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Faculté des Sciences Appliquées
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Patrick Condé a su initier, en tant qu’assistant, mon goût à la recherche et au
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List of main symbols

Mathematical operators
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˜ Fourier transform
L Laplace transform
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C′ [g/m3] Solute concentration fluctuation
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dispersion tensor

D∗
ij [m2/s] (i, j)th component of the

macrodispersion tensor
DL [m2/s] Longitudinal hydrodynamical dispersion coefficient
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L [m2/s] Longitudinal macrodispersion coefficient
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for spatially anomalous transport
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Chapter 1

Introduction

Groundwater is the world’s largest reservoir of fresh water. Even considering
the great lakes of North America and rivers like the Amazon and the Ganges,
it represents over 97 % of the planet’s fresh water resources 1. In many parts
of the world, groundwater is the main source of water. In Belgium, in the
Walloon Region, more than 80 % of the fresh water supply comes from under
the surface 2.

Groundwater is however a fragile resource. It is exposed to numerous pol-
lutants, including pesticides and fertilizers from agriculture, heavy metals and
mineral oils from industry or hydrocarbon compounds leaking from under-
ground storage tanks. In the Walloon Region, the number of potentially con-
taminated sites is estimated at more than 6000, and 1207 of them are identi-
fied as requiring an intervention 2. The Walloon Government plans to invest
between 2.1 and 3.9 billions of euros over the next 30 years in the monitoring
and the cleanup of these sites 2.

Within this context, there is a need for a better understanding of the mecha-
nisms that control pollution migration in the soil, in order to improve efficiency
of aquifer management, monitoring and cleanup strategies.

1.1 The classical model for solute transport in

porous media

1.1.1 Basic definitions and transport processes

Before starting any developments, it is good practice to provide the reader with
a clear view of the context of the study and general definitions of the key terms
that will be used. The problem of interest is the movement (or transport) of
solutes in natural soils. While the general concept of soil is well established, the
definition of soil varies, hinging on the perspective of the discipline employing it
as a resource. For example, agronomists consider it as the weathered material on
the surface of a lithosphere, capable of supporting plant life [12]. In this work,
soil will be defined as an inert material, made of aggregated solid particles
in-between which gaz and liquids are present.

A solute is a chemical substance that dissolves in the liquid soil water
phase [192]. In this study, only ideal inert solutes that do not undergo de-
cay will be considered. Furthermore, the solute will be assumed to be present

1from http://www.iah.org/
2from http://mrw.wallonie.be/dgrne/
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2 Chapter 1. Introduction

in sufficiently low concentration for density effects to be neglected. No chemical
process such as hydrolysis, oxydation or interaction with other dissolved species
will be considered, nor will biological processes (biodegradation, biotransforma-
tion, . . . ). The solute will be assumed to move in a saturated porous medium,
i.e. the presence of air as a third phase will not be considered neither. The study
will focus on transport in heterogeneous porous media and will not consider
fracture transport processes. However, at the limit for highly heterogeneous
media, it will be shown that flow architecture tends to follow a network of
preferential pathways that could be assimilated to a fracture network.

Basically, three main physical processes control solute transport in the soil :
advection, diffusion and mechanical dispersion (see e.g. [13, 66, 72, 76]). Firstly,
advection is mass transport caused by bulk movement of flowing groundwater.
If no other process occurs, then contaminant plumes are simply translated
at groundwater velocity. The driving force is the hydraulic gradient and the
average transport velocity vi [m/s] in direction i (i = 1 . . . n, n being the
number of dimensions considered in space) can be calculated as the Darcy flux
qi [m/s] divided by the volumetric proportion of mobile fluid in the soil θm

[−] (also called effective porosity). The advective solute mass flux in direction
i (qA

i , in [g/m2/s]) can be written as

qA
i = viC (1.1)

where C [g/m3] is the solute concentration. This process will play an impor-
tant role in heterogeneous formations, where velocity fluctuations cannot be
neglected.

As spatial concentration gradients exist, diffusion is the net flux of solutes
from zones of higher concentration to zones of lower concentration. Diffusion
does not depend on any bulk movement of the solution and will occur even
if pore water is at rest. The diffusive solute mass flux in direction i (qd

i , in
[g/m2/s]) can be described by Fick’s first law of diffusion

qd
i = −Dd ∂C

∂xi
(1.2)

where xi is the coordinate in direction i and Dd [m2/s] is an effective diffusion
coefficient being related to the molecular diffusion coefficient in liquid phase. At
low pore-water velocities, such as in clayey soils, solute transport is dominated
by diffusion.

Finally, there is a tendency for solutes to spread out from the flow lines
that it would be expected to follow according to the advective hydraulics of
the flow system, leading to apparent diffusion coefficients that are higher by
several orders of magnitude. This spreading phenomenon is usually called me-
chanical dispersion and is caused entirely by differential microscopic velocities
in the pore space (due, for example, to the non-uniform velocity profile within
a pore and to variations in pore diameter and in pore length, as described in
e.g. [13, 72, 77] and illustrated on Fig. 1.1.a.). Dispersive solute flux is classically
represented using a diffusion-like or Fickian law

qD
i = −

∑

j

Dij
∂C

∂xj
(1.3)



1.1. The classical model for solute transport in porous media 3

where qD
i [g/m2/s] is the dispersive solute mass flux in direction i and Dij

[m2/s] is a second-order tensor called mechanical dispersion. Eq. 1.3 is the
starting point of the reflexion conducted in this dissertation, as it will be shown
in Section 1.1.3 that the Fickian assumption may, most of the time, be ques-
tioned.

The solute mass transport equation can be set up by writing the mass
balance on a representative elementary volume (R.E.V.) of soil (according to
Bear’s definition in [13]). Combining advective, diffusive and dispersive fluxes
leads to

∂C

∂t
= −

∑

i

∂

∂xi

(

qA
i + qd

i + qD
i

)

(1.4)

Diffusion and dispersion are usually combined in a single tensor DH
ij = Dd+Dij

called hydrodynamical dispersion. Subsituting it into Eq.1.4 and detailing the
flux terms according to Eqs. 1.1, 1.2 and 1.3 yields

∂C

∂t
= −

∑

i

vi
∂C

∂xi
+
∑

i

∑

j

∂

∂xi

(

DH
ij

∂C

∂xj

)

(1.5)

which is usually called the advection-dispersion equation (ADE). In this study,
this equation will also be referred to as the classical or Fickian model of solute
transport in porous media. In a one-dimensional framework, it reads

∂C

∂t
= −v

∂C

∂x
+DL

∂2C

∂x2
(1.6)

where v = v1 and DL = DH
11 [m2/s], called longitudinal hydrodynamical dis-

persion coefficient, is assumed to be constant.

1.1.2 Introducing dispersivity

The coefficient of mechanical dispersion is found to depend strongly on the
advective velocity. The exact relationship between these two parameters can
however only be obtained from theoretical considerations for simple or hypo-
thetical pore systems [192]. Except in the case of very simple conceptual models,
one can generally find that the coefficient of mechanical dispersion is linearly
related to velocity [13]

Dij =
∑

k

∑

l

αijkl
vkvl

||v||
(1.7)

where αijkl [m] is a fourth-order tensor called dispersivity assumed to depend
only on soil properties and ||v|| is the norm of the velocity vector. In the case of
an isotropic homogeneous medium, owing to symmetry properties, the disper-
sivity tensor can be fully described by two parameters αL and αT , respectively
called longitudinal and transverse dispersivity [13], both expressed in length
units. In a uniform flow field, if the principal directions of the dispersion tensor
are aligned with the principal directions of the velocity flow field, one can write

DL = αLv +Dd (1.8)

DT = αT v +Dd (1.9)
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whereDL is already used in Eq. 1.6 andDT = DH
22 = DH

33 quantifies mechanical
dispersion in a direction transverse to flow.

Extensive experimental validation of Eq. 1.7 has been performed. Reference
books usually provide plots of the longitudinal dispersion versus velocity and
show that in the laboratory, when diffusion can be neglected, Eqs. 1.8 and
1.9 are valid under typical groundwater flow conditions [13, 66, 72, 85]. Other
studies were also conducted at larger scale. For example, Klotz et al. [111]
investigated in the laboratory and in the field a more general relation DL =
αLv

B + Dd and found that parameter B should be close to one. They also
showed the dependency of longitudinal dispersivity to soil sedimentological
properties.

1.1.3 Limitations

Although supported by several theoretical models and verified under well-
controlled laboratory conditions, the Fickian model of dispersion has shown
difficulties in predicting solute transport under certain other conditions. Dis-
persion is basically an advective process, as it is caused by variations in fluid
velocity. However, this process does not only take place at the pore scale, but
also occurs at larger scales, ranging from macroscopic to megascopic [66, 72]. At
the field scale, commonly encountered geological structures influence contami-
nant transport drastically, leading to velocity variations over several orders of
magnitude. As illustrated on Fig. 1.1, this includes the effects of stratification
and the presence of lenses with higher or lower permeablity. At the megascopic
scale, differences between geologic formations also cause non-ideality in solute
transport. As the flow path increases in length, a solute cloud can encounter
greater and greater variations in the aquifer, causing the variability of the ve-
locity field to increase. Because dispersivity is related to the variability of the
velocity, neglecting or ignoring the true velocity distribution (i.e. by replac-
ing the heterogeneous medium by an equivalent homogeneous one) must be
compensated for by a corresponding higher apparent (or effective) dispersivity,
leading to what is commonly called the scale effect of dispersion [72, 77].

This scale effect first arose from the comparison of laboratory and field
values of dispersivity. Whereas typical values of dispersivity from column ex-
periments range between 0.01 and 0.1 m, values of macroscopic dispersiv-
ity (or macrodispersivity) are in general three to four orders of magnitude
larger [82, 116]. It has also been widely observed that field-scale dispersion
coefficients increase with distance and with time [160, 161].

However, it must be underlined that field dispersivity values reported in
the literature are not always reliable. Inverse modelling is the usual tool to
determine dispersivity. The latter is adjusted so that the experimental curve
fits a given theoretical solution to the solute transport problem [3, 72]. When
interpreting field observations of concentration, numerous factors, such as ac-
tual injection conditions, solute density effects or even temporal variations of
the advective flow regime or biaised interpretation techniques, are likely to
be interpreted as dispersion. For example, Domenico and Robbins [65] showed
that interpreting the two- or three-dimensional spreading of a tracer with a
one-dimensional model requires a spatially increasing dispersivity, whereas the
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a. b.

c.

Figure 1.1: Velocity fluctuations at different scales. a. Pore-to-pore variations. b. Stratifica-
tion as a cause of variation. c. Randomly heterogeneous two-dimensional anisotropic medium.
Adapted from Domenico and Schwartz [66].

use of a dimensionally correct model does not show any dispersion scale-effect.
In studies with insufficient data, the lack of field data is hidden in the dis-
persion term of the governing transport equation. This was mostly highlighted
by Gelhar et al. [82] who classified results from field studies using a reliability
criterion. Despite this criterion, they produced an experimental curve for lon-
gitudinal dispersivity versus measurement scale, reprinted on Fig. 1.2, clearly
establishing the trend for dispersivity to increase with distance. Finally, this
scale effect was demonstrated using controlled laboratory experiments (by e.g.
Silliman and Simpson [174]).

1.2 Scope and outline of this thesis

Three main research directions have been investigated for the past 20 years
in order to solve the problem of the scale effect. First, field and laboratory
characterization methods have received a growing attention and are currently
a fast-developing research area. Indeed, an accurate identification of the subsoil
structure and a detailed knowledge of fine-scale hydraulic properties variations
remain key requirements in the correct modelling of solute transport in field-
scale situations. The advancing edge of geophysics provides new methods, such
as time-domain reflectometry [108], ground penetrating radar [117] or electrical
resistivity tomography [150], that are currently being applied to the character-
ization of subsuface transport problems. However, the fine spatial resolution
needed to completely solve the scale effect is currently out of reach of available
characterization methods, and will most likely remain so for some time.

Based on a partial characterization of the subsoil structure, many resear-
chers have then tried to provide upscaling methods for the dispersivity. Most
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Figure 1.2: Experimental longitudinal dispersivity values versus measurement scale with
data classified by reliability. From Gelhar et al. [82].

of these methods are generally based on a geostatistical description of the
heterogeneity [51, 80], but fractal methods [197] and methods based on other
particular parametrizations of subsoil structure have been developed [67]. This
approach however relies on the main assumption that the classical advection-
dispersion equation is valid at the scale of interest. Regarding this latter issue,
a third main research area has been the upscaling of the transport equation
itself. Higher-order and fractional-order transport equations have been either
developed or brought to the field of hydrogeology [19, 24, 163].

Research aimed at solving the scale effect in dispersion has developed in an
uncoordinated fashion. It is not always easy to discriminate which approach can
be best adopted in a given situation and the relative performance of the various
upscaling methodologies available has never been formally tested. Therefore,
the main general objective of this study is the comparison of existing solute
transport models, either resulting from the upscaling of Fickian transport pa-
rameters or resulting from the upscaling of the transport equation itself. Par-
ticular objectives of this research are

• To identify the most relevant upscaling methodologies and non-Fickian
transport models for solute transport in heterogeneous media.

• To develop a methodology to compare their upscaling capacities.

• To apply the methodology to very simple synthetic examples in order to
identify main tendencies. More precisely, to quantify the effect of the over-
all variability of hydraulic properties as well as the effect of the relative
size of heterogeneities on prediction capacities of various solute transport
models.

• To refine the numerical analysis in order to base the comparison of the
methodologies on more complex heterogeneous situations. More precisely,
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to identify the effect of anistropy, permeability distribution and flow ori-
entation on prediction capacities of methods.

• To apply the methodology to an original intermediate-scale laboratory
experiment.

As a result, this work is divided into three main parts. The first part is
an overview of existing solute transport upscaling theories in heterogeneous
media. Without trying to be exhaustive, some of the most used theories will be
summarized, with an emphasis on their fundamental assumptions. Chapter 2
will summarize available upscaling methodologies for longitudinal dispersivity.
The widespread stochastic approach will be first tackled, with a focus on the
main contribution to this theory. Then, fractal methods and the particular
case of a medium with inclusion of different material will be summarized. In
Chapter 3, upscaled transport equations will be presented. It will be shown
that telegraph equations can be a simple extension of the classical ADE but
that fractional-order transport equations are more powerful tools. The special
case of dual-porosity media will also be briefly reviewed.

In the second part of this dissertation, numerical examples will be set up
in order to assess the upscaling capacities of each model. Therefore, Chapter 4
will first describe the general method that will be used to compare the different
approaches. Characterization methods available to parametrize models to be
tested will also be summarized. In Chapter 5, perfectly stratified examples
will be first investigated. Due to their high level of conceptualization, they
are ideal candidates to allow one to identify rough tendencies among models.
Moreover, analytical solutions are easy to derive for this simple geometry and
are widely available for the various models to be tested. Finally, in Chapter
6, the analysis will be refined by considering two-dimensional cases. It will be
verified whether conclusions drawn from simplified situations can be extended
to more complicated situations. The influence of other structural parameters,
such as anisotropy or orientation of flow with respect to bedding, will also
be assessed. It must be already stated that, unlike numerical investigations
usually presented in the literature, these examples will not be designed to
fit fundamental assumptions of analytical solutions of the various models. In
particular, flow domains of limited extension will be investigated and boundary
conditions will clearly play a role in flow and solute transport.

Synthetic examples are convenient because they allow one to perform a large
number of parametric variations. However, they rely on several fundamental as-
sumptions, like the validity of the ADE at small scale and the validity of the
numerical code that is used. These limitations are circumvented when perform-
ing physical experiments. Therefore, in the third part of this work, models will
be compared on the basis of an intermediate-scale laboratory experiment. This
experiment was performed at the Colorado School of Mines (CSM, Golden,
Colorado, USA) in collaboration with Prof. David Benson from the Depart-
ment of Geology and Geological Engineering of the CSM and with Prof. Tissa
Illangasekare from the Department of Environmental Science and Engineering
of the CSM. The experiment took place in the facilities of the Center for Ex-
perimental Study of Subsurface Environmental Processes (CESEP), directed
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by Prof. Illangasekare. A highly heterogeneous composite aquifer was created
in a sandbox and a one-dimensional tracer test was performed. The design of
the aquifer was chosen in order to create a preferential pathways architecture of
the flow system, leading to diffusion-dominated transport characterized by (1)
a relatively important scale effect in apparent dispersivity of the transversally-
averaged BTC and (2) heavy tails of concentration distributions. This physical
experiment was typically designed as complementary to numerical examples
investigated in Part 2. Actually, numerical examples were used to determine
a spatial structure of permeability that would be interesting to investigate in
the laboratory. The physical experiment also allows one to compare upscaling
methods and upscaled equations in a less artificial situation, in which only a
partial information is available (as the full spatio-temporal concentration dis-
tribution could not be measured).

