = φ(ki−1). It will be called weak as-
sumption .

IV.3. RELATED KEY SLIDE ATTACKS 91

Example 1. Let us consider the case of LOKI89, attacked by E. Biham
in [13]. LOKI89 has 16 rounds, and its key schedule can be described as

k1 = kL

k2 = kR

ki = ki−2 ≪ 12 (3 ≤ i ≤ 16)

(where the master key is K = (kL, kR)).

It is easy to see that for any key K = (k1, k2), if K → (k1, k2, ..., k15, k16),
then K∗ := (k2, k1 ≪ 12) → (k2, ..., k16, k1), and thus K and K∗ satisfy
the strong assumption.

Suppose now that we consider the same algorithm, but reduced to
11 rounds. This time, if K = (k1, k2) → (k1, k2, ..., k10, k11), then
K∗ := (k2, k1 ≪ 12) → (k2, ..., k11, k12), where k12 6= k1 except for
very particular choices of K. The strong assumption is thus no longer
satisfied, but the weak one is.

Under the weak assumption hypothesis, the attack we presented does not
work anymore in the general case: indeed, a slid pair ((P, C); (P ∗, C∗))
would satisfy both equations

{
F (P, k1) = P ∗
F (C, kr+1) = C∗ (77)

But for any pair (x, y) the equation F (x, k) = y has at least one solu-
tion. Therefore if k1 and kr+1 share few or no bits, it is not possible to
identify slid pairs by simply trying to solve this system, as we did in sec-
tion IV.3.1. However we have seen in section IV.3.2.1 that in particular
cases, such as Feistel ciphers, it is possible to use filtering conditions. In
this case we can mount the following attack:

(1) Suppose we know 2n/2 plaintext-ciphertext pairs (P,C) en-
crypted with key K, and 2n/2 plaintext-ciphertext pairs (P ∗, C∗)
encrypted with key K∗.

(2) Sort the texts (Pi, Ci) encrypted with key K based on the right
half of Pi and Ci, and the texts (P ∗

j , C∗
j) encrypted with key K∗

based on the left half of P ∗
j and C∗

j . Then look for a match be-
tween the left halves of P ∗

j and C∗
j and the right halves of Pi and

Ci (respectively). Doing this, we filter pairs ((P, C); (P ∗, C∗))
for which the distinguishing condition for F (P) = P ∗ and
F (C) = C∗ hold.

(3) For each of the pairs selected (we hope to find around one false
alarm along with one slid pair), both equations

F (P, k1) = P ∗ and F (C, kr+1) = C∗

are solved separately. Note that for certain round functions,
we will get many possibilities for k1 and kr+1. But if k1 and

92 IV. KEY SCHEDULE CRYPTANALYSIS

kr+1 have several bits in common, the number of possibilities
for (k1, kr+1) is not too big.

(4) For each suggestion for (k1, kr+1), we try to find the remaining
key bits by exhaustive search, until we succeed.

This algorithm has a data complexity of Θ(2n/2), and a time complexity
of Θ(n · 2n/2).

IV.3.3. A Related Key Slide Attack on DES?

In [95] L. Knudsen showed that for every DES key K, there exists a
related key K∗ such that these two keys have 12 common round keys.
This result has been improved by R.C.-W. Phan and S. Furuya [38].

Theorem 29. [38] For every DES key K, there exists a key K∗ such
that

k∗i = ki+7 i ∈ {1, ..., 9}
and

k∗i = ki−8 i ∈ {10, ..., 15}.
Thus K and K∗ have 15 common round keys.

Thus if Ea denotes 6-round DES keyed by k2, ..., k7 (or equivalently
k∗10, ..., k

∗
15), Eb denotes 9-round DES keyed by k8, ..., k16 (or equivalently

k∗1, ..., k
∗
9), E1 denotes the first round of DES keyed by K and E∗

16 denotes
the last round of DES keyed by K∗, then the two encryptions can be
slided against each other and we obtain:

P → E1 · Ea · Eb → C

P ∗ → Eb · Ea · E∗
16 → C∗

The attack we described in section IV.3.2.5 would have applied pro-
vided the two encryptions have the following patterns: DESK(P) =
Ea(E1(P)) and DESK∗(P ∗) = E∗

16(Ea(P)), with Ea being 15-round.
Then the slid equations are{

P ∗ = E1(P)
C∗ = E∗

16(C) (78)

However in the present case the slid equations are{
P ∗ = Ea(E1(P))
C∗ = E∗

16(Ea(C)) (79)

Again these two equations can be slided against each other. It is why
the authors of [38] called their (tentative) attack double slide attack. We
obtain:

P → E1 · Ea → P ∗

C → Ea · E∗
16 → C∗

IV.3. RELATED KEY SLIDE ATTACKS 93

which gives two other slid equations{
C = E1(P)
C∗ = E∗

16(P
∗) (80)

We note that (80) has the same pattern as (78). Then finding a pair
((P, C); (P ∗, C∗)) satisfying (80) would allow retrieval of key material.
However a pool of 264 plaintexts is needed to find a pair (P,C) satisfying
C = E1(P) (as we have no control on the link between P and C - they
are related by a DES encryption), which makes the attack impractical.
In their paper [38] R.C.-W. Phan and S. Furuya suggest another attempt
to use the property of DES pointed in Theorem 29. It is based on the
domino effect (see section IV.4.5), but it does not work either.

IV.3.4. A More Classical Attack

The hypothesis we made in section IV.3.1 (i.e. that we are dealing with
two unknown keys with a very particular relationship between them)
looks very restrictive. Nevertheless this attack could be useful if com-
bined with an attack on key exchange protocols that do not guarantee
key integrity, or if bad key update protocols are used, as mentioned
in [90]. Moreover, the existence of such an attack can be considered as
a weakness from a theoretical point of view.

We are now going to use the related key principle in a more classical con-
text: namely, we have a certain number of chosen plaintext-ciphertext
pairs encrypted under an unknown key K that we are searching for. The
idea of such an attack was first suggested by L. Knudsen in an attack
on LOKI91 [94]. This attack was then improved by Biham [13].

First we will show how to deal with the case of a Feistel cipher, following
the works of L. Knudsen and E. Biham. Then we analyze whether this
principle can be used for non-Feistel ciphers.

For a key K such that K → (k1, ..., kr), we will denote K∗ as being the
key such that K∗ → (k2, k3, ..., kr+1) (for some kr+1) and K∗ as being
the key such that K∗ → (k0, k1, ..., kr) (for some k0)1. K∗ and K∗ are
assumed to be easily computable.

IV.3.4.1. The case of Feistel ciphers: The attack is as follows:

• The following plaintext-ciphertext pairs are chosen:
– P = 〈PL, PR〉 K→ C for some plaintext P .
– ∀a ∈ {0, 1, ..., 2n/2 − 1} : P ∗

a = 〈PR, a〉 K→ C∗
a .

– ∀a ∈ {0, 1, ..., 2n/2 − 1} : P∗a = 〈a, PL〉 K→ C∗a.

1We emphasize on the fact that only some particular algorithms are such that for
a given K the keys K∗ and K∗ exist; thus the attack we present is only applicable to
very specific algorithms.

94 IV. KEY SCHEDULE CRYPTANALYSIS

• Let Φ be a set of keys such that Φ∪{K∗|K ∈ Φ}∪{K∗|K ∈ Φ}
covers the complete key space.

• For each key K ′ ∈ Φ:
– Compute P

K′→ C ′. If C ′ = C we can guess that with high
probability K = K ′ and stop.

– Compute F (P, k′1), that equals P ∗
a′ for some a′ (in fact, we

already did it when computing P
K′→ C ′). Compute also

F−1(P, k′0) = P∗a′′ .
– Compute one round backward and one round forward from

the ciphertext C ′. We obtain C ′∗ = F (C ′, k′r+1) and C ′∗ =
F−1(C ′, k′r) (in fact, C ′∗ was already computed).

– If C ′∗ = C∗
a′ , we deduce that K = K ′∗. If C ′∗ = C∗a′′ , we

deduce that K = K ′∗.

The underlying philosophy is the following: instead of proceeding through
all the possible keys, as in the basic exhaustive key search, we only deal
with a part of the whole key space. For each trial encryption we make,
we get two more encryptions as a bonus, by computing only two more
rounds (P∗a′′ = F−1(P, k′0) and C ′∗ = F (C ′, k′r+1)).

Remark 3. Note that the weak assumption is sufficient for this attack.

Remark 4. It is not necessarily easy to construct a set Φ, as small as
possible, such that Φ ∪ {K∗|K ∈ Φ} ∪ {K∗|K ∈ Φ} covers the complete
key space, and such that the elements of Φ are easy to characterize.
Ideally, the size of Φ would be one third of the size of the key space; in
his attack on LOKI, E. Biham obtained a size of 3/8 of the key space.

Remark 5. This attack uses the same kind of approach as those based
on complementation properties. As a matter of fact, it is based on two
equivalencies: P

K′→ C ′ ⇔ F (P, k′1)
K′∗→ F (C ′, k′r+1) and P

K′→ C ′ ⇔
F−1(P, k′0)

K′∗→ F−1(C ′, k′r). Complementation attacks are also based on
equivalencies. For example, the complementation property of DES may

be written as: P
K′→ C ⇔ P

K′→ C.
Furthermore, these attacks (related key and complementation) can be
combined, as E. Biham did in the case of LOKI (that has many comple-
mentation properties).

IV.3.4.2. The general case: At first sight, the fact that we are deal-
ing with a Feistel cipher might appear to play no role in the previous
attack. Simply, the set {P ∗

a }a is defined in a general framework as:
{F (P, k)}k∈RK , where P is a given plaintext and RK is the set of all
possible round keys; and the set {P∗a}a is {F−1(P, k)}k∈RK .

However the attack is practical only under certain conditions:

IV.4. SLIDE ATTACKS 95

Table 1. Summary.

Algorithm
Hyp. on the
Key Schedule

Chosen key attack Classical attack

General
Case

Strong
Θ(2n/2) known (P, C)
Θ(2n) work

•|{P ∗a }a ∪ {P∗a}a|
+1 chosen (P, C)
• At best, 2nk/3
keys to explore

Weak

Impossible, except if k1

and kr+1 share a suf-
ficient number of key
bits

Feistel Strong
Θ(2n/2) known (P, C)

Θ(n · 2n/2) work

•|{P ∗a }a ∪ {P∗a}a|
+1 chosen (P, C)
• At best, 2nk/3
keys to explore

Weak
Θ(2n/2) known (P, C)

Θ(n · 2n/2) work

• If the sets of pairs {(P ∗
a , C∗

a)}a and {(P∗a, C∗a)}a that are needed
for the attack cover the complete codebook, it is not really
interesting anymore to discover the key, as we have a list of
all plaintext-ciphertext pairs. It is generally the case with
substitution-permutation structures.

• If the cardinality of {P ∗
a }a ∪ {P∗a}a approaches (or is greater

than) the size of the key space, it is easier to perform an ex-
haustive key search.

Thus the attack is possible for ciphers with a non-Feistel structure as
well, but makes sense only if the following two inequalities are met:

|{P ∗
a }a ∪ {P∗a}a| < 2n

|{P ∗
a }a ∪ {P∗a}a| ¿ 2nk .

(81)

IV.3.5. Summary

Table 1 summarizes our discussions. In the next section, we deal with
the slide attack; it relies on the same idea as the related key slide attack,
but applies to the classical context where one only key is used. Then
in sections IV.5 and IV.6 we consider other related key attacks and
applications of them.

IV.4. Slide Attacks

The slide attack has been developed by A. Biryukov and D. Wagner
in [25, 26]. It relies on the same principle as the related key slide attack,

96 IV. KEY SCHEDULE CRYPTANALYSIS

but applies to even more specific key schedules. The good news is that
it does not require related key queries.

IV.4.1. Basic principle

Let us consider a block cipher that may be decomposed into r identical
permutations Xj = F (Xj−1, k). Note that F does not necessarily corre-
spond to one single round of the cipher; it might include several rounds.
Thus a necessary condition for a key schedule to be vulnerable to the
slide attack is to be periodic. For simplicity purpose, in the remaining
of this chapter we will speak about one round to designate the function
F .

Similarly to Biham’s related key attack, the idea of the slide attack is
to “slide” a copy of the encryption process against another copy of the
encryption process, so that both processes are one round out of phase:

P → Fk · Fk · ... · Fk · Fk → C

P ∗ → Fk · Fk · ... · Fk · Fk → C∗

The only difference with the related key slide attack is that both en-
cryptions have been computed under the same key K → (k, k, ..., k).
We have the slid equations:

{
P ∗ = F (P, k)
C∗ = F (C, k)

(82)

As always for slid equations, if two plaintexts are such that the first
equation is satisfied, the two corresponding ciphertexts satisfy the sec-
ond equation. If the function F is weak (see definition 28), these two
equations permit us to retrieve key k. The attack is similar to the one
described in section IV.3.1. By the birthday paradox, about 2n/2 pairs
(Pi, Ci) are enough to find one slid pair. In general, we expect one slid
pair to disclose n key bits. If needed, we can search for a few more slid
pairs or use exhaustive search to recover the rest of the key.

The time complexity of the attack is Θ(2n), as there are Θ(2n) pairs to
examine.

IV.4.2. An Extension to More General Ciphers

In [128], an attack is presented on ciphers of the form Ek,x,y(P) = y ⊕
F r

k (P ⊕ x) where F is a Feistel round, P is the plaintext, k is the round
key and x, y are whitening keys. It is worth noting that this type of
ciphers does not match the general pattern presented as mandatory in
the previous section (and in [25, 26]) in order to be vulnerable to slide
attacks.

IV.4. SLIDE ATTACKS 97

Let us thus examine what happens if we try to apply the slide attack to
a cipher of the form Gx ·F r

k ·Hy (where F , G, and H are round functions
respectively parameterized by key material k, x, y). Such a cipher is a
generalization of the one examined in [128]. Moreover, it is the most
general pattern a cipher must comply with if we want to get a chance
to see the slide attack work on it. The sliding of the two encryption
processes looks like:

P → Gx · Fk · Fk · ... · Fk ·Hy → C

P ∗ → Gx · Fk · ... · Fk · Fk ·Hy → C∗

The corresponding slid equations are:

{
(Gx · Fk ·G−1

x)(P) = P ∗

(H−1
y · Fk ·Hy)(C) = C∗ (83)

These two equations must meet two conditions in order to be useful in
a basic slide attack:

• The functions F , G and H must be weak enough, so that it is
possible to retrieve key material from a slid pair.

• The system must be sufficiently overdetermined, so that we
usually get no solution from a bad pair.

Of course, in this case as well as in the basic one of section IV.4.1,
the particular structure of the round functions can be used in order to
improve the performance of the attack. In the following section we deal
with the case of Feistel ciphers.

IV.4.3. The Particular Case of Feistel Ciphers

When the cipher considered has a Feistel structure, the improved attacks
described in sections IV.3.2.1 to IV.3.2.4 still apply. The only difference
is that instead of two sets (one corresponding to encryption under K, the
other corresponding to encryption under K∗) of N plaintext-ciphertext
pairs each, only one set of N pairs is considered.

IV.4.4. Advanced Slide Techniques for Feistel Ciphers

Let us introduce the following definition that gives us a good classifica-
tion of key schedules with regard to their resistance against slide attacks.

Definition 30. A p-round-self-similar cipher is a cipher whose key
schedule is periodic with period p.

98 IV. KEY SCHEDULE CRYPTANALYSIS

R

f

f

f

f

f

f

f

f

L

N

L* R*

M* N*

∆L* ∆R*

∆
1

NM

k0

k1

k0

k1

k0

k1

k0

k∆M

Figure 1. The complementation slide attack.

The basic slide attack generally deals with 1-round-self-similar ciphers
(except if the permutation F corresponds to more than one round).
The goal of advanced attacks is to be able to attack p-round-self-similar
ciphers, with p > 1. Various advanced techniques are proposed in [26],
that only work in the case of Feistel ciphers.

IV.4.4.1. The complementation slide: Let us consider a 2-round-self-
similar Feistel cipher. The classical attack would require to slide by 2
rounds. Now look what happens if we slide the cipher by only one round
(see Figure 1): the problem is that the rounds keyed by k0 and k1 are
no longer lined up. So even if P ∗ = F (P, k0), the continuation of the
computation will not be the same for both executions of the algorithm.

However there is a solution to this problem: namely, to choose a pair
(P ; P ∗) such that the difference F (P)⊕P ∗ cancels the difference between
the subkeys.

Definition 31. A pair of plaintexts (P ;P ∗) has slid difference d if
F (P)⊕ P ∗ = d.

It is easy to check that if instead of considering plaintext pairs with slid
difference 0 as we did until now, we search for pairs with slid difference
〈∆, ∆〉 := 〈k0 ⊕ k1, k0 ⊕ k1〉, the slid difference will propagate through
all the rounds. More precisely ∀r : X∗

r−1 = Xr ⊕ 〈∆, ∆〉. A slid pair
must thus satisfy the following equations, with P = 〈L,R〉 denoting the

IV.4. SLIDE ATTACKS 99

plaintext and C = 〈M,N〉 the ciphertext:
{
〈L∗, R∗〉 = 〈R,L⊕ f(k0 ⊕R)〉 ⊕ 〈∆, ∆〉
〈M∗, N∗〉 = 〈N,M ⊕ f(k1 ⊕N ⊕∆)〉 ⊕ 〈∆, ∆〉 (84)

Thus we have
L∗ ⊕M∗ = R⊕N, (85)

which is a n/2-bit condition to recognize a slid pair (note that the filter-
ing condition was n-bit long in the classical attack; it is now reduced to
n/2 bits because the slid difference is unknown). Moreover, the equality
L∗ = R⊕∆ (or equivalently M∗ = N ⊕∆) gives us a n/2-bit candidate
for ∆. Then if the round function is weak enough we are able to derive
k0 using both equations.

The attack uses Θ(2n/2) known plaintexts. However only Θ(2n/2) pairs
need to be examined, due to the filtering condition; each of them suggests
at most one candidate key. We hope to find one slid pair.

IV.4.4.2. Sliding with a twist: This attack applies again to 2-round-
self-similar Feistel ciphers with an even number of rounds. We now slide
a decryption process against an encryption process by one round (see
Figure 2). If the data after the first round of the encryption are the same
as those before the decryption process (neglecting one swap of left and
right parts), then the data after the encryption process are the same as
those before the last round of the decryption process. The slid equations
are thus: {

〈M∗, N∗〉 = 〈L⊕ f(k0 ⊕R), R〉
〈L∗, R∗〉 = 〈M ⊕ f(k0 ⊕N), N〉 (86)

These give us a n-bit filtering condition on slid pairs (namely N∗ = R

and R∗ = N). Thus given Θ(2n/2) known texts, a slid pair can be found
easily with Θ(n · 2n/2) work by sorting them. The subkey k0 may be
easily deduced (provided f is sufficiently weak, as usual).

The method proposed in [26] in order to find the other subkey k1 is
somewhat complicated: it consists in using a conventional sliding, and
encrypt ciphertexts partially using k0. The method we propose is both
simpler and slightly faster: simply, we suggest to slide the decryption
process in the other direction (see Figure 3)! The slid equations are now:{

〈L,R〉 = 〈M∗, N∗ ⊕ f(k1 ⊕M∗)〉
〈M, N〉 = 〈L∗, R∗ ⊕ f(k1 ⊕ L∗)〉 (87)

and the n-bit filtering condition becomes L = M∗ and L∗ = M . This
time it is the subkey k1 that can be deduced.

There is a chosen plaintext/ciphertext variant that allows us to reduce
the number of plaintexts needed to recover k0 to 2n/4+1. The attacker
generates a pool of 2n/4 plaintexts of the form 〈Li, R〉 and another of 2n/4

100 IV. KEY SCHEDULE CRYPTANALYSIS

f

f

f

f

L

NM

Encryption Decryption

N*

L*

M* M* N*

R*

f

R

f

f

f

NM
0

k0

k1

k0

k1

k1

k0

k1

k

Figure 2. Sliding with a twist.

ciphertexts of the form 〈M∗
j , N∗〉 (of which she obtains the encryptions

or decryptions, respectively). The value N∗ = R is fixed throughout the
attack. This is expected to provide us with one slid pair, from which k0

may be easily deduced.

Note that the same type of chosen plaintext/ciphertext attack can be
applied to recover k1 instead of k0.

This demonstrates that sliding with a twist allows us to attack any n-
bit 2-round-self-similar Feistel cipher (with an even number of rounds)
with Θ(2n/2) known plaintexts and Θ(n · 2n/2) work, or with Θ(2n/4)
chosen plaintext/ciphertext and Θ(n · 2n/4) work. However it must be
pointed out that the chosen plaintext/ciphertext version requires the
attacker to be allowed to make both encryption and decryption queries.
This variant also applies to related key slide attacks; an example is the
attack of [37] against triple encryption.

IV.4.4.3. Dealing with 4-round periodicity: It is possible to combine
the complementation slide and sliding with a twist to be able to attack
4-round-self-similar ciphers. The exact way it is done is pictured in
Figure 4. We observe that the odd rounds always line up, while the
even ones have a constant difference of k1 ⊕ k3 in their subkeys. It
is however possible to cancel this difference using the complementation
technique. The texts used need to have a slid difference of 〈k1 ⊕ k3, 0〉.

IV.4. SLIDE ATTACKS 101

L

f

f

f

f

L R

Encryption

Decryption

L* R*

M* N*

R*L*

f

R

f

f

f
k0

1

k0

k1

k0

k1

NM

k1

k0

k

Figure 3. Sliding with a twist in the other direction.

We obtain an n-bit filtering condition (namely, R = N∗ and N = R∗),
so detecting slid pairs is easy. The data complexity of the attack is
Θ(2n/2) and its time complexity is Θ(n · 2n/2), while its chosen plain-
text/ciphertext variant has data complexity Θ(2n/4) and time complex-
ity Θ(n · 2n/4).

IV.4.5. How to Deal with Stronger Functions?

In [26], methods to deal with functions F that need more than two pairs
(x1, y1) and (x2, y2) with F (x1, k) = y1, F (x2, k) = y2 in order to be
broken are presented. Typically, it is useful in order to attack p-round-
self-similar-ciphers (p > 1), especially if p 6= 2, 4.

One approach is suggested that uses differential analysis. Suppose that
the round function F has a non-trivial differential characteristic ∆X →
∆Y holding with probability p. Then if we find a slid pair (P ;P ∗) with
F (P) = P ∗, the pair (P ⊕∆X; P ∗⊕∆Y) will be a slid pair as well with
probability p. This principle is exploited in a chosen plaintext attack, by
generating a set of 3 ·2n/2p−1/2 chosen plaintexts such that for plaintext
P in the chosen set the plaintexts P ⊕∆X and P ⊕∆Y are also in the

102 IV. KEY SCHEDULE CRYPTANALYSIS

∆

f

f

f

2

3

0k

1k

k

k

f

f

f

f

L* R*

N*M*
N*

Encryption

M

Decryption

N

M N

3k

2k

f

L R

M*

f

f

f

1k

0k

2

3

0k

1k

k

k

f

f

f

f

f

∆

1k

0k

3k

2k

Figure 4. Combining the complementation slide and
sliding with a twist techniques.

set. Then it may be expected to see one pair (P ;P ∗) satisfying both the
slide and the differential patterns.

However we claim that the number of plaintexts needed can be improved
by choosing structures of four plaintexts of the form (P, P ⊕ ∆X, P ⊕
∆Y, P ⊕∆X ⊕∆Y). It is easy to verify that for any plaintext P in the
chosen set, P ⊕∆X and P ⊕∆Y are also in the set. In such a set, with
only 2n/2p−1/2 plaintexts we may hope to find p−1 slid pairs and one pair
satisfying both the slide and the differential patterns. Besides, if we are
dealing with a set of known plaintexts, once a slid pair has been found,
it is possible to develop strategies on the order we check the other pairs,
based on the probability of the different characteristics ∆X → ∆Y .

IV.4. SLIDE ATTACKS 103

Another approach is the following. Suppose that we need N pairs (xi, yi)
to recover key k. For each plaintext P it is suggested to get the encryp-
tion E(P), the double encryption E2(P) = E(E(P)), and so on, until
we obtain E2N (P). Suppose now that P ∗ = F (Ei(P)) for some pair
(P ; P ∗) and some i; then we find 2N − i slid pairs “for free”, by the
relation Ej(P ∗) = F (Ej+i(P)) for j = 1, ..., 2N − i. This phenomenon
has been called domino effect in [38]. With 2n/2N1/2 chosen texts, we
have 2nN potential slid pairs, and thus expect to find about N slid pairs
(probably all in the same batch formed from a single coincidence of the
form P ∗ = F (Ei(P))).

This principle is used in [58] to attack ikDES4, i.e. DES with a 4-round
periodic key schedule: suppose we know 2n/2 plaintexts (in the case of
DES (and ikDES4), n = 64). We may hope to find one slid pair among
them. We have seen that when applying the attack to a 1-round-self-
similar Feistel cipher, it was possible to distinguish a slid pair using
only both plaintexts and their corresponding ciphertexts (i.e. knowing
both pairs (P,C) and (P ∗, C∗)). However the function F is now a 4-
rounds DES, which makes it much more difficult to distinguish a slid
pair. The trick is to compute multiple encryptions C1 = E(P), C2 =
E2(P),... for each plaintext P . If (P ;P ∗) is a slid pair (i.e. a plaintext-
ciphertext pair corresponding to a 4-round DES, keyed by the unknown
(k1, k2, k3, k4)), then (C1;C∗

1), (C2; C∗
2),... also are. Thus a distinguisher

on 4-round-DES can be used in order to check if the pairs (P ; P ∗),
(C1; C∗

1), (C2;C∗
2),... are indeed plaintext-ciphertext pairs of 4-round-

DES. The distinguisher used in [58] relies on linear cryptanalysis [113].

The technique applied may be roughly summarized by:

(1) Consider 2n/2 plaintexts {P0, ..., P2n/2−1}.
(2) For each Pi, compute Ci,k := Ek(Pi), where k = 1, 2, ..., N . N

must be big enough, such that a set of pairs {(Pi; Pj), (Ci,1; Cj,1),
..., (Ci,N ; Cj,N)} which are plaintext-ciphertext pairs of F can
be efficiently recognized.

(3) For each pair (Pi; Pj), apply the distinguisher to the set of
pairs {(Pi;Pj), (Ci,1;Cj,1), ..., (Ci,N ; Cj,N)}, until we indeed find
a slid pair.

(4) Once a slid pair has been found, use a key recovery attack on
F , in order to recover the key (the key recovery attack may be
quite similar to the distinguisher).

In the case of the attack on ikDES4 described in [58], the distinguisher
used is a linear approximation of four DES rounds, while the key recovery
attack consists in guessing the first and last round keys, and using a
linear approximation for the remaining two rounds. These techniques
are described in detail in [113]. The distinguisher used needs about

104 IV. KEY SCHEDULE CRYPTANALYSIS

4000 pairs, thus the slide attack needs about 232 · 4000 ≈ 244 chosen
plaintext-ciphertext pairs for the whole cipher.

The main limitation of the approach presented is that we have to con-
sider about 2n pairs of plaintexts, and for each of them, to apply a cho-
sen plaintext attack. Thus this last attack must be kept light enough in
terms of computation and data complexity2, otherwise the whole slide
attack will be more costly than exhaustive key search (which requires
about 2n

k encryptions). Assuming this, this technique is rather powerful
to attack algorithms with periodic key schedules.

IV.5. Differential Related Key Attacks

The basic idea of differential cryptanalysis is to perform the encryption
of pairs of plaintexts, say (P ;P ⊕∆), with ∆ a chosen difference. After
a large number of rounds (typically, r− 2 or r− 3, with r the number of
rounds of the whole cipher), we hope to observe another given difference,
say ∆′, with a “high” probability.

The idea of differential related key attack is not very different: simply
we allow the two plaintexts P and P ⊕∆ to be encrypted with different
keys, say K and K ⊕∆K:

C = F (P,K), C ′ = F (P ⊕∆,K ⊕∆K). (88)

∆K must be chosen carefully, so as to obtain the desired difference in
the subkeys.

This allows much more freedom for the attacker, as she can act on the
key difference too. This way she can find attacks that are not possible
otherwise. Note however that the basic hypothesis are not the same
as those of differential cryptanalysis, as we assume we get an access to
encryption under two (or more) related keys.

Below we present the attack on 3-WAY given in [90], as it is a simple
and illustrative example of this kind of attacks.

IV.5.1. Attack on 3-WAY

3-WAY is an 11-round cipher on 96-bit blocks. It has a classical substitution-
permutation network structure. Its round function can (roughly) be
described as

F (x) = θ(γ(x))⊕K ⊕ Ci, (89)
where:

• γ is a fixed nonlinear layer built out of 32 parallel 3-bit permu-
tation S-boxes,

2which is not easy, as we need excellent success rates in order to be able to
distinguish one good slid pair among the 2n other ones.

IV.6. USING RELATED KEY ATTACKS AGAINST MULTIPLE ENCRYPTION105

• θ is a fixed linear function,
• K is the 96-bit master key,
• Ci is a fixed round-dependent public constant (which prevents

using the slide attack).

A 1-round characteristic (for classical differential cryptanalysis) is the
following:

• It is easy to find a differential characteristic for one S-box with
probability 1/4, so we can construct a characteristic ∆x → ∆y
with probability 1/4 for the non-linear layer γ by using only
one active S-box.