General conclusions and perspectives are drawn in Chapter 8.
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Overview of upscaling

approaches

9





Chapter 2

Upscaling of transport

parameters

2.1 Introduction

In this chapter, it will be shown how transport parameters and in particular, the
longitudinal dispersivity, can be upscaled based on different characterization
methods for heterogeneous permeability fields. The major assumption that has
to be drawn in this framework is that the classical Fickian transport model
remains valid at every scale of interest, provided flow and transport parameters
of the medium are properly adapted. Basically, this approach is equivalent to
considering a macroscale R.E.V. and deriving equivalent macroscale flow and
transport parameters.

As this work focuses on solute dispersion, theories on the upscaling of flow
parameters will not be reviewed here. Basic considerations on effective perme-
ability can be found e.g. in [53] or [79]. Three main approaches for the upscaling
of solute transport will be reviewed in this chapter. First, the stochastic theory
will be introduced. As the literature in this domain is relatively abundant, we
will mainly focus on the general derivation by Gelhar and Axness [80]. Basi-
cally, this theory shows how fluctuations in permeability results in an increased
spreading of solute plumes. Then, in Section 2.3, it will be shown how fractal
geometry can give an insight into macrodispersivity. Finally, inclusion mod-
els will be introduced in Section 2.4. They allow one to deal with a medium
composed of inclusions of given shapes and permeabilities and solve transport
considering advection only.

It must be noted that the upscaling of longitudinal dispersivity is always
possible in a deterministic framework. Assuming that the heteregeneous per-
meability field is fully determined, the corresponding transport problem can be
solved at a local scale and apparent properties (i.e. effective tranport properties
of an equivalent homogeneous medium) are obtained by subsequent averaging
at a larger scale. In the case of a perfectly stratified aquifer (i.e. where the
permeability only depends on the elevation with respect to an arbitrary da-
tum), semi-analytical methods have been developped, based either on moment
analysis [90] or on modal analysis [21, 89]. For more complicated problems, nu-
merical methods such as finite elements, finite differences or particle tracking
can be used. These approaches will not be reviewed here but will be used in
Chapters 5 and 6 to provide an exact solution towards which tested methods
should ideally tend.

11



12 Chapter 2. Upscaling of transport parameters

2.2 The stochastic approach

Hydraulic properties of subsurface materials, such as hydraulic conductivity,
will generally vary in complicated ways in space [79]. It cannot therefore be
objectively fully characterized in a deterministic way. However, as subsurface
heterogeneity usually results from formation processes (such as e.g. sedimen-
tation), it is not fully random neither, and (geo)statistical methods can be
used to identify and characterize its spatial structure [150]. Stochastic analysis
enables then the variability in flow and transport to be related to variability
and spatial structure associated to hydraulic properties of the heterogeneous
medium considered.

In this section several results from stochastic theories applied to solute
transport in heterogeneous porous media will be presented. As an introduction,
basics of geostatistics and stochastic modelling will be reviewed, and the main
assumptions required by the method will be presented. In Section 2.2.2, tools
to characterize the spatial structure of heterogeneous permeability fields will be
presented. Then, in Section 2.2.3, the analytical expression of macrodispersivity
obtained by Gelhar and Axness [80] will be derived, based on an Eulerian
description of the velocity field. In Section 2.2.4, a few analytical solutions to
be used in the next chapters will be provided.

2.2.1 Definitions and fundamental assumptions

In a stochastic framework, the hydraulic properties of a heterogeneous medium
are treated as random variables. A random variable R can be described in terms
of its cumulative probability distribution function (CDF) FR(r) = P [R ≤ r],
which denotes the probability that R is less than some specified value r. For a
continuous random variable, the probability density function (PDF) can also
be used to describe it, and is linked to the CDF using fR(r) = dF/dr [79]. The
mean or expected value and the variance of the variable R are

µR = E [R] =

∫ +∞

−∞

rfR(r) dr (2.1)

σ2
R = E

[

(R− µR)2
]

=

∫ +∞

−∞

(r − µR)2fR(r) dr (2.2)

µR (also noted 〈R〉) is a measure of the central tendency of the random variable
and σ2

R is a measure of the variability associated with the variable. The square-
root σR of the variance is called standard deviation.

A normal or Gaussian random variable is described by the PDF

fR(r) =
1

√

2πσ2
R

exp

[

−(r − µR)2

2σ2
R

]

(2.3)

A normal variable is thus entirely characterized by its mean and variance.
A log-normal random variable R is such that ln(R) is a normal random vari-
able. In subsurface hydrology, and more particularly in the stochastic approach
of transport in heterogeneous formations, hydraulic conductivity is usually as-
sumed to be log-normally distributed. Therefore, one defines Y = ln(K), where
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the permeability K is expressed in [m/s] and ln is the natural logarithm. This
assumption will be adopted throughout this work but will be questioned in
Chapter 6. This hypothesis has the advantage that negative values are ex-
cluded, which is consistent with the physical requirement that permeability is
positive [79].

When we are dealing with more than one variable, it is necessary to con-
sider how the variables are interrelated probabilistically. The joint CDF of two
random variables R and S is F (r, s) = P [R ≤ r, S ≤ s] and the corresponding
joint density probability function is f(r, s) = ∂2F (r, s)/∂r∂s. The degree of
linear relationship between R and S is quantified by the covariance

cov(R,S) = E [(R− µR)(S − µS)]

=

∫ +∞

−∞

∫ +∞

−∞

(r − µR)(s− µS)f(r, s) drds (2.4)

If R and S are independent, then the covariance is zero. However, the inverse
statement is not correct : if the covariance is zero, then the random variables
are not necessarily independent. They are said to be uncorrelated [79]. Another
useful tool to quantify the correlation of two random variables is the variogram
γ(R,S) = 1/2E

[

(R− S)2
]

= σRσS − cov(R,S).

A random function (also called random field or stochastic process) can be
viewed as a random variable with an infinite number of components [53]. For
instance, hydraulic conductivity of soils can be considered as a spatial mul-
tidimensional stochastic process K(x), where x is a vector of spatial coordi-
nates [79]. For a fixed x, the random field is a random variable, and is completely
characterized by its joint PDF to any arbitrary order. A particular record of
a stochastic process (e.g. the measured permeability field in a given situation)
is referred to as a realization of the stochastic process, whereas the ensemble
refers to the collection of all possible realizations of the stochastic process [79].

In applications related to flow through porous formations, the concept of en-
semble is relatively abstract, as one only encounters one single realization of the
process. The ensemble then reflects uncertainty in the depiction of the spatial
structure of the formation, rather than a set of existing similar formations [53].
Moreover, this representation relies on a finite-length record composed of dis-
crete values of data measured at some interval [79]. The statistical characteri-
zation of the random structure is then based on spatial averages over the single
realization available, rather than over ensemble averages [53]. This might not
induce a high bias if the ergodic hypothesis prevails and the single realization
considered contains the whole information available in each realization of the
ensemble [150].

Because a stochastic process is defined as a random variable at each point
(in time or in space), the mean, the variance and the covariance are functions
that may vary (in time or in space). In the case of the log-permeability field Y
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of soils , one could calculate

µY (x) = E [Y (x)] =

∫ +∞

−∞

yfY (y,x) dy (2.5)

σ2
Y (x) = E

[

(Y (x) − µX)2
]

=

∫ +∞

−∞

(y − µY )2fY (y,x) dy (2.6)

where y are specified values of log-permeability. An important particular class
of stochastic processes is that of stationary (or homogeneous) random func-
tions [53], for which both mean and variance are constant (in time or in space).
One will thus have µY (x) = µY and σ2

Y (x) = σ2
Y . For a second-order or weakly

stationary random field, the covariance (which is then a function) is moreover
only dependent on the separation (in time or in space) of the two random
variables considered.

2.2.2 Covariance function and spectral representation

Assuming two zero-mean weakly stationary random spatial fields f(x) and g(x),
their covariance function is noted Cfg(h) and only depends on the separation
gap h (where a vector notation was adopted as the covariance can be depen-
dent on the orientation, in the case of a macroscopically anisotropic random
field). f and g could be either permeabilities, heads, velocities, concentrations
or any variable of interest. Cfg is either called the autocovariance or the cross-
covariance, depending on f and g being representative of a same random field
or not. The covariance function cannot take any arbitrary parametric shape. It
must meet several properties, some of them being difficult to verify. One found
therefore convenient to adopt a set of simple covariance models that are known
to be valid. One of the most used model is the exponential covariance model,
expressed in the one-dimensional case as

Cfg(h) = σfσg exp

(

−
|h|

λ

)

(2.7)

where λ is called correlation length or integral scale. Intuitively, λ is a mea-
sure of the separation required for two random variables to become uncorre-
lated [150]. Other one-dimensional covariance models are, among others, the
Gaussian (Eq. 2.8) and the hole-effect covariance function (Eq. 2.9)

Cfg(h) = σfσg exp

(

−

(

h

λ

)2
)

(2.8)

Cfg(h) = σfσg exp

(

−
|h|

λ

)(

1 −
5

3

|h|

λ
+

1

3

h2

λ2

)

(2.9)

Fig. 2.1 illustrates these different models (in the case of autocovariance Cff )
and shows one realization of a corresponding stochastic process. Basically, the
exponential model can be used to model small-scale sharp variability, whereas
the Gaussian model produces softer variations and mild transitions. The hole-
effect model can be used to represent alternating sequences, such as stratifica-
tion [81].
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If a process is stationary, it is virtually always possible to describe it in
terms of its frequency content, which is accessible through a Fourier-transform
of this process. The Fourier-transform of the covariance function is called the
power density spectrum (or spectral density function), is noted Sfg, and is
evaluated according to

Sfg(s) = f̃(s)g̃∗(s) (2.10)

=

∫ +∞

−∞

Cfg(h) exp(−2πih · s) dh (2.11)

where s is the wave number (that has the same number of dimensions as x), f̃(s)
is the Fourier-transform of function f(x) and g̃∗(s) is the complex conjugate of
the Fourier-transform of function g(x). Inversely, the covariance function can
be obtained from the inverse Fourier-transform of the spectral density function

Cfg(h) =

∫ +∞

−∞

Sfg(s) exp(2πih · s) ds (2.12)

2.2.3 Eulerian derivation of macrodispersion

In this section, the general three-dimensional derivation of macrodispersion
performed by Gelhar and Axness [80] will be shortly summarized, following
the lines of Gelhar [79] and Cirpka [43]. The starting point is the advection-
dispersion equation, expressed with a constant local hydrodynamical dispersion
tensor DH

ij and assuming that concentration and migration velocity are station-
ary random functions

C = 〈C〉 + C′

v = 〈v〉 + v′ (2.13)

where bold symbols are vectors. 〈C〉, 〈v〉, C′ and v′ are respectively mean con-
centration, mean velocity, concentration fluctuation and velocity fluctuation.
Fluctuations are assumed to have a zero mean 〈C′〉 = 〈v′〉 = 0. Substituting
these expressions in Eq. 1.5 leads to

∂〈C〉

∂t
+

∂C′

∂t
= −

∑

i

(

〈vi〉
∂〈C〉

∂xi
+ v′i

∂〈C〉

∂xi
+ 〈vi〉

∂C′

∂xi
+ v′i

∂C′

∂xi

)

+
∑

i

∑

j

(

∂

∂xi

(

DH
ij

∂〈C〉

∂xj

)

+
∂

∂xi

(

DH
ij

∂C′

∂xj

))

(2.14)

Taking expected values and dropping higher-order terms, yield the governing
equation for the mean concentration

∂〈C〉

∂t
= −

∑

i

〈vi〉
∂〈C〉

∂xi
− E

[

∑

i

v′i
∂C′

∂xi

]

+
∑

i

∑

j

∂

∂xi
DH

ij

∂〈C〉

∂xj
(2.15)
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Figure 2.1: Models of covariance and one realization of a corresponding random field.
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Considering the classical advection-dispersion equation, a new term arises here.
It reflects additional mass transport due to correlation between specific dis-
charge and concentration fluctuations. It produces a large-scale dispersion effect
and can be approximated using a Fickian-like law

E

[

∑

i

v′i
∂C′

∂xi

]

=
∑

i

∂

∂xi
〈v′iC

′〉 ≈ −
∑

i

∑

j

∂

∂xi

(

D∗
ij

∂〈C〉

∂xj

)

(2.16)

D∗
ij is the macrodispersion tensor and is assumed to be proportionnal to the

absolute value of migration velocity, as for the local dispersion tensor. It can
be evaluated using the governing equation of concentration perturbations. The
latter is obtained by substracting Eq. 2.15 from Eq. 2.14, which yields

∂C′

∂t
+

∑

i

(

v′i
∂〈C〉

∂xi
+ 〈vi〉

∂C′

∂xi

)

−
∑

i

∑

j

∂

∂xi

(

DH
ij

∂C′

∂xj

)

=
∑

i

∂

∂xi
(v′iC

′ − 〈v′iC
′〉) ≈ 0 (2.17)

The approximation in Eq. 2.17 is of crucial importance. Basically, it implies
that velocity fluctuations are sufficiently small for second-order products to
be neglected. For a log-normal permeability field, it can be shown based on a
similar stochastic analysis of the flow equation that this condition on velocity
perturbation requires a small variance of the Y field, so that it can be lin-
earized [79]. Typically, these developments are assumed to be valid for σ2

Y < 1.
In general, Eqs. 2.15 and 2.17 must be solved simultaneously. However, a

decoupling can be accomplished provided that concentration fluctuations oc-
curs at a much smaller scale than variations associated to the mean concentra-
tion [79]. It is then possible to solve Eq. 2.17 to evaluate the macrodispersive
flux and subsequently substitute it in Eq. 2.15. Assuming that the mean flow
occurs in direction i = 1 and using the notations introduced in Eqs. 1.8 and
1.9, Eq. 2.17 simplifies to

∂C′

∂t
= −v′1|∇〈C〉| − 〈v1〉

∂C′

∂x1
+DL

∂2C′

∂x2
1

+DT
∂2C′

∂x2
2

+DT
∂2C′

∂x2
3

(2.18)

where the notation |∇〈C〉| indicates that the gradient of the mean concentration
is assumed to be constant in time and in space. This assumption may not
be very realistic. But a mean gradient hardly varying over several correlation
lengths of the hydraulic conductivity field may be achieved in the large-time
limit under ordinary flow conditions, allowing one to apply the theory derived
here in field conditions [43].

Eq. 2.18 may be transferred into the Fourier-space. Using some basic prop-
erties of the Fourier-transform, one obtains

(

d

dt
+ b

)

C̃′(s) = −ṽ′1(s) |∇〈C〉| (2.19)

where ˜ indicates the Fourier-transform and where b = 2πi〈v1〉s1 + 4π2DLs
2
1 +

4π2DT (s22 + s23). Eq. 2.19 is a linear non-homogeneous first-order time differ-
ential equation. Since the concentration gradient is taken as a constant and
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assuming as initial condition a concentration distribution equal to the mean
concentration (i.e. a concentration perturbation C′ = 0), one obtains

C̃′(s, t) = −ṽ′1(s) |∇〈C〉|

∫ t

0

exp(b(τ − t))dτ (2.20)

= −
ṽ′1(s) |∇〈C〉|

b
(1 − exp(−bt)) (2.21)

Recalling Eq. 2.16 and the assumption of a constant concentration gradient,
one can compute the longitudinal apparent dispersion coefficient according to

D∗
L = −

1

|∇〈C〉|
〈C′v′1〉 (2.22)

As 〈C′v′1〉 is the integral of the cross-spectral density of concentration and
longitudinal velocity fluctuations SCv1

, Eq. 2.22 can be transformed to

α∗
L = −

1

|∇〈C〉| 〈v1〉

∫ +∞

−∞

SCv1
(s) ds (2.23)

where α∗
L is a macroscale longitudinal dispersivity. SCv1

is obtained from the
product SCv1

= C̃′ṽ′∗1 . Substitution of Eq. 2.21 into Eq. 2.23 yields

α∗
L(t) =

1

〈v1〉

∫ +∞

−∞

1 − exp(−bt)

b
ṽ′1(s)ṽ

′∗
1 (s) ds (2.24)

=
1

〈v1〉

∫ +∞

−∞

1 − exp(−bt)

b
Sv1v1

(s) ds (2.25)

This equation establishes the link between velocity fluctuations and macrodis-
persivity. As the velocity spectrum is linked to log-permeability variations,
macrodispersivity is basically found to be dependent on the permeability field.
Moreover, macrodispersivity is also proved to be time-dependent and, as the ex-
ponential term in Eq. 2.25 vanishes for large time, macrodispersivity converges
to a constant asymptotic value.

Similar derivations have been performed by Dagan [51, 52, 53] and by Neu-
man et al. [141]. Dagan used a Lagrangian framework, but had to use an
approximate relationship between the Eulerian and the Lagrangian velocity
covariance. Neuman et al. used a more abstract mathematical analysis based
on semigroup theory. Basically, these derivations all require an assumption of
relatively small perturbations, leading to little discrepancy among them and a
domain of validity σ2

Y < 1.

2.2.4 A few analytical solutions

Most of available analytical solutions are based on exponential covariance mod-
els and assume that local dispersivities are negligible compared to correla-
tion lengths. The asymptotic value of longitudinal dispersivity in an isotropic
medium is given by [80]

α∗
L(∞) = σ2

Y

λ

γ2
(2.26)
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Figure 2.3: Convergence of longitudinal
dispersivity in the isotropic case. 3D (solid
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where γ is a flow factor accounting for the dependence of effective permeability
on dimensionality. In the two-dimensional case, γ = 1, whereas in the three-
dimensional case, γ = exp(σ2

Y /6). It must be noted that Dagan [53] obtained
a similar result using a Lagrangian framework, but with γ = 1 in the three-
dimensional case. Dagan [53] states that taking into account a value γ 6= 1 is
not consistent with first-order approximations adopted, as it introduces a term
of order σ4

Y . Fig. 2.2 depicts the influence of the variance of the log-permeability
field on the asymptotic value of longitudinal apparent dispersivity.

The three-dimensional isotropic solution for intermediate times is given by
Gelhar [79], based on an expression derived by Dagan [51]

α∗
L(t)

α∗
L(∞)

= 1 −
4

ξ2
+

24

ξ4
− 8

(

1

ξ2
+

3

ξ3
+

3

ξ4

)

exp(−ξ) (2.27)

where ξ = 〈v1〉t/λ. In a two-dimensional isotropic aquifer, it is given by [100]

α∗
L(t)

α∗
L(∞)

= 1 −
3

2ξ
+

3

ξ3
−

3

ξ2

(

1 +
1

ξ

)

exp(−ξ) (2.28)

Basically, these results express that the convergence to the asymptotic behavior
is only controlled by the ratio of mean travel distance to correlation length.
In the two-dimensional case, as the number of available paths to bypass low
permeability zones is lower than in the three-dimensional case, convergence is
less rapidly reached (Fig. 2.3).

In the case of a two-dimensional anisotropic situation with flow occuring in
a direction at an angle θ with respect to the bedding of the permeability field,
asymptotic dispersivity is given by [80]

α∗
L(∞) = σ2

Y

λ1λ2

γ2

√

λ2
1 sin2 θ + λ2

2 cos2 θ
(2.29)

where the flow factor is obtained from

γ =
exp

[

σ2
Y (1/2 − g22)

]

sin2 θ +B cos2 θ
(2.30)
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with B = exp
[

σ2
Y (g11 − g22)

]

, g11 = λ2/(λ1 + λ2) and g22 = λ1/(λ1 + λ2).
In the case of an isotropic field with flow oriented along the principal direc-
tions of the permeability field, Eq. 2.29 simplifies to Eq. 2.26 with a flow factor
γ = 1 consistent with the theoretical effective permeability of two-dimensional
isotropic media. Fig. 2.4 shows the effect of anisotropy on asymptotic longitudi-
nal dispersivity. For high variance and high anisotropy, flow is mainly directed
in the longitudinal direction and little transverse mixing can occur, leading
to lower values of longitudinal dispersivity. As anisotropy decreases, transverse
mixing increases, leading to higher apparent longitudinal dispersivities. Fig. 2.5
shows that, globally, when flow is not aligned with the main principal direction
of the permeability field, apparent dispersivity tends to decrease. No analyti-
cal solution for transient apparent dispersivity in two-dimensional anisotropic
situation could be found.

The perfectly stratified case could be obtained by solving Eq. 2.25 under
appropriate conditions (λ1 → ∞, λ2 → ∞ and finite λ3). However, a separate
but similar analysis was conducted by Gelhar et al. [81]. They assumed a normal
permeability distribution (instead of a log-normal one) and obtained

α∗
L =

∫ +∞

−∞

SKK(s)

〈K〉2
1 − e−αT vts2

αT s2
ds (2.31)

in which SKK(s) is the power density spectrum of the hydraulic conductivity
field, characterized by an integral scale λ.

Three different regimes can be identified from Eq. 2.31. At early times,
transverse spreading has not caused any mixing yet and solute particles remain
on their initial flow line. The concentration distribution behavior is fully con-
trolled by longitudinal advection and apparent longitudinal dispersivity varies
linearly in time

α∗
L →

σ2
K

〈K〉2
vt t→ 0 (2.32)

After some time, spatial concentration gradients appear due to transverse ve-
locity variations, causing diffusion and dispersion of particles from their initial
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flow line. Particle velocities then change according to their new flow line, and
new concentration gradients appear, causing new transfers of particles between
flow lines. For intermediate times, transverse transport processes have ensured
mixing over the respective layer thicknesses (or over the integral scale λ), but
not over the overall aquifer thickness. In this case, it can be shown that longitu-
dinal dispersivity increases according to the square-root of time [53, 132]. The
third regime corresponds to full mixing of the solume plume over the aquifer
thickness. This regime was first investigated by Taylor [179, 180] and Aris [5]
for laminar flow through a tube, with a deterministic velocity distribution.
They showed that in this regime, commonly referred to as the Taylor disper-
sion regime, the dispersive flux is Fickian with a constant asymptotic apparent
dispersivity. In the stochastic approach of solute transport in perfectly layered
soils, this regime only exists provided the covariance function of the perme-
ability field is properly chosen. Using a hole-effect covariance model, Gelhar et
al. [81] obtained

α∗
L(∞) =

1

3

σ2
K

〈K〉
2

λ2

αT
(2.33)

which basically exhibits similar tendencies as Eq. 2.26 or Eq. 2.29. Asymptotic
apparent longitudinal dispersivity is directly proportional to the variance of
the ln(K) field (as σ2

K/〈K〉2 ≈ σ2
Y ) but depends on the square of the correla-

tion length. Moreover, its value is inversely proportional to the magnitude of
transverse mixing.

2.3 Fractal models of heterogeneity

The main feature of a fractal object is that its degree of irregularity is indepen-
dent of the scale. As long as one watches it closer and closer, new small-scale
irregularities appear, although it is not possible to detect them from a larger-
scale point of view. In normal Euclidian geometry, the length L of a line can
be calculated with

L = nε (2.34)

where n is the number of length units ε [197]. If the size of ε is diminished by
2, then the number of measuring units n increases by 2, keeping the length
constant.

Many natural objects do not behave according to this simple relationship.
If one attempts to apply Eq. 2.34 to an irregular line, such as a coastline, it can
be found that the product nε is not a constant, but grows without bounds as
long as ε gets smaller. It has been found that, in the case of fractal lines such
as coastal lines,

F = nεd (2.35)

where F is a measure of the fractal line length (which, contrary to L, is not
expressed in [m] but in [md]) and d is the dimension in which one has to
measure the line length in order to obtain a constant value for F . d is called
the fractal dimension. In the case of a line, this parameter may vary from 1 to
2. If d = 1, the measured line is geometrically simple, whereas if d = 2, the line
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Figure 2.6: Schematic illustration of a fractal particle path.

is so irregular that it completely fills a plane. Combining Eqs. 2.34 and 2.35
leads to

L(ε) = Fε1−d (2.36)

which describes the dependence of a measured length with the measurement
unit ε, according to fractal length F and fractal dimension d.

2.3.1 Application to solute transport

Fractal geometry was first introduced by Wheatcraft and Tyler [197] to describe
solute particle travel paths in heterogeneous media. However, as the Euclidian
length of a fractal line increases without bounds as long as the measurement
unit decreases, particle travel path cannot be fully fractal. Indeed, water flow
does not exactly follow the shape of the soil grains, otherwise some particules
would have an infinite travel time. A cutoff limit εc was then introduced for the
measurement unit, this limit being comprised between a mean pore size and
the size of the R.E.V. for the smallest heterogeneity.

In a single fractal streamtube, if xF is the actual distance travelled by a
particle (in [m]) and if xS is the longitudinal straight-line distance travelled by
this same particle (also expressed in [m]), one has

F = xd
S (2.37)

where the measurement unit is equal to the straight-line path. Substituting this
relationship into Eq. 2.36 and measuring at the fractal cutoff limit leads to

xF = ε1−d
c xd

S (2.38)

which can be viewed as a scaling relationship between measurement scale xS

and real particle travel path xF . This is illustrated in Fig. 2.6. If measurement
scale is divided by 2, if particle travel path is fractal, it is not divided by 2 but
by 2d.
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Provided the Fickian model is valid at some local scale, the spreading of
a dissolved particle cloud in space, expressed as the variance of the particle
position σ2

C = E
[

(X − 〈X〉)2
]

, is given by

σ2
C = 2αLxF (2.39)

where αL is the local longitudinal dispersivity. This variance can also be ex-
pressed in terms of measured variables

σ2
C = 2α∗

LxS (2.40)

where α∗
L is the measured (apparent or effective) longitudinal dispersivity.

Equating Eqs. 2.39 and 2.40, and using Eq. 2.38, leads to

α∗
L = αLε

1−d
c xd−1

S (2.41)

which allows the upscaling of longitudinal dispersivity based on a fractal de-
scription of the heterogeneous medium. For an homogeneous non-fractal medium
(d = 1), field-scale dispersivity remains equal to local dispersivity. Wheatcraft
and Tyler [197] and Zhou and Selim [204] extended this latter equation to
transport in a soil composed of a set of fractal streamtubes. However, this
approach is rather conceptual, and one could expect a real aquifer to behave
somehow differently than a set of disconnected fractal streamtubes. Zhan and
Wheatcraft [201] proposed another approach, combining fractal geometry and
spectral analysis, that could be more adapted to real field-scale situations.

2.3.2 Fractal geometry and spectral analysis

Whereas classical stochastic approaches involve ln(K) covariance functions that
have a finite correlation length, in order to have a rapid decrease of hydraulic
conductivity autocorrelation (see Section 2.2), this assumption is not necessary
anymore when using concepts of fractal geometry. Zhan and Wheatcraft [201]
proposed to use a power-law covariance model CY Y = |h|2H (using the same
notations as in Section 2.2), where 0 < H < 1 is called Hurst coefficient
and link with the fractal dimension according to H = 1 + eu − d (eu being
the Euclidian dimension). H = 1 corresponds thus to a non-fractal medium.
For this type of heterogeneity, Fickian behavior will never be achieved if the
aquifer is not bounded, and longitudinal macrodispersivity will monotonically
increase with plume scale to infinity. However, for most geological formations,
physical boundaries always exist. A generally encountered situation is that no-
flow boundaries enclosing the fractal porous medium define the field scale at
which contaminants will disperse. Zhan and Wheatcraft [201] then introduced
a macroscale cutoff limit Lm, having the same role as the correlation length
used in classical stochastic analysis, but being linked to a physical boundary
rather than to the structure of the permeability field.

Zhan and Wheatcraft [201] showed that, in the case of a stratified fractal
aquifer, asymptotic macrodispersivity can be computed from

α∗
L(∞) =

σ2
Y

αT

2 − d

3 − d

(

Lm

2π

)2

(2.42)
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where 1 < d < 2 and Lm is representative of the aquifer thickness. Eq. 2.42 is
very similar to Eq. 2.33, α∗

L(∞) being inversely proportional to αT and with
a linear dependence on the variance of the ln(K) field and on the square of a
characteristic length. Relative macrodispersivity can be computed according to

α∗
L

α∗
L(∞)

= 1 − exp

[

−
ξ

(2π)2

]

+
1

2 − d

ξ

(2π)2
exp

[

−
ξ

(2π)2

]

−
1

2 − d

[

ξ

(2π)2

]3−d

Γ

(

d− 1,
ξ

(2π)2

)

(2.43)

where ξ = αT 〈v1〉t/L
2
m and Γ(a, x) is the incomplete Gamma function. In two-

and three-dimensional problems, asymptotic dispersivity is given by

α∗
L(∞) =

σ2
Y

γ2

6 − 2d

7 − 2d

(

Lm

2π

)

(2D) (2.44)

α∗
L(∞) =

π

2

σ2
Y

γ2

8 − 2d

9 − 2d

(

Lm

2π

)

(3D) (2.45)

where γ = 1 and γ = 1+σ2
Y /6 in two- and three-dimensional cases respectively.

Fig. 2.7 shows the dependency of asymptotic dispersivity on Hurst coefficient
for two- and three-dimensional problems. These results are qualitatively con-
sistent with results from stochastic theories, as an increase in the correlation
of the medium (i.e. an increase of the Hurst coefficient or an increase of the
correlation length) results in a higher asymptotic longitudinal apparent disper-
sivity and that an increase in the Euclidian dimension of the problem results in
a decrease of the dispersivity. It should be noted that a totally fractal medium
(H = 0) yields a macroscopic dispersivity equal to zero, which is again con-
sistent with stochastic theories (α∗

L = 0 for λ = 0) but contradictory with
results of streamtubes models developed in the previous section. Fig. 2.8 shows
the transient development of apparent longitudinal dispersivity in the case of
a perfectly stratified aquifer.

In the anisotropic case, Zhan and Wheacraft [201] also developed two- and
three-dimensional analytical solutions for asymptotic apparent dispersivity. In
the two-dimensional case for flow parallel to the bedding, they propose

α∗
L,‖(∞) =

σ2
Y

γ2

6 − 2d

7 − 2d

(

Lm

2π

)(

α1

α2

)8−2d

×

(

∞
∑

n=0

(3 − d+ n)!

(3 − d)!

(

1 −
α2

2

α2
1

)n
(2n)!

22n(n!)3

)−1

(2.46)

and for flow perpendicular to the bedding

α∗
L,⊥(∞) =

σ2
Y

γ2

6 − 2d

7 − 2d

(

Lm

2π

)

×

(

∞
∑

n=0

(3 − d+ n)!

(3 − d)!

(

1 −
α2

1

α2
2

)n
(2n+ 2)!

22n(n!)3

)−1

(2.47)
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Figure 2.9: Influence of the anisotropy ra-
tio on apparent longitudinal dispersivity in
a two-dimensional aquifer for flow parallel
to the bedding. H → 0 (solid line) and
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Figure 2.10: Influence of the anisotropy
ratio on apparent longitudinal dispersivity
in a two-dimensional aquifer for flow per-
pendicular to the bedding. H → 0 (solid
line) and H → 1 (dashed line).

where α1 and α2 reflect relative hydraulic conductivity variations in direction
1 and 2. It must be noted that a depiction of the anisotropy in terms of corre-
lation lengths is not possible in a fractal framework, as they are assumed to be
infinite. Figs. 2.9 and 2.10 show the influence of anisotropy ratio on asymptotic
longitudinal dispersivity for different Hurst coefficients.

2.4 Inclusion models

Transport in aquifers made of inclusions of highly contrasted permeabilities
has only been very recently investigated. Desbarats [62] performed pioneering
numerical simulations using a binary medium with inclusions of low permeabil-
ity and showed that permeability contrast and inclusion volumetric proportion
were the main controlling parameters for transport. Rubin [152] proposed a
first-order stochastic approach and derived analytical results in the case of
bimodal isotropic media. Like other results from stochastic theories, Rubin’s
results are only valid for low permeability contrasts. Eames and Bush [67] and
later Dagan and Lessoff [56] and Lessoff and Dagan [120] studied transport
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properties of two- and three-dimensional bimodal fields composed of inclusions
of fixed size and of constant permeability, disposed at random in an homoge-
neous matrix. Their developments were conducted under the assumption of low
volumetric proportion of inclusions (i.e. in the dilute system limit) so that ad-
vective transport could be solved by isolating one inclusion and the dispersive
effect of a collection of lenses was determined subsequently in a simple addi-
tive manner. Dagan et al. [55] and Fiori et al. [74] further refined the analysis
by considering distributions of ellipses of different size and of different perme-
abilities, and by computing the transient development of apparent dispersivity.
They released the dilute system approximation by considering instead the self-
consistent approach, in which the flow and transport problems are solved for a
single inclusion embedded in a equivalent homogeneous medium replacing the
neighbouring inclusions. However, they limited their analysis to isotropic media
and compared the results with numerical simulations [105]. Dagan and Fiori [54]
and Fiori and Dagan [73] studied transport properties of media with composite
inclusions, that allowed them to derive results without relying neither on the
dilute system nor on the self-consistent approach. However, they also conducted
their analysis in the isotropic case. Fiori et al. [75] and Jankovic et al. [106]
performed extensive numerical simulations on bimodal isotropic medium for
different volumetric proportions of inclusions (ranging from 5 to 40%) and for
different permeability ratios (ranging from 0.01 to 10). They found that the
self-consistent approach could be reasonably adopted in each of their tested
case.