• By linearity ∆y → θ(∆y) =: ∆z is a characteristic of probabil-
ity 1 for the linear layer θ.

• The key addition does not change the difference.

We thus have a 1-round characteristic ∆x → ∆z with probability 1/4.
But this characteristic is not iterative: the difference ∆z probably affects
many S-boxes in the second round.

If now we place ourselves in the context of differential related key attacks,
we can pick ∆K = ∆x⊕∆z. The 1-round characteristic becomes ∆x →
∆x. It is iterative, with probability 1/4.

We can derive a 9-round characteristic with probability 2−18, and apply
a 2R-analysis to the last two rounds. This breaks 3-WAY with one re-
lated key query and about 222 chosen plaintexts.

To avoid this type of attack, it is suggested in [89, 90] to use a non-
linear (or even one-way, but it is probably an overkill) key schedule,
which makes difficult to produce controlled changes in the round keys.

IV.6. Using Related Key Attacks Against Multiple Encryption

Due to the fact that their different parts are keyed independently, multi-
ple encryption modes, such as DESX [91] (or more generally, the Even-
Mansour construction [52]) or Triple-DES are particularly vulnerable to
related key attacks, or even key schedule attacks in a classical context.
Meet-in-the-middle attacks [118, 165, 166] are well-known. However sev-
eral other attacks have been published.

In [26] A. Biryukov and D. Wagner present an attack on the Even-
Mansour extension of a block cipher. It is the best known attack on this
type of construction. Let E∗ denote a randomly chosen permutation of
block size n. Then the Even-Mansour construction around E∗ is keyed
by K := (ka, kb), where ka, kb ∈ Zn

2 , and defined as EX(ka,kb)(P) =

106 IV. KEY SCHEDULE CRYPTANALYSIS

P

k
a

DES

k
b

C
C* DES

-1

C*

k
b

C

k
a

P*

k

k

Figure 5. Sliding with a Twist on DESX.

kb ⊕ E∗(P ⊕ ka). If the random permutation is replaced by a DES, we
obtain a construction called DESX:

DESX(ka,k,kb)(P) = kb ⊕DESk(P ⊕ ka). (90)

We can apply a sliding with a twist to two copies of DESX (see Figure 5).
The slid equations are:

{
P ∗ = ka ⊕DES−1

k (C)
P = ka ⊕DES−1

k (C∗)
(91)

These equations imply

P ∗ ⊕DES−1
k (C) = P ⊕DES−1

k (C∗). (92)

Provided a sufficient number of known pairs (Pi, Ci) is available, an at-
tack begins with guessing the value of k. For each k, pairs ((P,C); (P ∗, C∗))
satisfying (92) are identified using a lookup table. Given such a pair, it is
easy to compute the value of ka and kb. Once a candidate for (ka, k, kb)
has been found, it is checked using a few other plaintext-ciphertext pairs.
This attack requires about 2

n+1
2 known plaintexts; its average complex-

ity is 2
n+1

2
+

nk
2 trial DES encryptions.

This attack works provided one of the two additions of whitening keys
(ka and kb) is done using ⊕. But there are related key attacks against a
much wider range of algorithms; namely such an attack can be mounted
for any multiple encryption with all subkeys being different (even if the
algorithm used at each stage is different). Consider for example a 3-
key triple encryption (such as Triple-DES) associated with algorithm E:
3E(k1,k2,k3) := Ek1 · Ek2 · Ek3 . Assume the attacker knows a pair (P, C)
encrypted under an unknown key K = (k1, k2, k3), and is allowed to
make a decryption query to the same cipher keyed by K∗ = (k∗1, k2, k3) =

IV.6. USING RELATED KEY ATTACKS AGAINST MULTIPLE ENCRYPTION107

(k1 ⊕∆, k2, k3), where ∆ is an arbitrary known constant. Then she can
obtain P ∗ = (3EK∗)−1(C). The two pairs P

K→ C and P ∗ K∗→ C satisfy

P ∗ = E−1
k1⊕∆(Ek1(P)). (93)

This equation permits exhaustive search on k1. Once k1 has been found,
k2 and k3 are found using a meet-in-the-middle attack. If only encryp-
tion related key queries are available, the attack still works, but its data
complexity increases: the attacker first asks for 2n/2 pairs (P, C) en-
crypted under K, and 2n/2 pairs (P ∗, C∗) encrypted under K∗. Then
she searches for a pair (P ;P ∗) of plaintexts having the same ciphertext
C. P and P ∗ satisfy (93).

This attack has been applied to Triple-DES in [89]; it was presented
as a differential related key attack. But properly speaking it is not
differential. As a matter of fact, the attacker could a priori use any
known permutation Π : Znk1

2 → Znk1
2 (where nk1 is the key size of the

first cipher) to compute k∗1 as a function of k1. The only requirement
on Π (besides being usable in a practical attack context and easy to
compute) is that for a given (P ; P ∗) the number of solutions of (93) is
not too big. Extremely bad choices of Π in this context are when Ek1 is
simply a key addition P 7→ P ¢k1, for ¢ some group operation, and Π is
x 7→ x¢∆ for some constant ∆; in this case all choices of k1 satisfy (93).

The attack has also been applied to DESX+ (a variant of DESX where
the pre- and post- whitening ⊕ operations are replaced by additions
mod 264) by R.C.-W. Phan [37]. The permutation Π he used is also
x 7→ x ⊕ ∆. R.C.-W. Phan claims it does not work on DESX, which
should imply that DESX is in some way stronger than DESX+. It is
true for Π : x 7→ x⊕∆, because of the restriction we gave on the choice
of Π. However the easy choice Π : x 7→ x+∆ mod 264 makes the attack
work. Thus the statement about the respective strength of DESX and
DESX+ is not true.

In [37] related key attacks on 2-key Triple-DES and DES-EXE3 are also
presented, but they are erroneous; it is claimed that most of the can-
didates for subkey k1 can be discarded during the attack, but in fact
it is not the case: most of them survive the test. This makes these
two attacks impractical. The attack against 2-key Triple-DES could
be repaired, but it makes its complexity comparable to the one of the
meet-in-the-middle attack [118, 165] (which is not a related key attack).
Finally, a related key sliding with a twist attack on triple encryption
(using keys K = (k1, k2, k3) and K∗ = (k1, k3, k2)) is proposed.

3DES-EXE is a three-layered encryption defined by DES-EXE(k1,k2,k3)(P) :=
DESk3(k2 ⊕DESk1(P)).

108 IV. KEY SCHEDULE CRYPTANALYSIS

We think that all these attacks illustrate the need for some kind of key
scheduling in multiple encryption modes, at least when related key at-
tacks are a concern. Passing the key through a hash function before
using it would be ideal. Another very good solution has been suggested
by I. Damgärd and L. Knudsen in [48] for the case of triple encryption.
They suggest to use the cipher itself in the construction of the key sched-
ule. More precisely, if (k1, k2) is the master key, the three keys x1, x2, x3

used for encryption are computed as
x1 = Ek1(Ek2(IV1)),

x2 = Ek1(Ek2(IV2)),

x3 = Ek1(Ek2(IV3)),
(94)

where E denotes encryption under the block cipher considered and IVi

are three different initial values.

The problem of building multiple encryption modes with resistance against
related-key attacks as a primary design criteria has also been dealt with
by S. Lucks in [111].

IV.7. Link Between the Attacks

Slide attacks and differential cryptanalysis have in common that the
attacker tries to find pairs of plaintext that have a certain relationship,
so that there is some link between their encryption process.

The only difference between differential cryptanalysis and differential
related key attacks is that in the second one the pairs of plaintexts are
encrypted using two different keys (that have a particular relationship).
On the one side, it makes the attack more powerful, in the sense that it
permits finding better characteristics on a larger number of rounds, and
thus also attacking a broader range of algorithms. On the other side, it
must be noted that it implies an attack scenario which is more difficult
to carry out.

Exactly in the same way, the slide attack and the related key slide attack
are distinguished by the fact that the first one deals with a single key,
while the second one attacks a pair of keys. And once again, it allows
attacking a wider range of algorithms, as the key schedule does not need
to be periodic any longer in order to be vulnerable, but only to have
a weaker property (see section IV.3 for more details). Thus we can
say that Biham’s related key attack is to the slide attack just as the
differential related key attack is to differential cryptanalysis.

We could wonder whether other known attacks can be turned into a
related key version. First, it must be noted that it is only applicable
for attacks that deal with pairs (or bigger groups) of plaintexts. Thus
linear cryptanalysis, for example, does not fit. On the contrary, there is a
related key counterpart to the differential-linear cryptanalysis. Moreover

IV.7. LINK BETWEEN THE ATTACKS 109

a recent paper of J. Kim et al. [92] deals with a related key rectangle
attack. Yet another example of this type of counterpart has been given
by J. Nakahara et al. in [123]: they presented a related key version of
the square attack. However such an attack is far from realistic, as it
would impose to have plaintext-ciphertext pairs encrypted under no less
than 216 related keys (in their example on IDEA). But one can argue it
has a theoretical interest.

We have seen in section IV.3 that the related key slide attack principle
can be used to reduce the complexity of an exhaustive key search, as
noted by L. Knudsen [94]. The question we will now deal with is: is
it possible to reduce the complexity of exhaustive search using other
related key principles?

First, we deal with the differential related key attack. For a given block
cipher, suppose we can find differences ∆P , ∆C and ∆K such that for
randomly chosen plaintext P and key K, P

K→ C implies P⊕∆P
K⊕∆K−−−−−→

C⊕∆C with a “high” probability p. An improved key search algorithm
would be:

• Let (P, C) and (P ⊕∆P,C∗) be two plaintext-ciphertext pairs
obtained under the unknown key K.

• For each trial key K ′, compute P
K′→ C ′:

– If C ′ = C, we conclude that K = K ′
– If C ′ = C∗ ⊕ ∆C, we conclude that with a probability

p, K = K ′ ⊕ ∆K. Assuming p > 2−nk (where nk is the
number of key bits), K ′ ⊕ ∆K can be considered as a
favorite key candidate. We immediately check whether it
is the right key by computing the encryption of P under
K ′⊕∆K. If it is not the right one, we insert it in a (sorted)
list of already tried keys.

At first glance, this algorithm may look fine, but let us consider the
complexity analysis:

• If P
K⊕∆K−−−−−→ C∗⊕∆C, the key search will be reduced by about

half of the encryptions, provided we try K ⊕ ∆K before K.
Knowing that P ⊕∆P

K→ C∗, it will happen with probability
p. Thus the average gain is p · 2nk−2 encryptions.

• The drawback is that for each trial key it is necessary to do
one comparison (namely, check if C ′ = C∗ ⊕ ∆C during the
first half of the key search; then for each key check if it has not
already been tried4). The time needed to build the sorted list
of already tried keys may be considered as negligible (as it is
small).

4We assume here that the key search begins with exploring one half of the key
space, say Ψ (with |Ψ| = 2nk−1), such that ∀K′ ∈ Ψ : K′ ⊕∆K /∈ Ψ.

110 IV. KEY SCHEDULE CRYPTANALYSIS

The average gain of our algorithm is p · 2nk−2 encryptions, while the
drawback is 2nk comparisons. As a consequence, for our algorithm to
make sense the ratio between the time for one comparison and the one
for one encryption must not be more than p/4. But as p is very small
most of the time, it will usually not be the case.

The conclusion is that it is the fundamentally probabilistic nature of
the differential related key attack that makes it (almost) impossible to
use in order to improve exhaustive key search. The square attack is not
probabilistic. One can thus wonder if its related key counterpart could
not be used with more success for reducing complexity of exhaustive
search. However, because of the large number of related keys implied,
this technique would only allow sparing a very small part of the key
space (1/216 in the case of IDEA studied by J. Nakahara et al. [123],
if we assume that the key schedule makes it possible to apply such an
attack). Therefore, the extra work needed to manage this variant of
exhaustive search will clearly compensate the key trials we spare.

IV.8. Conclusion

We have seen that the condition for a block cipher to be vulnerable to
Biham’s related key attack is that the sliding of all the subkeys derived
from a given key by one round (or eventually more) gives rise to a
sequence of subkeys that can be derived from another key. The slide
attack has a strong relationship with Biham’s attack: it may be viewed
as a kind of “auto-related key attack”, as the algorithms vulnerable to
it are those for which the sliding of the subkeys gives rise to the same
sequence of subkeys!

We also presented the differential related key attack, that is the related
key counterpart of differential cryptanalysis, just as Biham’s attack is
the related key counterpart of the slide attack. We discussed under
which conditions a related key version could be found for other attacks.

Finally, we discussed whether these various related key attacks can be
used in reducing the complexity of exhaustive key search. The conclusion
is that the probabilistic nature of most of these attacks makes them very
difficult to apply in this context; other attacks that are not probabilistic
but deal with a large number of related keys (such as the square related
key attack) cannot be applied either.

Although they were often inspired by glaring weaknesses in old algo-
rithms, these attacks are not necessarily impossible to apply to more
recent key schedules. As an illustration, several papers present attacks
on recent algorithms [55, 78, 92]. Also, we have seen that they can often
apply to multiple encryption modes with independent subkeys, which are
widely in use today. Maybe some kind of key schedule could increase
security of these encryption modes.

IV.8. CONCLUSION 111

Nor are these attacks purely theoretical: they must be taken into consid-
erations when designing protocols, especially key derivation, key update,
or key exchange. As an illustration of this, R.C.-W. Phan and H. Hand-
schuh recently showed that the key management used in the IBM 4758
cryptoprocessor is potentially vulnerable to related key attacks [39].

Part 2

Side-Channel and
Implementation Aspects

CHAPTER V

Differential Fault Attacks - Application to
SP-Networks

Abstract. In this chapter we deal with the application of a partic-
ular class of side-channel attacks to block ciphers: fault attacks.
After discussion of the context of these attacks, we survey the
most relevant works in the field.
The core of the chapter focuses on our personal contribution, origi-
nally published in [140]; we devised a differential fault attack tech-
nique working against any Substitution-Permutation Network. It
requires very few faulty ciphertexts, and works under several re-
alistic fault models. We applied our attack to KHAZAD and the
AES; we were able to break the AES-128 with only 2 faulty cipher-
texts (assuming the fault occurs between the antepenultimate and
the penultimate MixColumns); this is better than the previously
known fault attacks against AES [27, 36, 51, 63].
Finally, countermeasures against fault attacks on block ciphers
are discussed.

V.1. Introduction

The interest in side-channel attacks appeared in the late nineties, with
the seminal papers of P. Kocher [100] and D. Boneh et al. [28]. The
underlying idea is to look at the way cryptographic algorithms are im-
plemented, rather than at the algorithm itself. The literature makes a
distinction between two types of attacks:

• Passive Attacks observe the behavior of a computing de-
vice through various channels, and try to use the measurements
made in order to recover information about a secret key. Typ-
ical types of channels used may be time of computation (tim-
ing attacks [100]), power consumption (single and differential
power analysis [101]), electromagnetic radiations (electromag-
netic analysis [144, 60]).

• Active Attacks, more frequently called Fault Attacks, try
to modify the functioning of the computing device (typically a
smart card) in order to retrieve (part of) the secret key. More
precisely, the attacker induces a fault during cryptographic
computations; the faulty results are used for key recovery.

115

116 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

Side-channel attacks have become a much bigger threat for the cryptog-
raphy providers (mainly the smart card industry) than classical crypt-
analytic attacks. A lot of resources are spent in searching for counter-
measures against them. In this chapter we deal with fault attacks only.
We first present a famous example of application in asymmetric cryp-
tography in section V.2. Then we focus on fault attacks against block
ciphers. The first example of such an attack is due to E. Biham and
A. Shamir [20]. Among other things, they show how to attack DES;
a more generic attack under stronger hypothesis is also presented. Af-
ter a description of the different possible settings for a fault attack in
section V.3, we describe Biham-Shamir’s results, and some more recent
discussions about them, in section V.4. Sections V.5, V.6 and V.7 are
the core of this chapter. They describe an attack devised by the author
and applicable to any substitution-permutation network. We examine
in detail the particular case of the AES. These results have been orig-
inally published in [140]. Finally, section V.8 discuss the problem of
countermeasures. Section V.9 is the conclusion.

V.2. An Introductory Example: Fault Attack Against a CRT
Implementation of RSA

The attack we present in this section is bound to public-key cryptog-
raphy, and is thus slightly off-topic. We chose to present it anyway
because it is a nice illustration of the power of fault attacks, and histor-
ically one of the first of them (see [28]). Besides it is elegant and easy
to understand.

Let N = p · q be the product of two secret big primes p and q. An
RSA signature [150] of a message m is computed as S = md mod N
where d is a secret exponent; the verification is performed by computing
Se mod N where e is the public verification exponent, and checking
whether Se ≡ m (mod N). However the trivial implementation of sig-
nature (direct exponentiation mod N using square-and-multiply) is not
the fastest one: a speed factor from 4 to 8 can be gained by using the Chi-
nese Remainder Theorem. The signer first computes Sp = md mod p

and Sq = md mod q. Application of the Chinese Remainder Theorem
tells us that we can compute a, b such that:

{
a ≡ 1 (mod p)
a ≡ 0 (mod q)

{
b ≡ 0 (mod p)
b ≡ 1 (mod q)

Note that knowing p and q, a and b can be precomputed. Then it is
easy to show that

S ≡ a · Sp + b · Sq (mod N).

Therefore, instead of an exponentiation modulo N , the signer needs to
do two exponentiations with moduli p and q, and a modular addition.

V.3. FAULT MODEL 117

The fact that p and q have about twice less bits than N , makes the
whole algorithm faster than a trivial implementation.

Assume now a fault occurs during the computation of md mod q. Then
a wrong S̃q is obtained, and with overwhelming probability S̃q 6≡Sq

(mod q). Let S̃ = a · Sp + b · S̃q be the wrong signature obtained. Then

S̃ mod p = Sp mod p = S mod p

and S̃ mod q = S̃q mod q 6= S mod q.

So we have S̃e ≡ Se ≡ m (mod p) but S̃e 6≡Se ≡ m (mod q). This
implies that gcd(N, m − S̃e) = p. As all variables of the left-hand side
are known to the attacker, she can compute p.

Remark that this attack is very powerful, as it only requires one fault to
occur at any time during one (and only one) of the two exponentiations
(without more constraint), and the right signature is not even manda-
tory, only the wrong one is needed. It means that someone receiving
a certificate with a false authority’s signature, could retrieve the pri-
vate key of the system! However several countermeasures exist against
this attack1 (see for example [81, 156, 170]). In [28], similar attacks
against other public key cryptosystems, such as Fiat-Shamir [53] and
Schnorr [155] identification schemes, are presented. Attacks on DSA
and ECDSA also exist (see for example the survey of C. Giraud and H.
Thiebeauld [64]).

V.3. Fault Model

The feasibility of a fault attack (or at least its efficiency) depends on the
exact capabilities of the attacker and the type of faults she can induce.
This constitutes the fault model . It should specify:

• The precision an attacker can reach in choosing the time and
location on which the fault occurs during the execution of a
cryptographic algorithm. Choosing the time at which the fault
occurs can often be done by using side-channel information
(such as power consumption) to monitor the progress of the
algorithm. Choosing the location is more difficult; this ability
depends on the fault induction technique used.

• The length of the data affected by a fault: one only bit, or one
word (typically one byte, as current smart card architectures
are still 8-bit).

1Note that inducing a fault during the recombination of Sp and Sq makes most
of them inefficient.

118 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

• Whether the fault is transient (disturbing the smart card dur-
ing its processing, therefore affecting a single execution of the
algorithm) or permanent (resulting from a permanent damage
of the smart card, such as cutting a wire or destroying a mem-
ory cell).

• The type of the fault:
– Flip one bit.
– Flip one bit, but only in one direction (e.g. from 1 to 0).
– Byte changed to a random (unknown) value.
– Bit(s) permanently stuck at 0 (or 1).
– Skip of one or more instructions of the program code.
– Repeat one or more instructions of the program code.

There are many different ways of inducing faults:

• Cutting a wire in a hardware circuit results in permanently
fixing one bit to 0.

• Changing the power supply voltage or the frequency of the ex-
ternal clock might cause a transient fault that changes an entire
byte to a random value; in this case the attacker has little con-
trol on the timing of the fault, and no control on its location,
but on the other hand this attack needs very few material to
be performed. Note that if the probability p for the physical
stimuli to induce a fault during the encryption is small, then
the probability that two different faults occur during the same
encryption is ∼ p2, which can be assumed to be negligible. This
is important as most of the differential fault attacks (and more
particularly the one presented in section V.5) assume that a
faulty ciphertext results from one unique fault.

• Applying radiation to one of the transistors constituting a mem-
ory cell could cause the corresponding bit to switch, hence a
transient fault [158].

The interested reader can find more details on the way faults are phys-
ically induced in [3, 6, 64] for example. In the next section we will
see how various fault models can be exploited in fault attacks against
block ciphers, following the work of E. Biham and A. Shamir. Then we
present our attack against substitution-permutation networks, that can
work under several of these models.

V.4. Fault Attacks on Block Ciphers

E. Biham and A. Shamir’s paper [20] is the first work dealing with fault
attacks on block ciphers. They present several different attacks, under
various fault models.

V.4. FAULT ATTACKS ON BLOCK CIPHERS 119

V.4.1. Differential Fault Attack on DES Using Flips on a
Single Unknown Bit

In differential fault attacks, a right ciphertext (resulting from an encryp-
tion without induction of a fault) is considered together with a faulty
ciphertext corresponding to the same plaintext. The comparison of both
encryptions allows the retrieval of key material using techniques related
to those of differential cryptanalysis [19] (hence the name).

E. Biham and A. Shamir presented a differential fault attack on DES
(see description in Appendix B.2; note that in the remaining of this
section the final permutation FP is neglected). The faulty ciphertexts
used in the attack are assumed to result from one bit being flipped in
the register keeping the right half of the data in one of the 16 rounds.
The index of the round affected and the precise location of the bit are
unknown; there are thus 16·32 = 512 possibilities. However by observing
the difference between the right and the faulty ciphertext, the attacker
can deduce whether the round affected is the 16th, the 15th, the 14th,
or one of the rounds before. If the fault occurred before the 11th round,
it is not exploitable by Biham-Shamir’s attack2.

Assume the round affected is the last one. The output difference of
the last round function is equal to the difference in the left part of the
ciphertext; and the data entering this round function is equal to the
right part of the ciphertext. The attack is simple: we guess the key
bits entering the S-box (or the two S-boxes) affected by the fault, and
check whether the guessed value agrees with the expected difference at
the output of this (these) S-box(-es). On average, about 4 possible 6-bit
values of the key remain for each of the S-boxes concerned.

If the round affected is the last but one, the attack is very similar. If
it is the last but two (or earlier), a counting method [19] must be used,
where for each S-box a counter is associated to each 6-bit candidate, and
the right value is expected to be counted more than the others.

Assuming faults occur randomly in all rounds, E. Biham and A. Shamir
found that between 50 and 200 ciphertexts were needed to retrieve the
key. If the attacker can choose the exact position of the fault, this
number can be reduced to about 3 ciphertexts.

If the induced faults affect several bits simultaneously, the attack still
works; in fact it works even better because more S-boxes are affected
(but on the other hand it could be more difficult to identify the round
during which the fault occurred). In [64] C. Giraud and H. Thiebeauld
claimed to have succeeded in retrieving the key using only 2 ciphertexts;
the faults were induced by a light attack [158] using a camera flash.

2However, an attack allowing to exploit faults occurring on early rounds of DES
has been recently published [71].

120 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

V.4.2. A Generic Attack if Memory Bits can be Stuck at 0

Consider a memory register containing a key K of length n. We assume
the attacker is able to apply some kind of stimuli to the smart card,
whose effect is that each bit at 1 in this register could flip to 0 with a
small probability p1. As p1 is assumed to be small, the probability for
two bits to flip simultaneously is considered as negligible. Then a very
generic attack applies:

(1) In a first step, the attacker asks for the encryption of some
plaintext P , then applies a ”stick-at-0” stimuli, asks for the
encryption of P again, etc. This way she obtains a sequence
of ciphertexts C0, C1, ..., Cr (if the same ciphertext has been
obtained several times due to the stimuli having no effect, we
keep only one copy of it). C0 is the ciphertext corresponding to
key K, and if the process described above has been conducted
a sufficient number of times, Cr corresponds to the encryption
of P under the all-0 key, and r is the Hamming weight of the
initial key.

(2) Let Ki be the key used to obtain Ci (K0 = K, Kr = 0). Then
Ki and Ki+1 differ only by one bit. Knowing Ki+1, it is possible
to retrieve Ki by doing trial encryptions under keys Ki+1 ∨
δj(j = 1, ..., n), where δj has all its bits equal to 0 except the
jth. As Kr is known, K0 can be retrieved by iterating this
process.

The overall complexity of the attack is Θ(r2). Trial encryptions in the
second stage require prior knowledge of the encryption algorithm. How-
ever this is not mandatory provided we can ask the smart card to load
a chosen key and perform encryption using this key. Nor is it if the
location of the bit stuck at 0 can be chosen.

In [129] P. Paillier examined the following modified model (probably
more realistic): when the card is exposed to the physical constraint
mentioned above, in addition to the 1 → 0 transitions, it is also possible
for a 0-bit to flip at 1 with a small probability p0 < p1. Under this
hypothesis he shows that the sequence (Ki)i does not converge to 0: as
the Hamming weight decreases, the number of candidates for a 0 → 1
transition grows, while the number of candidates for 1 → 0 decreases.
If p0 is not small enough compared to p1, an equilibrium is reached at
some Hamming weight; this can make the complexity of the attack much
bigger.

Furthermore, he proposes several countermeasures against this attack3:

3Note that these countermeasures are not necessarily efficient if the fault location
can be chosen.

V.4. FAULT ATTACKS ON BLOCK CIPHERS 121

• Checking whether the Hamming weight of the encryption key
is not too far from n/2. If yes, encrypt under the all-0 key; or
return an error.

• Using keys with parity-checking bits (as in the case of DES),
and return an error if the key does not pass the check.

• Authenticating the key using a hash function.

Finally, he notes that the attack does not work against probabilistic
algorithms (such as ElGamal encryption, DSA signature, or several other
public-key algorithms).

Regarding the particular case where the location of the bit stuck at 0
can be chosen by the attacker (which is a very restrictive hypothesis),
W.W. Fung and J.W. Gray propose in [57] a countermeasure where each
key bit in the memory register is repeated m times and all these bits
are mixed. The key is read through an hidden bit permutation layer; all
m copies of a given bit have to agree, else an error is given. They show
that applying this countermeasure the number of faults required for the
attack to succeed is Θ(nm).

An attack similar to this one has been put into practice in 1994, aiming
at a DES key; see section 3.3 of [6] for more details.

V.4.3. Reconstructing Unknown Ciphers

Under the same fault model as in section V.4.1, E. Biham and A. Shamir
showed that it is possible to reconstruct an unknown DES-like cipher.
First the number of S-boxes and their size are identified, as well as their
input and output bits (depending on the bit permutation layers). Then
the content of the S-boxes is identified, up to two constants (i.e. a table
T (x) is retrieved, related to the real S-box S(x) by T (x) = S(x⊕ k)⊕u
where u is a constant, and k a subkey). Finally, the exact content of the
S-boxes can be found by considering encryption under several different
keys. If the key scheduling algorithm is as simple as the one of DES,
it can be retrieved too. Running their algorithm choosing DES as the
unknown cipher, E. Biham and A. Shamir found that about 10000 faulty
ciphertexts were necessary to reconstruct the whole cipher.

In [4] R. Anderson and M. Kuhn note that retrieving the structure of
an algorithm such as RC5 [148] is even easier. They suggest that if a
cipher is to be kept secret (which is per se a questionable practice...), an
algorithm with large S-boxes kept in EEPROM (that is separate from
the program memory) should be preferred.

V.4.4. Other Attacks

Other attacks are also possible, like:

122 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

• By cutting a wire on a hardware implementation, one can defini-
tively fix a bit to 0. It is then not difficult to use this defective-
ness to retrieve key bits, even if correctly encrypted ciphertexts
are not available.

• A fault affecting a loop counter so that only 2 or 3 rounds of a
16-round DES are executed would trivially allow the cipher to
be broken.

V.5. Our Attack on Substitution-Permutation Networks

In this section we present a fault attack working against any block cipher
with a Substitution-Permutation structure. The attacker uses faults
occurring on words, which are changed to a random value (although we
will show that the attack would work against bit flip faults as well).
The block cipher structure considered is described in more details in
section V.5.1. The fault model is made explicit in section V.5.2. The
attack itself is presented in sections V.5.3 to V.5.5. Finally, section V.5.6
deals with badly timed faults and section V.5.7 analyzes the attack under
other fault models.

V.5.1. Description of the SP-Network Attacked

As we have seen in Chapter I, the round function of a substitution-
permutation network has the form σ[kr]◦θr ◦γr (r is the round number).
In our attack:

• The non-linear layer γr is assumed to be made out of n 8 × 8
S-boxes (not necessarily identical).

• kr = (kr
1, k

r
2, ..., k

r
n) denotes the rth round key.

• The key addition σ[k] is

σ[k](a) = b ⇔ bj = aj ⊕ kj (j = 1, 2, ..., n).