In this section, it is thus proposed to further study the model suggested
by Dagan et al. [55], developped under the self-consistent approximation, and
to extend it to anistropic formations using the results proposed by Dagan and
Lessoff [56] and Lessoff and Dagan [120].

2.4.1 Conceptual model

Dagan et al. [55] have suggested to model heterogeneous formations as mul-
tiphasic ones, made up of M types of block geometry and of N different
types of material. Blocks are assumed not to overlap (Fig. 2.11 a.). A point
of the medium lies in the block i, j of shape i (i = 1 . . .M) and of material
j (j = 1 . . .N) with a known probability pij . pij thus denotes the volumetric
proportion of blocks of size i and of material j in the medium. Centroid posi-
tions of blocks xij are however not known and are treated as random variables.
If Kj is the permeability of material j, the overall conductivity field is given
by [55]

K(x) =
∑

i

∑

j

KjI(x − xij) (2.48)

where the indicator function I(x − xij) is equal to 1 for x belonging to the
inclusion (i, j) and is equal to zero otherwise. It is emphasized that permeabili-
ties of two neighbouring blocks remain uncorrelated. Mean and variance of the
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a. b.

c.

Figure 2.11: Conceptual model and the self-consistent approximation. a. Statistically ho-
mogeneous but anisotropic heterogeneous permeability field. b. Model of inclusions of regular
shape disposed at random in a matrix. c. Single inclusion embedded in a matrix. Adapted
from Dagan et al. [55].

log-permeability field can be computed from

ln(Kg) =
∑

i

∑

j

pijmj (2.49)

σ2
Y =

1

2

∑

i

∑

j

∑

k 6=j

(mj −mk)2pijpik (2.50)

where mj = ln(Kj). It appears from Eq. 2.50 that the variance of such media
can be very high, well above the classical limit σ2

Y < 1 established for the
validity of first-order stochastic theories.

To further simplify the model, Dagan et al. [55] propose to represent blocks
as inclusions of regular size, such as ellipses or spheroids, and to assume that
they are submerged in a matrix of arbitrary conductivity K0 to be determined
below (Fig. 2.11 b.). Dagan et al. [55] state that, despites these limitations and
provided the distribution of sizes and permeabilities is properly chosen, this
type of permeability field can properly mimic any given permeability distribu-
tion and any two-point anisotropic covariance function.

In a given heterogeneous formation of this geometry, the solution of the flow
field can be represented as a distribution of singularities of source type, each
source corresponding to a given block. The self-consistent approach proceeds by
isolating one inclusion of shape i and permeability Kj and by suppressing the
remaining ones in the matrix of permeability K0 (Fig. 2.11 c.). The flow and
transport problems are then solved assuming there is no interaction between
each block. As K0 could be any reference permeability somehow linked to the
effective permeability Ke of the medium, the self-consistent approach assumes
K0 = Ke and K0 reflects the presence of neighbourings blocks that have been
suppressed. The derivation ofKe for two- and three-dimensional isotropic media
is given by Dagan [50] and extended to three-dimensional anisotropic media
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in [53]. The case of two-dimensional anisotropic media is given in Appendix A.

2.4.2 Advective transport by the Lagrangian approach

Under ergodic condition, the spatial moments of a solute plume can be com-
puted from the statistical moments of the trajectory of a single particle. One
will then consider a solute particle injected at time t = 0 and at position x0.
The trajectory of this particle is x = X(t,x0) and is given by

X(t,x0) = x0 + Vt+
∑

i

∑

j

X′
ij (2.51)

where V is the far field velocity and X′
ij is the trajectory fluctuation caused

by block (i, j). Trajectory second moments are given by

Xms(t) =
∑

i

∑

j

E
[

X ′
ij,m(x0 − xij) X

′
ij,s(x0 − xij)

]

(2.52)

where m and s refer to the components of the vectors of the trajectory fluc-
tuations. Following the work of Dagan et al. [55], one will further consider the
continuous limit for permeability and for inclusion size. The volumetric pro-
portion of blocks of size i and of material j will tend to pij → pf(K,A)dKdA.
p =

∑

i

∑

j pij ≤ 1 is the total volumetric proportion of inclusions and A is
a characteristic size of inclusion (e.g. the longitudinal semi-axe). f(K,A) is
then the distribution of permeability and ellipse size. It will be assumed that
anisotropy ratio is identical for each inclusion. In this case, and particularizing
Eq. 2.52 to longitudinal fluctuations yields

X11(t) = p

∫ ∫ ∫

X ′2
1 (t,x0,K,A)

V (A)
f(K,A) dx0dKdA (2.53)

where V (A) is the volume occupied by the ellipse of size A. The longitudinal
apparent dispersivity is obtained from

α∗
L =

1

2V

dX11(t)

dt
(2.54)

One will only consider the two-dimensional problem, as it is the one of main
interest in this study and as extension to three-dimensional cases follows the
same lines. Flow is assumed to be uniform at infinity, of velocity V aligned in
the longitudinal direction (although the developments could be easily extended
to flow in any direction [56]). The head field φ for an inclusion of characteristic
size A and of permeabilityK in the situation depicted on Fig. 2.11 c. is given by
Eqs. A.4 and A.5. Longitudinal trajectory fluctuations are computed according
to

X ′
1(t,x0,K,A) =

∫ t

0

(∇φ(K,A) − V )dt (2.55)

Details of the computation method are given by Lessoff and Dagan [120] and
by Fiori et al. [74].
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Figure 2.12: Influence of permeability
contrast on apparent longitudinal disper-
sivity. Proportions of inclusions are p1 =
p2 = 0.5. e = 1 (solid line) and e = 1/4
(dashed line).
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Figure 2.13: Influence of permeability
contrast on apparent longitudinal disper-
sivity. Anisotropy ratio is e = 1/4 and pro-
portions of inclusions are p2 = 0.1 (solid
line), p2 = 0.5 (dashed line) and p2 = 0.9
(dot-dashed line).

Figs. 2.12 to 2.15 show the behavior of the asymptotic dispersivity for a
two-facies permeability field (facies 1 and 2) of varying permeability contrast,
anisotropy ratio and volumetric proportion. Each point on these figures requires
computation of effective permeability according to Eq. A.21 and computation
of asymptotic dispersivity using Eqs. 2.53 and 2.54. It appears that for equal
volumetric proportion of facies, curves are symmetric. For higher anisotropy ra-
tio, apparent longitudinal dispersivity incresases, which is in accordance with
results obtained by Lessof and Dagan [120] under the dilute assumption. When
the medium is mainly composed of a low-permeability facies, apparent dis-
persivity increases when permeability decreases. However, as discussed qual-
itatively by Dagan and Lessoff [56] and Dagan et al. [55], the behavior for
low permeability inclusions is altered by transverse dispersivity and molecular
diffusion, which provide a cutoff in asymptotic longitudinal macrodispersivity.
When the medium is predominantly composed of high permeability inclusions,
apparent dispersivity converges to a constant value for increasing permeability.
Apparent dispersivity is maximum for a volumetric proportion of inclusions
close to 50 %.

2.5 Conclusion

In this chapter, three methods for the upscaling of longitudinal dispersivity
in heterogeneous media were detailed. These methods allow one to compute
apparent (or effective) values of longitudinal dispersivity to be used in the
ADE for an equivalent homogeneous medium.

The stochastic method is relatively popular but is bound to a strong lim-
itation of low permeability variability. The other limitation of this method is
that it is based on a statistical characterization of the permeability field. This
characterization ideally requires vast amounts of data, that are generally not
available in field-scale problems. The fractal method that has been presented
does not require an assumption low variability. However, it basically requires
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Figure 2.15: Influence of facies volumet-
ric proportion on apparent longitudinal
dispersivity. Anisotropy ratio is e = 1/4
and permeability ratios are K2/K1 = 1/10
(solid line), K2/K1 = 1/5 (dashed line)
and K2/K1 = 1/2 (dot-dashed line).

similar characterization methods as the stochastic approach, as the transport
problem is parametrized using a covariance function for the permeability field
and a large scale cutoff distance. Finally, the self-consistent approach allowed
one to derive apparent dispersivity values in the case of highly heterogeneous
media. The main limitation of this approach is that diffusive and local-scale
dispersive transport are not considered, which might induce a serious bias when
considering media with relatively low permeabilities.

The basic approach for modelling large-scale solute transport consists then
to use the upscaled dispersion coefficients in the classical advection-dispersion
equation and solve it at the scale of interest. However, as the time needed
to reach the asymptotic large-scale Fickian behavior turns out to be extremely
long, the assumption of a constant macrodispersion coefficient can still be ques-
tionable in most of the case. The remaining solution consists in solving the ADE
with time- or space-dependent dispersion coefficients, either numerically [146]
or analytically [4, 101, 102, 103, 124, 143, 199, 207].



Chapter 3

Upscaling of the transport

equation

3.1 Introduction

The advection-dispersion equation was obtained assuming a Fickian dispersive
flux. A first way of departing from this assumption consists in obtaining a more
elaborate model of the dispersive flux and substituting it in the mass balance
equation. Most of the time, a non-Fickian dispersive flux can be obtained by
solving the effect of heterogeneities on transport in highly conceptualized sit-
uations, such as perfectly stratified formations [21, 35, 81]. Other approaches
have however been investigated, being probabilistic [163] or heuristic [176]. In
Section 3.2, third- and fourth-order transport models will first be evoked, then
telegraph equations will be more extensively presented, as they represent a
more useful alternative to the ADE.

Probabilistic models of solute transport in heterogeneous formations yield
a second way of deriving non-Fickian transport equations. In Section 3.3, Con-
tinuous Time Random Walk (CTRW) will be presented as an extension to
Brownian motion, for particle movements correlated in time or in space. It will
also be shown that this approach can yield fractional-order partial differential
equations that are a direct extension of the ADE.

Finally, the particular case of transport in a two-region medium will be
studied in Section 3.4. In the literature, this type of model is usually referred
to as mobile-immobile models (MIM). The heterogeneous medium is parti-
tionned into two zones, one of them having a negligible velocity. Exchange
between mobile and immobile phases is quantified either using a rate coeffi-
cient or using a diffusion model, and a source term is added to the classical
ADE. Whereas this type of model was developped to account for long tails and
slowly converging concentration distributions, effective dispersion coefficients
can be expressed in terms of MIM transport parameters [186] and simulations
based on field-scale data showed that rate-limited models could correctly ex-
plain macrodispersion [69, 97].

As this work focuses on longitudinal apparent dispersion, and in order to
use simple analytic expressions, upscaled transport equations will be presented
in their one-dimensional form. They have thus to be compared with Eq. 1.6.

31
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3.2 Higher-order and telegraph equations

3.2.1 Higher-order equations

In this section, the problem of Taylor dispersion is adressed. Assuming a one-
dimensional velocity profile (such as the velocity in a perfectly stratified aquifer,
the velocity profile in a tube or the velocity profile between parallel plates) and
transverse transport processes (being either diffusion only or hydrodynamical
dispersion), authors have tried to incorporate attributes of this velocity profile
as a description of macrodispersive processes in the transport equation without
relying on the Fickian assumption.

Camacho [35, 36, 37] studied laminar flow between parallel plates. He de-
duced using Fourier analysis to average the advection-diffusion equation, a
non-Fickian relaxation equation for the macrodispersive flux

∂qD

∂t
+
qD

τe
+ (1 + γa)v

∂qD

∂x
−Dd ∂

2qD

∂x2
= −σ2

v

∂C

∂x
(3.1)

where qD is the mass flux due to diffusion, τe [s] is an effective relaxation
time characterizing exponential degradation towards Fickian behavior and γa

[−] is an asymmetry term. σ2
v [m2/s2] is the variance of the velocity profile.

Incorporating this constitutive equation in the mass balance equation leads
to a fourth-order transport model that can account for molecular diffusion,
macrodispersion due to transverse mixing in non-uniform one-dimensional flow
fields and that can yield asymmetric concentration distributions

∂C

∂t
+ v
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∂x
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∂x2

+ τe

[

∂2C

∂t2
+
(
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v

) ∂2C

∂x2
+ (2 + γa)v

∂2C

∂x∂t

]

= τe

[

2Dd ∂3C

∂x2∂t
+ (2 + γa)vDd ∂

3C

∂x3
−Dd ∂

4C

∂x4

]

(3.2)

Gelhar et al. [81] studied solute transport in a randomly heterogeneous but
perfectly stratified aquifer. Using a method similar to that described in Sec-
tion 2.2.3, they obtained an analytical solution for concentration fluctuations
that could be injected in the governing equation of the mean concentration.
They truncated the latter to the third-order term, which resulted in

∂C

∂t
+ v

∂C

∂x
−
(

(α∗
L + αL)v +Dd

) ∂2C

∂x2

− γG
∂3C

∂t∂x2
− γGv

∂3C

∂x3
= 0 (3.3)

where α∗
L is given by Eq. 2.31 and

γG =

∫ +∞

−∞

SKK(s)

〈K〉2
1 − e−αT vts2

(1 + αT vts
2)

α2
T s

4
ds (3.4)

Gelhar et al. [81] provide an analytical solution to Eq. 3.3 in terms of a moment
series expansion.
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A third- or a fourth-order transport equation is much more difficult to solve
analytically, even for very simple initial and boundary conditions, and therefore
does not represent a valuable alternative to the classical and easy to handle
advection-dispersion equation. It will be however shown in the next section how
Eq. 3.2 can be simplified to obtain a second-order equation that could be much
more useful.

3.2.2 Telegraph equations

The advection-dispersion equation is a parabolic differential equation. No down-
stream condition is needed for concentration whereas solute front velocity is
theoretically infinite. This means that, after a small time step, concentration
at infinity is non-zero. Regarding this physical inconsistency, a few authors have
turned to telegraph equations to model solute transport. Telegraph equations
are second-order hyperbolic differential equations, meaning that the relative
increase in complexity compared to the ADE remain reasonable, while these
equations yield finite front velocities.

In order to depart from the Fickian assumption of a totally uncorrelated
random movement of solute particles, Scheidegger [163] introduced an expo-
nential correlation function for particle velocities, with a correlation time τe
[s]. This approach could be compared to the stochastic approach, in which the
velocity density spectrum is introduced to quantify apparent dispersion. Schei-
degger also showed that this approach ended up in adding a term to Eq. 1.6,
leading to a telegraph equation that can be written as

∂C

∂t
= −v

∂C

∂x
+DL

∂2C

∂x2
− τe

(

v2 ∂
2C

∂x2
+ 2v

∂2C

∂x∂t
+
∂2C

∂t2

)

(3.5)

Analytical solutions to this equation lead however to sharp cutoffs at tailing
edges of concentration fronts [162, 163], which does not fit experimental results.
This is illustrated on Fig. 3.1 for a continuous injection. U = vt/x is the
number of pore volumes and Cr = C/C0 is the relative concentration of solute.
Numerical values are v = 10−7 m/s, αL = 1 cm, Dd = 0 and x = 1 m (so
that mean breakthrough time is 〈t〉 = 107 s). It can be easily checked that
Eq. 3.5 is a particular case of the fourth-order model of Camacho presented in
previous section. In case molecular diffusion can be neglected while a significant
transverse variation in the velocity field is present, Eq. 3.2 reduces to a second-
order telegraph equation

τe
∂2C

∂t2
+
∂C

∂t
+ v

∂C

∂x
+ τe(2 + γa)v

∂2C

∂x∂t
− τe

(

σ2
v − (1 + γa)v2

) ∂2C

∂x2
= 0 (3.6)

which, when γa is set to zero, reduces to Eq. 3.5, with an apparent longitudinal
dispersivity being expressed according to α∗

L = τeσ
2
v/v.

Strack [176] proposed to solve the problem of infinite front velocities by
including an inertia term in the constitutive equation of the dispersive flux

qD = −DL
∂C

∂x
−
λS

v

∂qD
∂t

(3.7)
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Figure 3.1: Solution of Scheidegger’s tele-
graph equation for a continuous injection.
τe/〈t〉 = 0.1 (solid line), τe/〈t〉 = 0.5
(dashed line) and τe/〈t〉 = 1 (dash-dotted
line).
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Figure 3.2: Solution of Strack’s tele-
graph equation for a continuous injection.
λS/αL = 1 (solid line), λS/αL = 2
(dashed line) and λS/αL = 10 (dash-
dotted line).

where λS is a parameter having the dimension of a length. Strack [176] found
from experimental evidence λS to be inversely proportionnal to solute velocity.
Incorporating this term into Eq. 1.4 leads to an equation slightly different from
the advection-dispersion equation and somehow comparable to Eq. 3.5

∂C

∂t
= −v

∂C

∂x
+DL

∂2C

∂x2
−
λS

v

(

v
∂2C

∂x∂t
+
∂2C

∂t2

)

(3.8)

As in Scheidegger’s theory, one obtains analytical solutions charaterized by
sharp breakthroughs, with the difference that late-time edges are smoothened.
Fig. 3.2 shows the analytical solution of Eq. 3.8 in the case of a one-dimensional
continuous injection, for the same set of transport parameters used in Fig. 3.1.

Strack [176] also showed that first and second temporal moments of Eq. 3.8
under null initial concentration and for a unit step variation in concentration
are similar to those of the advection-dispersion equation. The main implication
of this result is that Strack’s telegraph equation has no upscaling capacities
regarding dispersion of solute plumes.

Tompson and Gray [183] used a volumetric averaging technique to derive
large-scale balance equations. Their work was further simplified by Tomp-
son [182], who derived another relationship for the dispersive solute flux, the
latter being written in the one-dimensional case as

τe
∂qD

∂t
= −DL

∂C

∂x
− τev

∂qD

∂x
− qD (3.9)

where τe is somehow similar to Scheidegger’s autocorrelation time. Tomp-
son [182] also derived a transport telegraph equation, that can be shown to
be a generalization of Eq. 3.5, accounting for diffusion effects.

Hassanizadeh [98] also used a volumetric averaging technique to scale up
microscopic flow and transport equations. Solute dispersive flux was described
using physical and chemical properties, such as chemical potentials or solute
Helmholtz free energy. Hassanizadeh showed his model to be a more general
form of Scheidegger’s, Tompson’s and Strack’s models.
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Most of other non-Fickian models are obtained by similar flow and transport
upscaling technique, as reported from Whittaker by Peters and Smith [145].
Some of them are evoked in [98, 176, 182, 183]. Although they provide strong
theoretical bases to understand non-Fickian effects in solute dispersion, most of
these models are inapplicable. Indeed, parameters involved in these equations
are generally very difficult to evaluate at the field scale, while their physical
meaning may remain unclear.

3.3 Fractional-order transport equations

Recently, new probabilistic formulations of solute transport have been intro-
duced to describe solute particle movements in heterogeneous media. These
formulations, called Continuous Time Random Walk (CTRW), were first in-
troduced to describe the random movement of a particle on a lattice [139] and,
for instance, are already used in the field of electricity (to calculate impurity
conduction in semi-conductors) [164]. They are found to be powerful tools to
model situations where anomalous transport occurs [16, 18, 23, 26, 121].

First, the general framework of CTRW will be presented in Section 3.3.1.
A new type of probability distribution, that will be shown to be a generaliza-
tion of the Gaussian PDF, will be described. Then, in Section 3.3.2, it will be
shown that fractional-advection dispersion equation can be obtained in several
particular cases of CTRW, and a few one-dimensional analytical solutions will
be illustrated. Finally, aspects linked to apparent dispersivity will be studied
in Section 3.3.3.

3.3.1 Probabilistic random walk formulations

In a heterogeneous medium, dissolved particles are transported along differ-
ent paths at varying velocities. Under ergodic conditions, this kind of trans-
port can in general be represented using a coupled time-space PDF p(x, t),
describing particle transitions in space (jumps) and in time (pausing times be-
tween jumps) [16, 24]. Fundamental properties of transport are governed by
the asymptotic behavior of p(x, t). Simple asymptotic forms of p(x, t) include
exponential and power-law (algebraic) decay [23]. Adoption of an exponential
form leads to all moments of p(x, t) to be finite. In that case, the Central Limit
Theorem applies and p(x, t) is Gaussian [184]. The limit process for particle
movement is then a Brownian motion governed by Fick’s law [6]. However, the
movement of a particle in an aquifer generally does not follow uncorrelated
Brownian motion, since geological material is deposited in sequenced and cor-
related units. A particle travelling faster than the mean at some instant is much
more likely to be still travelling faster at later times, due to spatial correlation
in aquifer hydraulic conductivity (see Section 2.2). This also means that par-
ticles travelling at velocities significantly different from the mean velocity may
occur more often than Brownian motion can model [16, 169].

In the CTRW framework, moving particles undergo random transitions
according to a probability density function that decays algebraically. This
type of PDF is called a Lévy distribution, as they were first shown to ex-
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Figure 3.3: Plots of symmetric Lévy’s
density distributions. β = 2 (solid line),
β = 1.5 (dashed line) and β = 0.9 (dot-
dashed line).

−10 −5 0 5 10
0.01

0.1

0.3

0.5

0.7

0.9

0.99

Random variable

C
D

F

Figure 3.4: Plots of symmetric Lévy’s cu-
mulative distributions. β = 2 (solid line),
β = 1.5 (dashed line) and β = 0.9 (dot-
dashed line).

ist by Paul Lévy [18]. For infinite-variance jumps, tails of the corresponding
PDF fall off according to an algebraic-in-space decay p(x, t) → |x|−1−βx . In
that case, transport is said to be spatially anomalous. Similarly, for infinite-
mean pausing times, PDF tails fall off according to an algebraic-in-time decay
p(x, t) → t−1−βt and transport is said to be temporally anomalous. βx and βt

are positive numbers, since the integral of the probability density function must
be finite. For βx ≥ 2 and βt ≥ 2, the first two spatial and temporal moments of
p(x, t) exist and particles exhibit Gaussian behavior. If 1 < βx < 2, the second
spatial moment of p(x, t) diverge. Similarly, if 1 < βt < 2, its second temporal
moment diverges too. The case βx < 1 or βt < 1 respectively correspond to infi-
nite mean jump and infinite mean pausing time. Margolin and Berkowitz [129]
showed that the case βt = 1 corresponds to a purely advective transport be-
havior (each particle remains on its initial flow line and apparent dispersion
grows without bounds). Fig. 3.3 shows a few examples of Lévy distributions,
and Fig. 3.4 shows corresponding CDF plotted on probability paper.

For transport in heterogeneous media with highly conductive layers or frac-
tures, the distribution of jump lengths is relatively broad, as particles may
remain in low velocity channels whereas other particles travel at a velocity
much higher than the mean. In that case, one could expect βx to be lower
than 2. Reciprocally, transport in a medium with low permeability inclusions
could be characterized by βt < 2, as particles captured in inclusions exhibit
sensitively longer pausing times [135].

It must be noted that, in fact, βx and βt are functions of the length scale
(or the time needed to traverse this length scale). The CTRW theory can be
applied when βx or βt are constant or slowly varying over a number of orders of
magnitude in length or in time [127]. Geological systems can encounter hetero-
geneities over different hierarchical scales, and the characteristic length of the
largest heterogeneity is likely to influence βx and βt the most [127]. However,
this largest heterogeneity must be small enough compared to the full travel
distance of the particle cloud, so that the ergodic hypothesis is valid and prob-
ability distributions correctly approximate concentration distributions. If it is
not the case, then large heterogeneities must be treated deterministically [127].
Moreover, as travel distance increases, the size of the largest heterogeneity must
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also increase. Otherwise, provided that the domain is large enough, full aver-
aging take place and tracer plumes become Gaussian. In this case, βx and βt

increase to the threshold of 2 [127].

3.3.2 Fractional-order transport equations

In this section, special cases of CTRW are presented, that can lead to ex-
tended transport equations involving fractional derivatives. Mathematical de-
velopments are not derived here but can be found in [16, 19, 22, 137].

The word fractional refers to the occurence of fractional order differentiation
in time or in space, or both. Introduction to fractional calculus can be found
e.g. in [16, 19, 48, 169] and references therein. An easy way to understand
how fractional derivatives work is to extend the action of Fourier-transforms
on integer derivatives to rational order

d̃β

drβ
f(r) = (is)β f̃(s) (3.10)

where ˜ indicates the Fourier-transform, r is the spatial or temporal coordinate,
s is the Fourier-coordinate and β is a rational number. By inverse-transforming
this equation, one can find one-dimensional expressions for fractional deriva-
tives. The main feature of these fractional derivatives is that, unlike integer
derivatives, they are non-local operators and incorporate an integral from −∞
to r. This can be interpreted as a memory-effect (or as a correlation in time
or in space of particle displacement), allowing one to take into account long
particle jumps or long pausing times.

Considering spatial anomalous transport, with βt = 2 and 0 < βx < 2,
Benson [16, 19] showed that describing the dispersive flux of solute particles as
proportional to a fractional derivative allows the magnitude of particle velocities
(or the size of particle jumps) to be unconstrained. This is an extension of Fick’s
second law, where the variation of concentration in time can be modelled using

∂C

∂t
= Dx

∂βxC

∂xβx
(3.11)

where βx is the parameter of the Levy probability density function and Dx

is comparable to the classical longitudinal dispersion coefficient DL but is ex-
pressed in [mβx/s]. If advection and Eq. 3.11 are incorporated in the mass
balance, one obtains a spatial fractional advection-dispersion equation, which
can be expressed in the one-dimensional case as
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where γB is a skewness parameter allowing a forward jump probability distri-
bution different from the backward jump PDF. A complete derivation of this
equation can be found in [16, 18]. It can be easily checked that in the case of
βx = 2, one finds back Eq. 1.6. As soil heterogeneity is captured by parameter
βx, Dx may remain constant and does not need to be scale-dependent any-
more. Figs. 3.3 and 3.4 show typical solutions of Eq. 3.12 without skewness,
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respectively corresponding to a Dirac injection and a continuous injection. In
the case of spatial concentration distributions, the random variable to be con-
sidered is position x. In the case of temporal distributions, the random variable
is (t− 〈t〉)/(t〈t〉)1/2.

In the multidimensional case, a multiscaling fractional operator was in-
troduced to encompass different scaling rates of dispersion in different direc-
tions [133, 134, 168]. In that case, βx is no longer a scalar but rather a tensor
whose principal directions may not be aligned with the principal directions of
the flow field and whose eigenvalues may not be equal in all directions.

Considering now temporal anomalous transport, with 0 < βt < 1 and βx =
2, it can be shown that a fractional-in-time advection-dispersion equation can
be obtained [22, 137]. In the one-dimensional case, it reads

∂βtC

∂tβt
= −vβ

∂C

∂x
+ Dt

∂2C

∂x2
(3.13)

where vβ is a generalized velocity expressed in [m/sβt ] and Dt is expressed in
[m2/sβt ]. Instead of using Eq. 3.13 as a starting point, Margolin and Berkowitz
[127, 129, 130] go back to the Laplace transform of the probability density

function ψ(u) = L (ψ(t)), with ψ(t) =
∫ +∞

−∞
p(x, t)dx. In the case 0 < βt < 1,

ψ(u) can be expanded in polynomial series and truncated after the third term

ψ(u) ≈ 1 − cβu
βt + c1u (3.14)

where cβ and c1 are constant and where cβ is found to be positive [130]. It
should be noted that in early developments of CTRW theory, only two terms
were taken into account, and c1 was systematically set equal to zero for βt < 1
[22, 25, 26, 129]. Margolin and Berkowitz [130] showed that this approximation
becomes questionable as βt approaches 1 from below.

This method also allows one to derive solutions in the case 1 < βt < 2. ψ(u)
is then expressed as

ψ(u) ≈ 1 + cβu
βt − c1u (3.15)

where, in this case, c1 can be interpreted as a mean transition time [127, 129].
Laplace inversion of Eqs. 3.14 and 3.15 allows one to obtain analytical solutions
for temporal and spatial concentration distributions, either under continuous or
under instantaneous injection [26, 127, 129, 130]. These solutions are expressed
in terms of two parameters Cβ and C1 which are linked to cβ and c1 via mean
transition length 〈l〉

Cβ =
cβ
〈l〉

(3.16)

C1 =
c1
〈l〉

(3.17)

where C1 can be expressed as the inverse of a velocity, in [s/m]. Margolin and
Berkowitz [130] have defined a set of new parameters in order to efficiently
compute spatial concentration distributions (SCD) and breakthrough curves
(BTC). These parameters are summarized in Table 3.1.
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0 < βt < 1 1 < βt < 2

SCD

R = tβt

Cβ
R = t

C1

κ = C1tβt−1

Cβ
κ =

Cβtβt−1

C1

BTC

T = (LCβ)1/βt T = LC1

r = C1

C
1/βt
β

L1−1/βt r =
C

1/βt
β

C1

L−1−1/βt

Table 3.1: Parameters of CTRW distributions in the case of temporally anomalous transport
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Figure 3.5: Influence of βt on break-
through curve. βt = 2 (solid line), βt = 1.5
(dashed line) and βt = 0.9 (dot-dashed
line).
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Figure 3.6: Influence of βt on spatial dis-
tribution. βt = 2 (solid line), βt = 1.5
(dashed line) and βt = 0.9 (dot-dashed
line).

In addition to being dependent on βt, spatial distributions are expressed
in terms of parameters R and κ, whereas temporal distributions depends on
parameters T and r. R represents the mean position of particle clouds and T
is the mean breakthrough time. κ and r are both linked to apparent disper-
sivity. Analytical solutions involving these parameters are not presented here,
but can be found in [127, 130] and are available as Matlab c© functions (at
http://www.weizmann.ac.il/ESER/People/Brian/CTRW/). Figs 3.5 and 3.6
show breakthrough curves and spatial concentration distributions for various
values of βt in the case of a continous injection.

Finally, it should be mentioned that other fractional-order equations have
been proposed in the literature. Baeumer et al. [7] proposed an equation similar
to Eq. 3.12 without skewness but with an advection term described using a
space-fractional derivative of order βx/2. Equations with fractional temporal
derivatives of an order up to 2 have also been proposed [6, 17, 168], as well as
equations involving both time- and space-fractional derivatives [6, 135, 137].

3.3.3 Apparent dispersivity

In this section, consequences of considering spatial or temporal anomalous
transport are described with respect to apparent dispersivity. In the case of
Gaussian distributions, the mean displacement of a particle cloud 〈x〉 as well
as its spatial variance σ2

C are growing linearly with time t, so that σC/〈x〉 ∼
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t−1/2. This means that a relative narrowing of the particle plume occurs with
time [23, 26, 127, 128]. As time increases, the spreading of a particle cloud
around its mean position decreases compared to its mean position. The corre-
sponding apparent dispersion coefficient, that can be computed as half of the
time derivative of the spatial variance, is indeed constant, as well as apparent
dispersivity.

Considering spatial anomalous transport, with 0 < βx < 2 and βt = 2, Ben-
son [16, 19] showed that the standard deviation of concentration distributions
grows proportionally to t1/βx . As mean travel distance is directly proportional
to time, σC/〈x〉 ∼ t1/βx−1 and the relative narrowing of concentration plumes
occurs more slowly than in the case of Fickian dispersion. This situation is usu-
ally referred to as super-diffusion, as the variance of the particle plume grows
faster than in the Fickian case. Apparent dispersivity follows the trend

α∗
L =

D∗
L

v
∼ t2/βx−1 ∼ 〈x〉2/βx−1 (3.18)

In the case of temporally anomalous transport, for 0 < βt < 1 and βx = 2,
it can be shown that the mean displacement of a particle cloud is not linearly
depending on time anymore. This is the direct consequence of having a first
moment of ψ(t) that is infinite. In this case, 〈x〉 ∼ tβt . It can also be shown that
σ2

C ∼ t2βt , so that the ratio σC/〈x〉 is constant, and concentration distributions
remain similar over different scales. There is no relative narrowing of plume
distributions. This universality property is called self-similarity, and is linked
to the fractal behavior of the medium. Apparent dispersion coefficient is in
this case D∗

L ∼ t2βt−1. Moreover, as 〈x〉 ∼ tβt , mean particle velocity is a

decreasing function of mean travel distance v = 〈x〉
t ∼ tβt−1 ∼ 〈x〉1−1/βt .