The group operation ⊕ is assumed to be exclusive or, but the
attack will work against other group operations as well.

• The diffusion layer θr is linear with respect to ⊕.

We denote the block size by 8n. Note that the fact that the S-boxes
are 8 × 8 is absolutely not mandatory for our attack; we restricted it
to this parameter as it is common to choose such a size, well fitted to
implementation considerations. 4 × 4 and 2 × 2 S-boxes can be viewed
as 8× 8 S-boxes as well, by considering groups of 2 (resp. 4) of them.

The last round of the cipher has the special form σ[kR]◦γR and the first
round is preceded by a key addition layer. Thus the whole cipher can
be described as

σ[kR] ◦ γR ◦ (
R−1
©
r=1

σ[kr] ◦ θr ◦ γr) ◦ σ[k0].

V.5. OUR ATTACK ON SUBSTITUTION-PERMUTATION NETWORKS 123

Figure 1. Last 2.5 rounds of a Substitution-
Permutation network.

Remark that the γr and θr layers need not be identical for all rounds.
Only the last two rounds4 are important for our attack. They are de-
picted in Figure 1.

V.5.2. Fault Model

We are dealing with faults occurring on one word, as they are usually
easier to induce than faults on bits. Concretely, we restrict ourselves to
considering bytes, because it is the word size of current smart cards, but
the attack would work for other sizes. It could even be adapted to the
case of faults on bits. We also assume that a faulty ciphertext results
from the occurrence of one unique fault (see section V.3).

We consider random faults, in the sense that the faulty value is assumed
to be random and uniformly distributed. Moreover we assume that the
fault occurred sometime between the before-last layer θR−2 and the last
layer θR−1 (i.e. somewhere inside the frame of Figure 1). Under this
condition, the exact stage of the computation at which the fault occurred
is indifferent, and cannot be guessed by observing the ciphertexts either.
In section V.5.6 we will deal with the problem of discarding ciphertexts
resulting from faults occurring at another time. In the remaining of
this chapter, by (C; C∗) we always denote a right ciphertext C and
its corresponding faulty ciphertext C∗. Also, unless otherwise stated,

4Or sometimes three in extensions of the attack. See section V.7.

124 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

indices will refer to byte positions (for example, C1 denotes the leftmost
byte of C).

V.5.3. Basic Attack

Consider thus 1-byte differences at the input of the linear layer θR−1.
We count 255n possible such differences (n different possible locations,
and 255 different possible values). Because of the linearity, the number
of corresponding possible differences at its output is also 255n; but while
the input difference affected one byte only, the output difference affects
several ones, because of the diffusion (if the diffusion layer has a maximal
branch number, all bytes are affected; otherwise only a few of them may
be affected). Note that the key addition σ[kR−1] does not change the
set of possible differences.

These considerations lead to a first sketch of attack. For simplicity we
assume the θR−1 layer achieves optimal diffusion.

(1) Compute the 255n possible differences at the output of θR−1,
i.e. the 255n values θR−1(x), where x has a byte Hamming
weight of 1. Store them in a list D.

(2) Consider a plaintext P , C its corresponding ciphertext, and C∗
the faulty ciphertext.

(3) For all possible values of round key kR, compute the difference

γ−1
R ◦ σ[kR](C) ⊕ γ−1

R ◦ σ[kR](C∗).

Check whether it is in D. If yes, add the round key to the list
L of possible candidates.

(4) Consider a new plaintext P (with corresponding C and C∗) and
go back to step 2 (this time step 3 only goes through the list
L of possible candidates; if the difference computed is not in
D, remove the candidate from L). Repeat until there remains
only one candidate in L.

If the diffusion layer does not have a maximal branch number, only a
limited number of bytes of the cipher are usually affected by a given
fault. Thus each pair (C; C∗) gives information only on a subset of the
round key bytes; the guess is made only on these bytes. The AES is a
good example of this fact.

After the last round key has been found, and if it is not sufficient to
retrieve the whole key, the last round is peeled off, and the attack is
repeated on the reduced cipher.

V.5. OUR ATTACK ON SUBSTITUTION-PERMUTATION NETWORKS 125

V.5.4. Complexity Analysis

We compute the fraction of the round keys kR that are suggested by a
single pair (C;C∗) with difference ∆ = C ⊕C∗. Suppose the number of
possible differences ∆′ before γR (for ∆ fixed and considering all possible
kR) is 255n. Among these, 255n are elements of D. Thus the fraction
of the keys surviving the test is 255n/255n = n · 2551−n.

However this computation does not take into account the fact that the
number of differences ∆′ before γR that can cause difference ∆ after it is
far less than 255n; this is due to the fact that the XOR distribution table5

of each S-box contains a lot of 0’s. Thus we made the hypothesis that for
the observed ∆, the fraction of elements of D among the corresponding
possible ∆′ is also about 255n/255n.

We conclude that the number of remaining wrong candidates for kR

after N (C; C∗) pairs have been treated is about 256n(n ·2551−n)N . The
conclusion (for all practical values of n) is that one pair (C; C∗) is not
enough to retrieve kR, but two are (still under the hypothesis that the
diffusion layer is optimal; see the AES case in section V.7 for an example
where it is not).

V.5.5. A Practical Attack

As it is presented, this attack is not really practical, as it implies a guess
on the last round key, that is to say a complexity ∼ 28n. We show that
slightly modifying the attack considerably reduces this complexity. Once
again, for simplicity reasons we assume the diffusion layer considered is
optimal. A similar technique, applied only to the bytes affected by the
fault, can be used when it is not.

(1) Compute the 255n possible differences at the output of θR−1.
Store them in a list D.

(2) Consider 2 right ciphertext/faulty ciphertext pairs (C; C∗) and
(D; D∗).

(3) Consider the two leftmost bytes of kR:
• For each of the 216 candidates, compute6

γ−1
R ◦ σ[〈kR

1 , kR
2 〉](〈C1, C2〉) ⊕ γ−1

R ◦ σ[〈kR
1 , kR

2 〉](〈C∗
1 , C∗

2 〉)
and

γ−1
R ◦ σ[〈kR

1 , kR
2 〉](〈D1, D2〉) ⊕ γ−1

R ◦ σ[〈kR
1 , kR

2 〉](〈D∗
1, D

∗
2〉).

5See section I.5 for definition of this concept.
6We commit a small abuse in notations by applying σ and γR to data of improper

length. The right way to understand this is to think that e.g. 〈C∗1 , C∗2 〉 has been right-
padded with 0’s, and that only the 2 leftmost bytes of the output are considered.

126 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

• Compare the results with the two leftmost bytes of the
255n differences in list D. Make a list L of the 〈kR

1 , kR
2 〉

for which a match is found for both ciphertext pairs.
(4) For each k• ∈ L, try to extend it by one byte:

• Remove k• from L.
• For all 28 kR

3 , compute

γ−1
R ◦ σ[〈k•2, kR

3 〉](〈C2, C3〉) ⊕ γ−1
R ◦ σ[〈k•2, kR

3 〉](〈C∗
2 , C∗

3 〉)
and

γ−1
R ◦ σ[〈k•2, kR

3 〉](〈D2, D3〉) ⊕ γ−1
R ◦ σ[〈k•2, kR

3 〉](〈D∗
2, D

∗
3〉).

• Compare the differences obtained with bytes 2 and 3 of the
255n differences in D. If a match is found (again for both
ciphertext pairs), add the newly extended key 〈k•, kR

3 〉 to
L.

(5) Repeat step 4 until elements of L have a length of n bytes.
(6) Apply now the first algorithm we gave using the same pairs

(C;C∗) and (D; D∗), but consider only the candidates kR in L
(their number is much smaller than 28n).

The idea of this algorithm is that its first 5 steps compute a set of
candidates of which the candidates selected by the first algorithm are a
subset; otherwise stated, every candidate obtained by applying the first
algorithm to pairs (C; C∗) and (D; D∗) will be returned by steps 1→5
of the second algorithm too, but the converse is not true. Thus, the first
5 steps of the second algorithm (that have a low complexity) perform
a “first sorting” of the candidates. After that, the size of the set of
candidates is quite small, so the first algorithm can easily deal with it.

V.5.6. Faults Occurring with a Wrong Timing

As the attacker does not always have control on the timing of the fault,
it is important to be able to distinguish pairs (C; C∗) resulting from
faults occurring between θR−2 and θR−1 (we call such pairs right pairs)
from other pairs (these are called bad pairs). It is trivial in the case
of diffusion layers for which a 1-byte difference in the input implies an
output difference affecting only some bytes of the output: in this case
it is enough to observe whether some bytes are identical in both C and
C∗.

But in the case of optimal diffusion layers, it is not possible to decide
whether one only pair (C;C∗) is a right or a bad one. However applying
our attack to 2 pairs (C; C∗) one of which is bad will very probably result
in no solution for the key kR. Thus we can indeed distinguish bad pairs
(C; C∗) from right ones, but only by considering pairs of ciphertext pairs
(C; C∗). Nevertheless the attack should be practical: if we consider that
1 ciphertext pair out of 50 is right, which is more than reasonable, we

APPLICATION TO KHAZAD 127

have 5000 pairs to examine before finding two right pairs, which is still
feasible.

V.5.7. Considering Other Fault Models

As we already mentioned, the attack would work as well if the faulty
ciphertexts result from one random bit flip. As a matter of fact, the
number of elements in list D would simply be reduced from 255n to
8n, the remaining of the attack being all the same. As the distinguish-
ing criteria has become stricter, the attack will in fact perform slightly
better.

If the faults result from one register being permanently stuck at 0, the
attack is still valid. Indeed, this fault model will result in the same
difference distribution as the original one, as the data after θR−2 can be
assumed to be random7. Of course, right ciphertexts must be collected
before the hardware is permanently damaged.

Finally, if it is difficult to induce only one fault, while two simultaneous
faults (thus affecting 16 bits, and both properly timed) can be created,
the attack still works but is less efficient; this time, the size of list D is
2552 · n(n−1)

2 .

V.6. Application to KHAZAD

V.6.1. Brief Description of KHAZAD

KHAZAD is a 64-bit block 128-bit key block cipher submitted to the
NESSIE [126] European project by P.S.L.M. Barreto and V. Rijmen [8].
It has 8 rounds, whose structure is the one described in section V.5.1,
with exclusive or used for key addition. Its γ layer (identical for all
rounds) is made up of the application of 8 identical involutive 8 × 8 S-
boxes. Its θ layer (also identical for all rounds) has optimal byte branch
number (i.e. 9) and is also involutive.

V.6.2. Our Attack Applied to KHAZAD

Two faults occurring between θR−1 and θR−2 are enough to retrieve kR

(as each fault gives information on all bytes of kR; remember that θ
is optimal). However knowledge of kR is not enough to retrieve the
whole key. Thus once kR is known the last round is peeled off. Then
a fault occurring between θR−2 and θR−3 is exploited to select about
2568 · (8 · 255−7) ' 2105 candidates for kR−1. We conclude the attack
by searching exhaustively among these candidates; knowledge of kR and
kR−1 allows the main key to be computed. Thus globally three faults

7However the ciphertext obtained will be correct with probability 1/256.

128 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

are needed.

We implemented our attack on a PC. It showed that using 2 right pairs
(C; C∗) we obtain one unique candidate for kR in about 90% of the
cases (otherwise 2 candidates remain, sometimes 4). One reason for this
bad score happens to be related to the choice of the S-boxes: it seems
that the worse an S-box is with respect to differential cryptanalysis,
the better it resists our fault attack. As an illustration, we applied our
attack to a modified version of KHAZAD using the AES S-boxes (whose
δ-parameter is smaller than the one of the KHAZAD S-boxes); then a
unique candidate is obtained from 2 right pairs (C; C∗) with probability
96%. Section V.7.3 sketches an explanation for this.
Note that the number of faulty ciphertexts needed to retrieve the key
is not affected by these figures; only the time complexity of the attack
(which remains small anyway) is. Also, when trying to recover kR with
2 ciphertext pairs one of which is bad, the set of candidates returned by
our algorithm was always empty.

V.7. Application to the AES

The AES [47] is another example of a substitution-permutation struc-
ture, as defined in section I.2. Its block size is 128 bits, while its key size
can be 128, 192, or 256 bits (see Appendix B.1 for details). We will only
deal with the 128-bit key variant, as it is the most widely used. Our
attack can be extended trivially to other variants.

V.7.1. Previous Work

Several papers have been written about fault analysis on the AES. We
summarize here their contributions, by chronological order. A compari-
son with our results will be made in section V.9.

The first paper we know of is the one of J. Blömer and J.-P. Seifert [27].
Mainly, two attacks are presented:

• The first one assumes that one can force to 0 the value of a
bit, as in section V.4.2. Moreover, the attacker must be able
to choose the location of the bit affected. This attack is unin-
teresting, as under these strong hypothesis the generic attack
described in section V.4.2 is applicable. 128 faulty encryptions
of plaintext 0 are required to retrieve the key using this tech-
nique.

• The second attack is implementation-dependent, and has sev-
eral variants depending on the implementation. Its principle is
to turn the timing attack on AES suggested by F. Koeune and
J.-J. Quisquater [102] into a fault based cryptanalysis. The

V.7. APPLICATION TO THE AES 129

fault model used also depends on the implementation. The
authors claim that about 16 faulty ciphertexts (with the fault
occurring at a carefully chosen location) are needed to retrieve
one key byte.

In [63], C. Giraud presents two fault attacks on the AES. Both require
the ability to obtain several faulty ciphertexts originating from the same
plaintext (contrary to our attack):

• The first one assumes it is possible to induce a fault on only one
bit of an intermediate result. More precisely, it exploits faults
induced on one bit before the last γ layer (while we exploit
faults occurring before the last diffusion layer). Under these
conditions, about 50 faulty ciphertexts are necessary to retrieve
the full key (provided the location of the fault can be chosen).

• The second attack exploits faults on bytes. It requires the abil-
ity of inducing faults at several chosen places, including the key
schedule. The author claims that 250 faulty ciphertexts are
needed (it is assumed that the attacker can choose the stage of
the computation where the fault takes place, but not the exact
byte), and that the time needed for computation is about 5
days.

The fault attack presented by C.-N. Chen and S.-M. Yen in [36] is an
improvement of Giraud’s second attack. It deals with byte faults as
well, but occurring on the key schedule only. For the attack to work,
several faults occurring at various locations of its last three rounds are
mandatory. If these conditions on the fault location are fulfilled, from
32 to 42 faults are needed to retrieve the key.

Finally, P. Dusart, G. Letourneux, and O. Vivolo [51] take advantage of
byte faults occurring between the 8th and the 9th MixColumns. Thus the
fault model and the hypothesis on the fault location are exactly the same
as in our attack. However the way they exploit faults is different from
ours: they use the particular form of the MixColumns transformation
and of the AES S-box to write and solve a system of equations (one by
S-box) of which the unknown value is the one of the fault (i.e. of the
byte difference engendered by the fault). Suggestions for 4 key bytes
follow. The authors show that 5 properly timed faults are necessary to
retrieve 4 key bytes. However using the same trick we will describe in
the next section, they show that 10 faults occurring between the 7th and
8th MixColumns are enough to retrieve the whole key.

V.7.2. Our Results

It is easy to see that a 1-byte difference at the input of the θ layer of
AES results in a 4-byte difference at its output. Concretely, it means

130 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

that a fault on one byte before the θR−1 layer will give information on
only 4 bytes of the last round key (the other bytes of both ciphertexts
C and C∗ being identical). More precisely, with the different bytes of
the state numbered as in Appendix B.1:

• A fault on byte a0,0, a1,1, a2,2, or a3,3 will release information
about round key bytes kR

0,0, kR
1,3, kR

2,2, kR
3,1.

• A fault on byte a0,1, a1,2, a2,3, or a3,0 will release information
about round key bytes kR

0,1, kR
1,0, kR

2,3, kR
3,2.

• A fault on byte a0,2, a1,3, a2,0, or a3,1 will release information
about round key bytes kR

0,2, kR
1,1, kR

2,0, kR
3,3.

• A fault on byte a0,3, a1,0, a2,1, or a3,2 will release information
about round key bytes kR

0,3, kR
1,2, kR

2,1, kR
3,0.

Consider a fault occurring on one of the bytes a0,0, a1,1, a2,2, or a3,3. We
compute that with one pair (C; C∗) about 1036 candidates for (kR

0,0, k
R
1,3,

kR
2,2, k

R
3,1) remain (see complexity analysis in section V.5). If two pairs

are exploited, we are in principle left with the right candidate only.
Thus with 8 faults at carefully chosen locations, we are able to recover
the whole key.

However it is possible to do better. Suppose a fault occurs on one byte
sometime between θR−3 and θR−2 (rather than between θR−2 and θR−1).
The corresponding difference after the θR−2 layer has 4 non-zero bytes.
Each of them can be exploited as described previously, and releases in-
formation about a different part of the last round key. For example, a
fault on a0,0 before θR−2 will result in a non-zero difference on a0,0, a1,0,
a2,0, and a3,0 after it. Thus using faults occurring sometime between
θR−3 and θR−2 allows us to kill 4 birds with one stone. As a conse-
quence, only 2 such faults are needed to retrieve the whole AES-128 key.

The results obtained after implementation of our attack well matched
our estimates. When one fault between θR−2 and θR−1 was considered,
the average number of candidates for 4 bytes of kR obtained was 1046
(instead of the expected 1036). A more surprising point (a priori) was
that 2 pairs (C; C∗), both giving information on the same 4 bytes of kR,
allowed the retrieval of a unique value for these bytes in only 98% of the
cases; otherwise two possible values for these 4 bytes remained (or even
four, but it was very rare). These deviations from the expected results
are due to the fact that we were making very few hypothesis on the θ
layer and the S-boxes in our complexity analysis. Thus our estimations
did not take into account particular features of these components. We
give a more detailed explanation for this 98% figure in the next section.

V.7. APPLICATION TO THE AES 131

Using 2 faults between θR−3 and θR−2, the number of candidates left for
the whole key never exceeded 16, and we obtained one only candidate
in 77% of the cases. The time needed to complete the attack is a few
seconds. Also, when applying the attack to 2 ciphertext pairs one of
which is bad (i.e. corresponds to a fault occurring before θR−3), the set
of candidates returned by our algorithm was always empty.

V.7.3. Thorough Complexity Analysis

In this section we analyze why 2 right pairs (C; C∗) and (D; D∗), both
releasing information on the same 4 bytes of kR, do not allow the com-
putation of a unique value for these 4 bytes in about 2% of the cases.

Let kR• := 〈kR
0,0, k

R
1,3, k

R
2,2, k

R
3,1〉 denote 4 bytes of the last round key of an

AES. Let C• := 〈C0,0, C1,3, C2,2, C3,1〉 and C∗• := 〈C∗
0,0, C

∗
1,3, C

∗
2,2, C

∗
3,1〉

be a right ciphertext and its faulty counterpart, both limited to the same
4 bytes. Then the corresponding difference ∆′ before γR is

∆′ = γ−1
R ◦ σ[kR

•](C)⊕ γ−1
R ◦ σ[kR

•](C∗)

= γ−1
R (C ⊕ kR

•)⊕ γ−1
R (C∗ ⊕ kR

•)

= γ−1
R (〈C0,0, C1,3, C2,2, C3,1〉 ⊕ 〈kR

0,0, k
R
1,3, k

R
2,2, k

R
3,1〉)

⊕ γ−1
R (〈C∗

0,0, C
∗
1,3, C

∗
2,2, C

∗
3,1〉 ⊕ 〈kR

0,0, k
R
1,3, k

R
2,2, k

R
3,1〉)

= [S−1(C0,0 ⊕ kR
0,0)⊕ S−1(C∗

0,0 ⊕ kR
0,0)]

‖ [S−1(C1,3 ⊕ kR
1,3)⊕ S−1(C∗

1,3 ⊕ kR
1,3)]

‖ [S−1(C2,2 ⊕ kR
2,2)⊕ S−1(C∗

2,2 ⊕ kR
2,2)]

‖ [S−1(C3,1 ⊕ kR
3,1)⊕ S−1(C∗

3,1 ⊕ kR
3,1)],

(95)

where S is the AES S-box and ‖ denotes the concatenation of two bit
strings.

From (95), it is immediate to check that replacing the key candidate kR•
by kR• ⊕C• ⊕C∗• , or any of the 14 other candidates obtained when only
some bytes of C•⊕C∗• are XORed to kR• , does not change ∆′. Therefore
if the pair (C•; C∗•) suggests kR• as a possible candidate for the key (which
will occur when ∆′ ∈ D, using the notations of section V.5), then the
15 other candidates will be suggested as well.

Consider a second pair (D;D∗) with D• := 〈D0,0, D1,3, D2,2, D3,1〉 and
D∗• := 〈D∗

0,0, D
∗
1,3, D

∗
2,2, D

∗
3,1〉; D∗• is the faulty counterpart of D•. As-

sume D• ⊕ D∗• shares some bytes with C• ⊕ C∗• ; suppose for example
C0,0 ⊕ C∗

0,0 = D0,0 ⊕ D∗
0,0. Then if our attack applied to both (C; C∗)

and (D;D∗) returns kR, then kR ⊕ 〈C0,0 ⊕ C∗
0,0, 0, 0, 0〉 will be returned

as well.

132 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

As the probability of having the same value at a given position of C⊕C∗
and D ⊕ D∗ is 1/255, the probability that we observe the same value
at at least one position is 1 − (254/255)4 ' 0.015. So we have found
the main reason why more than one key is returned in 2% of the cases.
Note that this phenomenon is not specific to the AES. Furthermore this
explanation could be generalized by referring to the XOR distribution
table (see Chapter I) of the S-box. Consider a given difference C0,0⊕C∗

0,0

at the output of one S-box of γR. For a given ∆′
0,0, we have shown that

if kR
0,0 is such that

S−1(C0,0 ⊕ kR
0,0)⊕ S−1(C∗

0,0 ⊕ kR
0,0) = ∆′

0,0, (96)

then kR
0,0 ⊕ C0,0 ⊕ C∗

0,0 satisfies (96) as well. But it may occur that
∆′

0,0 is obtained for other values of kR
0,0

8. The number of solutions kR
0,0

of (96) is given by the value of the entry (∆′
0,0, C0,0 ⊕C∗

0,0) in the XOR
distribution table of the S-box. Thus it appears then that paradoxically
good S-boxes with respect to differential cryptanalysis are also those
making our fault attack the most efficient (as they make the mean value
of a non-zero entry in the XOR distribution table smaller)...

V.8. Countermeasures

First, we should mention that hardware countermeasures exist: smart
cards contain security detectors that erase all the memory content or
reset the microprocessor if an abnormal event occurs, such as radiations,
power supply irregularity, clock glitch,... However in order to achieve a
very good security for a reasonable cost, a combination of both hardware
and software countermeasures is desirable. In this section we focus on
algorithmic countermeasures, as hardware protections are out-of-scope.

Regarding algorithmic countermeasures, a distinction is to be made be-
tween software and hardware implementations. In the case of software
implementations, the classical countermeasure is simply to perform the
computation twice, compare the results, and give an output only in the
case where they are identical. This method will work under the reason-
able hypothesis that the attacker is not able to induce twice exactly the
same fault at the same time and location. Note that practically, only
the first few and the last few rounds are computed twice, as an attack
exploiting faults on the middle rounds of a block cipher is much more
difficult to mount9. It is why analysis of the resistance of block ciphers
against differential fault attacks is important, as it permits to assess the
number of rounds that should be protected.

8This explains the difference between the probability 0.02 observed experimentally
and the probability 0.015 computed before.

9On the other hand, the first few rounds are potentially vulnerable. See the recent
paper of L. Hemme [71].

V.8. COUNTERMEASURES 133

The same trick cannot be applied “as is” in the case of hardware. Indeed
in this case by damaging the hardware at some point, it is possible to
reproduce exactly the same fault several times. The solution consists
in using hardware redundancy. In its simplest form, the hardware is
simply duplicated (which has the drawback of doubling the area taken by
the implementation); the result of both encryptions is compared before
outputting. However if a decryption module that is completely separate
from the encryption module is present in the circuit10, it can be used
to do fault detection, by using it to decrypt intermediate results while
encryption keeps processing, and checking whether the original data is
obtained. This way of working has been examined for example in [88].
In [80] N. Joshi et al. show how to use the involutive character of
some ciphers (KHAZAD [8], ICEBERG [161] (see Chapter VII)) to do
fault detection (almost) without hardware overhead.

An alternate approach consists in using error correcting codes. However
it is really not convincing for two reasons. The first is that several
papers on the subject where written by error-correction theoreticians,
who often miss the real issue of fault attacks. An extreme example
is [56], where the authors suggest to insert error-correction bits in the
plaintext, with a view to detect errors after decryption, i.e. much to
late to permit protection against a fault attack (to their discharge, the
authors seem to have been simply unaware of the fault attack issue; their
only purpose was to protect against transmission errors). The second is
more fundamental, and derives from a too small efficiency: for example,
the system proposed by R. Karri et al. [87] detects virtually all 1-bit
faults, but will fail roughly one half of the times, which is much too
much, if the fault is spread over several bits.

Finally, a middle term between these two solutions (i.e. lighter than
duplicating the hardware, but significantly more efficient than error-
correcting codes) can sometimes be devised. For example in the partic-
ular case of the AES S-box (which, up to an affine transform, consists of
an inversion in the field GF(28)), M. Karpovsky et al. suggested in [86]
to do partial multiplication in GF(28) between the input and the output
of the S-box, and check whether the result is 1 ∈ GF(28); the number of
bits of the product that are computed depends on the security wanted.

To summarize, countermeasures against differential fault attacks exist,
but they have a certain cost (as for all other side-channel attacks). Devis-
ing and analyzing fault attacks is necessary as it permits us to estimate
the strength of the countermeasures to be deployed.

10But it is often the case that the same hardware is basically used for both encryp-
tion and decryption. Consider for example Feistel ciphers such as DES, or involutive
ciphers such as KHAZAD [8] or ICEBERG [161] (see Chapter VII).

134 V. DIFFERENTIAL FAULT ATTACKS - APPLICATION TO SP-NETWORKS

Table 1. Comparison of existing fault attacks against
the AES.

Ref. Fault Model Fault Location # Faulty Encryptions
[27] Force 1 bit to 0 Chosen 128
[27] Fct of impl. Chosen 256
[63] Switch 1 bit Any bit of chosen bytes ∼ 50
[63] Disturb 1 byte Anywhere among 4 bytes ∼ 250

(including in the key schedule)
[36] Disturb 1 byte Anywhere among 3 bytes usually 32

in the key schedule
[51] Disturb 1 byte Anywhere between θR−3 and θR−2 10

Our result Disturb 1 byte Anywhere between θR−3 and θR−2 2

V.9. Conclusion

In this chapter we first discussed the different types of faults that can
be induced during the execution of a cryptographic algorithm. We have
shown how these various fault models can be used to retrieve the key of
a block cipher, based on several papers from the literature.

No block cipher is a priori immune against differential fault attacks.
However the efficiency of such an attack may vary from cipher to cipher.
Quantifying this efficiency is interesting in order to implement ad-hoc
countermeasures, both cheap and efficient. As an example, it has been
widely believed for years that only the last few rounds of a cipher like
DES or Triple-DES needed to be protected against fault attacks. The
recent paper of L. Hemme [71] will probably change this practice.

We have devised a technique of attack that can work against any al-
gorithm with a SP-Network structure. The basic idea of our attack is
to use the diffusion property of the last θ layer, in order to determine
whether the difference before the last nonlinear layer γ possibly origi-
nates in a fault or not. This provides us with a distinguishing criteria
for the last round key. The fault model used is quite liberal and real-
istic: we simply need random faults occurring on bytes. Moreover, the
attack would work under several other fault models as well. The ability
to choose the timing of the fault is not important either: of course only
faults occurring in a given time window (between θR−2 and θR−1 in the
general case, between θR−3 and θR−1 in the case of AES) are exploitable,
but those occurring outside it can be discarded.

Application of our technique to the AES revealed it was pretty efficient,
as under proper hypothesis on the timing of the fault only two faulty
ciphertexts are needed to retrieve the key, while at least ten were previ-
ously needed. Moreover only one properly timed fault reduces the size
of the key space to be explored to 10464 ' 240, which (almost) allows
an exhaustive key search.

For comparison purposes, a summary of existing attacks against the AES
is given in Table 1. Among these, the most similar to ours is the one

V.9. CONCLUSION 135

of P. Dusart et al. [51]. The difference mainly lies in the way faults are
exploited. [51] exploits the particular structure of the AES S-box and
MixColumns, while we do not. The consequence is that their attack is not
adaptable to other algorithms; ours can be used to attack KHAZAD (as
we showed in section V.6), but also ciphers like Serpent [2], Anubis [7]11,
or ICEBERG [161] (see Chapter VII). On the other hand, note that an
algorithm such as SAFER++ [112] is not directly vulnerable to our
attack, due to the use of two different group operations for key mixing.

It is amusing to note that it is the very simple and elegant structure
of SPN structures that makes our attack so efficient... It is not clear
whether ciphers with a more intricate structure could be broken with so
few ciphertext pairs. More fundamental is the following problem: nowa-
days no differential fault attack exists exploiting faults on the middle
rounds of AES. Should these rounds be protected? This question illus-
trates the limits of our knowledge on the subject. As in several areas
of cryptography (and more specially block ciphers), the main security
assessment we have is the absence of attack, but no security proofs are
known. Finding such proofs in the case of fault attacks on block ciphers
is an open problem.

11But this last must be rewritten in order to comply with our description of an
SPN structure.

CHAPTER VI

Scrambling Functions:
On the Security of DeKaRT

Abstract. This chapter deals with scrambling functions. These
functions are intended to provide some obfuscation of data tran-
siting inside a smart card, in order to protect against probing
attacks; however due to hardware constraints they are much less
secure than block ciphers.
We analyze the DeKaRT scrambling function presented at CHES
2003 [65] using linear cryptanalysis. We show that despite its key-
dependent behavior, DeKaRT still has strongly linear structures,
that can be exploited even under the particular hypothesis that
only one bit of the ciphertexts is available to the attacker (as it
is the case in the context of probing attacks), and using very few
plaintext-ciphertext pairs. The attack methodology we describe
could be applied to other data scrambling primitives exhibiting
highly biased linear relations.
The results presented in this chapter have originally been pub-
lished in [143].

VI.1. Introduction

In this chapter we deal with a different type of side-channel attack,
namely invasive techniques, by opposition with non-invasive techniques
such as those mentioned in the previous chapter. The particularity of
invasive attacks is that they require depackaging of the card, which con-
stitutes a challenge in itself, as smart card manufacturers foresee pro-
tections to prevent this [3, 104]: typically the chip is covered by meshes
of conductors, and any interruption or short-circuit in them causes the
card to delete all its sensitive data. After a successful depackaging, the
attacker gets direct access to the card’s components.

More precisely, we focus on probing attacks: by introducing a conductor
in some point of a tamper-resistant chip, one is able to monitor the elec-
tric signal at this point, and therefore to observe information transiting
there. For example, the bus connecting the RAM and the microproces-
sor is particularly vulnerable, as it has an easily recognizable structure,
and conveys secret information, such as RSA private keys.

137

138 VI. SCRAMBLING FUNCTIONS: ON THE SECURITY OF DeKaRT

An obvious algorithmic countermeasure to protect against probing at-
tacks would be to encrypt transiting data using a block cipher. However,
as the encryption has to be performed by a hardware circuit preferably
within one only clock cycle (in order to be transparent for the other
components of the smart card), and as strong constraints exist regard-
ing the size of the circuit, using a classical block cipher such as DES
or AES is illusory. On the other hand, as the probing technique would
usually allow the attacker to see only one or a few bits of the encrypted
data (because of the difficulty of depackaging), security requirements for
such an encryption function are lowered compared to classical criteria
for block ciphers. Such a “light” encryption algorithm is usually referred
as a data scrambling (or obfuscation) function.

In section VI.2, we briefly present the contribution of E. Brier, H. Hand-
schuh and C. Tymen [29] on the theory of data scrambling. In sec-
tion VI.3, we present a more secure but heavier structure, due to J.D.
Golić: DeKaRT [65]. Then in the remaining sections we analyze the
security of DeKaRT in a probing scenario where the attacker has access
to one ciphertext bit only, by using linear cryptanalysis (see [113] and
Chapter I). These results were initially presented in [143]. We conclude
that security of DeKaRT is a bit deceptive given its complexity.

VI.2. On the Use of Bit Permutations for Data Scrambling

The scrambling functions examined by E. Brier et al. in [29] consist in
keyed bit permutations (thus only the position of the bits is modified,
depending on the key). More formally, a (n, k)-keyed permutation is de-
fined as a map from the key space Zk

2 to the group Sn of the permutations
of {0, ..., n− 1}:

σ : Zk
2 → Sn

K 7→ σK

They assume the attacker is allowed to play with the microprocessor,
which implies that she can send known data to the memory. Her goal is
to decipher a secret data present in the card and read from the memory
at some time. She has access only to a subset of the bits (cn−1, ..., c1, c0)
of the corresponding ciphertexts. Then the following definition makes
sense.

Definition 32. The degree of freedom of an (n, k)-keyed permutation
is the smallest integer m ≥ 1 such that there exists an (m + 1)-tuple
(i1, ..., im+1) of pairwise distinct elements of {0, ..., n− 1} such that the
map

{σK |K ∈ Zk
2} → {0, ..., n− 1}m+1

σK 7→ (σK(i1), ..., σK(im+1))

VI.3. A NEW PARADIGM: DeKaRT 139

RK

m

mm

m

2 k

k

n

n

MUX

Figure 1. Generic DeKaRT building block.

is injective.

Informally, the degree of freedom corresponds to the maximal number
of ciphertext bits an attacker may learn without being able to retrieve
σK . The authors explain the construction of several (n, k)-keyed permu-
tations; the design criteria are a large degree of freedom, small number
of gates and logical depth. The best constructions have a degree of free-
dom of at least n/2− 1. And as an example, for a 16-bit block size1 the
number of multiplexers of one of the constructions is 88 and the logical
depth 4.

VI.3. A New Paradigm: DeKaRT

Keyed bit permutations have the drawback to be perfectly linear. The
solution proposed by J.D. Golić [65] does not have this disadvantage;
however its hardware complexity and logical depth are greater.

The overall DeKaRT construction looks a bit like a SP-Network: it al-
ternates linear key-independent layers (denoted BP for Bit Permutation)
and non-linear key-dependent layers (denoted KT for Keyed Transform).

The key-dependent layer is made out of the parallel application of a
generic building block as the one depicted in Figure 1. A generic building
block acts on a small number of input data bits which are divided into
two groups of m and n bits. The m input bits are used for control and
are passed to the output intact, like in the Feistel structure. They are
used to select k out of 2mk key bits by the multiplexer (MUX) circuit
with m control bits, 2mk input bits and k output bits. Depending on the
key bits, the multiplexer can implement any possible function. Finally,
RK denotes a family of invertible functions parameterized by the key
bits K. More desirable criteria for its choice are given in the original
paper.

1Due to the sometimes small size of the data exchanged and the need for efficiency,
the block size of a data scrambling function is small.

140 VI. SCRAMBLING FUNCTIONS: ON THE SECURITY OF DeKaRT

MUX

x3 x2 x1 x0
key[11...0]

y0y1y3 y2

Figure 2. Elementary DeKaRT building block.

As indicated by its name, the BP layer consists in bit permutations.
Moreover two designs rules were imposed in order to optimize diffusion:

• The m control bits in each layer should be used as the trans-
formed bits in the next layer. It imposes m ≤ n.

• For each generic block of a given KT layer, input bits should
come from the maximum possible number of blocks in the pre-
vious KT layer.

The inverse DeKaRT network is obtained by replacing RK by R−1
K

and BP by BP−1. Note that the name of the construction comes
from “Data-chooses-Key-chooses-Reversible Transformation”, which is
condensed by D → K → RT or DeKaRT .

VI.4. Specification of a Concrete Instance of DeKaRT and
Notations

In Golić’s paper a more concrete instance of DeKaRT is given, but it
is not fully specified. We believe it is a mistake, as security analysis
requires a completely specified cipher; and security of a cipher which
has not been subject to a substantial effort regarding security analysis
can be questioned (except if a security proof is given, which is never the
case for block ciphers). It is why we give here a full specification of a
DeKaRT instance.

Golić suggests an elementary DeKaRT building block with parameters
(m, n, k) = (2, 2, 3) as shown in Figure 2 where after a XOR with 2 key
bits, x3 and x2 pass through a conditional switch parameterized by a
third key bit. We will use this building block in our specification. Each
box requires 12 key bits. We will denote these bits by

(k(11), k(10), k(01) , k(00)) =

(k(11)
X , k

(11)
⊕1 , k

(11)
⊕2 ; k(10)

X , k
(10)
⊕1 , k

(10)
⊕2 ; k(01)

X , k
(01)
⊕1 , k

(01)
⊕2 ; k(00)

X , k
(00)
⊕1 , k

(00)
⊕2),

VI.5. ANALYSIS OF AN ELEMENTARY DeKaRT BLOCK 141

Table 1. The BP layer.
Input Bit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Output Bit Position 5 0 15 10 1 4 11 14 13 8 7 2 9 12 3 6

where k(i) denotes the three key bits selected by control bits (x1, x0) = i;
k

(i)
X is conditioning the switch, while k

(i)
⊕1 is XORed with x3 and k

(i)
⊕2 is

XORed with x2. The set of such 12 key bits is called a subkey.

The instance of DeKaRT we will consider acts on blocks of 16 bits. Thus
KT consists in the parallel application of 4 such elementary blocks. The
number of rounds considered is 5 (this number is given as an example
in [65], p.104). We will denote the subkeys parameterizing the four
elementary blocks of the rth round by RKr

3 , RKr
2 , RKr

1 , RKr
0 , from left

to right. The set of 4 such subkeys is called a round key (thus it has 48
bits).

We arbitrarily chose a bit permutation layer following the rules given in
section VI.3. It is given in Table 1.

Finally, as suggested in [65], the key expansion algorithm also alternates
“keyed” layers (with the key being an arbitrarily chosen constant), with
bit permutations layer. The 48-bit data obtained every two rounds is
used as a round key. The keyed layer is made out of the parallel applica-
tion of 16 reduced DeKaRT building blocks with 3-bit input and output,
alternating with a bit permutation layer complying with the design rules
given above. Figure 3 pictures part of this algorithm. Note that the bit
permutation layer could have been chosen less “regular”, but in fact its
influence on the results of our attack is negligible.

VI.5. Analysis of an Elementary DeKaRT Block

A DeKaRT building block generates key-dependent Boolean functions.
If a (2,2,3) block is used, 4096 substitution tables (4 × 4 bits) can be
generated, as this type of block is parameterized by 12 key bits.

In this section, we investigate the possible linear approximations of an
elementary DeKaRT block. For each output bit, there exist 24 − 1
possible non-trivial input masks (i.e. 24−1 possible linear combinations
of input bits) and if we combine output bits together, we have (24 − 1)
×(24 − 1) possible non-trivial linear approximations of the DeKaRT
block. For such a small block size, the problem of finding good linear
approximations is therefore easily solved by exhaustive search.

As in Chapter I, we define the bias of a linear approximation that holds
with probability p as ε = |p−1/2|. We also denote a linear approximation
with probability p = 0 or p = 1 as a perfect linear approximation.

We computed the bias εmax of the best linear approximation of each
of the 4096 substitution tables; however approximations involving bits

142 VI. SCRAMBLING FUNCTIONS: ON THE SECURITY OF DeKaRT

MUXMUX MUX

MUX MUX MUX

Figure 3. a part of the key expansion.

Table 2. Linear approximations of a single DeKaRT block.

εmax 1/2 3/8 1/4
Nbr. Approx. 2304 1024 768

y0, y1 only were rejected as they are obviously perfectly linear. The
results are summarized in Table 2. We observe that more than one half
of the generated tables present perfect linear approximations and may
therefore be considered as very weak from a cryptographic point of view.

On the basis of this first experiment, we may therefore assess that a large
number of keys will generate weak building blocks for the scrambling
function as they are perfectly approximated by a linear approximation.
This motivated a more general analysis.

VI.6. The Attack

The scenario of the attack is similar to the one of section VI.2. We
assume the attacker is allowed to play with the microprocessor, which
implies that she can send known data to the memory. She has access to
one only bit of the encrypted data via a probing attack. Formally, this
means that she can obtain a certain number m of pairs (P, c), where P is
a known plaintext, and c is one fixed bit of the corresponding ciphertext
C. Her goal is to obtain information about a secret data (such as an
RSA private key) present in the card and read from the RAM at some
time. Thus it it not a key recovery attack, in the sense that we do not
intend to retrieve the key used for DeKaRT data scrambling (it can be
changed at each use of the card anyway).

Due to the building blocks of DeKaRT being implemented using key-
dependent MUXs, the probability of a linear relation between a given bit

VI.7. COMPUTING PROBABILITY THROUGH A 5-ROUND CIPHER 143

of the ciphertext and some bits of the plaintext is highly key-dependent.
In our attack, pairs (P, c) are used to identify a linear relation between
only one bit of the ciphertext and several bits of the plaintext, that
holds with a high bias for the key used. Then when the secret data
passes through the channel between the RAM and the processor, the
relation we just identified permits probabilistic information about it to
be retrieved.

Let λ be the linear relation we are considering. Knowing m pairs (P, c),
we count how many of these satisfy the linear relation λ; let nm

λ be
the random variable corresponding to this number. We would like to
compute the probability that λ holds for a random plaintext, provided
nm

λ takes value B

PK,P [λ holds|nm
λ = B]. (97)

|PK,P [λ holds|nm
λ = B] − 1/2| gives the reliability of the prediction we

will make. Let us define the random variable Nλ as the number of
plaintexts for which λ holds, out of all 216 plaintexts this time. Then
we have:

PK,P [λ holds|nm
λ = B]

=
216∑

A=0

P[λ holds|Nλ = A] · P[Nλ = A|nm
λ = B]

=
216∑

A=0

A/216 · P[Nλ = A|nm
λ = B]

=
216∑

A=0

A/216 · P[nm
λ = B|Nλ = A] · P[Nλ = A]

∑216

A′=0 P[Nλ = A′] · P[nm
λ = B|Nλ = A′]

∼=
∑216

A=0 A/216 · P[Bi(m, A/216) = B] · P[Nλ = A]∑216

A′=0 P[Bi(m,A′/216) = B] · P[Nλ = A′]
(98)

where Bi(., .) denotes the binomial distribution law, the third equality
uses Bayes formula, and the final approximation assumes m ¿ 216. Thus
computation of (97) requires knowledge of the probability distribution
of Nλ, i.e. {PK [Nλ = A]}216

A=0. The next section will show how such a
distribution can be computed.

VI.7. Computing Probability Distribution for a Linear Rela-
tion Through a 5-Round Cipher

Consider 5 rounds of DeKaRT , beginning and ending with a keyed
layer (see Figure 4). We denote the plaintext by (p15, p14, ..., p1, p0) or

144 VI. SCRAMBLING FUNCTIONS: ON THE SECURITY OF DeKaRT

MUX MUX MUXMUX

MUX MUX MUXMUX

MUX MUX MUXMUX

b
14

(4)

(4)

15
a

(4)

12
a

(4)

14
a

MUX MUX MUXMUX

(3)

6
b

(3)

7
b

(3)

5
b

4
b

(3)

5
b

(2)

4
b
(2)

7
b

(2)

6
b

(2)

(3)
7

a

7
a

(2)

(3)
6

a

6
a

(2)

(3)
5

a

5
a

(2)

(3)
4

a

4
a

(2)

MUX MUX MUX

a(3)
3

b
3

(3)

a(3)
2

2
b

(3)

a(3)
0

0
b

(3)

a(3)
1

1
b

(3)

(4)

13
a

K0

K3

K1 K2

α

MUX

β

Figure 4. Linear approximation through a 5-round DeKaRT .

(a(1)
15 , a

(1)
14 , ..., a

(1)
1 , a

(1)
0). Moreover

KT ((a(i)
15 , a

(i)
14 , a

(i)
13 , ..., a

(i)
1 , a

(i)
0)) =: (b(i)

15 , b
(i)
14 , b

(i)
13 , ..., b

(i)
1 , b

(i)
0),

and

BP ((b(i)
15 , b

(i)
14 , b

(i)
13 , ..., b

(i)
1 , b

(i)
0)) =: (a(i+1)

15 , a
(i+1)
14 , a

(i+1)
13 , ..., a

(i+1)
1 , a

(i+1)
0).

The exponent denotes the round number and the ciphertext will be
denoted by

(b(5)
15 , b

(5)
14 , ..., b

(5)
1 , b

(5)
0) or (c15, c14, ..., c1, c0).

Consider one bit α := b
(5)
0 of the ciphertext after a 5-round cipher. As

an example, we will analyze the linear relation between α and β := a
(1)
0

(see Figure 4). Other relations can be analyzed similarly. We write
successively:

• α = b
(4)
14 .

VI.7. COMPUTING PROBABILITY THROUGH A 5-ROUND CIPHER 145

• b
(4)
14 is a function of (a(4)

15 , a
(4)
14 , a

(4)
13 , a

(4)
12) depending on K0 :=

RK4
3 (see Figure 4).

• (a(4)
15 , a

(4)
14) = (b(2)

7 , b
(2)
6).

• a
(4)
13 = b

(3)
7 is a function of (a(3)

7 , a
(3)
6 , a

(3)
5 , a

(3)
4) depending on

K1 := RK3
1 . As for β fixed a

(3)
6 is active (i.e. it takes values 0

and 1 equally often; see Chapter III) and as this bit affects α

only by means of the block keyed by K1, key bits k
(i)
⊕2 of K1 do

not affect the probability of the equation α = β.
• a

(4)
12 = b

(3)
2 is a function of (a(3)

3 , a
(3)
2 , a

(3)
1 , a

(3)
0) depending on

K2 := RK3
0 . For the same kind of reason as before, key bits

k
(i)
⊕1 of K2 do not affect the probability.

• Finally, (b(2)
7 , b

(2)
6) is a function of (a(2)

7 , a
(2)
6 , a

(2)
5 , a

(2)
4) depend-

ing on K3 := RK2
1 . Still using the same arguments, we note

that key bits k
(i)
⊕1 of K3 do not affect the probability.

Thus the probability of α = β (computed over all 216 plaintexts) depends
on 4 subkeys (or at least part of them): K0,K1,K2,K3. We write them
as:

K0 = (k(11)
0 , k

(10)
0 , k

(01)
0 , k

(00)
0)

K1 = (k(11)
1 , k

(10)
1 , k

(01)
1 , k

(00)
1)

K2 = (k(11)
2 , k

(10)
2 , k

(01)
2 , k

(00)
2)

K3 = (k(11)
3 , k

(10)
3 , k

(01)
3 , k

(00)
3)

There are 12+3×8 = 36 subkey bits implied. A priori it does not allow
easy exhaustive computation of the probability for every key (complexity
236 × 216). However there are groups of values for which the associated
probability is the same. Let us say that 2 subkeys K1 and K1∗ are equiva-
lent if for any K0, K2,K3, the probability associated to (K0, K1, K2,K3)
and (K0, K1∗,K2,K3) is identical; Equivalence between 2 subkeys K2

and K2∗ is defined similarly. We can make the following observations:

• For β fixed (a(3)
5 , a

(3)
4) is active (i.e. it takes values 00, 01, 10

and 11 equally often; see Chapter III). Therefore two subkeys
K1 and K1∗ such that there exists a permutation Π : {0, 1}2 →
{0, 1}2 satisfying k

(i)
1 = k

(Πi)
1∗ (∀i ∈ {00, 01, 10, 11}) are equiva-

lent.
• The same argument can be used for K2.
• As from the output of the block keyed by K1 only bit b

(3)
7

matters, if k
(i)
1,X = 1 (for some i ∈ {00, 01, 10, 11}), then k

(i)
1,⊕1

does not affect the probability. Otherwise stated, if K1 and
K1∗ are such that k

(i)
1 = (1, 0, 0) while k

(i)
1∗ = (1, 1, 0) (other

bits being the same), they are equivalent.

146 VI. SCRAMBLING FUNCTIONS: ON THE SECURITY OF DeKaRT

Table 3. Equivalence classes for K1 and K2 with their cardinalities.

K1 # K2 #
(000; 000; 000; 000) 16 (000; 000; 000; 000) 16
(000; 000; 000; 010) 448 (000; 000; 000; 001) 448
(000; 000; 000; 100) 128 (000; 000; 000; 100) 128
(000; 000; 010; 010) 1120 (000; 000; 001; 001) 1120
(000; 000; 010; 100) 896 (000; 000; 001; 100) 896
(000; 010; 010; 010) 448 (000; 001; 001; 001) 448
(000; 010; 010; 100) 896 (000; 001; 001; 100) 896
(010; 010; 010; 010) 16 (001; 001; 001; 001) 16
(010; 010; 010; 100) 128 (001; 001; 001; 100) 128

• With the same kind of argument, k
(i)
2 = (1, 0, 0) and k

(i)
2∗ =

(1, 0, 1) are equivalent.
• Similarly, as output b

(4)
15 of the block keyed by K0 does not

matter, we have:

k
(i)
0 = (0, 0, 0) ∼ k

(i)
0 = (0, 1, 0) k

(i)
0 = (0, 0, 1) ∼ k

(i)
0 = (0, 1, 1)

k
(i)
0 = (1, 0, 0) ∼ k

(i)
0 = (1, 0, 1) k

(i)
0 = (1, 1, 0) ∼ k

(i)
0 = (1, 1, 1)

• Suppose ∃i, j : k
(i)
1 = (0, 0, 0) and k

(j)
1 = (0, 1, 0). Then, the

key bit added to a
(3)
7 is 0 for the 214 plaintexts for which

(a(3)
5 , a

(3)
4) = i; it is 1 for the 214 plaintexts for which (a(3)

5 , a
(3)
4) =

j. Thus (taking into account that for (a(3)
5 , a

(3)
4) fixed a

(3)
7 is ac-

tive) when (a(3)
5 , a

(3)
4) ∈ {i, j}, b

(3)
7 = 1 one half of the times.

Now if we replace k
(i)
1 and k

(j)
1 by (1, 0, 0), when (a(3)

5 , a
(3)
4) ∈

{i, j} we have b
(3)
7 = a

(3)
6 . As a

(3)
6 is active (for fixed (a(3)

5 , a
(3)
4)),

we still have that b
(3)
7 = 1 one half of the times.

The conclusion is that if a given key is such that ∃i, j : k
(i)
1 =

(0, 0, 0) and k
(j)
1 = (0, 1, 0), then if k

(i)
1 and k

(j)
1 are replaced by

(1, 0, 0) the key obtained is equivalent to the former one.

• Similarly, if ∃i, j : k
(i)
2 = (0, 0, 0) and k

(j)
2 = (0, 0, 1), replac-

ing these bits by k
(i)
2 = k

(j)
2 = (1, 0, 0) does not change the

probability.

Putting all these observations together, there are 9 equivalence classes
for K1 as well as for K2. They are given in Table 3, with the number of
elements in each class (out of 212).

Finally, the number of different quadruples (K0,K1,K2,K3) to explore
in order to compute the probability distribution {PK [Nα=β = A]}216

A=0

is 92 · (28)2 ∼= 222. This number could be further reduced, by exploiting

VI.7. COMPUTING PROBABILITY THROUGH A 5-ROUND CIPHER 147

more complex equivalences such as: “if K0 has such value, then value
of K1 does not matter”. However it is not necessary as with complexity
222 ·216, the probability distribution of Nα=β is computable. It is roughly
given in Table 4. Out of the 216 + 1 a priori possible values for Nα=β,
only 199 occur with a non-zero probability. We only mention the ones
having probability ≥ 0.01. Moreover we give probabilities associated
with intervals. Because of theorem 33, the table only goes from 0 to 215.

Theorem 33. For A ∈ {0, ..., 216},
PK [Nα=β = A] = PK [Nα=β = 216 −A].

Proof. For a given K0 := RK4
3 , consider the transform .̂ : K0 → K̂0

defined by:

• For i ∈ {00, 01, 10, 11}, k̂
(i)
0,X = k

(i)
0,X .

• For i ∈ {00, 01, 10, 11}, if k
(i)
0,X = 0 then k̂

(i)
0,⊕1 = k

(i)
0,⊕1 and

k̂
(i)
0,⊕2 = k

(i)
0,⊕2.

• For i ∈ {00, 01, 10, 11}, if k
(i)
0,X = 1 then k̂

(i)
0,⊕1 = k

(i)
0,⊕1 and

k̂
(i)
0,⊕2 = k

(i)
0,⊕2.

If is easy to check that for a given plaintext, changing K0 to K̂0 also
changes α to α. Therefore if a quadruple (K0,K1,K2,K3) is such that
Nα=β = A, the quadruple (K̂0,K1,K2,K3) is such that Nα=β = 216−A.

It is easy to check that .̂ is an automorphism and an involution. Consider
the sets

SA = {(K0,K1,K2,K3) s.t. Nα=β = A},
ŜA = {(K̂0,K1,K2,K3) s.t. (K0,K1, K2,K3) ∈ SA}.

(99)

Because .̂ is an automorphism we have

|SA| = |ŜA|. (100)

The observation we made before implies ŜA ⊆ S216−A. Thus we have

Ŝ216−A ⊆ SA as well, which implies ̂̂
S216−A ⊆ ŜA and, because .̂ is an

involution, S216−A ⊆ ŜA. So we get

ŜA = S216−A. (101)

(100) and (101) imply |SA| = |S216−A|. ¤

It is worth mentioning that in the previous discussion we made the (clas-
sical) hypothesis that the round keys are independent and uniformly
distributed, while in practice they derive from the master key using
the key expansion described in section VI.4; in fact some quadruples

148 VI. SCRAMBLING FUNCTIONS: ON THE SECURITY OF DeKaRT

Table 4. Probability distribution of Nα=β.

Nα=β PK

∈ [0, 16383] 0.006
= 16384 0.010

∈ [16385, 22527] 0.029
= 22528 0.013

∈ [22529, 24575] 0.013
= 24576 0.053

∈ [24577, 26623] 0.024
= 26624 0.028

∈ [26625, 27647] 0.009
= 27648 0.022

∈ [27649, 28671] 0.014
= 28672 0.045

∈ [28673, 29695] 0.012
= 29696 0.026

∈ [29697, 30719] 0.013
= 30720 0.050

∈ [30721, 31743] 0.015
= 31744 0.016

∈ [31745, 32767] 0.013
= 32768 0.178

(K0,K1,K2,K3) simply cannot be derived from a master key. Com-
putation of the value taken by Nα=β for a small number of random
keys from which round keys have been derived perfectly validated the
hypothesis.

VI.8. Searching for Other Linear Relations Through 5 Rounds

The procedure described in the previous section to compute the dis-
tribution of Nλ for a given linear relation λ is complicated and has
non-negligible time complexity. It is however possible to identify linear
relations having a big mean bias by evaluating this bias using only a part
of the 216 plaintexts, and this for a relatively small number of keys. Do-
ing this, we observed that there are “families” of linear relations having
about the same mean bias. Moreover linear relations from some fami-
lies have their output bit belonging to S1 ≡ {c0, c1, c4, c5, c8, c9, c12, c13},
while those from the other families have their output bit belonging to
S2 ≡ {c2, c3, c6, c7, c10, c11, c14, c15}. This is due to the fact that the last
round of DeKaRT need not be approximated if the output bit ∈ S1.
Details about the families with the best mean bias are given in Table 5.

VI.9. IMPLEMENTATION OF THE ATTACK 149

Table 5. Families of linear relations with the best mean bias.

Mean bias Number of lin. rel. Output bit
7 · 10−2 16 ∈ S1

4 · 10−2 64 ∈ S2

2.5 · 10−2 192 ∈ S1

1.5 · 10−2 64 ∈ S2

Table 6. Linear relations through 5-round DeKaRT
with the highest mean bias.

p0 ⊕ c0 p4 ⊕ c1 p8 ⊕ c8 p12 ⊕ c9

p0 ⊕ c5 p4 ⊕ c4 p8 ⊕ c13 p12 ⊕ c12

p1 ⊕ c1 p5 ⊕ c0 p9 ⊕ c9 p13 ⊕ c8

p1 ⊕ c4 p5 ⊕ c5 p9 ⊕ c12 p13 ⊕ c13

The linear relations of the first family (with bias ∼ 7 · 10−2) are given
in Table 6.

VI.9. Implementation of the Attack

As explained in section VI.6, we assume the attacker knows for example
128 pairs {(P j , cj

i)}j=0,...,127, where P j is a plaintext and cj
i is the ith bit

of the corresponding ciphertext. One attack strategy is:

(1) Consider all 216 − 1 possible input masks µ (i.e. all possible
linear combinations of input bits).

(2) For each of them, compute the bias of µ • P = ci over the 128
pairs.

(3) The attacker intercepts a ciphertext bit c∗i of which she does
not know the corresponding plaintext P ∗. The input mask µ∗
with the highest bias (computed at step 2) is used to predict
the unknown bit µ∗ • P ∗.

The efficiency of this algorithm is measured by the bias associated to
µ∗, computed over all 216 plaintexts this time. Indeed, it gives the
reliability of the guess made at step 3. Practical experiments show that
we have a mean bias of 0.059 when the ciphertext bit considered ∈ S1

and of 0.022 when it is in S2.

However it is possible to do better if in step 1 of the attack, we restrain
ourself to the 336 relations mentioned in section VI.8 (or more precisely,
to those of them concerning bit ci). Then the bias obtained is 0.107
when the ciphertext bit considered ∈ S1 and 0.074 when it is in S2.
Moreover the probability computed over 128 plaintexts almost always
“goes in the same direction” than the one computed on all 216 plaintexts

150 VI. SCRAMBLING FUNCTIONS: ON THE SECURITY OF DeKaRT

Table 7. Mean bias as a function of the number of pairs
known by the attacker

pairs if ci ∈ S1 if ci ∈ S2

64 0.095 0.067
128 0.107 0.074
256 0.118 0.083
512 0.123 0.087
1024 0.127 0.092

(i.e. suggests the same value for µ•P⊕ci). This significant improvement
is due to the fact that if we consider all possible input masks, it is often
the case that estimation on 128 plaintexts happens to emphasize a linear
relation which in fact has a small (or null) bias when computed over all
216 plaintexts; a pre-selection of “a priori good” input masks greatly
reduces this phenomenon. It is this improvement that motivated the
research of a priori good linear relations described in section VI.8.