Physical arguments can be used to justify this behavior [127] : considering a
step injection, faster flow paths are initially filled faster by particles. The mean
velocity of a particle cloud at this time is representative of the mean velocity of
the fluid in these faster flow paths, and is higher than the mean flow velocity.
Over time, mixing occurs with slower paths, and the average velocity of the
particle cloud decreases. Combining dispersion coefficient and velocity allows
one to obtain an apparent dispersivity that grows without bound linearly in
space [129]

α∗
L =

D∗
L

v
∼ tβt ∼ 〈x〉 (3.19)

When 1 < βt < 2, 〈x〉 ∼ t and σ2
C ∼ t3−βt , so that D∗

L ∼ t2−βt . Concentra-
tion distributions become narrower with growing scales but, in this case too,
the relative narrowing is slower than in the Gaussian case, allowing apparent
dispersivity to grow with scale [16, 23, 26, 127, 129].

α∗
L =

D∗
L

v
∼ t2−βt ∼ 〈x〉2−βt (3.20)

Finally, Eqs. 3.18, 3.19 and 3.20 could be related to Eq. 2.43, were the appar-
ent macrodispersivity was found to be proportional to 〈x〉d−1 (with d being the
fractal dimension of the medium), or to similar equations derived considering
the soil as a set of fractal streamtubes [197, 204]. This could highlight the link
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between the fractal model and the CTRW theory, establishing an equivalence
between the fractal dimension d and parameters βx and βt [133].

3.4 Transport in dual-region media

Early in the study of solute transport in porous media, it was realized that
a fraction of the fluid present in the pore space of a medium could remain
immobile [44, 189]. These immobile zones could be either dead-end pores in a
porous medium, the rock matrix in a saturated fractured media or clay lenses.
Three different approaches can be adopted to account for the influence of these
immobile zones. First, an assumption of local equilibrium can be invoked. It
supposes transfer processes to occur instantaneously. The second approach uses
first-order rate-limited exchange, using models borrowed from non-equilibrium
chemical theories. The third approach considers diffusion to quantify exchange
between mobile and immobile zones. In this section, one will only consider
rate-limited and diffusion models. Local equilibrium is an asymptotic case of
rate-limited transfer.

More elaborate models, accounting for two and more subdivisions of the
flow system and considering advection or not in each of the subdivision have
been developed [83, 107] but will not be reviewed here.

3.4.1 Single-rate and diffusion models

In the case of a two-region model, solutes are divided into a mobile and an
immobile region in soils. Solutes present in the mobile zone undergo advec-
tion, diffusion and dispersion, while solutes present in the immobile zone only
undergo diffusion (i.e. flow velocity in the immobile zone is assumed to be
negligible compared that in the mobile zone). One defines Cm and Cim the
concentrations in mobile and immobile phases respectively. The ADE, as it
includes advection and dispersion, is used to describe Cm. It must be how-
ever augmented by a term expressing exchange with the stagnant zone. In the
one-dimensional case, it reads [44, 91, 167]

∂Cm

∂t
+ ν

∂Cim

∂t
= −v

∂Cm

∂x
+DL

∂2Cm

∂x2
(3.21)

where ν = θim/θm [-] is the capacity ratio, with θm [−] and θim [−] the vol-
umetric fractions of mobile and immobile zones respectively. As an additional
unknown appears in Eq. 3.21, an additional relationship is required to solve
the problem. It usually comes from the assumption of linear non-equilibrium
mass transfer [31, 44, 91, 167, 188]

∂Cim

∂t
= ω (Cm − Cim) (3.22)

where ω is a first-order rate coefficient [1/s]. Figs. 3.7 and 3.8 show the influence
of volumetric proportion of the mobile phase and of exchange rate coefficient on
evolution of concentration in the mobile phase (which is actually the concentra-
tion that can usually be measured). The transport problem was solved using the
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Figure 3.7: Influence of the volumet-
ric proportion of mobile phase on total
concentration. θim/θ = 0.1 (solid line),
θim/θ = 0.5 (dashed line) and θim/θ = 0.9
(dot-dashed line). Da = 1.
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Figure 3.8: Influence of the rate coeffi-
cient on total concentration. Da = 0.1
(solid line), Da = 1 (dashed line) and
Da = 10 (dot-dashed line). θm/θ = 0.5.

program STANMOD (ver. 2.2, available at http://typhoon.mines.edu/software/
igwmcsoft/stanmod.htm) for the same set of parameters, initial and boundary
conditions as used for Figs. 3.1 and 3.2. The adimensional number Da = ωx

θmv is
the Damkohler number. It quantifies the rate of exchange between mobile and
immobile phases compared to advective velocity in the mobile phase. As θim

increases, transport exhibits anomalous behavior, with breakthrough curves
characterized by longer tails (Fig. 3.7). For low Da, exchange has no time to
occur and transport behaves as if there were no immobile phase (Fig. 3.8). On
the contrary, for high Da, concentrations in mobile and immobile phase have
time to reach local equilibrium and transport could be properly characterized
using an appropriate retardation factor [8, 91, 144, 186].

The key issue is to properly characterize the exchange rate ω. Diffusion
models are more convenient as exchange between mobile and immobile zones is
directly quantified using Fick’s first law for a given immobile zone geometry [31,
94, 95, 149, 187]. The average concentration in the immobile zone is calculated
as [91]

Cim =
n

An

∫ A

0

rn−1cr dr (3.23)

where n is the dimensionality of the immobile zone (n = 1 for layers, n = 2 for
cylinders and n = 3 for spheres) and A is its characteristic length (thickness
or radius). cr is the concentration in the immobile zone and is obtained by
solving [91]

∂cr
∂t

=
Dd

rn−1

∂

∂r

(

rn−1 ∂cr
∂r

)

(3.24)

subject to

∂cr
∂r

= 0 at r = 0 (3.25)

cr = Cm at r = A (3.26)

Approximate apparent exchange rate coefficients have been derived based on
Eqs. 3.24 to 3.26, that are generally proportional to ω ∼ Dd/A2 [31, 91, 94, 95,
144, 149].
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3.4.2 Extension to multirate mass transfer

Although several experimental results show an equivalence between both mod-
elling approaches [142], a few authors are relatively mitigated regarding the
general applicability of single-rate models [9, 86, 87]. Haggerty and Gorelick [91]
extended the single-rate model to a multirate solute transport equation

∂Cm

∂t
+

N
∑

i=1

νi
∂ (Cim)i

∂t
= −v

∂Cm

∂x
+DL

∂2Cm

∂x2
(3.27)

with N additional equations

∂ (Cim)i

∂t
= ωi (Cm − (Cim)i) i = 1 . . .N (3.28)

In this case, νi =
(θim)i

θm
includes the volumetric proportion of immobile zone

i. In case ω is continuously distributed, the sum in Eq. 3.27 must be replaced
by an integral [193]. Haggerty and Gorelick [91] demonstrated the equivalence
between diffusion and multirate models by deriving a series solutions for ωi

and νi that could match diffusion models. Moreover, multirate mass transport
models were recently shown to be equivalent to temporal CTRW [49, 61, 167].

In the case of single-rate exchange, Eq. 3.22 can also be expressed as [167]

∂Cim

∂t
= f(t) ∗ Cm + f(t) (Cm(x, 0) − Cim(x, 0)) (3.29)

where f(t) = ωe−ωt is a memory function and ∗ denotes convolution. Haggerty
et al. [92] showed that the memory function can take many forms, consider-
ing various diffusion models or multirate exchange with various exchange rate
distributions. In the latter case, f(t) is a sum of exponential functions, each
corresponding to a single rate. Haggerty et al. [92] used the properties of the
memory function to discern between single- and multirate transport by consid-
ering the late-time behavior of breakthrough curves. For single-rate exchange
between mobile and immobile zones, late-time behavior is governed by a sin-
gle exponential in time, and the plot of log(C) versus time should be linear
for t >> 〈t〉 (Fig. 3.9). In the case of multirate mass transport, late-time be-
havior is governed by a sum of exponential, that are actually equivalent to
an algebraic tail. Therefore, the plot of log(C) versus log(t) should be linear
for t >> 〈t〉 (Fig. 3.10). Figs. 3.9 and 3.10 were produced using the software
STAMMT-L [93] for a Dirac injection of a unit mass of tracer, considering a
similar situation as previous figures. θm/θ = 0.5 for the non-equilibrium cases
and Da = 1 for single-rate transport. Multirate transport was solved consider-
ing a log-normal distribution of exchange rates, with a mean corresponding to
Da = 1 and a standard deviation of 3. Results are shown for the mobile phase
only.

3.5 Conclusion

In this chapter, potential alternatives to the ADE are reviewed. Higher-order
partial differential equations are not found to be valuable options due to their
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Figure 3.9: Influence of immobile phase
and exchange rate distribution on trans-
port. Single-porosity media (solid line),
dual-porosity media with single rate ex-
change (dashed line) and dual-porosity
media with multiple rate exchange (dot-
dashed line). Linear late-time behavior of
the single rate system.
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Figure 3.10: Influence of immobile phase
and exchange rate distribution on trans-
port. Single-porosity media (solid line),
dual-porosity media with single rate ex-
change (dashed line) and dual-porosity
media with multiple rate exchange (dot-
dashed line). Linear late-time behavior of
the multiple rate system.

increased complexity, but telegraph equations could be more appropriate. CT-
RW and fractional-order partial differential equations have been recently brought
to the field of hydrogeology and, although requiring a relatively unusual math-
ematical formalism, could also be more appropriate to model solute transport.
Finally, MIM are found to be a third class of transport equations that could
also account for non-Fickian effects in dispersive processes.

Chapters 2 and 3, far from being exhaustive in the review of solute dis-
persion models in heterogeneous media, give an insight into some of the main
explanations to scale-dependent dispersion. One may however wonder which
approach is best : using more complex non-Fickian mathematical transport
models, or going along with the classical ADE and using upscaled parameters
in order to simulate super-Fickian dispersion ? Peters and Smith [145] showed
that non-Fickian models such as the one suggested by Hassanizadeh [98] could
be efficiently approximated using the ADE with a spatially varying dispersiv-
ity. In the next chapters of this dissertation, this issue will be investigated
through various solute transport problems, allowing upscaling methodologies
to be confronted to each other.
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Chapter 4

Methods of analysis

4.1 Introduction

In Part 1, a set of upscaling methods for apparent dispersivity and a set of
upscaled transport models have been reviewed. In Part 2, it is proposed to ap-
ply them to synthetic numerical examples, in order to test them under various
conditions of heterogeneity. In Part 3, using observations and conclusions from
Part 2, a laboratory experiment will be designed and performed to test meth-
ods and models under real conditions. This will allow one to verify whether
conclusions drawn from synthetic cases can be extended to physical situations
(at least at the laboratory scale) and to identify other processes that could
potentially complicate upscaling.

Application of upscaling methods and transport equations proceeds in two
steps. First, an appropriate set of transport parameters has to be determined
based on given available data. As the aim of this study is to assess model up-
scaling capacities, only information obtained at a local scale is used for this
purpose. Then, methods and models are used in a forward mode, to predict
apparent dispersivity and concentration distributions at a larger scale. Analyt-
ical solutions of forward models have already been presented and illustrated
in Chapter 2 and Chapter 3. It is proposed to introduce in this chapter in-
verse modelling methods that will be used to estimate transport parameters.
The general methodology adopted to compare methods and models will also
be presented here.

As a large number of different cases are investigated in the sequel, the com-
parison of methods and models cannot rely on qualitative observations, and
numerical indicators are defined in Section 4.2 to quantify the efficiency of up-
scaling. In particular, one indicator focuses on apparent dispersivity. As the
latter cannot be directly measured, methods to determine longitudinal disper-
sivity from concentration distributions are introduced in Section 4.3.

Upscaling methods for dispersivity are based on descriptions of heterogene-
ity. The stochastic method uses a geostatistical description of soil heterogeneity
(variance and correlation length) that can be obtained by variogram analy-
sis [28]. As this type of method is relatively common and as an important part
of investigated numerical examples uses lognormal permeability fields, that are
created based on a known set of geostatistical parameters, geostatistical char-
acterization methods are not recalled in this dissertation. Similarly, inclusion
models are based on a description of soil heterogeneity that is also theoreti-
cally known when creating the corresponding synthetic cases. Therefore, only
a method to obtain a measure of the fractal dimension of random fields will be
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presented in Section 4.4.1.
A general method to parametrize a transport equation using concentration

data is bulk curve-fitting. However, this method cannot always be used as
analytical solutions may not be available and as accurate numerical solutions
may take time to be processed. Moreover, data series may not be sufficiently
informative to estimate the whole set of transport parameters. This leads to the
need for other methods. In Section 4.4.2, a method to estimate parameters to
be used in Scheidegger’s telegraph equation is presented. This method is only
applicable to perfectly stratified cases and uses a modal decomposition of the
permeability profile. In Section 4.4.3, methods to parametrize temporal and
spatial CTRW are presented. Unlike other methods presented in this chapter,
they are not based on permeability spatial distribution but use concentration
data. Mobile-immobile models will only be used in Part 3 for a limited portion
of the analysis, and will therefore not be presented here. Other models (i.e.
third- and fourth-order equations and other telegraph equations) will not be
investigated due to their expected limited applicability.

4.2 Comparison of models

For the sake of generality, models will be compared in relatively simple condi-
tions : only one-dimensional flow and transport problems will be investigated.
The quality of model predictions will be evaluated from two different points of
view, using two different indicators. First, only transient apparent dispersivity
will be examined. Actual values will be compared with theoretical predictions
using the average value of the relative difference between observed and pre-
dicted dispersivity, called here εu

εu =
1

N

N
∑

i=1

|α∗
L,i,th − α∗

L,i,exp|

α∗
L,i,exp

(4.1)

where subscript u stands for upscaling, N is the number of data points in the
apparent dispersivity curve, α∗

L,i,th are predicted values of macrodispersivity
and α∗

L,i,exp are experimental values (obtained either from a numerical or a
physical experiment). In order to evaluate whether discrepancies are due to an
unadapted model or to unadapted parameter values, a coupled indicator εc will
be defined similarly to εu

εc =
1

N

N
∑

i=1

|α∗
L,i,th,opt − α∗

L,i,exp|

α∗
L,i,exp

(4.2)

where subscript c stands for characterization and where α∗
L,i,th,opt is the predic-

tion of macrodispersivity obtained by least-square fitting of the corresponding
analytical solution to the experimental curve. A value of εc smaller than εu
would highlight that better inverse methods could yield more adapted trans-
port parameters. On the contrary, εc ≈ εu would reveal adequate characterizing
methods, as obtained transport parameters would allow a correct prediction of
macrodispersivity.
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Then, the global prediction of concentration distributions will be quantified
using the root-mean-square of the difference between experimental and pre-
dicted concentration. The improvement resulting from the use of a non-Fickian
model will be evaluated using the ∆RMSu indicator, defined as

∆RMSu = RMSnF,u −RMSF (4.3)

where RMSnF,u corresponds to the root-mean-square of the difference between
experimental BTC and non-Fickian prediction. RMSF is a similar indicator
that involves the solution of the ADE. These indicators are computed according
to

RMS =

√

√

√

√

1

N

N
∑

i=1

(Ci,th − Ci,exp)
2 (4.4)

where N is the number of data points available for the BTC of interest, Ci,th

are theoretical concentration values (computed either from the Fickian or from
a non-Fickian model) and Ci,exp are experimental concentration values. A neg-
ative value of ∆RMSu indicates that the non-Fickian model yields a better
fit to experimental data, whereas a positive value indicates that the classical
advection-dispersion equation provides better results. If concentration are ex-
pressed relative to injection value, RMS indicators vary between 0 and 1, so
that ∆RMS varies between −1 and 1. A ∆RMSc indicator will also be used
as a measure of the best achievable results for non-Fickian models.

4.3 Determination of apparent dispersivity

Different methods are available in order to determine effective dispersion coeffi-
cients based on concentration distributions in time or in space. These methods
include curve-fitting methods and moments methods. Curve-fitting methods
are very versatile methods and can be used either with analytical or with nu-
merical solutions, allowing one to infer transport parameter values even for
highly complex flow systems. They also allow one to obtain an estimation of
parameter uncertainty. They are however rather artificial and may depend on
the optimization algorithm and the convergence criteria that is used.