In Table 7 we give mean biases for different numbers of pairs (P j , cj
i)

known by the attacker. We insist on the fact that these figures are mean
biases. This means that sometimes the bias associated to µ∗ will be 0,
which means that the attack has completely failed. Other times the bias
will be 1/4 (or even 1/2) and the information gained by the attacker is
real. The attacker must be able to compute a priori the bias she can
expect. It is given by equation (2) in section VI.6.

As an improvement to the attack, it could also be possible to consider
several approximations (implying the same ciphertext bit ci) simultane-
ously in order to retrieve more information. However this is far from
trivial, as the possible correlation between these approximations must
be taken into account. The paper from A. Biryukov et al. [23] could
help in this context.

VI.10. Conclusion

In this chapter we have seen that DeKaRT , despite the fact that its
structure is significatively more complex than previous primitives, is
vulnerable to linear cryptanalysis. Even using one only bit of the ci-
phertext (as it is often the case in the context of probing attacks), it
is still possible to obtain information about an unknown plaintext us-
ing very few known (Plaintext, Ciphertext bit) pairs. Moreover some
keys are much more vulnerable than others in that respect, which is a
drawback in itself. Furthermore we can expect a much better attack
if several bits of ciphertext are available, as besides allowing retrieval
of more bits of information about the plaintext, linear combinations of

VI.10. CONCLUSION 151

these ciphertext bits can be considered, with hopefully a better mean
bias.

We do not claim DeKaRT is useless for data scrambling: indeed, the
requirements for such a type of primitive can be relaxed in comparison
with usual requirements for block ciphers. More than the overall struc-
ture, some proposals for the number of rounds provided in the original
paper seem to be too optimistic for a really strong security.

Our purpose was rather to show that such type of key-dependent trans-
form still has strongly linear structures. Golić suggests that his method
could be suitable for design of hardware-oriented block ciphers. While it
is clear that a DeKaRT structure with 20 or 30 rounds (and a classical
block size) would be much more difficult to break than the reduced ver-
sion we were dealing with, we believe that classical paradigms of block
cipher design (i.e., using constant and highly non-linear S-boxes) are
more promising. Designing such a block cipher with hardware efficiency
as a primary goal is the topic of the next chapter.

CHAPTER VII

ICEBERG

An Involutional Cipher Efficient for Block
Encryption in Reconfigurable Hardware

Abstract. The design of a block cipher must take security but
also implementation efficiency issues into account. This chapter
presents ICEBERG, a block cipher deliberately optimized towards
efficiency in reconfigurable hardware (FPGAs).
ICEBERG operates on 64-bit blocks and uses 128-bit keys. All
its components are involutional, which allows very efficient com-
binations of encryption and decryption. Furthermore hardware
implementations of ICEBERG allow changing the key and En-
crypt/Decrypt mode for every plaintext, without any performance
loss and the round keys are derived “on-the-fly” in encryption and
decryption modes (no storage of round keys is needed). The re-
sulting designs exhibit better hardware efficiency than other recent
128-bit-key block ciphers. Resistance against side-channel attacks
was also considered as a design criteria for ICEBERG.
The results presented in this chapter have originally been pub-
lished in [161, 160].

VII.1. Introduction

There are basically two opposite paradigms regarding algorithms imple-
mentation. On the one hand, general-purpose processors can be (re-)
programmed at will using a set of instructions from an assembly lan-
guage; by changing the instructions, the functionality of the system is
modified without changing the hardware. We talk about software com-
puting. On the other hand, hardware circuits are designed and man-
ufactured once and for all to perform a given computation. A typical
example is the ASIC (Application Specific Integrated Circuit) technol-
ogy. We talk about hardware computing. The high specialization of
hardware circuits makes them much faster to accomplish a given task
than software-programmed microprocessors. But the drawback is that
any desired change in their functionality requires redesign and remanu-
facturing of the chip.

Halfway between these opposites, reconfigurable hardware tries to com-
bine the high performance of the hardware approach with the flexibility

153

154 VII. ICEBERG

of software programming. Among them, FPGAs (Field Programmable
Gate Array) were introduced in the mid-1980’s. They are basically
an array of simple computational elements whose functionality is deter-
mined by programmable configuration bits, which are stored in volatile
memories. While they are significantly slower than “classical” dedicated
hardware, FPGA implementations can perform up to 500 times faster
than software implementations.

Cryptographic algorithms are destined to be implemented on a wide
range of platforms: low-cost 8-bit architectures as those of smart cards,
personal computers, or different types of hardware architectures. It is
why flexibility, i.e. ability to perform well on various platforms, is often
a key argument when selecting a given block cipher as the next stan-
dard. A good example is the selection of the new Advanced Encryption
Standard by NIST (National Institute for Standards and Technology)
in October 2000. Rijndael was selected to become the new AES for a
large part on the basis of its good performances on a number of plat-
forms. However, it appeared that its design was not optimal regarding
hardware efficiency (see for example [159, 163]). Its highly expensive
S-boxes are a typical bottleneck but the problem of the combination of
encryption and decryption in hardware is probably as critical.

While at the beginning FPGAs were mainly considered as a preliminary
step in the development of ASICs, they may now be considered as a
practical solution for real time processing of multi-Gbps data streams.
Video-processing is a typical context where high throughput has to be
provided at low hardware cost. But although present encryption algo-
rithms may provide very high encryption rates, it is often at the cost
of expensive designs. This motivated us to design a new block cipher,
which contrary to the majority is deliberately oriented towards efficiency
on a particular platform, namely FPGAs: ICEBERG.

This chapter presents the design and security analysis of ICEBERG. Al-
though we are not specialists in hardware, in a care of completeness
we also describe implementation results for ICEBERG and compare them
to those obtained for other recent block ciphers. The chapter is orga-
nized as follows. Section VII.2 gives more details about structure of
FPGAs. Section VII.3 presents the design rationales and specifications
of ICEBERG. Its security analysis is in section VII.4 and its performance
analysis in section VII.5. Finally, comparisons with other recent block
ciphers are in section VII.6, and a brief analysis of software efficiency of
our cipher in section VII.7. Section VII.8 is the conclusion. Some tables
and proofs are given in appendices.

VII.2. FPGA ARCHITECTURES: AN INTRODUCTION 155

L C

SC

L

C

L C L

C

S

L

C

C L

L C L C L

SC C S C

I/O BUFFERS

I/O
 B

U
F

F
E

R
S

L

C

C L LC

C

I/O
 B

U
F

F
E

R
S

I/O BUFFERS

L : logic blocks
C : connection blocks

S : switch blocks

routing
channels

Figure 1. FPGA: overall view.

VII.2. FPGA Architectures: an Introduction

FPGAs are mainly constituted of an array of logic blocks, which are
computational elements of which the functionality can be programmed
through configuration bits, stored in volatile memories. These logic
blocks are connected through routing channels which are programmable
as well. Figure 1 represents an overall view of an FPGA. Several possibil-
ities have been studied about the nature of the computational elements
that should be implemented into a logic block. It now seems well estab-
lished that the best component to deploy is the Lookup Table (LUT).
An n-input LUT is a multiplexer with n control bits which are used to
select amongst the 2n input bits the one which will be passed to the
output. In the case of FPGAs, the 2n input bits are stored in volatile
memories and are thus programmable. Thus an n-input LUT can im-
plement any function from n bit to 1 bit (the control bits being the
input). The classical representation of a 2-input multiplexer is pictured
in Figure 2 (at left), with c being the control bit and i0, i1 the input
bits. A flip-flop storage element is represented at right of Figure 2.

Besides LUTs, fast access memories of large size are also frequently
incorporated in FPGAs. They are called RAM blocks.

The implementation of ICEBERG described in section VII.5 was done
using a Xilinx Virtex-IIr. The Virtex-IIr’s logic cell is made up of a
4-input LUT, but also a carry (that is very useful for arithmetics, but
also permits XOR operations), and a flip-flop. The combination of two

156 VII. ICEBERG

0
ii 1

c

Figure 2. A 2-input multiplexer (at left) and a flip-flop
(at right).

LUT4

LUT4

F5outF5

F6
F6in

LUTout1

LUTout2

F6out

Rout1

Rout2

Cin

Cout

LUT
in1

LUT
in2

carry
XORCY

carry
XORCY

Figure 3. The Virtexr slice.

such cells forms a slice, and can implement any 5-input function. A
Virtexr slice is pictured in Figure 3. Finally the combination of two
slices forms a Configurable Logic Block (CLB); it can implement any
6-input function.

Different types of architectures exist regarding hardware implementation
of block ciphers. One of them consists in implementing one only round;
during the encryption, this round is executed the appropriate number
of times. Flip-flops are used to store the intermediate result between
two rounds. It is called a loop architecture. A general view of this
approach is given in Figure 41. Its advantage is the small area needed
to implement the whole cipher; its drawback is its relatively low speed.
On the other hand, unrolled architectures have all their rounds inde-
pendently implemented (see example in Figure 5). However as such this
approach is not really interesting: the speed gain is small in comparison
with loop architectures for a much more important area. Nevertheless by
inserting registers after each round of the cipher2, several plaintexts can
be processed simultaneously by the hardware (see Figure 6). We speak of
pipelining. After a given clock cycle each of the intermediate registers

1Note that the figure assumes the first operation of the implemented cipher is a
XOR with the key; thus this scheme is not quite general.

2Which represents no hardware cost as the logic cell contains such registers.

VII.2. FPGA ARCHITECTURES: AN INTRODUCTION 157

ρ

cipher

keytxt

β

Figure 4. Loop architecture for a block cipher. The
round is denoted by ρ and the key round by β.

keytxt

ρ

cipher

β

ρ β

ρ β

Figure 5. Unrolled architecture for a 3-round block ci-
pher. The round is denoted by ρ and the key round by
β.

contains data corresponding to a different plaintext. Thus the speed is
roughly multiplied by the number of rounds in comparison with previous
architectures. However a drawback is that this architecture cannot be
used for mode of operations other than ECB. Sub-pipelining is similar
to pipelining but also inserts registers inside the round functions.

158 VII. ICEBERG

βρ

ρ β

keytxt

cipher

ρ β

Figure 6. Unrolled architecture with pipelining for a 3-
rounds block cipher. The round is denoted by ρ and the
key round by β.

Remark that all these architectures imply that the key schedule is re-
computed at each encryption, contrary to the case of software imple-
mentations. We speak of on-the-fly key derivation.

Taking into account the specificity of hardware implementation and the
structure of the slice, we can define two notions of efficiency for the
implementation of a block cipher:

(1) In terms of performances, the efficiency is the ratio Throughput
(Mbits/sec) / Area (# slices).

(2) In terms of resources, the efficiency is the ratio Nbr of registers /
Nbr of LUTs. This ratio measures how optimally the hardware
resources are used in the implementation. A ratio of 1 would
mean that in each slice used, both the LUTs and the registers
are in use. Thus the actual ratio should be close to 1.

VII.3. Design Rationale and Specifications of ICEBERG

Recent submissions to the NESSIE project [126], such as KHAZAD [8]
or Misty [114], provide an improved hardware efficiency [162]. They
also allow interesting comparisons between Feistel ciphers (e.g. Misty)
and SP-networks, with respect to hardware efficiency [162]. Although
KHAZAD is not a Feistel network, its structure is designed so that by
choosing all components to be involutions, the inverse operation of the

VII.3. DESIGN RATIONALE AND SPECIFICATIONS OF ICEBERG 159

cipher differs from the forward operation in the key scheduling only.
However the flaw of KHAZAD regarding hardware implementation is
that key derivation in decryption mode requires preliminary computa-
tion of the whole key schedule in encryption mode, and storage of the
result, before beginning decryption. This is particularly damaging when
the application requires frequent key changes or frequent switches be-
tween encryption and decryption.

ICEBERG is based on an involutional structure like KHAZAD but its key
schedule allows direct on-the-fly key derivation in both encryption and
decryption modes. This involves no storage requirements for the round
keys. The design goals for ICEBERG were:

• Good security properties: ICEBERG’s resistance to known at-
tacks is comparable to recently published block ciphers (AES,
NESSIE [126]).

• Easiness of hardware implementation.
• Hardware implementation efficiency, as defined in section VII.2.
• Hardware implementation versatility: ICEBERG is scalable for

different architectures (loop, unrolled, pipeline) and FPGA tech-
nologies. ASIC implementations would be efficient as well.

• Resistance against side-channel attacks: Small substitution ta-
bles are used in order to allow efficient Boolean masking [40,
119]. Moreover, the key agility offers the opportunity to con-
sider new encryption modes where the key is changed frequently
in order to make the averaging of side-channel traces unpracti-
cal.

The complete specifications of ICEBERG follow.

VII.3.1. Block and Key Size

Let n be the block bit-size and k be the key bit-size. The state x is
represented as a n-bit vector where x(i) (0 ≤ i < n) represents the ith

bit from the right. Alternatively, x can be represented as an array of n
4

4-bit blocks, where xj is the jth block from the right. ICEBERG operates
on 64-bit blocks and uses a 128-bit key. It is an involutional iterative
block cipher based on the repetition of R identical key-dependent round
functions.

VII.3.2. The Non-Linear Layer γ

Function γ consists of the successive application of non-linear S-boxes
and bit permutations (i.e. wire crossings).

160 VII. ICEBERG

VII.3.2.1. Substitution layers S0, S1: The substitution layers Sj con-
sist in the parallel application of S-boxes sj to the blocks of the state.

Sj : Z16
24 → Z16

24 : x → y = Sj(x) ⇔ yi = sj(xi) 0 ≤ i ≤ 15

The tables of S-boxes s0, s1 are given in Appendix D.

VII.3.2.2. Bit permutation layer P8: The permutation layer P8 con-
sists in the parallel application of 8 permutations p8 to the state, where
p8 consists in bit permutations on 8-bit blocks of data. The table of p8
is given in Appendix D.

P8 : Z8
28 → Z8

28 : x → y = P8(x) ⇔ y(8i + j) = x(8i + p8(j))
0 ≤ i ≤ 7, 0 ≤ j ≤ 7

Based on previous descriptions, the non-linear layer γ can be expressed
as

γ : Z64
2 → Z64

2 : γ = S0 ◦ P8 ◦ S1 ◦ P8 ◦ S0.

For cryptanalytic and software implementation purposes, γ may also be
viewed as a unique layer consisting in the application of 8 identical 8×8
S-boxes of which the table is given in Appendix D.

VII.3.3. The Key Addition Layer σK

The affine key addition σK consists in the bitwise exclusive or of a key
vector K.

σK : Z64
2 → Z64

2 : x → y = σK(x) ⇔ y(i) = x(i)⊕K(i) 0 ≤ i ≤ 63

VII.3.4. The Linear Layer εK

Function εK consists in the successive application of binary matrix mul-
tiplications and wire crossing layers, combined with the key addition
layer for efficiency purposes. It is defined as

εK : Z64
2 → Z64

2 : εK = P64 ◦ P4 ◦ σK ◦M ◦ P64,

where M , P64, and P4 are as follows:

VII.3.4.1. Matrix multiplication layer M : The matrix multiplication
layer M is based on the parallel application of a simple involutional
matrix multiplication. Let V ∈ Z4×4

2 be a binary involutional (i.e. such
that V 2 = In) matrix:

V =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

VII.3. DESIGN RATIONALE AND SPECIFICATIONS OF ICEBERG 161

M is then defined as

M : Z16
24 → Z16

24 : x → y = M(x) ⇔ yi = V · xi, 0 ≤ i ≤ 15.

We define diffusion boxes D as performing multiplication by V . The
table of D is given in Appendix D.

VII.3.4.2. Bit permutation layer P64: Permutation P64 performs
bit permutations on 64-bit blocks of data.

P64 : Z64
2 → Z64

2 : x → y = P64(x) ⇔ y(i) = x(P64(i)) 0 ≤ i ≤ 63

The table of permutation P64 is given in Appendix D.

VII.3.4.3. Bit permutation layer P4: The permutation layer P4 con-
sists in the parallel application of 16 permutations p4 to the state. p4
consists in bit permutations on 4-bit blocks of data. The table of p4 is
given in Appendix D.

P4 : Z16
24 → Z16

24 : x → y = P4(x) ⇔ yi(j) = xi(p4(j))
0 ≤ i ≤ 15, 0 ≤ j ≤ 3

The purpose of permutation P4 is to efficiently distinguish encryption
from decryption. It will become clearer in section VII.3.8 and Appen-
dix C.

VII.3.5. The Round Function ρK

Finally, the whole round function can be expressed as

ρK : Z64
2 → Z64

2 : ρK = εK ◦ γ.

It is illustrated in Figure 7.

VII.3.6. The Key Schedule

The key scheduling process consists of key expansion and key selection.

VII.3.6.1. The key expansion: This process expands the cipher key
K ∈ Z128

2 into a sequence of keys K0,K1, ...,KR also ∈ Z128
2 . We set

the initial key K0 = K. Then we expand K0 by a simple key round
function βC so that

Ki+1 = βC(Ki),
where 0 ≤ i ≤ R and C ∈ Z2 is a round constant discussed in sec-
tion VII.3.9.

The key round βC is pictured in Figure 8. It consists in the appli-
cation of non-linear S-boxes, shift operations and bit permutations:

βC : Z128
2 → Z128

2 : βC = τC ◦ P128 ◦ S′ ◦ P128 ◦ τC ,

where τC , S′, and P128 are defined as follows.

162 VII. ICEBERG

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1

P8

D D D D D D D D D D D D D D D D

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

Non-Linear
Layer

Diffusion +
Key addition

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

P64

P64

P8 P8 P8 P8 P8 P8 P8

P8 P8 P8 P8 P8 P8 P8 P8

P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4

Figure 7. The round function ρK .

S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0 S0

SHIFT

P128

P128

Left/Right

SHIFT Left/Right

Figure 8. The key round βC .

• Shift layer τC : The shift layer τC consists in the application
of a variable shift operator to the bytes of the key : shift left if
C = 1, shift right if C = 0.

τC : Z128
2 → Z128

2 : x → y = τC(x) ⇔
if C = 0 : y(i) = x((i + 8) mod 128) 0 ≤ i ≤ 127

if C = 1 : y(i) = x((i− 8) mod 128) 0 ≤ i ≤ 127

• Substitution layer S′: The substitution layer S′ consists in
the parallel application of S-boxes s0 to the blocks of the key.

S′ : Z32
24 → Z32

24 : x → y = S′(x) ⇔ yi = s0(xi) 0 ≤ i ≤ 31

The table of S-box s0 is given in Appendix D.

VII.3. DESIGN RATIONALE AND SPECIFICATIONS OF ICEBERG 163

• Bit permutations layer P128: P128 performs bit permuta-
tion on 128-bit blocks of data.

P128 : Z128
2 → Z128

2 : x → y = P128(x) ⇔ y(i) = x(P128(i))
0 ≤ i ≤ 127

The table of P128 is given in Appendix D.

VII.3.6.2. The key selection: From every 128-bit vector Ki, we first
apply a simple compression function E that selects 64 bits corresponding
to key bytes of Ki having odd indices. We denote the resulting key as
K64i. Then we apply a key selection layer (φ) that consists in the
parallel application of a selection function X to the blocks of the key.

φsel : Z16
24 → Z16

24 : K64i → RKi
sel = φsel(K64i) ⇔

RKi
sel,j = Xsel(K64i

j) 0 ≤ j ≤ 15

The selection function X takes 4-bit inputs and a selection bit sel:

Xsel : Z24 → Z24 : x → y = Xsel(x) ⇔

y(0) = (x(0)⊕ x(1)⊕ x(2)) · sel ∨ (x(0)⊕ x(1)) · sel
y(1) = (x(1)⊕ x(2)) · sel ∨ x(1) · sel
y(2) = (x(2)⊕ x(3)⊕ x(0)) · sel ∨ (x(2)⊕ x(3)) · sel
y(3) = (x(3)⊕ x(0)) · sel ∨ x(3) · sel

(102)

This selection process is represented in Figure 9. As a result, we obtain
a 64-bit round key denoted by RKi

1 if sel = 1 and RKi
0 if sel = 0.

1

0⊕

⊕
x(2)

x(1)

x(0)

sel

y(0)
1

0

⊕
x(2)

x(1)

sel

y(1)

1

0⊕

⊕
x(0)

x(2)

x(3)

sel

y(2)
1

0

⊕
x(0)

x(3)

sel

y(3)

Figure 9. The key selection function Xsel.

164 VII. ICEBERG

VII.3.7. Encryption Process

ICEBERG is defined for the cipher key K, as the transformation ICEBERG[K] =
αR[RK0

1 , RK1
1 ,.. .,RKR

0] applied to the plaintext where

αR[RK0
1 , RK1

1 , ..., RKR
0] = σRKR

0
◦ γ ◦ (©R−1

r=1 ρRKr
1
) ◦ σRK0

1
.

The standard number of rounds is R = 16.

VII.3.8. Decryption Process

We now show that ICEBERG is an involutional cipher in the sense that the
only difference between encryption and decryption is in the key schedule.
We will need the following theorem, proved in Appendix C:

Theorem 34. For any K64 ∈ Z16
24 : ε−1

RK0
= εRK1, where RK0 =

φ0(K64) and RK1 = φ1(K64).

Then, the decryption process can be obtained as follows. We start from
the encryption process

αR[RK0
1 , RK1

1 , ..., RKR
0] = σRKR

0
◦ γ ◦ (©R−1

r=1 εRKr
1
◦ γ) ◦ σRK0

1
.

Then we have for decryption

α−1
R [RK0

1 , RK1
1 , ..., RKR

0] = σRK0
1
◦ (©1

r=R−1γ ◦ ε−1
RKr

1
) ◦ γ ◦ σRKR

0

⇔ α−1
R [RK0

1 , RK1
1 , ..., RKR

0] = σRK0
1
◦ γ ◦ (©1

r=R−1ε
−1
RKr

1
◦ γ) ◦ σRKR

0
.

Finally the above theorem leads to

α−1
R [RK0

1 , RK1
0 , ..., RKR

0] = σRK0
1
◦ γ ◦ (©1

r=R−1εRKr
0
◦ γ) ◦ σRKR

0
.

VII.3.9. Round Constants

ICEBERG is an involutional cipher in the sense that the only difference
between encryption and decryption is in the key schedule. Moreover, if
properly chosen, the round constants allow us to compute keys “on-the-
fly” in encryption and decryption modes. Basically, we would like round
keys to satisfy:

K0 = KR, K1 = KR−1, K2 = KR−2, ... (103)

This implies that R is even. Then, if the first half of round constants
(i.e. until round 8) is 0 (shift left) and the second half is 1 (shift right),
the resulting round keys will satisfy Equation (103).

As a consequence, the only difference between encryption and decryption
is the selection function φ of the key bits, as ε−1

RK1
= εRK0 .

VII.4. SECURITY ANALYSIS 165

VII.4. Security Analysis

VII.4.1. Design Properties of the Components

VII.4.1.1. S-boxes: The non-linear layer γ may be viewed as made
out of the parallel application of 8 copies of the same 8 × 8 S-box. We
designed this S-box such that it has the following properties:

• It is an involution.
• Its δ-parameter is 2−5.
• Its λ-parameter is 2−2.
• Its nonlinear order ν (see [96]) is maximum, namely 7.

For efficiency purposes, the S-box was generated from a fixed permuta-
tion p8 and small 4 × 4 S-boxes s0 and s1 that perfectly fit into 4-input
LUTs. The generation of the S-boxes is detailed in Appendix E.

VII.4.1.2. The bit permutations: P64 and P128 were designed such
as to disturb the bit alignment inside bytes as much as possible, in order
to provide resistance against some attacks. A remarkable property of
P64 and P128 is that 2 bits from the same byte are always mapped
to 2 bits belonging to different bytes. p8 is involutional and allows
generating good S-boxes. Finally, p4 allows the selection function Xsel

to be implemented in one LUT.

VII.4.1.3. The diffusion layer: Due to the fact that we attached
much importance to hardware implementation aspects in the design of
the diffusion layer, it is not optimal. More precisely, it is easy to see that
its byte branch number is 4, as the bit branch number of p4◦σK ◦D is 4,
and because of the remarkable property of P64 we have just mentioned.
The diffusion boxes D were designed so that their combination with the
key addition layer σK can be done inside one LUT.

VII.4.1.4. The key round: The key round has been chosen for its
efficiency properties, as well as in order to provide resistance against
key schedule cryptanalysis and slide attacks:

(1) Non periodicity is provided by the shift operation τC .
(2) Non linearity is provided by non-linear S-boxes.
(3) Good diffusion properties are provided by the combination of

shifts, S-boxes and bit permutations.

Moreover, the shift layer τC is used in order to allow the property (103)
to be satisfied. The selection function Xsel is necessary to prove the
property of Appendix C and is designed such that it fits into a single
LUT.

166 VII. ICEBERG

VII.4.2. Strength Against Known Attacks

VII.4.2.1. Linear and differential cryptanalysis: From the proper-
ties of the S-box and the diffusion layer, we can compute that a differ-
ential characteristic over 2 rounds of ICEBERG has probability at most
(2−5)4 = 2−20. Also, a linear characteristic over these 2 rounds has
input-output correlation at most (2−2)4 = 2−8. Therefore loose bounds
can be computed for the full cipher (16 rounds):

• The probability of the best differential characteristic is smaller
than 2−160.

• The input-output correlation of the best linear characteristic is
smaller than 2−64.

The security margin is very likely big enough to prevent variants of dif-
ferential and linear attacks, such as boomerang [169] and rectangle [18]
attacks, multiple linear cryptanalysis [85], non-linear approximations of
outer rounds [93], partitioning cryptanalysis [69],... Note also that the
security margin of ICEBERG against linear and differential cryptanalysis
is comparable to the one of KHAZAD. This is probably more than nec-
essary, as resistance against structural attacks [44] was probably more
determinant in the choice of the number of rounds of KHAZAD (8), than
security margins against linear and differential cryptanalysis.

VII.4.2.2. Truncated and impossible differentials: Truncated differ-
entials were introduced in [96], and impossible differentials in [17, 16].
They typically apply to ciphers operating on well-aligned data blocks
(often bytes), such as KHAZAD or the AES (and many others). But our
cipher does not enter in this category because of the P64 layer, which
makes it very difficult to attack this way. Therefore we do not expect
such distinguisher to be found on more than 5 or 6 rounds of ICEBERG.

VII.4.2.3. Square attacks: We have seen in Chapter III (and more
specifically, in section III.10.2) that square attacks [44] only apply to
ciphers operating on well-aligned data blocks. Therefore the P64 layer
should prevent them efficiently, at least on more than a few rounds.

VII.4.2.4. Interpolation attacks: Interpolation attacks [79] are made
possible when the S-box has a simple algebraic structure, allowing us to
express the cipher as a sufficiently simple polynomial or rational expres-
sion. The diffusion layer also has a role with this respect. As the S-box
of ICEBERG has no simple algebraic expression, it prevents interpolation
attacks for more than a few rounds of our cipher.

VII.4.2.5. Higher order differential cryptanalysis: It was introduced
by L. Knudsen in [96], and relies on finding high order differentials being
a constant for the whole cipher. But as the nonlinear order of the S-box
we use is maximal, namely 7, we can expect that the maximal value of

VII.4. SECURITY ANALYSIS 167

63 for the non-linear order of the cipher is reached after a few rounds of
ICEBERG.

VII.4.2.6. Slide attacks: Slide attacks [25, 26]3 work against ciphers
using a periodic key schedule. Although the sequence of subkeys pro-
duced by the key schedule of ICEBERG is not periodic, it has a particular
structure, namely

(K0,K1, ..., K7,K8,K7, ..., K0).

The key schedule of the GOST cipher has some similarities with the one
of ICEBERG. Vulnerability of some variants and reduced-round versions
of GOST against slide attacks are examined in [26]. However none of
the attacks presented there seems to be applicable to our cipher.

VII.4.2.7. Related-key attacks: The first related-key attack has been
described in [13]3, and is the related-key counterpart of the slide attack.
Let us examine a slightly simplified version of ICEBERG, where the initial
key addition σRK0

1
is replaced by a normal round ρRK0

1
, and the final

σRKR
0
◦ γ is also replaced by a normal round ρRKR

0
. Then if 2 keys K

and K∗ are such that K1=K∗0, and 2 plaintexts P and P ∗ are such that
P ∗ = ρRK0

1
(P), encryption of P under K and of P ∗ under K∗ will process

the same way (with a shift of 1 round) during 8 rounds. However the
round keys, and hence the computation, will then differ. Therefore such
a related-key attack does not work against our key schedule. Forgetting
the simplification we made on the first and last round of ICEBERG, a
related-key attack becomes even more difficult. Differential related-key
attacks [90] are also very unlikely to be applicable to ICEBERG, due to
the good diffusion and nonlinearity of its key schedule.

VII.4.2.8. Weak keys: The design properties of the key round pre-
vent ICEBERG from having weak keys. The only remarkable property of
the key round is in the selection function Xsel where some symbols are
independent of the selection bit. Namely, hexadecimal input symbols
0, 2, 8, A become 0, C, 3, F regardless of sel = 0 or sel = 1. However,
this point is very unlikely to be an exploitable weakness.