Instead, moments method only rely on a statistical analysis of the con-
centration distribution. For simple (one-dimensional) systems, an analytical
solution is generally available for these statistics and transport parameters are
obtained by inverting that solution. Aris [5] first introduced this method to
analyze solute dispersion in fluids flowing through tubes. In this study, both
temporal and spatial concentrations will be considered, as it will be shown that
their results might sensitively differ.
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4.3.1 Temporal moment analysis

Temporal moments are defined according to [43]

µi(x, y, z) =

∫ ∞

t=0

tiC(x, y, z, t)dt (4.5)

〈t(x, y, z)〉 =
µ1(x, y, z)

µ0(x, y, z)
(4.6)

µc
i (x, y, z) =

∫ ∞

t=0

(t− 〈t(x, y, z))〉iC(x, y, z, t)dt (4.7)

where µi and µc
i are respectively ith non-central and central temporal moments.

Multiplying the advection dispersion equation (Eq. 1.5) by ti and integrating it
allow one to obtain governing equations for temporal moments. These equations
can be solved for a specific set of initial and boundary conditions, in order to
quantify the link between the shape of a given breakthrough curve and effective
transport parameters at measurement location.

For example, temporal moments of the one-dimensional ADE (Eq. 1.6) in
the case of a Dirac-type injection applied to a sample submitted to a mean
gradient in its longitudinal direction are [114, 119, 200]

〈t〉 =
x

v̂
(4.8)

µc
2

µ0
=

(x

v̂

)2 2D̂∗
L

v̂x
(4.9)

where ˆ indicate estimated parameters and where it was assumed that injec-
tion and measurement were both performed in flux-mode (first-type injection
boundary condition). These expressions can be easily inverted to obtain trans-
port parameters on the basis of temporal moments

v̂ =
x

〈t〉
(4.10)

D̂∗
L =

µc
2

µ0

xv̂

2〈t〉2
(4.11)

and apparent dispersivity is computed using

α̂∗
L =

D̂∗
L −Dd

v̂
− αL (4.12)

In the case of a one-dimensional step input of concentration, temporal mo-
ments become infinite. Yu et al. [200] propose to solve that issue by exploiting
the link between the Dirac function δ(t − t0) and the Heaviside distribution
(step variation function) u(t− t0)

d [u(t− t0)]

dt
= δ(t− t0) (4.13)

The ADE is a linear model for concentrations. If two sources terms are related
by a linear operator, outputs are similarly related. So, if C1 is the breakthrough
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curve recorded at a given location in response to a step input and C2 is the
breakthrough curve at the same location in response to a Dirac delta input,
then C1 and C2 are related by

∂C1

∂t
= C2 (4.14)

and time moments for C1 can be calculated from those of C2

〈t〉 =

∫∞

t=0 t
∂C1

∂t dt
∫∞

t=0
∂C1

∂t dt
=

∫ 1

0

t dC1 (4.15)

µc
2 =

∫ ∞

t=0

(t− 〈t〉)2
∂C1

∂t
dt =

∫ 1

0

(t− 〈t〉)2 dC1 (4.16)

with, for a unit step injection,

∫ 1

0

dC1 = 1 (4.17)

These moments can be used with Eqs. 4.10 and 4.11 to predict transport param-
eters based on cumulative BTC. Leij and Dane [119] proposed another method
to analyze cumulative BTC, using the complementary relative concentrations
1−C(t), but had to derive specific analytical solutions for temporal moments.

4.3.2 Spatial moment analysis

The same way time averaging techniques have been applied to calculate tem-
poral moments, spatial averaging techniques can also be applied in order to
obtain expressions for spatial moments. Zeroth, first and second moments are
defined by [43]

m0(t) =

∫

V

C(x, y, z, t)dV (4.18)

mi(t) =

∫

V

xiC(x, y, z, t)dV (4.19)

mij(t) =

∫

V

xixjC(x, y, z, t)dV (4.20)

The zeroth momentm0(t) is the total mass of solute in the flow domain. The jth

component of the first moment represents the position of the center of gravity
of a particle cloud 〈xj〉 along the jth direction, times the total mass of solute.
Mostly, second non-central moments are not used, and second central moments
are used instead

mc
ij(t) =

∫

V

(xi − 〈xi〉)(xj − 〈xj〉)C(x, y, z, t)dV (4.21)

They describe the amount of spreading of a solute plume around its center of
gravity.
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Instead of using Eq. 1.5 with given initial and boundary conditions, more
general auxiliary conditions can be used : it can be assumed that concentration
C decreases at least exponentially in the large-distance limit. Additionnally, a
known initial concentration distribution that satisfies the auxiliary conditions
must be defined. A valid condition would be a bounded volume with a fixed
concentration within an infinite domain [43]. Integrating Eq. 1.5 under these
conditions over the entire flow domain leads to a governing equation for the
zeroth-moment, that can be written under the form

∂m0

∂t
= 0 (4.22)

The latter expresses conservation of solute mass, as no decay was accounted
for in Eq. 1.5. Similarly, multiplying Eq. 1.5 by xi and integrating it over the
spatial domain allow one to obtain governing equations for first-order spatial
moments

∂mi

∂t
= vim0 (4.23)

stating that the center of gravity of a particle cloud moves at a constant velocity
v through the whole domain. Finally, multiplying the ADE by (xi −〈xi〉)(xj −
〈xj〉) and integrating it leads to governing equations for second central moments

∂mc
ij

∂t
= 2D∗

ijm0 (4.24)

The latter expresses that the dispersion tensor equals half the rate of change
of the second central moment, normalized by total mass.

In the case of a step variation in concentration at injection, auxiliary condi-
tions are not verified and it is not possible to apply this method. The same way
Yu et al. [200] proposed to deduce transport parameters from time-moments
analysis of temporal gradients of concentration, Landman [118] proposed to
evaluate apparent dispersion coefficients from an analysis of the moments of
the spatial gradients of concentration. In this case, an effective longitudinal
dispersion coefficient can be computed according to

DL(t) = −
1

2

∂Ixx

∂t
(4.25)

where Ixx is the second central spatial moment of the concentration gradient

Ixx =

∫ +∞

−∞

∂C

∂x
(x− 〈x〉)2 dx (4.26)

Eqs. 4.22 and 4.23 can be extended to zeroth- and first-order spatial moments
of concentration gradients in case of a step input. Mean apparent transport
parameters are then computed according to [118]

v̂ =
1

t

∫ t

0

1

m0

∂m1

∂t
dt =

m1(t) −m1(0)

m0t
(4.27)

D̂∗
L =

1

t

∫ t

0

1

2m0v̂

∂mc
2

∂t
dt =

mc
2(t) −mc

2(0)

2m0v̂t
(4.28)
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Figure 4.1: Signal partitioning for dispersional analysis

4.4 Parametrization of non-Fickian methods and

models

4.4.1 Determination of Hurst coefficient

In this work, dispersional analysis is used to infer values of H [34]. This method
involves a three-step procedure. First, a sequence of partitions is considered for
the data series to be analyzed (Fig. 4.1). Typically, if a partition i includes
N bins of length 2K, the partition i + 1 includes 2N bins of length K. Each
partition isolates thus a scale of observation. Then, a single-scale statistic is
used to characterize data contained in each bin. In a dispersional analysis, the
latter is the mean of the variable of interest in each partition. Finally, the
standard deviation of the bin means is used as a transcale statistic. H is then
obtained as 1 plus the slope of the plot of the log of the transcale statistics
versus the log of the number of bins (Figs. 4.2 and 4.3). It must be noted
that data series to be analyzed in a dispersional analysis are not ln(K) values
themselves, but their increments ∆ ln(K) = ln(K(x+ dx)) − ln(K(x)).

In order to reduce bias and variance in estimations of H , Caccia et al. [34]
propose to ignore measures from several of the longest bins (e.g. the three
longest bins). They also propose to use bin shifting in order to increase accu-
racy of Ĥ . Multiple estimates of the standard deviation of bin means are ob-
tained from additional partitions resulting from the shifting of partition starting
positions. Figs. 4.2 and 4.3 show the results of the analysis of some of the per-
meability profiles presented in Chapter 5. As data series are relatively short, no
bin was dropped and bin shifting was used to increase the number of points to
use in the linear regression. Expectively, Hurst coefficients are not influenced
by variance (Fig. 4.2) but increase when correlation length increases (Fig. 4.3).

Other methods to estimate Hurst coefficients are spectral analysis [159] and
rescale range analysis. Spectral analysis was found to be less reliable and Caccia
et al. [34] indicate that dispersional analysis yields better results than rescale
range analysis.

4.4.2 Parametrization of Scheidegger’s telegraph equa-

tion

It was shown in Section 3.2.2 that various telegraph equations could be derived
to model solute transport in the soil. Most of them have no practical applica-
bility as they use parameters that are difficult to quantify at the field scale,
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Figure 4.2: Results of the dispersional
analysis of stratified examples K13, K33

and K53. B is the bin length and SD is
the transcale statistic.
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Figure 4.3: Results of the dispersional
analysis of stratified examples K31, K33

and K35. B is the bin length and SD is
the transcale statistic.

or have upscaling properties similar to the ADE. Only Scheidegger’s telegraph
equation could be more useful, as it incorporates the variance of the velocity
field and a correlation time for particle velocities.

Berentsen [20] proposed an upscaling method for Scheidegger’s equation by
extending the approach of Camacho [35, 36, 37]. The latter was initially aimed
to model diffusion of solutes in a flow between parallel plates and was extended
to model solute transport in a perfectly stratified porous media. Berentsen [20]
started by expanding concentration and velocity in cosine Fourier series

C(y, t) = C0(x, t) +
∞
∑

n=1

Cn(t) cos
(nπy

h

)

(4.29)

v(y, t) = v0(x, t) +

∞
∑

n=1

vn(t) cos
(nπy

h

)

(4.30)

where h is the thickness of the aquifer and subscripts 0 and n respectively refer
to fundamental (average) and nth modes of the variable of interest. Longitudinal
and transverse dispersion coefficients are then computed from

DL(y) = Dd + αL v(y) = DL,0 +

∞
∑

n=1

DL,n cos
(nπy

h

)

(4.31)

DT (y) = Dd + αT v(y) = DT,0 +
∞
∑

n=1

DT,n cos
(nπy

h

)

(4.32)

Substituting Eqs. 4.29 to 4.32 in the two-dimensional advection-dispersion
equation and integrating over the transverse direction, yields a governing equa-
tion for transversely averaged concentrations

∂C0

∂t
= −v0

∂C0

∂x
+DL,0

∂C0

∂x2
−

1

2

∞
∑

n=1

(

vn
∂Cn

∂x
−DL,n

∂2Cn

∂x2

)

(4.33)

which is similar to the one-dimensional form of the ADE, with an additionnal
source term that appeared due to the interaction of longitudinal dispersion,
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m = n m 6= n

βn,m = v2n/2
[

vm+n + v|m−n|

]

/2

DLn,m = DL,0 +DL,2n/2
[

DL,m+n +DL,|m−n|

]

/2

DTn,m = (nπ/d)2(DT,0 +DT,2n/2) nm(π/d)2
[

−DT,m+n +DT,|m−n|

]

/2

Table 4.1: Definition of modal dispersion coefficients

transverse dispersion and advection in the higher-order modes n ≥ 1. This
term can be interpreted as the spatial derivative of an additional flux term J
called Taylor flux

J = −
1

2

∞
∑

n=1

(

vnCn −DL,n
∂Cn

∂x

)

(4.34)

Similarly, multiplication of the two-dimensional advection-dispersion equa-
tion with cos(nπy/h) and integration over the transverse direction gives a con-
stitutive relationship for the nth concentration mode. Due to transverse varia-
tions of the dispersion tensor, concentration modes are however coupled with
each other, resulting in a system that can be expressed under a matrix form as

∂C0

∂t
+ v0

∂C0

∂x
−DL,0

∂C0

∂x2
= −

1

2
vt ∂C

∂x
+ dL,n

t ∂
2C

∂x2

∂C

∂t
+ (v0I + β)

∂C

∂x
+ DT C − DL

∂2C

∂x2
= −v

∂C0

∂x
+ dL,n

∂C0

∂x2
(4.35)

where C, v and dL,n are a column vectors containing modal concentrations Cn,
velocities vn and longitudinal dispersion coefficients DL,n respectively. I is the
unit matrix. Matrices β, DT and DT contain βm,n, DLn,m and DTn,m terms
respectively, computed as expressed in Table 4.1. DL and DT are symmetric
and have thus real eigenvalues.

In order to obtain a set of uncoupled equations, Berentsen [20] proposed to
diagonalise DT and replace it with

DT = T tΛT (4.36)

where T is a transformation matrix the columns of which are the eigenvectors of
DT , and T t is its transpose. Λ is a diagonal matrix containing the eigenvalues
λn sorted by increasing magnitude. Berentsen [20] showed that τ̃n = 1/λn is
a characteristic time describing the relaxation of mode n to the fundamental
mode.

An independent governing equation for each concentration mode could be
obtained by applying the transformation matrix to the system in Eq. 4.35.
Berentsen [20] showed that, by summing them according to Eq. 4.34, an ap-
proximate governing equation for J was given by Eq. 3.1. The effective relax-
ation time to be used was however found to be time-dependent itself. In order
to correctly model apparent dispersion in the long time limit, Berentsen showed



56 Chapter 4. Methods of analysis

that an appropriate expression for the effective relaxation time was

τe =

∑∞
n=1 ṽ

2
nτ̃n

∑∞
n=1 ṽ

2
n

(4.37)

In that case, apparent dispersion coefficients computed from the second spatial
moment of Eq. 3.2 are converging exponentially to their asymptotic value

D∗
L = σ2

vτe

(

1 − exp

(

−
t

τe

))

(4.38)

This methodology allows one to link the velocity profile in the case of a
perfectly stratified aquifer to the effective relaxation time to be used in the
fourth-order model described in Section 3.2 and, more practically, in Schei-
degger’s telegraph equation. Unfortunately, to the author’s knowledge, no such
method is available for two- or three-dimensional problems. The effective relax-
ation time must then be estimated from measured breakthrough curves using
curve-fitting methods [163]. It must be finally noted that, as this method is
based on a modal analysis and provides an analytical expression for appar-
ent longitudinal dispersivity, it will be also referred to as the modal upscaling
method.

4.4.3 Parametrization of CTRW models

Temporally anomalous transport

Berkowitz et al. [23] noted that the probabilistic formulation of tracer distribu-
tion used in the CTRW theory was equivalent to that of flux-averaged concen-
trations. As a consequence, the CTRW formalism could be used to analyze ex-
perimental results, and has already been successfully applied to the interpreta-
tion of breakthrough curves recorded either at the laboratory scale [26, 27, 174]
or in the field [23].

Parameters used to characterize temporally anomalous transport are usu-
ally obtained by least-square fitting of one-dimensional analytical solutions to
experimental data [23, 26, 27, 174]. The determination of βt ideally requires at
least two sets of concentration measurements at different scales. In this case,
βt can be estimated from the rate of narrowing of the distribution [23, 127].
Moreover, it is also possible to determine whether there is a decrease in tracer
velocity or not. In such case, one must have βt < 1 and βt can be determined
from the rate of decrease of the velocity [127]. When only a single breakthrough
curve is available, βt can be estimated from the tailing behavior of the distri-
bution.

Margolin and Berkowitz [130] proposed a set of analyzing tools, available
under the form of Matlab c© functions (http://www.weizmann.ac.il/ESER/Peo-
ple/Brian/CTRW/). These tools will be used in the next part of this study. It
must be noted that a Matlab c© CTRW toolbox was recently released [45]. It ba-
sically extends the flexibility of the functions used in this study by allowing one
to choose between different transition rate probability density functions [46].
The functions used in Eqs. 3.14 and 3.15 correspond to the asymptotic model
in Eq. 28 of [46].
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Figure 4.4: Determination of βx based on
the scale-effect. Stratified example K44.

Spatially anomalous transport

This theory was also successfully applied to laboratory and field experiments [16,
18], and Benson et al. [18] proposed a basic methodology to determine βx and
Dx from breakthrough curve analysis.

First, when plotting apparent dispersivity versus measurement scale on a
log-log scale graph (Fig. 4.4), Benson [16] showed that one should obtain a
linear curve, with a slope m that is linked to βx according to

βx =
2

m+ 1
(4.39)

Then, if the breakthrough curves are shifted by the mean travel time and if the
temporal scale is divided by t1/βx , one should obtain a set of curves that are
scale-invariant. Figs. 4.5 and 4.6 show the difference between standard Fickian
scaling and non-Fickian scaling in the case of a perfectly stratified aquifer (case
K33 investigated in Chapter 5). Whereas sensitive differences appear between
the curves plotted on Fig. 4.5, mostly in the tails of the distributions, a better
agreement can be reached by using the proper scaling.