VII.4.2.9. Algebraic Attacks: In [42] N. Courtois and J. Pieprzyk
described a new attack technique on block ciphers based on describing
them as overdefined systems of algebraic equations (holding with prob-
ability 1), more specifically quadratic equations. Such system is solved
using algorithms such as XL [41] or XSL [42]. This attack requires
very few plaintext-ciphertext pairs. [42] discusses its applicability to
the AES [47] and Serpent [2]. However XL and XSL are heuristic algo-
rithms, thus their complexity when dealing with large systems is difficult
to figure out; it is why there has been a controversy on the real efficiency
of this technique.

3See also Chapter IV of this thesis.

168 VII. ICEBERG

Analysis of ICEBERG’s 8 × 8 S-box showed that there is no quadratic
equation that (partially) describes it [33]. Thus applying an algebraic
attack to ICEBERG is probably not feasible.

VII.4.2.10. Biryukov’s observations on involutional ciphers: Obser-
vations of A. Biryukov on KHAZAD and Anubis [21] remain valid for
ICEBERG. However this study could at best threaten 5 rounds of our
cipher, while it is made out of 16 rounds.

VII.4.2.11. Side-channel analysis: Cryptosystem designers frequently
assume that secret parameters will be manipulated in closed reliable
computing environments. However as already mentioned in Chapter V,
P. Kocher et al. stressed in 1998 [101] that actual computers and mi-
crochips leak information correlated to the data handled. Side-channel
attacks based on time, power and electromagnetic measurements were
successfully applied to smart card implementations of block ciphers.

Protecting implementations against side-channel attacks is usually diffi-
cult and expensive. Masking all the data with random Boolean values is
suggested in several papers [66, 34] and the use of small substitution ta-
bles allows implementing this efficiently, although it is still an expensive
solution.

Moreover, the key agility provided by ICEBERG (changing the key at
every plaintext block is for free) also offers interesting opportunities
to prevent most side-channel attacks by defining new encryption modes
where the key is changed sufficiently often. As most side-channel attacks
need to collect several leakage traces to remove the noise from useful
information, changing the key frequently, even in a well chosen deter-
ministic way (e.g. LFSR4-based), would make most attacks somewhat
unpractical. Actually, only template attacks [35] allow the extraction of
information from a single sample but the context is also more specific
as they require that an adversary has access to an experimental device
(identical to the device attacked) that he can program to his choosing.

VII.5. Performance Analysis

As a consequence of the criteria enumerated at the beginning of sec-
tion VII.3, ICEBERG has the following properties:

• All its components easily fit in 4-input LUTs. Practically,
ICEBERG is made out of the parallel application of 4-input-bit
transforms combined with bit permutations and shifts.

• All its components are involutional so that encryption and de-
cryption can be made with the same hardware. The only dif-
ference between them is in the selection bit φsel.

4LFSR : Linear Feedback Shift Register.

VII.5. PERFORMANCE ANALYSIS 169

Table 1. Number of LUTs required to implement each
of the ICEBERG components.

Round Keyround
Components HW cost (LUTs) Components HW cost (LUTs)

S0, S1 layers 64 Shift layer 128
Non-linear layer 64× 3 = 192 S0 layer 128

Linear diffusion layer 64 Keyround 384
Round 256 Selection layer 64

• The key expansion allows us to derive keys “on-the-fly” in en-
cryption and decryption modes. There is no need to store the
round keys and the key can be changed in one clock cycle.

• The algorithm and its key scheduling are balanced, which means
that the round and key round perform in the same number of
clock cycles.

• The non-linear layer could be efficiently implemented into the
RAM blocks available in most modern FPGAs.

As all components easily fit in 4-input LUTs, we can directly evaluate
the combinatorial cost of individual ICEBERG components in the Xilinx
Virtex-IIr family of devices. The result is shown in Table 1.

Remark that if the maximum pipeline is not inserted, the shift layers
can be efficiently implemented inside the Virtexr slice, using additional
multiplexers F5 and F6 available next to the LUT (see section VII.2).

In the next sections, we present the practical implementation of differ-
ent architectures for ICEBERG. All the architectures proposed allow the
choice of the key and E/D mode for every plaintext. The area and fre-
quency estimations presented result from an implementation with Xilinx
ISE 6.1 on the Xilinx Virtex-IIrtechnology.

The results from this section come from [160].

VII.5.1. Unrolled Architectures

For high throughput applications, we describe an unrolled implementa-
tion with the 16 rounds implemented. Two pipelining strategies were
applied. If a maximum throughput is required, a full pipe implemen-
tation is provided, with the maximum pipeline inserted. However, for
large designs, the implementation (and specially the routing task) may
become the bottleneck, with routing delays larger than logic delays.
Therefore, for an optimized efficiency, a half pipe architecture is prefer-
able. In addition to a better tradeoff between logic and routing delays,
it also allows an efficient implementation of the shift layer, using the

170 VII. ICEBERG

additional multiplexers available inside the Virtexr slice. Both archi-
tectures are pictured in Figure 10. Finally, if the half pipe architecture
is considered, we can also implement the round S-box inside the FPGA
RAM blocks. The implementation results for these three proposals are
in Table 2.

S0

S1

S0

D

shift

S0

shift

ro
un

d

ke
yr

ou
nd

round keyround

round keyround

round keyround

S0

S1

S0

keyround

text key

cipher

S
E
L

S
E
L

S
E
L

S
E
L

S
E
L

S
E
L

S0

S1

S0

D

shift

S0

shift

ro
un

d

ke
yr

ou
nd

round keyround

round keyround

round keyround

S0

S1

S0

keyround

text key

cipher

S
E
L

S
E
L

S
E
L

S
E
L

S
E
L

S
E
L

Figure 10. Unrolled architectures : full pipe and half pipe.

Table 2. Unrolled architectures results on Virtex-IIr.

Type # of # of RAM Latency Output every Freq. Throughput
slices blocks (cycles) (cycles) (Mhz) (Mbits/sec)

Full Pipe 6808 0 66 1 297 19008
Half Pipe 4946 0 33 1 271 17344

Half Pipe RAM 3132 64 33 1 210 13440

VII.5.2. Loop Architectures

For applications requiring minimum area, a loop architecture with only
one round implemented is possible. In order to decrease the area require-
ments, a half pipe strategy is considered. In addition to the efficiency
advantages already mentioned, half pipe structures are specially conve-
nient for loop architectures because they allow the combination of the

VII.5. PERFORMANCE ANALYSIS 171

S0

S1

S0

D

shift

S0

shift

ro
un

d

ke
yr

ou
nd

text

key

S
E
L

cipher

Figure 11. Loop architecture.

loop multiplexer with the round and key round logic. The result is pic-
tured in Figure 11. As for unrolled architectures, it is possible to use the
FPGA RAM blocks to implement the round S-box. The implementation
results for these loop architectures are provided in Table 3.

Table 3. Loop architecture results on Virtex-IIr.

Type # of # of RAM Latency Output every Freq. Throughput
slices blocks (cycles) (cycles) (Mhz) (Mbits/sec)

Loop 631 0 34 2/32 254 1016
Loop RAM 526 4 34 2/32 227 908

172 VII. ICEBERG

S0

S1

S0

D

shift

S0

shift

ro
un

d

ke
yr

ou
nd

round keyround

round keyround

round keyround

S0

S1

S0

keyround

text key

cipher

S
E
L

S
E
L

S
E
L

S
E
L

S
E
L

S
E
L

S0

S1

S0

D

shift

S0

shift

ro
un

d

ke
yr

ou
nd

text

key

S
E
L

cipher

Figure 12. Feedback mode : unrolled and loop architectures.

VII.5.3. Feedback Modes

It is mentioned in section VII.2 that as soon as a feedback mode is used,
pipelining techniques are not relevant for block cipher implementations.
Although we do not recommend the use of feedback modes in FPGA
implementations of block ciphers because they do not allow us to take
full advantage of hardware efficiency, the following designs are interesting
for comparison purposes. An unrolled architecture without pipelining
and a minimum latency loop architecture are represented in Figure 12.
The implementation results of these designs are in Table 4.

Table 4. Feedback mode results on Virtex-IIr.

Type # of # of RAM Latency Output every Freq. Throughput
slices blocks (cycles) (cycles) (Mhz) (Mbits/sec)

Unrolled 3174 0 1 1 14 896
Loop 571 0 17 1/16 147 588

Loop RAM 467 4 17 1/16 145 580

VII.6. Comparisons with Other Block Ciphers

Comparing the performances of block cipher hardware implementations
is generally a delicate task. This is due to the high dependency of these
implementation results on the design methodology, but also to the vari-
ous commercial FPGAs that may be chosen for evaluation. In the case of

VII.6. COMPARISONS WITH OTHER BLOCK CIPHERS 173

ICEBERG, it is even more critical as our implementations provide key and
E/D agility: two properties that are never combined in other block ci-
pher implementations, except Triple-DES. The following considerations
must therefore be taken with care and should be considered as general
guidelines more than as a strict comparison.
We tried to find the best results for various block ciphers in non feedback
modes, if possible in the most recent technology (Virtex-IIr). Then,
we provided the area and throughput results. If no RAMBs are used,
the ratio Throughput/Area is given in order to estimate the hardware
efficiency. We also specified the architecture used (loop or unrolled) and
its basic features (encryption only, encryption/decryption, key agility).
These results are listed in Tables 5 and 6.
In general, ICEBERG implementations exhibit a significant improvement
of the hardware efficiency, even when compared to encryption only de-
signs. It is clear that the most relevant implementation schemes for
ICEBERG do not use RAMBs because they considerably increase the S-
box memory requirements5. LUT-only implementations are also the
best estimators for ASIC performances and underline the excellent po-
tentialities of ICEBERG for hardware implementations in general. More
specifically, only Rijndael [152] and the Triple-DES have an efficiency
comparable to ICEBERG with an E/D structure. However, the specified
Rijndael implementation does not provide key and E/D agility, uses
RAM blocks and shares resources between the round and key round.

For Triple-DES, it is well known to allow very efficient implementation
opportunities. It is thus an excellent result that ICEBERG’s efficiency is
proved better than the one of Triple-DES. In [151] a fully unrolled and
pipelined implementation of DES is given. It achieves throughput up to
21.3 Gbps, and a ratio Throughput/Area up to 7.18. If we transpose
these results to Triple-DES (by iterating three such implementations),
the throughput is about the same (only the latency changes), but the
ratio Throughput/Area drops to about 2.4, which is smaller than the
one of our ICEBERG unrolled implementation. Even if we reduce Triple-
DES to 40 rounds, in order to have security bounds against linear and
differential cryptanalysis comparable to those of ICEBERG6, the ratio is
still smaller.

Note that measuring the throughput is not that significative. As a mat-
ter of fact, it is always possible to increase the throughput provided we
have enough hardware resources, by implementing the cipher in parallel
several times.

5The ICEBERG S-box memory requirements are : (24×4)×6 = 384 bits. If RAMBs
are used, it becomes 28 × 8 = 2048 bits.

6This reasoning is questionable, as a better way of attacking 3-key Triple-DES is
to use a meet-in-the-middle attack to retrieve the key in 2112 operations. So a better
key schedule for Triple-DES, with a similar hardware efficiency, would be necessary.

174 VII. ICEBERG

Table 5. Basic features of compared block ciphers implementations.

Algorithm Device Enc. Dec. Key ag. Loop/Unr.

0.22 µm

Twofish [59] Virtexr • • U

Serpent [59] Virtexr • • U

0.18 µm

Rijndael [163] Virtex-Er • • U

Camelia [75] Virtex-Er • • U

KHAZAD [162] Virtex-Er • • U

Misty1 [162] Virtex-Er • • U

Rijndael [163] Virtex-Er • • L

0.15 µm

RC6 [11] Virtex-IIr • • U

IDEA [12] Virtex-IIr • • U

SHACAL-1 [116] Virtex-IIr • • U

Triple-DES [151] Virtex-IIr • • • U

ICEBERG Virtex-IIr • • • U

Triple-DES [151] Virtex-IIr • • • L

ICEBERG Virtex-IIr • • • L

0.15 µm + RAMBs

Rijndael [152] Virtex-IIr • • L

ICEBERG Virtex-IIr • • • L

Rijndael [70] Virtex-IIr • • L

ICEBERG Virtex-IIr • • • U

VII.7. ICEBERG SOFTWARE IMPLEMENTATIONS 175

Table 6. Performances of compared block ciphers implementations.

Algorithm # Slices # RAMBs Throughput Thr./Area
(Mbits/sec) (Mbits/sec / #slices)

0.22 µm

Twofish [59] 21000 0 15200 0.72

Serpent [59] 19700 0 16800 0.85

0.18 µm

Rijndael [163] 2784 100 11776 -

Camelia [75] 9692 0 6750 0.7

KHAZAD [162] 7175 0 7872 1.10

Misty1 [162] 6322 0 10176 1.61

Rijndael [163] 2524 0 2085 1.17

0.15 µm

RC6 [11] 7456 0 4800 0.64

IDEA [12] 9793 0 6800 0.69

SHACAL-1 [116] 13729 0 17021 1.24

Triple-DES [151] 604 0 917 1.51

ICEBERG 4946 0 17344 3.51

Triple-DES [151] 227 0 326 1.44

ICEBERG 631 0 1016 1.61

0.15 µm + RAMBs

Rijndael [152] 146 3 358 -

ICEBERG 526 4 908 -

Rijndael [70] ≈1125 18 1408 -

ICEBERG 3132 64 13440 -

VII.7. ICEBERG Software Implementations

Software efficiency was not a design goal of ICEBERG. Nevertheless we
think it interesting to observe how costly the hardware efficiency goal is
with respect to software efficiency. Indeed, although (or because) some
components of the cipher were chosen for their very good performance
in hardware, they cannot be really efficiently implemented in software.
A typical example is bit permutation layers P64 and P128. Thus we
compared software performance of ICEBERG with the one of Rijndael
(128-bit block, 128-bit key) and KHAZAD (64-bit block, 128-bit key).

We implemented ICEBERG in C language on a 32-bit processor. Imple-
mentation of the round function was done using a table-lookup approach
as the one described in [137]: for each of the eight 8×8 S-boxes and every
possible input value to it, the resulting output of the round is given in a

176 VII. ICEBERG

Table 7. Software performance comparison of AES,
KHAZAD, and ICEBERG.

AES KHAZAD ICEBERG
Encryption (MBytes/s) 6.64 4.04 1.46
Decryption (MBytes/s) 6.30 4.04 1.46

Key Sch. (Enc.)(#KS/s) 526 · 103 405 · 103 8 · 103

Key Sch. (Dec.)(#KS/s) 167 · 103 199 · 103 8 · 103

big table (the key addition layer being moved to the end of the round).
Table lookups are also used in the key expansion and key selection lay-
ers. Note that ICEBERG is also susceptible to be implemented in bitslice
mode as suggested in [14].

The machine used for test was a Sun Ultra SPARC III workstation,
with a 750 Mhz processor and 1024MB of RAM. Comparison was per-
formed with optimized C-coded versions of KHAZAD and AES. Results
are presented in Table 7.

Regarding encryption/decryption, we can see that ICEBERG is about
three times slower than KHAZAD, and four time slower than AES. Re-
garding the key schedule, its performances are near from disastrous7.
One reason for this is that implementing it using a lookup table based
approach requires separate tables for transforms P128 and P128 ◦ S′.

Although no experiment was made, we guess the performance on a smart
card with 8-bit processor would be even worse. However, our aim was
absolutely not to devise a multi-platform cipher, but rather a dedicated
one, devoted to specific applications. Therefore its low performance on
other platforms is not really a surprise.

If a software-efficient key schedule is wanted, an alternative key round
based on a small Feistel structure can be used, illustrated in Figure 13.
We just use a conditional switch of the two 64-bit vectors so that we can

P64 S

6464

Figure 13. A modified ρK .

7Note however that the code used was not fully optimized.

VII.8. CONCLUSIONS 177

encrypt during half the rounds and decrypt afterwards in order to satisfy
Equation (103). This will only slightly affect hardware performances (an
additional multiplexor is necessary to select the round keys).

VII.8. Conclusions

This chapter presented the platform-specific encryption algorithm ICEB-
ERG and the rationale behind its design. ICEBERG is based on a fast invo-
lutional structure in order to provide very efficient hardware implemen-
tation opportunities. We showed the specificity of this type of platform
in block cipher design. We underlined that the overall structure of a
cipher is important for efficiency purposes (for example, in designing
rounds and key rounds that can be made in the same number of clock
cycles, or in allowing “on-the-fly” key derivation in both encryption and
decryption modes). Also, it appeared that optimizing for hardware in-
duces a complete loss of software efficiency; nevertheless, we believe that
some applications require such specialized cipher. We believe ICEBERG
to be as secure as AES and NESSIE [126] candidates and much more ef-
ficient for reconfigurable hardware implementations. ICEBERG also offers
free opportunities to defeat most side-channel attacks by using adequate
encryption modes.

Conclusion and Open Problems

In this thesis we contributed to various topics regarding block cipher
analysis:

In Chapter II we proved security bounds on the structure underlying the
Misty block cipher, where the round functions are involutions without
fixed points. To the best of our knowledge, it is the first time involutions
are considered in the framework of the Luby-Rackoff model.
Several open problems exist regarding this model: on the one hand,
existing bounds on the already studied structures can be improved, pos-
sibly by adding more rounds. On the other hand, many structures re-
main to be studied. But paradoxically the fact that the model only
deals with distinguishers with unbounded computation capabilities is
definitely a limitation. Thus, despite other attempts such as those of
Vaudenay [167, 168], proving the security of block ciphers remains an
important open problem, which is probably very difficult. Therefore
security analysis of block ciphers is essentially about proving security
against known attacks. Chapters III and IV of the thesis were devoted
to analyzing classes of attacks.

In Chapter III we dealt with the square attack [44]. Although this attack
is known since 1997, little theory exists about it. We tried to give a good
formalization of it, and showed a link with another attack: the truncated
differential cryptanalysis. Applications to Skipjack and SAFER++ were
also given.
It is often the case that a general concept of attack (such as linear and
differential cryptanalysis) gives rise to several variations. It is why we
suggested possible directions to extend the square attack; they do not
seem to be successful, and we do believe that most block ciphers cannot
be threatened by them. However we point out that we only have a strong
feeling about this, but no security proof...

In Chapter IV we discussed attacks focusing on the key schedule of a
block cipher. Among them, related-key attacks work under the particu-
lar hypothesis that plaintext-ciphertext pairs are available under several
different keys. While at first sight this hypothesis may look strange,
there are practical contexts in which it can be satisfied. Among other
things, we pointed out mistakes in attacks of the literature. We also dis-
cussed application of this type of attacks to multiple encryption modes.

179

180 CONCLUSION AND OPEN PROBLEMS

In Chapter V we dealt with a completely different way of attacking block
ciphers, which requires ability to tamper with the correct running of the
algorithm: fault attacks. We showed how devastating a fault attack can
be against unprotected implementations of block ciphers: it may require
very few plaintext-cipher pairs.
Our attack exploited faults occurring during the last two rounds of the
algorithm. The possibility and the efficiency of an attack exploiting
faults occurring during the middle rounds of the cipher is not clear.
A proof of such security result is probably bound to resistance against
differential cryptanalysis. This is an open problem which is of practical
importance, as its solution would indicate which rounds of the cipher
should be protected.

Scrambling functions are intended to protect against another type of
side-channel attacks, namely probing attacks. In Chapter VI we an-
alyzed the security of the scrambling function DeKaRT using linear
cryptanalysis. The conclusion was that the design paradigm behind it
is questionable. Our feeling is that classical paradigms of block cipher
design are more promising; designing a block cipher efficient in hard-
ware in accordance with these paradigms is the topic of Chapter VII.
More importantly, an open problem regarding scrambling functions is to
define adequate security criteria for them, knowing that these are much
lighter than for classical block ciphers.

In Chapter VII we designed a block cipher which is deliberately oriented
towards efficiency in hardware, while most block ciphers are intended to
perform equally well on all platforms. Among other things, it allows
encryption and decryption using exactly the same hardware and “on-
the-fly” key derivation in both encryption and decryption modes. This
last characteristic could be used to define encryption modes in which the
key is changed very frequently in order to counter side-channel attacks.
Two tendencies exist regarding block cipher design: either using strong
rounds iterated a small number of times (a typical example is the KHAZAD

cipher [8]), or using weak ones iterated a big number of times (an ex-
ample is Serpent [2]). Aiming at hardware efficiency naturally implied
to use the second approach, as the linear transform must be relatively
weak in order to be efficient.

Designing and implementing a secure and efficient block cipher requires
to consider many issues. Security of the primitive itself is not suffi-
cient: practical implementations remain vulnerable to side-channel at-
tacks. Moreover, the current state of the art regarding cryptanalysis
allows a designer to prove security against some known attacks only. It
is sometimes the case that one cannot prove security against a given
(known) attack, except by trying to apply the attack and argue that it
does not seem to work; an example is the square attack. Thus, while

CONCLUSION AND OPEN PROBLEMS 181

a competent design strongly reduces the possibility of attacks, the fact
that an algorithm has been subject to intensive cryptanalytic effort is
surely an additional guarantee of its strength. It is why we expect ad-
ditional cryptanalytic effort against our ICEBERG cipher to take place.

The current state of the art regarding block cipher cryptanalysis is a
bit particular: on the one hand, there has not been any really new
attack discovered during the last five years, if we except the controversial
attack of Courtois [42]. Moreover, any serious block cipher designer
knows how to protect against the known attacks. On the other hand,
there has not been any significant progress regarding security proofs
of block ciphers either: while research is still going regarding Luby-
Rackoff security proofs, this model has limitations and is therefore not
sufficient for complete security proofs of block ciphers. Whether the
cryptographic community will reach a real understanding of block cipher
security within the next ten years is an interesting as well as difficult
question.

APPENDIX A

Publication List

(1) With NESSIE Members. Comments by the NESSIE Project
on the AES Finalists. NESSIE Tech. Rep., May 2000.

(2) M. Ciet, F. Koeune, G. Piret, J.-J. Quisquater, and F. Sica.
Methodology for comparing the performances of primitives on
a fair and equal basis. NESSIE Tech. Rep., October 2000.

(3) M. Ciet, G. Piret, and J.-J. Quisquater. Several Optimizations
for Elliptic Curves Implementation on Smart Card. Technical
Report CG-2001/1, UCL Crypto Group, 2001. Available at
http://www.uclcrypto.org/tech reports/CG2001 1.ps.gz.

(4) G. Piret and J.-J. Quisquater. Impossible differential and square
attacks: Cryptanalytic link and application to Skipjack. Tech-
nical Report CG-2001/4, UCL Crypto Group, 2001.
Available at
http://www.uclcrypto.org/tech reports/CG2001 4.ps.gz.

(5) M. Ciet, G. Piret, and J.-J. Quisquater. A Survey of Key Sched-
ule Cryptanalysis. Technical Report CG-2002/1, UCL Crypto
Group, 2002. Available at
http://www.uclcrypto.org/tech reports/CG2002 1.zip.

(6) G. Piret, M. Ciet, and J.-J. Quisquater. Related Key and Slide
Attacks: Analysis, Connections, and Improvements. In Pro-
ceedings of the 23rd Symposium on IT in Benelux, 2002.

(7) G. Piret and J.-J. Quisquater. Integral Cryptanalysis on reduced-
round Safer++ . Technical Report 033, IACR eprint archive,
2003. Available at http://eprint.iacr.org/2003/033/.

(8) M. Ciet, G. Piret, and J.-J. Quisquater. A Structure of Block
Ciphers achieving some Resistance against Fault Attacks. In
Proceedings of the 24th Symposium on IT in Benelux, 2003.

(9) F.-X. Standaert, G. Rouvroy, G. Piret, J.-J. Quisquater, and
J.-D. Legat. Key-Dependent Approximations in Linear Crypt-
analysis. In Proceedings of the 24th Symposium on IT in Benelux,
2003.

(10) F.-X. Standaert, G. Piret, and J.-J. Quisquater. Cryptanalysis
of Block Ciphers: A Survey. Technical Report CG-2003/2,
UCL Crypto Group, 2003. Available at
http://www.uclcrypto.org/tech reports/CG-2003-2.pdf.

183

184 A. PUBLICATION LIST

(11) G. Piret and J.-J. Quisquater. A Differential Fault Attack
Technique against SPN Structures, with Application to the
AES and KHAZAD. In C.D. Walter, Ç.K. Koç, and C. Paar, ed-
itors, Cryptographic Hardware and Embedded Systems - CHES
2003, Cologne, Germany, September 8-10, 2003, volume 2779
of Lecture Notes in Computer Science, pages 77–88. Springer-
Verlag, 2003.

(12) F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, and
J.-D. Legat. ICEBERG : an Involutional Cipher Efficient for
Block Encryption on Reconfigurable Hardware. In B.K. Roy
and W. Meier, editors, Fast Software Encryption, 11th Interna-
tional Workshop, FSE 2004, Delhi, India, February 5-7, 2004,
volume 3017 of Lecture Notes in Computer Science, pages 279–
299. Springer-Verlag, 2004.

(13) G. Piret, F.-X. Standaert, G. Rouvroy, and J.-J. Quisquater.
On the Security of the DeKaRT Primitive. In J.-J. Quis-
quater, P. Paradinas, Y. Deswarte, and A.A. El Kalam, ed-
itors, Smart Card Research and Advanced Applications VI -
18th IFIP World Computer Congress, pages 241–254. Kluwer
Academic Publishers, August 2004.

(14) G. Piret and J.-J. Quisquater. Security of the MISTY Struc-
ture in the Luby-Rackoff Model: Improved Results. In H.
Handschuh and A. Hasan, editors, Selected Areas in Cryptog-
raphy, 11th Annual International Workshop, SAC 2004, Wa-
terloo, Canada, August 9-10, 2004, Lecture Notes in Computer
Science. Springer-Verlag, 2004.

(15) F.-X. Standaert, G. Piret, G. Rouvroy, and J.-J. Quisquater.
FPGA Implementations of the ICEBERG Block Cipher. Ac-
cepted at ITCC 2005.

APPENDIX B

Description of Algorithms

In this section we describe the AES and DES algorithms. The aim is to
facilitate understanding of chapters which deal with them, rather than
to give a complete specification. So some details and a few tables are
omitted, as well as the key schedule of the AES. Complete specifications
can be found in [46, 47] for the AES, and in [117, 164] for DES.

B.1. AES

The AES [47] (previously Rijndael) is a Substitution-Permutation Net-
work. It means that its round function consists of three different layers:

• A non-linear layer γ. It is made out of the parallel application
of identical 8× 8 S-boxes.

• A round key addition layer σ[k] performed using XOR (⊕):
σ[k](x) = x⊕ k.

• A diffusion layer θ, linear with respect to ⊕.

Its block size is 128 bits1, while its key size can be 128, 192, or 256 bits.
The number of rounds R is 10, 12, or 14 depending on the key size. The
AES algorithm can be globally represented as

σ[kR] ◦ ShiftRows ◦ γR ◦
(

R−1
©
r=1

σ[kr] ◦ θr ◦ γr

)
◦ σ[k0].

The ShiftRows transform is described below.

Table 1. The state during AES encryption.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

1Note that the original Rijndael submission allows block sizes of 192 and 256 bits
as well, but only the 128-bit version is standardized.

185

186 B. DESCRIPTION OF ALGORITHMS

Table 2. The ShiftRows transformation.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

ShiftRows−−−−−−→

a0,0 a0,1 a0,2 a0,3

a1,1 a1,2 a1,3 a1,0

a2,2 a2,3 a2,0 a2,1

a3,3 a3,0 a3,1 a3,2

In the remaining of this description, we deal with the 128-bit block 128-
bit key version only. Other versions are quite similar. In this case, the
intermediate computation results, called state, are usually represented
by a 4 × 4 square, each cell of which is a byte (see Table 1); note that
the round key bytes are indexed similarly: thus kr

i,j denotes the byte of
kr that will be XORed with the current ai,j . The θ layer (identical for
all rounds) is the composition of two transformations of the state:

(1) First, the ShiftRows transformation consists in shifting cycli-
cally the rows of the state. Row 0 is not shifted, row 1 is shifted
by 1 byte, row 2 is shifted by 2 bytes, and row 3 by 3 bytes. It
is pictured in Table 2.

(2) Then, the MixColumns transformation applies a linear trans-
formation with optimal byte branch number (i.e. 5) to each
column of the state. More precisely, application of MixColumns
to the first column of the state (for example) is computed by

b0,0

b1,0

b2,0

b3,0

=

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

·

a0,0

a1,0

a2,0

a3,0

where multiplication is performed in GF(28), via definition of
an irreducible polynomial of degree 8 over GF(2) (see [47] for
details).

It is easy to see that the byte branch number of θ is 5. Note that
ShiftRows is applied during the last round, while MixColumns is not.
As a matter of fact, applying a linear transform just before the last key
addition layer does not make sense. However ShiftRows was maintained
for implementation reasons.

B.2. DES 187

P S

3

2

S

1S

Figure 1. The round function of DES.

B.2. DES

DES is a 64-bit block 56-bit key block cipher. It is essentially a 16-
round Feistel network, preceded and followed by bit permutation layers
IP (Initial Permutation) and FP (Final Permutation), which have no
cryptographic significance; moreover the last swap of the left and right
parts is omitted. The round function of DES is pictured in Figure 1
(limited to its first 12 bits). It is made out of four layers:

• The expansion layer E transforms a 32-bit input into a 48-bit
output by duplicating some of the input bits. Figure 1 permits
to figure out how it is designed.

• The key addition layer adds the 48-bit round key to the 48 bits
outputting E.

• The non-linear layer is made out of the parallel application of
8 different 6× 4 S-boxes. They have the property that each of
their 16 possible outputs can be caused by 4 different inputs.

• The last layer is a bit permutation layer P .

The key schedule of DES actually takes a 64-bit key as input. But 8 of
them are parity bits which are immediately discarded by the Permuted
Choice function PC − 1. Moreover PC − 1 applies a bit permutation to
the remaining 56 bits. The key schedule of DES is pictured in Figure 2.
The state during the application of the algorithm is divided in two parts
〈Ci, Di〉 of 28 bits each. At each stage, each part is rotated left (≪) by
1 or 2 bits (1 only at stages 1, 2, 9, and 16). The result passes through
another Permuted Choice function PC − 2 which selects 48 out of the
56 bits and applies a bit permutation to them. The result after stage i
is the ith round key ki. Note that in order to generate the round keys
in reverse order for decryption, one only has to replace the left rotates
≪ by right rotates ≫, and to cancel the rotate of the first round.

188 B. DESCRIPTION OF ALGORITHMS

16

n

k
1

k

k

64-bit Key

C 1

PC-2

1616 DC

PC-2

nDnC

1D

D00C

PC-2

ROT

LEFT

ROT

LEFT

ROT

LEFT

ROT

LEFT

ROT

LEFT

ROT

LEFT

PC-1

Figure 2. The key schedule of DES.

APPENDIX C

ICEBERG: Proof of Theorem 34

We have to prove that P4 ◦ σRK1 ◦ M ≡ M ◦ σRK0 ◦ P4. Inputs and
outputs of every transform are represented in Figure 1. We simply write
down relations between them. First we encrypt with RK1:

M

P4

Encryption Decryption

a

b

c

d

e

f

g

M

P4

d

1RK 0RK

Figure 1. Theorem 1.

b0 = a1 ⊕ a2 ⊕ a3

b1 = a0 ⊕ a2 ⊕ a3

b2 = a0 ⊕ a1 ⊕ a3

b3 = a0 ⊕ a1 ⊕ a2

c0 = a1 ⊕ a2 ⊕ a3 ⊕ k0 ⊕ k1 ⊕ k2

c1 = a0 ⊕ a2 ⊕ a3 ⊕ k1 ⊕ k2

c2 = a0 ⊕ a1 ⊕ a3 ⊕ k2 ⊕ k3 ⊕ k0

c3 = a0 ⊕ a1 ⊕ a2 ⊕ k3 ⊕ k0

d0 = a0 ⊕ a2 ⊕ a3 ⊕ k1 ⊕ k2

d1 = a1 ⊕ a2 ⊕ a3 ⊕ k0 ⊕ k1 ⊕ k2

d2 = a0 ⊕ a1 ⊕ a2 ⊕ k3 ⊕ k0

d3 = a0 ⊕ a1 ⊕ a3 ⊕ k2 ⊕ k3 ⊕ k0

189

190 C. ICEBERG: PROOF OF THEOREM ??

Then, when we decrypt with RK0:

e0 = d1 ⊕ d2 ⊕ d3 = a1 ⊕ k0 ⊕ k1

e1 = d0 ⊕ d2 ⊕ d3 = a0 ⊕ k1

e2 = d0 ⊕ d1 ⊕ d3 = a3 ⊕ k2 ⊕ k3

e3 = d0 ⊕ d1 ⊕ d2 = a2 ⊕ k3

From Equation (102), we have:

f0 = a1

f1 = a0

f2 = a3

f3 = a2

And finally, permutation P4 finishes the decryption:

g0 = a0

g1 = a1

g2 = a2

g3 = a3

Remark that permutation P4 allows the selection function Xsel to be
efficiently implemented in LUTs as it has at most 4 inputs: 3 key bits
and a selection bit.

APPENDIX D

ICEBERG Tables

0 1 2 3

1 0 3 2

Table 1. p4.

0 1 2 3 4 5 6 7

0 1 4 5 2 3 6 7

Table 2. p8.

0 1 2 3 4 5 6 7 8 9 a b c d e f

d 7 3 2 9 a c 1 f 4 5 e 6 0 b 8

Table 3. s0.

0 1 2 3 4 5 6 7 8 9 a b c d e f

4 a f c 0 d 9 b e 6 1 7 3 5 8 2

Table 4. s1.

191

192 D. ICEBERG TABLES

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 e d 3 b 5 6 8 7 9 a 4 c 2 1 f

Table 5. D.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 24 c1 38 30 e7 57 df 20 3e 99 1a 34 ca d6 52 fd

10 40 6c d3 3d 4a 59 f8 77 fb 61 0a 56 b9 d2 fc f1

20 07 f5 93 cd 00 b6 62 a7 63 fe 44 bd 5f 92 6b 68

30 03 4e a2 97 0b 60 83 a3 02 e5 45 67 f4 13 08 8b

40 10 ce be b4 2a 3a 96 84 c8 9f 14 c0 c4 6f 31 d9

50 ab ae 0e 64 7c da 1b 05 a8 15 a5 90 94 85 71 2c

60 35 19 26 28 53 e2 7f 3b 2f a9 cc 2e 11 76 ed 4d

70 87 5e c2 c7 80 b0 6d 17 b2 ff e4 b7 54 9d b8 66

80 74 9c db 36 47 5d de 70 d5 91 aa 3f c9 d8 f3 f2

90 5b 89 2d 22 5c e1 46 33 e6 09 bc e8 81 7d e9 49

a0 e0 b1 32 37 ea 5a f6 27 58 69 8a 50 ba dd 51 f9

b0 75 a1 78 d0 43 f7 25 7b 7e 1c ac d4 9a 2b 42 e3

c0 4b 01 72 d7 4c fa eb 73 48 8c 0c f0 6a 23 41 ec

d0 b3 ef 1d 12 bb 88 0d c3 8d 4f 55 82 ee ad 86 06

e0 a0 95 65 bf 7a 39 98 04 9b 9e a4 c6 cf 6e dc d1

f0 cb 1f 8f 8e 3c 21 a6 b5 16 af c5 18 1e 0f 29 79

Table 6. 8 x 8 substitution box.

D. ICEBERG TABLES 193

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 23 25 38 42 53 59 22 9 26 32 1 47 51 61

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

24 37 18 41 55 58 8 2 16 3 10 27 33 46 48 62

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

11 28 60 49 36 17 4 43 50 19 5 39 56 45 29 13

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

30 35 40 14 57 6 54 20 44 52 21 7 34 15 31 63

Table 7. P64.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

76 110 83 127 67 114 92 97 98 65 121 106 78 112 91 82

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

71 101 89 126 72 107 81 118 90 124 73 88 64 104 100 85

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

109 87 75 113 120 66 103 115 122 108 95 69 74 116 80 102

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

84 96 125 68 93 105 119 79 123 86 70 117 111 77 99 94

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

28 9 37 4 51 43 58 16 20 26 44 34 0 61 12 55

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

46 22 15 2 48 31 57 33 27 18 24 14 6 52 63 42

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

49 7 8 62 30 17 47 38 29 53 11 21 41 32 1 60

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

13 35 5 39 45 59 23 54 36 10 40 56 25 50 19 3

Table 8. P128.

APPENDIX E

Generation of the ICEBERG S-box

As P8 is fixed, the only part of the ICEBERG S-box structure that
remains unspecified consists of the s0 and s1 involutions, which are gen-
erated pseudo-randomly in a verifiable way.

The searching algorithm [8] starts with two copies of a simple involution
without fixed points (namely, the negation mapping u 7→ ū = u⊕ 0xF),
and pseudo-randomly derives from each of them a sequence of 4 × 4
substitution boxes (“mini-boxes”) with the optimal values δ = 1/4, λ =
1/2, and ν = 3. At each step, in alternation, only one of the sequences
is extended with a new mini-box. The most recently generated mini-box
from each sequence is taken, and the pair is combined according to the
ICEBERG S-box shuffle structure. Finally, the resulting 8 × 8 S-box, if
free of fixed points, is tested for the design criteria regarding δ, λ, and
ν.
Given a mini-box at any point during the search, a new one is derived
from it by choosing two pairs of mutually inverse values and swapping
them, keeping the result an involution without fixed points. This is
repeated until the running mini-box has optimal values of δ, λ, and ν.
The pseudo-random number generator is implemented using the AES
cipher Rijndael in counter mode, with a fixed key consisting of 128 zero
bits and an initial counter value consisting of 128 zero bits.
The following pseudo-code fragment illustrates the computation of the
chains of mini-boxes and the resulting S-box:

procedure ShuffleStructure(s0, s1)
for w ← 0 to 255 do

u0 ← s0[w À 4]; v0 ← s0[w & 0x0F];
u1 ← (u0 & 0xC) | ((v0 & 0xC) À 2); v1 ← (v0 & 0x3) | ((u0 & 0x3) ¿ 2);
u0 ← s1[u1]; v0 ← s1[v1];
u1 ← (u0 & 0xC) | ((v0 & 0xC) À 2); v1 ← (v0 & 0x3) | ((u0 & 0x3) ¿ 2);
S[w] ← (s0[u1] ¿ 4) | s0[v1];

end for
return S;

end procedure

procedure SearchRandomSBox()
// initialize mini-boxes to the negation involution:
for u ← 0 to 255 do

s0[u] ← ū; s1[u] ← ū;
end for

195

196 E. GENERATION OF THE ICEBERG S-BOX

// look for S-box conforming to the design criteria:
repeat

// swap mini-boxes (update the “older” one only)
s0 ↔ s1;
// randomly generate a “good” Z4

2 involution free of fixed points:
repeat

repeat
// randomly select x and y such that
// x 6= y and s1[x] 6= y (this implies s1[y] 6= x):
z ← RandomByte(); x ← z À 4; y ← z & 0x0F;

until x 6= y ∧ s1[x] 6= y;
// swap entries:
u ← s1[x]; v ← s1[y];
s1[x] ← v; s1[u] ← y;
s1[y] ← u; s1[v] ← x;

until δ(s1) = 1/4 ∧ λ(s1) = 1/2 ∧ ν(s1) = 3;
// build S-box from the mini-boxes:
S ← ShuffleStructure(s0, s1);
// test the design criteria:

until #FixedPoints(S) = 0 ∨ δ(S) 6 2−5 ∧ λ(S) 6 2−2 ∧ ν(S) = 7;
return S;

end procedure

Bibliography

[1] 3G TS 35.201. Specification of the 3gpp confidentiality and integrity algorithm;
document 1: f8 and f9 specifications. Available at http://www.3gpp.org.

[2] R. Anderson, E. Biham, and L.R. Knudsen. Serpent: A Proposal for the
Advanced Encryption Standard. NIST AES Proposal, 1998. Available from
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf.

[3] R. Anderson and M. Kuhn. Tamper Resistance – a Cautionary Note. In Proc. of
the second USENIX workshop on electronic commerce, Oakland, USA, Nov. 18-
21, 1996, pages 1–11, 1996. Available at http://www.cl.cam.ac.uk/∼mgk25/
tamper.pdf.

[4] R. Anderson and M. Kuhn. Low Cost Attacks on Tamper Resistant Devices.
In B. Christianson, B. Crispo, M. Lomas, and M. Roe, editors, Security Proto-
cols, 5th International Workshop, Paris, France, April 7-9, 1997, volume 1361
of Lecture Notes in Computer Science, pages 125–136. Springer-Verlag, 1997.
Available at http://www.cl.cam.ac.uk/∼mgk25/tamper2.pdf.

[5] K. Aoki, T. Ichikawa, and al. Camellia: A 128-Bit Block Cipher Suitable for
Multiple Platforms - Design and Analysis. In D.R. Stinson and S.E. Tavares,
editor, Selected Areas in Cryptography, 7th Annual International Workshop,
SAC 2000, Waterloo, Canada, August 14-15, 2000, volume 2012 of Lecture
Notes in Computer Science, pages 39–56. Springer-Verlag, 2001.

[6] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
Sorcerer´s Apprentice Guide to Fault Attacks. Cryptology ePrint Archive,
2004/100, 2004. http://eprint.iacr.org/2004/100.pdf.

[7] P.S.L.M. Barreto and V. Rijmen. The Anubis Block Cipher. Submitted as a
NESSIE Candidate Algorithm. Available at http://www.cryptonessie.org.

[8] P.S.L.M. Barreto and V. Rijmen. The Khazad Legacy-Level Block Cipher.
Submitted as a NESSIE Candidate Algorithm. Available at http://www.

cryptonessie.org.
[9] P.S.L.M. Barreto, V. Rijmen, J. Nakahara, B. Preneel, and al. Improved

SQUARE Attacks against Reduced-Round HIEROCRYPT. In Mitsuru Mat-
sui, editor, Fast Software Encryption, 8th International Workshop, FSE 2001,
Yokohama, Japan, April 2-4, 2001, volume 2355 of Lecture Notes in Computer
Science, pages 165–173. Springer-Verlag, 2002.

[10] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treat-
ment of Symmetric Encryption. In 38th Annual Symposium on Foundations
of Computer Science - FOCS ’97, Miami Beach, USA, October 19-22, 1997,
pages 394–403. IEEE Computer Society, 1997. Full paper available at http:

//www.cs.ucdavis.edu/∼rogaway/papers/sym-enc-abstract.html.
[11] J.-L. Beuchat. FPGA Implementations of the RC6 Block Cipher. In P. Y. K.

Cheung, G. A. Constantinides, and J. T. de Sousa, editors, Field Programmable
Logic and Application, 13th International Conference, FPL 2003, Lisbon, Por-
tugal, September 1-3, 2003, volume 2778 of Lecture Notes in Computer Science,
pages 101–110. Springer-Verlag, 2003.

197

198 BIBLIOGRAPHY

[12] J.-L. Beuchat. Modular Multiplication for FPGA Implementation of the IDEA
Block Cipher. In E. Deprettere, S. Bhattacharyya, J. Cavallaro, A. Darte,
and L. Thiele, editors, Proceedings of the 14th IEEE International Conference
on Application-Specific Systems, Architectures, and Processors (ASAC 2003),
pages 412–422. IEEE Computer Society, 2003.

[13] E. Biham. New Types of Cryptanalytic Attacks Using Related Keys (Extended
Abstract). In Tor Helleseth, editor, Advances in Cryptology - EUROCRYPT ’93,
Lofthus, Norway, May 23-27, 1993, volume 765 of Lecture Notes in Computer
Science, pages 398–409. Springer-Verlag, 1994.

[14] E. Biham. A Fast New DES Implementation in Software. In Eli Biham, editor,
Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel,
January 20-22, 1997, volume 1267 of Lecture Notes in Computer Science, pages
260–272. Springer-Verlag, 1997.

[15] E. Biham, A. Biryukov, N. Ferguson, L.R. Knudsen, B. Schneier, and A. Shamir.
Cryptanalysis of Magenta. In Proc. of the 2nd AES Candidate Conference,
pages 182–183, 1999. Available from http://csrc.nist.gov/CryptoToolkit/

aes/round1/conf2/papers/biham1.pdf.
[16] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced to

31 Rounds Using Impossible Differentials. In Jacques Stern, editor, Advances
in Cryptology - EUROCRYPT ’99, Prague, Czech Republic, May 2-6, 1999,
volume 1592 of Lecture Notes in Computer Science, pages 12–23, Berlin, 1999.
Springer-Verlag.

[17] E. Biham, A. Biryukov, and A. Shamir. Miss in the middle attacks on IDEA,
Khufu, and Khafre. In Lars R. Knudsen, editor, Fast Software Encryption,
6th International Workshop, FSE ’99, Rome, Italy, March 24-26, 1999, vol-
ume 1636 of Lecture Notes in Computer Science, pages 124–138, Berlin, 1999.
Springer-Verlag.

[18] E. Biham, O. Dunkelman, and N. Keller. The Rectangle Attack - Rectangling
the Serpent. In Birgit Pfitzmann, editor, Advances in Cryptology - EURO-
CRYPT 2001, Innsbruck, Austria, May 6-10, 2001, volume 2045 of Lecture
Notes in Computer Science, pages 340–357. Springer-Verlag, 2001.

[19] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

[20] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In Burton S. Kaliski, editor, Advances in Cryptology - CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 513–525. Springer-
Verlag, 1997.

[21] A. Biryukov. Analysis of Involutional Ciphers: Khazad and Anubis. In Thomas
Johansson, editor, Fast Software Encryption, 10th International Workshop,
FSE 2003, Lund, Sweden, February 24-26, 2003, volume 2887 of Lecture Notes
in Computer Science, pages 45–53. Springer-Verlag, 2003.

[22] A. Biryukov, C. De Cannière, and G. Dellkrantz. Cryptanalysis of SAFER++.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, Santa Barbara,
USA, August 17-21, 2003, volume 2729 of Lecture Notes in Computer Science,
pages 195–211. Springer-Verlag, 2003.

[23] A. Biryukov, C. De Cannière, and M. Quisquater. On Multiple Linear Ap-
proximations. In Proceedings of CRYPTO 2004, 2004. Also available at http:

//eprint.iacr.org/2004/057.pdf.
[24] A. Biryukov and A. Shamir. Structural Cryptanalysis of SASAS. In Birgit Pfitz-

mann, editor, Advances in Cryptology - EUROCRYPT 2001, Innsbruck, Aus-
tria, May 6-10, 2001, volume 2045 of Lecture Notes in Computer Science, pages
394–405. Springer-Verlag, 2001.

BIBLIOGRAPHY 199

[25] A. Biryukov and D. Wagner. Slide Attacks. In Lars R. Knudsen, editor, Fast
Software Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March
24-26, 1999, volume 1636 of Lecture Notes in Computer Science, pages 245–259,
Berlin, 1999. Springer-Verlag.

[26] A. Biryukov and D. Wagner. Advanced Slide Attacks. In Bart Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, Bruges, Belgium, May 14-18,
2000, volume 1807 of Lecture Notes in Computer Science, pages 589–606, Berlin,
2000. Springer-Verlag.

[27] J. Blömer and J.-P. Seifert. Fault Based Cryptanalysis of the Advanced En-
cryption Standard (AES). In Rebecca N. Wright, editor, Financial Cryptogra-
phy, 7th International Conference, FC 2003, Guadeloupe, January 27-30, 2003,
Lecture Notes in Computer Science, pages 162–181. Springer-Verlag, 2003. Also
available at http://eprint.iacr.org/, 2002/075.

[28] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract). In Walter Fumy, ed-
itor, Advances in Cryptology - EUROCRYPT ’97, Konstanz, Germany, May
11-15, 1997, volume 1233 of Lecture Notes in Computer Science, pages 37–51.
Springer-Verlag, 1997.

[29] E. Brier, H. Handschuh, and C. Tymen. Fast Primitives for Internal Data
Scrambling in Tamper Resistant Hardware. In Ç.K. Koç, D. Naccache, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2001,
Paris, France, May 14-16, 2001, volume 2162 of Lecture Notes in Computer
Science, pages 16–27. Springer-Verlag, 2001.

[30] L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry. Improving Resistance to Dif-
ferential Cryptanalysis and the Redesign of LOKI. In H. Imai, R.L. Rivest,
and T. Matsumoto, editors, Advances in Cryptology - ASIACRYPT ’91, Fu-
jiyoshida, Japan, November 11-14, 1991, volume 739 of Lecture Notes in Com-
puter Science, pages 36–50. Springer-Verlag, 1993.

[31] L. Brown, J. Pieprzyk, and J. Seberry. LOKI - A Cryptographic Primitive
for Authentication and Secrecy Applications. In J. Seberry and J. Pieprzyk,
editor, Advances in Cryptology - AUSCRYPT ’90, International Conference on
Cryptology, Sydney, Australia, January 8-11, 1990, volume 453 of Lecture Notes
in Computer Science, pages 229–236. Springer-Verlag, 1990.

[32] C. Burwick, D. Coppersmith, and al. MARS - a candidate cipher for
AES. NIST AES Proposal. Available from http://www.research.ibm.com/

security/mars.pdf, September 1999.
[33] A. Canteaut and M. Minier. Personal communication. October 2004.
[34] S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi. Towards Sound Approaches to

Counteract Power-Analysis Attacks. In Michael J. Wiener, editor, Advances in
Cryptology - CRYPTO ’99, Santa Barbara, USA, August 15-19, 1999, volume
1666 of Lecture Notes in Computer Science, pages 398–412. Springer-Verlag,
1999.

[35] S. Chari, J.R. Rao, and P. Rohatgi. Template Attacks. In B.S. Kaliski, Ç.K.
Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2002, Redwood Shores, USA, August 13-15, 2002, volume 2523 of Lecture
Notes in Computer Science, pages 13–28. Springer-Verlag, 2003.

[36] C.-N. Chen and S.-M. Yen. Differential Fault Analysis on AES Key Schedule and
Some Countermeasures. In R. Safavi-Naini and J. Seberry, editors, Information
Security and Privacy, 8th Australasian Conference, ACISP 2003, Wollongong,
Australia, July 9-11, 2003, volume 2727 of Lecture Notes in Computer Science,
pages 118–129. Springer-Verlag, 2003.

200 BIBLIOGRAPHY

[37] R. Chung-Wei Phan. Related-Key Attacks on Triple-DES and DESX Variants.
In Tatsuaki Okamoto, editor, Topics in Cryptology - CT-RSA 2004, San Fran-
cisco, USA, February 23-27, 2004, volume 2964 of Lecture Notes in Computer
Science, pages 15–24. Springer-Verlag, 2004.

[38] R. Chung-Wei Phan and S. Furuya. Sliding Properties of the DES Key Sched-
ule and Potential Extensions to the Slide Attacks. In P.J. Lee and C.H. Lim,
editors, Information Security and Cryptology - ICISC 2002, 5th International
Conference, Seoul, Korea, November 28-29, 2002, volume 2587 of Lecture Notes
in Computer Science, pages 138–148. Springer-Verlag, 2003.

[39] R. Chung-Wei Phan and H. Handschuh. On Related-Key and Collision Attacks:
The Case for the IBM 4758 Cryptoprocessor. In K. Zhang and Y. Zheng, editors,
Information Security, 7th International Conference, ISC 2004, Palo Alto, USA,
September 27-29, 2004, volume 3225 of Lecture Notes in Computer Science,
pages 111–122. Springer-Verlag, 2004.

[40] J.-S. Coron and L. Goubin. On Boolean and Arithmetic Masking against Dif-
ferential Power Analysis. In Ç.K. Koç and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2000, Worcester, USA, August 17-
18, 2000, volume 1965 of Lecture Notes in Computer Science, pages 231–237.
Springer-Verlag, 2000.

[41] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations. In Bart
Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, Bruges, Bel-
gium, May 14-18, 2000, volume 1807 of Lecture Notes in Computer Science,
pages 392–407, Berlin, 2000. Springer-Verlag.

[42] N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In Yuliang Zheng, editor, Advances in Cryptology - ASI-
ACRYPT 2002, Queenstown, New Zealand, December 1-5, 2002, volume 2501
of Lecture Notes in Computer Science, pages 267–287. Springer-Verlag, 2002.

[43] J. Daemen. Cipher and Hash Function Design. PhD thesis, KULeuven, March
1995.

[44] J. Daemen, L.R. Knudsen, and V. Rijmen. The Block Cipher SQUARE. In Eli
Biham, editor, Fast Software Encryption, 4th International Workshop, FSE ’97,
Haifa, Israel, January 20-22, 1997, volume 1267 of Lecture Notes in Computer
Science, pages 149–165. Springer-Verlag, 1997.

[45] J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. Nessie proposal:
NOEKEON. Submitted as a NESSIE Candidate Algorithm, 2000. Available
from http://www.cryptonessie.org.

[46] J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and
Cryptography - Texts and Monographs. Springer-Verlag, Berlin, 2002.

[47] J. Daemen and V. Rijmen. AES proposal: Rijndael. In Proc. first AES con-
ference, August 1998. Available on-line from the official AES page: http:

//csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf.
[48] I.B. Damgärd and L.R. Knudsen. Two-Key Triple Encryption. Journal of Cryp-

tology, 11(3):209–218, 1998.
[49] A. Desai and S.K. Miner. Concrete Security Characterizations of PRFs and

PRPs: Reductions and Applications. In Tatsuaki Okamoto, editor, Advances
in Cryptology - ASIACRYPT 2000, Kyoto, Japan, December 3-7, 2000, volume
1976 of Lecture Notes in Computer Science, pages 503–516. Springer-Verlag,
2000.

[50] C. D’Halluin, G. Bijnens, V. Rijmen, and B. Preneel. Attack on Six Rounds of
CRYPTON. In Lars R. Knudsen, editor, Fast Software Encryption, 6th Inter-
national Workshop, FSE ’99, Rome, Italy, March 24-26, 1999, volume 1636 of
Lecture Notes in Computer Science, pages 46–59, Berlin, 1999. Springer-Verlag.

BIBLIOGRAPHY 201

[51] P. Dusart, G. Letourneux, and O. Vivolo. Differential Fault Analysis on A.E.S.
In J. Zhou, M. Yung, and Y. Han, editors, Applied Cryptography and Network
Security, First International Conference, ACNS 2003. Kunming, China, Oc-
tober 16-19, 2003, volume 2846 of Lecture Notes in Computer Science, pages
293–306. Springer-Verlag, 2003.

[52] S. Even and Y. Mansour. A Construction of a Cipher from a Single Pseudoran-
dom Permutation. Journal of Cryptology, 10(3):151–162, 1997.

[53] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing
(STOC 87), New York City, 25-27 May 1987, pages 210–217, 1987.

[54] H. Feistel. Cryptography and Computer Privacy. Scientific American,
228(5):15–23, 1973.

[55] N. Ferguson, J. Kelsey, and al. Improved Cryptanalysis of Rijndael. In Bruce
Schneier, editor, Fast Software Encryption, 7th International Workshop, FSE
2000, New York, USA, April 10-12, 2000, volume 1978 of Lecture Notes in
Computer Science, pages 213–230. Springer-Verlag, 2000.

[56] S. Fernandez-Gomez, J.J. Rodriguez-Andina, and E. Mandado. Concurrent er-
ror detection in block ciphers. In International Test Conference (ITC), IEEE,
2000.

[57] W.W. Fung and J.W. Gray. Protection Against EEPROM Modification At-
tacks. In C. Boyd and E. Dawson, editors, Information Security and Privacy,
Third Australasian Conference, ACISP’98, Brisbane, Australia, July 1998, vol-
ume 1438 of Lecture Notes in Computer Science, pages 250–260. Springer-
Verlag, 1998.

[58] S. Furuya. Slide Attacks with a Known-Plaintext Cryptanalysis. In Kwangjo
Kim, editor, Information Security and Cryptology - ICISC 2001, 4th Interna-
tional Conference, Seoul, Korea, December 6-7, 2001, volume 2288 of Lecture
Notes in Computer Science, pages 214–225. Springer-Verlag, 2002.

[59] K. Gaj and P. Chodowiec. Fast Implementation and Fair Comparison of the Fi-
nal Candidates for Advanced Encryption Standard Using Field Programmable
Gate Arrays. In David Naccache, editor, Topics in Cryptology - CT-RSA 2001,
San Francisco, USA, April 8-12, 2001, volume 2020 of Lecture Notes in Com-
puter Science, pages 84–99. Springer-Verlag, 2001.

[60] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete
Results. In Ç.K. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2001, Paris, France, May 14-16, 2001,
volume 2162 of Lecture Notes in Computer Science, pages 251–261. Springer-
Verlag, 2001.

[61] H. Gilbert and M. Minier. A Collision Attack on 7 Rounds of Rijndael. In Proc.
of the 3rd AES Candidate Conference, pages 230–241, 2000. Available from
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/aes3conf.htm.

[62] H. Gilbert and A. Tardy-Corfdir. A Known Plaintext Attack of FEAL-4 and
FEAL-6. In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91,
11th Annual International Cryptology Conference, Santa Barbara, USA, August
11-15, 1991, volume 576 of Lecture Notes in Computer Science, pages 172–181.
Springer-Verlag, 1992.

[63] C. Giraud. DFA on AES. Technical Report 2003/008, IACR eprint archive,
2003. Available at http://eprint.iacr.org/2003/008.ps.

[64] C. Giraud and H. Thiebeauld. A Survey on Fault Attacks. In J.-J. Quisquater,
P. Paradinas, Y. Deswarte, and A.A. El Kalam, editors, Smart Card Research
and Advanced Applications VI - 18th IFIP World Computer Congress, pages
159–176. Kluwer Academic Publishers, August 2004.

202 BIBLIOGRAPHY

[65] J.D. Golić. DeKaRT: A New Paradigm for Key-Dependent Reversible Circuits.
In C.D. Walter, Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2003, Cologne, Germany, September 8-10, 2003,
volume 2779 of Lecture Notes in Computer Science, pages 98–112. Springer-
Verlag, 2003.

[66] L. Goubin and J. Patarin. DES and Differential Power Analysis (The “Duplica-
tion” Method). In Ç.K. Koç and C. Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES ’99, Worcester, USA, August 12-13, 1999, volume
1717 of Lecture Notes in Computer Science, pages 158–172. Springer-Verlag,
1999.

[67] L. Granboulan. Flaws in Differential Cryptanalysis of Skipjack. In Mitsuru Mat-
sui, editor, Fast Software Encryption, 8th International Workshop, FSE 2001,
Yokohama, Japan, April 2-4, 2001, volume 2355 of Lecture Notes in Computer
Science, pages 328–335. Springer-Verlag, 2002.

[68] S. Halevi and P. Rogaway. A Tweakable Enciphering Mode. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, Santa Barbara, USA, August
17-21, 2003, volume 2729 of Lecture Notes in Computer Science, pages 482–499.
Springer-Verlag, 2003.

[69] C. Harpes and J.L. Massey. Partitioning Cryptanalysis. In Eli Biham, editor,
Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel,
January 20-22, 1997, volume 1267 of Lecture Notes in Computer Science, pages
13–27. Springer-Verlag, 1997.

[70] Helion Technology. High Performance AES (Rijndael) Cores for XILINX FPGA.
Available at http://www.heliontech.com.

[71] L. Hemme. A Differential Fault Attack Against Early Rounds of (Triple-)DES.
In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded
Systems - CHES 2004, Cambridge, USA, August 11-13, 2004, volume 3156 of
Lecture Notes in Computer Science, pages 254–267. Springer-Verlag, 2004.

[72] H.M. Heys and S.E. Tavares. Known Plaintext Cryptanalysis of Tree-Structured
Block Ciphers. Electronic Letters, 31(10):784–785, May 1995.

[73] J.J. Hoch and A. Shamir. Fault Analysis of Stream Ciphers. In M. Joye and J.-
J. Quisquater, editors, Cryptographic Hardware and Embedded Systems - CHES
2004, Cambridge, USA, August 11-13, 2004, volume 3156 of Lecture Notes in
Computer Science, pages 240–253. Springer-Verlag, 2004.

[74] K. Hwang, W. Lee, S. Lee, S. Lee, and J. Lim. Saturation Attacks on Reduced
Round Skipjack. In J. Daemen and V. Rijmen, editors, Fast Software Encryp-
tion, 9th International Workshop, FSE 2002, Leuven, Belgium, February 4-6,
2002, volume 2365 of Lecture Notes in Computer Science, pages 100–111, Berlin,
2002. Springer-Verlag.

[75] T. Ichikawa, T. Sorimachi, T. Kasuya, and M. Matsui. On the Criteria of Hard-
ware Evaluation of Block Ciphers. Technical report, IEICE, ISEC, 2001.

[76] T. Iwata, T. Yoshino, and K. Kurosawa. Non-cryptographic Primitive for Pseu-
dorandom Permutation. In J. Daemen and V. Rijmen, editors, Fast Software
Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium, February
4-6, 2002, volume 2365 of Lecture Notes in Computer Science, pages 149–163.
Springer-Verlag, 2002.

[77] T. Iwata, T. Yoshino, T. Yuasa, and K. Kurosawa. Round Security and Super-
Pseudorandomness of MISTY Type Structure. In Mitsuru Matsui, editor,
Fast Software Encryption, 8th International Workshop, FSE 2001, Yokohama,
Japan, April 2-4, 2001, volume 2355 of Lecture Notes in Computer Science,
pages 233–247. Springer-Verlag, 2002.

BIBLIOGRAPHY 203

[78] G. Jakimoski and Y. Desmedt. Related-Key Differential Cryptanalysis of 192-
bit Key AES Variants. In M. Matsui and R.J. Zuccherato, editor, Selected Ar-
eas in Cryptography, 10th Annual International Workshop, SAC 2003, Ottawa,
Canada, August 14-15, 2003, volume 3006 of Lecture Notes in Computer Sci-
ence, pages 208–221. Springer-Verlag, 2004.

[79] T. Jakobsen and L.R. Knudsen. The Interpolation Attack on Block Ciphers.
In Eli Biham, editor, Fast Software Encryption, 4th International Workshop,
FSE ’97, Haifa, Israel, January 20-22, 1997, volume 1267 of Lecture Notes in
Computer Science, pages 28–40. Springer-Verlag, 1997.

[80] N. Joshi, K. Wu, and R. Karri. Concurrent Error Detection Schemes for Involu-
tion Ciphers. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware
and Embedded Systems - CHES 2004, Cambridge, USA, August 11-13, 2004,
volume 3156 of Lecture Notes in Computer Science, pages 400–412. Springer-
Verlag, 2004.

[81] M. Joye, P. Paillier, and S.M. Yen. Secure Evaluation of Modular Functions.
In R.J. Hwang and C.K. Wu, editors, International Workshop on Cryptology
and Network Security, Taipei, Taiwan, September 26-28, 2001, pages 227–229,
2001.

[82] P. Junod. On the Complexity of Matsui’s Attack. In S. Vaudenay and A.M.
Youssef, editors, Selected Areas in Cryptography, 8th Annual International
Workshop, SAC 2001, Toronto, Ontario, Canada, August 16-17, 2001, volume
2259 of Lecture Notes in Computer Science, pages 199–211. Springer-Verlag,
2001.

[83] P. Junod. On the Optimality of Linear, Differential, and Sequential Distin-
guishers. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003,
Warsaw, Poland, May 4-8, 2003, volume 2656 of Lecture Notes in Computer
Science, pages 17–32. Springer-Verlag, 2003.

[84] P. Junod and S. Vaudenay. Optimal Key Ranking Procedures in a Statistical
Cryptanalysis. In Thomas Johansson, editor, Fast Software Encryption, 10th In-
ternational Workshop, FSE 2003, Lund, Sweden, February 24-26, 2003, volume
2887 of Lecture Notes in Computer Science, pages 235–246. Springer-Verlag,
2003.

[85] B. S. Kaliski and M. J. B. Robshaw. Linear Cryptanalysis Using Multiple Ap-
proximations. In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO ’94,
Santa Barbara, USA, August 21-25, 1994, volume 839 of Lecture Notes in Com-
puter Science, pages 26–39, Berlin, 1994. Springer-Verlag.

[86] M. Karpovsky, K. Kulikowski, and A. Taubin. Differential Fault Analysis Attack
Resistant Architectures for the Advanced Encryption Standard. In J.-J. Quis-
quater, P. Paradinas, Y. Deswarte, and A.A. El Kalam, editors, Smart Card
Research and Advanced Applications VI - 18th IFIP World Computer Congress,
pages 177–192. Kluwer Academic Publishers, August 2004.

[87] R. Karri, G. Kuznetsov, and M. Goessel. Parity-Based Concurrent Error Detec-
tion of Substitution-Permutation Network Block Ciphers. In C.D. Walter, Ç.K.
Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2003, Cologne, Germany, September 8-10, 2003, volume 2779 of Lecture
Notes in Computer Science, pages 113–124. Springer-Verlag, 2003.

[88] R. Karri, K. Wu, P. Mishra, and Y. Kim. Concurrent error detection of fault-
based side-channel cryptanalysis of 128-bit symmetric block ciphers. In DAC
2001, ACM 1-58113-297-2/01/0006, 2001.

[89] J. Kelsey, B. Schneier, and D. Wagner. Key-Schedule Cryptanalysis of IDEA,
G-DES, GOST, SAFER, and Triple-DES. In Neal Koblitz, editor, Advances in
Cryptology - CRYPTO ’96, Santa Barbara, USA, August 1996, volume 1109 of
Lecture Notes in Computer Science, pages 237–251. Springer-Verlag, 1996.

204 BIBLIOGRAPHY

[90] J. Kelsey, B. Schneier, and D. Wagner. Related-key cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In Y. Han, T. Okamoto,
and S. Qing, editors, Information and Communication Security, First Interna-
tional Conference, ICICS’97, Beijing, China, November 11-14, 1997, volume
1334 of Lecture Notes in Computer Science, pages 233–246. Springer-Verlag,
1997.

[91] J. Kilian and P. Rogaway. How to Protect DES Against Exhaustive Key Search.
In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, Santa Barbara,
USA, August 1996, volume 1109 of Lecture Notes in Computer Science, pages
252–267. Springer-Verlag, 1996.

[92] J. Kim, G. Kim, S. Hong, S. Lee, and D. Hong. The Related-Key Rectangle
Attack - Application to SHACAL-1. In Information Security and Privacy: 9th
Australasian Conference, ACISP 2004, Sydney, Australia, July 13-15, 2004,
volume 3108 of Lecture Notes in Computer Science, pages 123–136. Springer-
Verlag, 2004.

[93] L. R. Knudsen and M. J. B. Robshaw. Non-Linear Approximations in Linear
Cryptoanalysis. In Ueli Maurer, editor, Advances in Cryptology - EUROCRYPT
’96, Saragossa, Spain, May 12-16, 1996, volume 1070 of Lecture Notes in Com-
puter Science, pages 224–236, Berlin, 1996. Springer-Verlag.

[94] L.R. Knudsen. Cryptanalysis of LOKI91. In J. Seberry and Y. Zheng, editors,
Advances in Cryptology - ASIACRYPT ’92, Gold Coast, Australia, December
13-16, 1992, volume 718 of Lecture Notes in Computer Science, pages 196–208.
Springer-Verlag, 1993.

[95] L.R. Knudsen. New Potentially ’Weak’ Keys for DES and LOKI (Extended
Abstract). In Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT
’94, Perugia, Italy, May 9-12, 1994, volume 950 of Lecture Notes in Computer
Science, pages 419–424. Springer-Verlag, 1995.

[96] L.R. Knudsen. Truncated and Higher Order Differentials. In Bart Preneel, ed-
itor, Fast Software Encryption: Second International Workshop. Leuven, Bel-
gium, 14-16 December 1994, volume 1008 of Lecture Notes in Computer Science,
pages 196–211. Springer-Verlag, 1995.

[97] L.R. Knudsen and J.E. Mathiassen. A Chosen-Plaintext Linear Attack on DES.
In Bruce Schneier, editor, Fast Software Encryption, 7th International Work-
shop, FSE 2000, New York, USA, April 10-12, 2000, volume 1978 of Lecture
Notes in Computer Science, pages 262–272. Springer-Verlag, 2000.

[98] L.R. Knudsen, M.J.B. Robshaw, and D. Wagner. Truncated Differentials and
Skipjack. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99,
Santa Barbara, USA, August 15-19, 1999, volume 1666 of Lecture Notes in
Computer Science, pages 165–180, Berlin, 1999. Springer-Verlag.

[99] L.R. Knudsen and D. Wagner. Integral Cryptanalysis. In J. Daemen and V. Rij-
men, editors, Fast Software Encryption, 9th International Workshop, FSE 2002,
Leuven, Belgium, February 4-6, 2002, volume 2365 of Lecture Notes in Com-
puter Science, pages 112–127. Springer-Verlag, 2002.

[100] P. Kocher. Timing Attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, Santa Barbara, USA, August 1996, volume 1109 of Lecture Notes in Com-
puter Science, pages 104–113. Springer-Verlag, 1996.

[101] P. Kocher, Jaffe J., and B. Jub. Differential Power Analysis. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, Santa Barbara, USA,
August 15-19, 1999, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer-Verlag, 1999.

[102] F. Koeune and J.-J. Quisquater. A timing attack against Rijndael. Technical
report, available at http://www.dice.ucl.ac.be/crypto/techreports.html, 1999.

BIBLIOGRAPHY 205

[103] F. Koeune and J.-J. Quisquater. Side channel at-
tacks - State of the Art, October 2002. Available at
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/

1047 Side Channel report.pdf.
[104] O. Kömmerling and M. Kuhn. Design principles for Tamper-Resistant

Smartcard Processors. In USENIX Workshop on Smartcard Technology,
Chicago, USA, May 1999. Available at http://www.cl.cam.ac.uk/∼mgk25/
sc99-tamper.pdf.

[105] X. Lai and J. L. Massey. A Proposal for a New Block Encryption Standard.
In Ivan Damgärd, editor, Advances in Cryptology - EUROCRYPT ’90, Aarhus,
Denmark, May 21-24, 1990, volume 473 of Lecture Notes in Computer Science,
pages 389–404. Springer-Verlag, 1990.

[106] X. Lai and J. L. Massey. Markov ciphers and differential cryptanalysis. In Don-
ald W. Davies, editor, Advances in Cryptology - EUROCRYPT ’91, Brighton,
UK, April 8-11, 1991, volume 547 of Lecture Notes in Computer Science, pages
17–38, Berlin, 1991. Springer-Verlag.

[107] C.H. Lim. Crypton : A New 128-bit Block Cipher. In The First Advanced
Encryption Standard Candidate Conference. NIST, 1998.

[108] M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[109] S. Lucks. Faster Luby-Rackoff Ciphers. In Dieter Gollmann, editor, Fast Soft-
ware Encryption, Cambridge, UK, February 21-23, 1996, volume 1039 of Lec-
ture Notes in Computer Science, pages 189–203. Springer-Verlag, 1996.

[110] S. Lucks. The Saturation Attack - a Bait for Twofish. In Mitsuru Matsui, editor,
Fast Software Encryption, 8th International Workshop, FSE 2001, Yokohama,
Japan, April 2-4, 2001, volume 2355 of Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 2002.

[111] S. Lucks. Ciphers Secure against Related-Key Attacks. In B.K. Roy and
W. Meier, editors, Fast Software Encryption, 11th International Workshop,
FSE 2004, Delhi, India, February 5-7, 2004, volume 3017 of Lecture Notes
in Computer Science, pages 359–370. Springer-Verlag, 2004.

[112] J.L. Massey, G.H. Khachatrian, and Kuregian M.K. Nomination of SAFER++
as Candidate Algorithm for NESSIE. Available at http://www.cryptonessie.
org.

[113] M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor Helleseth,
editor, Advances in Cryptology - EUROCRYPT ’93, Lofthus, Norway, May 23-
27, 1993, volume 765 of Lecture Notes in Computer Science, pages 386–397.
Springer-Verlag, 1993.

[114] M. Matsui. New Block Encryption Algorithm MISTY. In Eli Biham, editor,
Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel,
January 20-22, 1997, volume 1267 of Lecture Notes in Computer Science, pages
54–68. Springer-Verlag, 1997.

[115] U. Maurer. A Simplified and Generalized Treatment of Luby-Rackoff Pseudo-
random Permutation Generators. In Rainer A. Rueppel, editor, Advances in
Cryptology - EUROCRYPT ’92, Balatonfüred, Hungary, May 24-28, 1992, vol-
ume 658 of Lecture Notes in Computer Science, pages 239–255. Springer-Verlag,
1993.

[116] M. McLoone and J.V. McCanny. Very High Speed 17 Gbps SHACAL Encryp-
tion Architecture. In P. Y. K. Cheung, G. A. Constantinides, and J. T. de Sousa,
editors, Field Programmable Logic and Application, 13th International Confer-
ence, FPL 2003, Lisbon, Portugal, September 1-3, 2003, volume 2778 of Lecture
Notes in Computer Science, pages 111–120. Springer-Verlag, 2003.

206 BIBLIOGRAPHY

[117] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[118] R.C. Merkle and M.E. Hellman. On the security of multiple encryption. Com-
munications of the ACM, 24(7):465–467, July 1981.

[119] T. Messerges. Securing the AES Finalists Against Power Analysis Attacks. In
Bruce Schneier, editor, Fast Software Encryption, 7th International Workshop,
FSE 2000, New York, USA, April 10-12, 2000, volume 1978 of Lecture Notes
in Computer Science, pages 150–164. Springer-Verlag, 2000.

[120] M. Minier. Preuves d’Analyse et de Sécurité en Cryptologie à Clé Secrète. PhD
thesis, LACO, Université de Limoges, September 2002.

[121] M. Minier and H. Gilbert. New Results on the Pseudorandomness of Some
Blockcipher Constructions. In Mitsuru Matsui, editor, Fast Software Encryp-
tion, 8th International Workshop, FSE 2001, Yokohama, Japan, April 2-4,
2001, volume 2355 of Lecture Notes in Computer Science, pages 248–266.
Springer-Verlag, 2002.

[122] F. Muller. A New Attack against Khazad. In Chi-Sung Laih, editor, Advances
in Cryptology - ASIACRYPT 2003, Taipei, Taiwan, November 30 - December
4, 2003, volume 2894 of Lecture Notes in Computer Science, pages 347–358.
Springer-Verlag, 2003.

[123] J. Nakahara, P.S.L.M. Barreto, B. Preneel, H.Y. Kim, and al. SQUARE At-
tacks on Reduced-Round PES and IDEA Block Ciphers. In B. Macq and J.-J.
Quisquater, editors, Proceedings of the 23rd Symposium on Information Theory
in the Benelux, pages 187–195. Werkgemeenshap voor Informatie- and Commu-
nicatietheorie, 2002.

[124] J. Nakahara, B. Preneel, and al. Linear cryptanalysis of reduced-round safer++.
In Proceedings of the second NESSIE Workshop, 2001.

[125] M. Naor and O. Reingold. On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited. Journal of Cryptology, 12(1):29–66, 1999.

[126] NESSIE (New European Schemes for Signatures, Integrity, and Encryption).
Project funded by the European Community, IST-1999-12324. See http://www.
cryptonessie.org/.

[127] K. Nyberg and L.R. Knudsen. Provable Security Against Differential Crypt-
analysis. Journal of Cryptology, 8(1):27–37, 1995.

[128] P. Onions. On the Strength of Simply-Iterated Feistel Ciphers with Whitening
Keys. In David Naccache, editor, Topics in Cryptology - CT-RSA 2001, San
Francisco, USA, April 8-12, 2001, volume 2020 of Lecture Notes in Computer
Science, pages 63–69. Springer-Verlag, 2001.

[129] P. Paillier. Evaluating Differential Fault Analysis of Unknown Cryptosystems.
In H. Imai and Y. Zheng, editors, Second International Workshop on Practice
and Theory in Public Key Cryptography, PKC ’99, Kamakura, Japan, March
1-3, 1999, volume 1560 of Lecture Notes in Computer Science, pages 235–244.
Springer-Verlag, 1999.

[130] J. Patarin. Etude des Générateurs de Permutations Basés sur le Schéma du
DES. PhD thesis, Université Paris VI, November 1991.

[131] J. Patarin. How to Construct Pseudorandom and Super Pseudorandom Permu-
tations from one Single Pseudorandom Function. In Rainer A. Rueppel, editor,
Advances in Cryptology - EUROCRYPT ’92, Balatonfüred, Hungary, May 24-
28, 1992, volume 658 of Lecture Notes in Computer Science, pages 256–266.
Springer-Verlag, 1993.

[132] J. Patarin. About Feistel Schemes with Six (or More) Rounds. In Serge Vau-
denay, editor, Fast Software Encryption, Paris, France, March 23-25, 1998,
volume 1372 of Lecture Notes in Computer Science, pages 103–121. Springer-
Verlag, 1998.

BIBLIOGRAPHY 207

[133] J. Patarin. Generic Attacks on Feistel Schemes. In Colin Boyd, editor, Ad-
vances in Cryptology - ASIACRYPT 2001, Gold Coast, Australia, December
9-13, 2001, volume 2248 of Lecture Notes in Computer Science, pages 222–238.
Springer-Verlag, 2001.

[134] J. Patarin. Luby-Rackoff: 7 Rounds Are Enough for 2n(1−ε) Security. In Dan
Boneh, editor, Advances in Cryptology - CRYPTO 2003, Santa Barbara, USA,
August 17-21, 2003, volume 2729 of Lecture Notes in Computer Science, pages
513–529. Springer-Verlag, 2003.

[135] J. Patarin. Security of Random Feistel Schemes with 5 or More Rounds. In
Matt Franklin, editor, Advances in Cryptology - CRYPTO 2004, Santa Barbara,
USA, August 15-19, 2004, volume 3152 of Lecture Notes in Computer Science,
pages 106–122. Springer-Verlag, 2004.

[136] S. Patel, Z. Ramzan, and G. Sundaram. Luby-Rackoff Ciphers: Why XOR
Is Not So Exclusive. In K. Nyberg and H.M. Heys, editors, Selected Areas
in Cryptography, 9th Annual International Workshop, SAC 2002, St. John’s,
Newfoundland, Canada, August 15-16, 2002, volume 2595 of Lecture Notes in
Computer Science, pages 271–290. Springer-Verlag, 2003.

[137] A. Pfitzmann and R. Aßmann. More Efficient Software Implementations of
(Generalized) DES. Computers & Security, 12(5):477–500, August 1993.

[138] D.H. Phan and D. Pointcheval. About the Security of Ciphers (Semantic Se-
curity and Pseudo-Random Permutations). In H. Handschuh and A. Hasan,
editors, Selected Areas in Cryptography, 11th Annual International Workshop,
SAC 2004, Waterloo, Canada, August 9-10, 2004, Lecture Notes in Computer
Science. Springer-Verlag, 2004.

[139] G. Piret and J.-J. Quisquater. Impossible differential and square attacks: Crypt-
analytic link and application to Skipjack. Technical Report CG-2001/4, UCL
Crypto Group, 2001. Available at http://www.dice.ucl.ac.be/crypto/tech\
reports/CG2001\ 4.ps.gz.

[140] G. Piret and J.-J. Quisquater. A Differential Fault Attack Technique against
SPN Structures, with Application to the AES and KHAZAD. In C.D. Walter,
Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2003, Cologne, Germany, September 8-10, 2003, volume 2779 of Lecture
Notes in Computer Science, pages 77–88. Springer-Verlag, 2003.

[141] G. Piret and J.-J. Quisquater. Integral Cryptanalysis on reduced-round
Safer++ . Technical Report 033, IACR eprint archive, 2003. Available at
http://eprint.iacr.org/2003/033/.

[142] G. Piret and J.-J. Quisquater. Security of the MISTY Structure in the Luby-
Rackoff Model: Improved Results. In H. Handschuh and A. Hasan, editors, Se-
lected Areas in Cryptography, 11th Annual International Workshop, SAC 2004,
Waterloo, Canada, August 9-10, 2004, Lecture Notes in Computer Science.
Springer-Verlag, 2004.

[143] G. Piret, F.-X. Standaert, G. Rouvroy, and J.-J. Quisquater. On the Security
of the DeKaRT Primitive. In J.-J. Quisquater, P. Paradinas, Y. Deswarte,
and A.A. El Kalam, editors, Smart Card Research and Advanced Applications
VI - 18th IFIP World Computer Congress, pages 241–254. Kluwer Academic
Publishers, August 2004.

[144] J.-J. Quisquater and D. Samyde. A new tool for non-intrusive analysis of smart
cards based on electro-magnetic emissions: the SEMA and DEMA methods.
Presented at the rump session of EUROCRYPT ’00, 14-18th May 2000, Bruges,
Belgium.

[145] Z. Ramzan and L. Reyzin. On the Round Security of Symmetric-Key Crypto-
graphic Primitives. In Mihir Bellare, editor, Advances in Cryptology - CRYPTO

208 BIBLIOGRAPHY

2000, Santa Barbara, USA, August 20-24, 2000, volume 1880 of Lecture Notes
in Computer Science, pages 376–393. Springer-Verlag, 2000.

[146] V. Rijmen. Cryptanalysis and Design of Iterated Block Ciphers. PhD thesis,
KULeuven, October 1997.

[147] V. Rijmen, B. Preneel, and E. De Win. On Weaknesses of Non-surjective Round
Functions. Designs, Codes and Cryptography, 12(3):253–266, 1997.

[148] R. Rivest. The RC5 Encryption Algorithm. In Bart Preneel, editor, Fast Soft-
ware Encryption: 2nd International Workshop, Leuven, Belgium, December 14-
16, 1994, volume 1008 of Lecture Notes in Computer Science, pages 86–96.
Springer-Verlag, 1995.

[149] R. Rivest, M. Robshaw, R. Sidney, and Y. Yin. The rc6 block cipher. NIST
AES Proposal. Available from ftp://ftp.rsasecurity.com/pub/rsalabs/

rc6/rc6v11.pdf, August 1998.
[150] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public key cryptosystems. Communications of the ACM, 21(2):120–
126, February 1978.

[151] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat. Design Strate-
gies and Modified Descriptions to Optimize Cipher FPGA Implementations:
Fast and Compact Results for DES and Triple-DES. In P. Y. K. Cheung, G. A.
Constantinides, and J. T. de Sousa, editors, Field Programmable Logic and
Application, 13th International Conference, FPL 2003, Lisbon, Portugal, Sep-
tember 1-3, 2003, volume 2778 of Lecture Notes in Computer Science, pages
181–193. Springer-Verlag, 2003.

[152] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat. Compact and
Efficient Encryption/Decryption Module for FPGA Implementation of the AES
Rijndael Very Well Suited for Small Embedded Applications. In Proceedings of
ITCC 2004, Las Vegas, April 5-7, 2004, pages 583–587, 2004.

[153] K. Sakurai and Y. Zheng. On Non-Pseudorandomness from Block Ciphers with
Provable Immunity Against Linear Cryptanalysis. IEICE Trans. Fundamentals,
E80-A(1), January 1997.

[154] B. Schneier, J. Kelsey, and al. Twofish: A 128-bit block cipher. NIST AES
Proposal. Available from http://www.counterpane.com/twofish.html, June
1998.

[155] C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[156] A. Shamir. How to check modular exponentiation. Presented at the rump session
of EUROCRYPT ’97, 11-15th May 1997, Konstanz, Germany.

[157] C. Shannon. Communication Theory of Secrecy Systems. Bell System Technical
Journal, 28(4):656–715, October 1949.

[158] S. Skorobogatov and R. Anderson. Optical fault induction attacks. In B.S.
Kaliski, Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2002, Redwood Shores, USA, August 13-15, 2002, volume 2523
of Lecture Notes in Computer Science, pages 2–12. Springer-Verlag, 2003.

[159] F.-X. Standaert. Secure and Efficient Use of Reconfigurable Hardware Devices in
Symmetric Cryptography. PhD thesis, Université Catholique de Louvain, June
2004.

[160] F.-X. Standaert, G. Piret, G. Rouvroy, and J.-J. Quisquater. FPGA Implemen-
tations of the ICEBERG Block Cipher. Accepted at ITCC 2005.

[161] F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. ICE-
BERG : an Involutional Cipher Efficient for Block Encryption on Reconfigurable
Hardware. In B.K. Roy and W. Meier, editors, Fast Software Encryption, 11th
International Workshop, FSE 2004, Delhi, India, February 5-7, 2004, volume

BIBLIOGRAPHY 209

3017 of Lecture Notes in Computer Science, pages 279–299. Springer-Verlag,
2004.

[162] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. Efficient FPGA
Implementations of Block Ciphers KHAZAD and MISTY1. In Proceedings of
the Third NESSIE Workshop, November 6-7 2002, Munich, Germany, 2002.

[163] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. Efficient Imple-
mentation of Rijndael Encryption in Reconfigurable Hardware: Improvements
and Design Tradeoffs. In C.D. Walter, Ç.K. Koç, and C. Paar, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2003, Cologne, Germany,
September 8-10, 2003, volume 2779 of Lecture Notes in Computer Science, pages
334–350. Springer-Verlag, 2003.

[164] “Data Encryption Standard”. Federal Information Processing Standard PUB
46. National Tech. Info. Service, Springfield, USA, 1977. Available from http:

//www.csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.
[165] P.C. van Oorschot and M.J. Wiener. A Known Plaintext Attack on Two-Key

Triple Encryption. In Ivan Damgärd, editor, Advances in Cryptology - EURO-
CRYPT ’90, Aarhus, Denmark, May 21-24, 1990, volume 473 of Lecture Notes
in Computer Science, pages 318–325. Springer-Verlag, 1990.

[166] P.C. van Oorschot and M.J. Wiener. Improving Implementable Meet-in-the-
Middle Attacks by Orders of Magnitude. In Neal Koblitz, editor, Advances in
Cryptology - CRYPTO ’96, Santa Barbara, USA, August 1996, volume 1109 of
Lecture Notes in Computer Science, pages 229–236. Springer-Verlag, 1996.

[167] S. Vaudenay. Provable Security for Block Ciphers by Decorrelation. In M. Mor-
van, C. Meinel, and D. Krob, editors, STACS 98, 15th Annual Symposium on
Theoretical Aspects of Computer Science, Paris, France, February 25-27, 1998,
volume 1373 of Lecture Notes in Computer Science, pages 249–275. Springer-
Verlag, 1998.

[168] S. Vaudenay. Decorrelation: A Theory for Block Cipher Security. Journal of
Cryptology, 16(4):249–286, 2003.

[169] D. Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, Fast Soft-
ware Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March
24-26, 1999, volume 1636 of Lecture Notes in Computer Science, pages 156–
170. Springer-Verlag, 1999.

[170] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon. RSA Speedup with Residue Num-
ber System Immune against Hardware Fault Cryptanalysis. In Kwangjo Kim,
editor, Information Security and Cryptology - ICISC 2001, 4th International
Conference, Seoul, Korea, December 6-7, 2001, volume 2288 of Lecture Notes
in Computer Science, pages 397–413. Springer-Verlag, 2002.

[171] Y. Yeom, S. Park, and I. Kim. On the Security of CAMELLIA against the
Square Attack. In J. Daemen and V. Rijmen, editors, Fast Software Encryption,
9th International Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002,
volume 2365 of Lecture Notes in Computer Science, pages 89–99. Springer-
Verlag, 2002.

[172] A.M. Youssef, S.E. Tavares, and H.M. Heys. A New Class of Substitution-
Permutation Networks. In proceedings of SAC ’96 - Workshop on Selected Areas
in Cryptography, Kingston, Canada, Aug. 1996, pages 132–147, 1996.