Finally, once the proper scaling is found, Dx and γB can be found by fitting
of the solution of Eq. 3.12 to any experimental BTC (as these parameters are
scale-invariant). In order to avoid the influence of potential boundary effects,
data available at the largest scale will be used for this purpose (i.e. if for example
two BTC are used in the inverse modelling process - the first one measured at
x = 1 m and the second one measured at x = 10 m, the latter will be used to
compute Dx and γB).

However, Zhou and Selim [205] argue that this methodology may lead to
incorrect results, as the use of two separately estimated parameters would not
necessary mimic the whole variance of the particle cloud pattern. Instead, they
propose to start from the plot of the spatial variance of the particle cloud versus
time and propose to fit on this plot a non-linear model of the type σ2

C = AtB ,
and simulatenously relate A and B to βx and Dx. Theoretically, parameters
obtained from joint estimation should model more accurately the variance-time
dependence. To assess the validity of their method, Zhou and Selim applied it
to the same example as Benson et al. [18] and showed an improvement in
the modelling results. However, the variance of the solute particle cloud is a
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Figure 4.5: Inadequate Fickian scaling of
BTC. Stratified example K44.
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Figure 4.6: Proper non-Fickian scaling of
BTC. Stratified example K44.

parameter that cannot be directly obtained from standard tracer tests and the
method cannot be used easily. It was moreover found from previous modelling
attempts that this method does not allow one to obtain reasonable values of Dx,
due to an unadapted sensitivity of the non-linear model [78]. As a consequence,
this method will not be used in this study.

4.5 Conclusion

In this chapter, the methodology used to compare upscaling methods and up-
scaled models in Chapter 5 and Chapter 6 was presented, as well as inverse
methods to determine appropriate transport parameters. It will be shown in
Chapter 5 and Chapter 6 that the application of these methods to synthetic
examples is relatively straightforward, as required information is theoretically
available. However, in the case of a physical experiment, it will be shown in
Part 3 that the applicability of some of these methods raises issues.



Chapter 5

Solute transport in

stratified media

5.1 Introduction

Theoretical models have highlighted the dependence of the dispersive mecha-
nisms of transport in aquifers to the spatial variability of the hydraulic con-
ductivity K. One of the simplest models of heterogeneity is that of stratified
formations, for which K only varies in the vertical direction [158]. Natural
aquifers often exhibit stratification, both geologically and in the geostatistical
sense, leading to considerably smaller correlation lengths along the vertical di-
rection than along the horizontal directions [175]. A perfectly stratified aquifer
corresponds to the limiting case where horizontal correlation lengths tend to
infinity. Geostatistical tools then only require two parameters to characterize
this situation : the vertical correlation length and the variance [79]. The sim-
plicity of this model makes it convenient to explore new theoretical approaches
and derive closed-forms analytical solutions [175].

Historically, vertical heterogeneity has been indeed the first type of hetero-
geneity to be investigated as a possible cause of the scale effect in apparent dis-
persion, either in deterministic [90, 131, 138, 147] or stochastic [81, 89, 132, 136]
approaches.

Naturally, in a first step, this study will focus on this type of heterogeneity
as well, in order to (re-)establish the effects of correlation length and variance on
apparent dispersivity. In Section 5.2, the geometry of the problem will be pre-
sented, as well as numerical values adopted for the structure of the permeability
field, numerical tools to be used and, eventually, numerical results in terms of
apparent dispersivity will be shown. Then, theories presented in Chapter 2 and
3 will be applied in Section 5.3 and 5.4 respectively. General conclusions on
this relatively conceptual case will be finally drawn in Section 5.5. It must be
noted that figures and tables that contain secondary information related to this
analysis are shown in Appendix B.

5.2 Synthetic examples

5.2.1 Problem description

The synthetic example that will be analyzed in this chapter consists in a per-
fectly stratified aquifer with a thickness h = 1 m (Fig. 5.1). The longitudinal

59
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Figure 5.1: Schemtatic representation of the geometry and boundary conditions of perfectly
stratified cases (not to scale).

extent of the flow domain is 105 m, and it is discretized in cubic cells of 1
cm long sides (leading to a two-dimensional numerical grid of 1,050,000 cells).
The vertical permeability profile is assumed to be random and log-normally
distributed (with log referring to the natural logarithm and the permeability
being expressed in m/s) with a geometric mean Kg = exp(−10) and a spatial
correlation characterized by

γY (s) = σ2
Y

(

1 − exp

(

−
3|s|

λ

))

(5.1)

where the same notations as in Chapter 2 are used. The factor 3 appearing in
the numerator of Eq. 5.1 was introduced so that correlation corresponding to
separation gaps larger than λ is negligible (i.e. less than 5 %).

The structure of the log-permeability profile is fully characterized by its
variance and its correlation length. Therefore, the influence of these parame-
ters on solute transport can be investigated in a systematic fashion through
25 different permeability profiles. Table 5.1 summarizes the various parameters
sets that are adopted for this study. Basically, the variance is ranging from
0.01 to 4 and the correlation length from 0.01 to 1. The case λ = 0.01 tends to
correspond to a totally uncorrelated field, whereas λ = 1 corresponds to perme-
ability values correlated over the entire aquifer thickness. The fully correlated
limit is the case of an aquifer of constant permeability.

Permeability profiles were generated using a spectral method (implemented
as a Matlab c© routine, available at http://matlabdb.mathematik.uni-stutt-
gart.de). Profiles were composed of 100 points (according to the grid size)
and were extracted from larger data sets (in order to avoid frequency cutoffs
when correlation length is large compared to domain size). The sequence of 100
data points to be extracted was chosen so that its corresponding experimen-
tal variogram best reproduces the theoretical one. Each profile extracted was
afterwards shifted and rescaled so that means and variances effectively corre-
spond to announced values. The same set of random numbers was used for each
permeability profile. This means that, once properly scaled, profiles with the
same correlation length perfectly surperimpose. Fig. 5.2 shows the correspond-
ing scaled log-permeability profiles. Experimental and theoretical variograms
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Kij j = 1 j = 2 j = 3 j = 4 j = 5

i = 1
σ2

Y = 0.01 σ2
Y = 0.01 σ2

Y = 0.01 σ2
Y = 0.01 σ2

Y = 0.01
λ/h = 0.01 λ/h = 0.05 λ/h = 0.1 λ/h = 0.5 λ/h = 1

i = 2
σ2

Y = 0.1 σ2
Y = 0.1 σ2

Y = 0.1 σ2
Y = 0.1 σ2

Y = 0.1
λ/h = 0.01 λ/h = 0.05 λ/h = 0.1 λ/h = 0.5 λ/h = 1

i = 3
σ2

Y = 1 σ2
Y = 1 σ2

Y = 1 σ2
Y = 1 σ2

Y = 1
λ/h = 0.01 λ/h = 0.05 λ/h = 0.1 λ/h = 0.5 λ/h = 1

i = 4
σ2

Y = 2 σ2
Y = 2 σ2

Y = 2 σ2
Y = 2 σ2

Y = 2
λ/h = 0.01 λ/h = 0.05 λ/h = 0.1 λ/h = 0.5 λ/h = 1

i = 5
σ2

Y = 4 σ2
Y = 4 σ2

Y = 4 σ2
Y = 4 σ2

Y = 4
λ/h = 0.01 λ/h = 0.05 λ/h = 0.1 λ/h = 0.5 λ/h = 1

Table 5.1: ln(K) field structures adopted for the stratified case

are shown in Appendix B (Fig. B.1). Experimental variograms were computed
using BMELib [42]. Correlation lengths larger than the aquifer thickness were
not investigated, as corresponding experimental variograms would not have
correctly reproduced theoretical ones.

It must be noted that early (stochastic) theories on solute transport in
perfectly stratified aquifers generally assume the permeability profile to be de-
scribed as a normal random variable (instead of a lognormal one), so that
effective permeability only depends on the mean of the variable [81, 132]. How-
ever, this approach was not adopted in this study as it does not allow the
simulation of highly heterogeneous formations, in which a high variance would
not ensure the positiveness of the permeability field.

Flow is directly computed from the permeability profile according to Darcy’s
law, using a constant mean gradient of 1 %. Transport is solved using the par-
ticle tracking software RWHet [115]. 100, 000 particles were set evenly along a
line passing by the center of the cells at a distance of 5 m from the domain
boundary (Fig. 5.1). Assuming that each particle carry a given mass of con-
taminant, this type of injection corresponds to a Dirac condition. Ideally, in
order to avoid numerical boundary effects, injection should be performed at a
distance of 4 to 5 correlation lengths away from boundaries [153]. However, in
case of a perfectly stratified medium, this criteria cannot be fulfilled as lon-
gitudinal correlation length is infinite. Instead, injection was performed at a
distance of about 5h from the domain boundary.

Effective porosity is 40 %. Local longitudinal and transverse dispersivities
are respectively equal to 1 cm and 0.5 mm. Effective molecular diffusion is 10−9

m2/s. It must be emphasized that no ensemble-realizations were performed, as
the aim of this study is mainly to understand the upscaling capacities of the
various models in particular and well-defined cases.

5.2.2 Apparent longitudinal dispersivity

Cumulative breakthrough curves were obtained by summing the number of
particles beyond a control plane located at the longitudinal position of interest
(Fig. 5.1). Therefore, concentration are averaged over the full cross-section of
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Figure 5.2: Vertical ln(K) profiles adopted for the stratified case.
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the flow domain. The method proposed by Yu et al. [200] for step-injections is
used to compute apparent transport parameters from temporal moment anal-
ysis. Fig. 5.3 shows observed macrodispersivity values for the set of numerical
examples considered. Migration velocities are shown in Appendix B (Fig. B.2).

Spatial moments of particle clouds are directly obtained from particle posi-
tions at a given time. First-order and second-order central longitudinal spatial
moments are computed according to

m1(t) = M

N
∑

i=1

Xi(t) (5.2)

mc
2(t) = M

N
∑

i=1

(Xi(t) − 〈x〉(t))
2

(5.3)

where M is the mass of a particle, N is the number of particles, Xi(t) is the
longitudinal position of particle i at time t and 〈x(t)〉 = m1(t)/m0 is the mean
position of the plume, with m0 = NM the total mass of tracer. Mean migration
velocity is computed from Eq. 4.27 and is shown in Appendix B (Fig. B.3).
Model boundaries can potentially cause an increase in apparent plume velocity
for early times, due to reflected particles on the no-diffusion boundary. For
high variance, a small boundary effect can then be observed on Fig. B.3, but
the relative difference between initial and asymptotic value of plume velocity
remains reasonable.

Apparent longitudinal dispersivities are obtained from Eqs. 4.28 and 4.12,
and are illustrated in Fig. 5.4. Macrodispersivity has been rescaled according to
Eqs. 2.31 and 2.42. Theoretically, all 25 curves should be surperimposed. This
tendency is indeed reasonably observed, except for small correlation lengths.
The reason for this is that analytical stochastic results are strictly valid for
negligible local dispersivities compared to correlation lengths. When local lon-
gitudinal dispersivity is equal to λ, the scaling of α∗

L with respect to variance
and correlation length is expected to be more complex. No particular discrep-
ancy appears for high variance (larger than 1) in Fig. 5.4. Data for spatial
moments are limited to times for which no particle has exited the flow domain
yet. This limitation does not appear in temporal moment analysis.

The most noticeable feature of the curves plotted in Figs. 5.3 and 5.4 is
that they do not converge to a constant value (although this could be discussed
for a few curves). The question of the convergence to an asymptotic Fickian
plume behavior in heterogeneous formations has always remained a widely
debated issue, particularly in the case of stratified flow. Whereas Güven et
al. [90] implicitly assume that this convergence always exists (through setting
the temporal derivative of the second moment of the solute concentration plume
to zero for large times), Matheron and de Marsily [132] gave two conditions to
ensure convergence : (1) one needs to characterize the velocity field using a hole-
effect covariance function, so that the integral of this function is zero and (2)
the Laplace transform of the velocity covariance function must behave linearly
close to its origin. Typically, these conditions cannot be fulfilled when using an
exponential covariance function for the log-permeability field.

Using a modal approach similar to that described in Section 4.4.2, Berentsen
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Figure 5.3: Macrodispersivity values obtained from temporal moment analysis. i = 1 -

σ2
Y = 0.01 (continuous line), i = 2 - σ2

Y = 0.1 (dashed line), i = 3 - σ2
Y = 1 (dot-dashed

line), i = 4 - σ2
Y = 2 (small-dotted line) and i = 5 - σ2

Y = 4 (large-dotted line). Maximum
and minimal values for the j − 1 case are also plotted (thin line).
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Figure 5.4: Macrodispersivity values obtained from spatial moment analysis. i = 1 - σ2
Y =

0.01 (continuous line), i = 2 - σ2
Y = 0.1 (dashed line), i = 3 - σ2

Y = 1 (dot-dashed line), i = 4
- σ2

Y = 2 (small-dotted line) and i = 5 - σ2
Y = 4 (large-dotted line). Maximum and minimal

values for the j − 1 case are also plotted (thin line).
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[20] and Berentsen et al. [21] showed that in the case of isotropic hydrodynam-
ical dispersion coefficients (i.e. for low permeability formations, where disper-
sion can be neglected compared to diffusion), convergence was always ensured.
However, in the case of a faster flow, if the ratio of longitudinal versus trans-
verse dispersion becomes too important, no macroscale Fickian behavior can be
reached. Peclet numbers characterizing transport systems used in this chapter
are relatively high, and hydrodynamic dispersion tensors are anisotropic.

5.3 Upscaling methods for dispersivity

In a first step, one will focus on the predictive modelling of the scale effect
in apparent dispersivity. Upscaling methods presented in Chapter 2 will be
applied, excepted for the inclusion model, which is typically not suited for this
problem as it assumes a two- or three-dimensional flow system. For the sake of
brevity, stochastic and fractal methods will be referred to using letters S and
F respectively.

One already expects upscaling methods for longitudinal dispersivity to yield
relatively poor results, as they generally predict convergence to a constant
asymptotic value of macrodispersivity, whereas numerical values shown on
Figs. 5.3 and 5.4 do not exhibit convergence.

5.3.1 Stochastic analysis

The stochastic asymptotic macrodispersivity in Eq. 2.33 was obtained assuming
a hole-effect covariance function, but Eq. 2.31 can be used with the actual co-
variance function corresponding to permeability profiles illustrated on Fig. 5.2.
In a first step, experimental variograms were determined for each permeability
field, using again BMELib [42]. As numerical values of apparent dispersivity
do not converge to an asymptotic constant value and as it was not obvious
from experimental data whether a hole-effect variogram was indicated or not,
numerical values for variance σ2

K and correlation length λK were determined
by least-square fitting of an exponential covariance model on data (Table B.1).
Values are in accordance with the theoretical geostatistical description of the
ln(K) field, as Va = σ2

K/〈K〉2 ≈ σ2
Y and λK ≈ λ (which is supposed to be

relatively accurate for low variance and low correlation length).

In order to compute transient macrodispersivity, Eq. 2.31 was integrated
numerically using a trapezöıdal rule, after having substituted the analytical
expression of the spectrum of the exponential covariance function

SKK(s) =
σ2

KλK

3π
(

1 +
λ2

Ks2

9

) (5.4)

Upscaling results from the stochastic approach are expressed in terms of the εu
indicator, shown in Figs. 5.5 and 5.6 and in Table B.1. As molecular diffusion
is not included in Eq. 2.31, the effective local transverse dispersivity was taken
equal to αT +Dd/v.
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Figure 5.5: Efficiency of S. λ = 0.01
(continuous line), λ = 0.05 (dashed line),
λ = 0.1 (dot-dashed line), λ = 0.5 (small-
dotted line) and λ = 1 (large-dotted line).
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A precision of 100 % seems to be a representative value for the stochastic
upscaling method. Predicted and actual apparent longitudinal dispersivities
thus usually differ by a factor of 2, which could be found relatively reasonable
regarding the overall practical difficulty of finding a meaningful apparent value
different from one tenth of the spatial scale. εu was also computed using Va =
σ2

Y and λK = λ, but no sensitive difference could be observed.

A first observation is that the method does not yield poorer results for
high-variance cases. Typically, stochastic methods are said to be best applica-
ble when σ2

Y < 1. Higher variance values usually yield flow domains containing
stagnant zones, resulting in heavy-tailed transport processes (see Section 5.4).
Although these processes cannot be modelled using a stochastic approach, lon-
gitudinal dispersivity appears to be reasonably upscalable. Whether this result
is case-dependent or can be generalized to every high-variance perfectly strat-
ified aquifer could be confirmed e.g. by a Monte Carlo analysis.

The second main noticeable feature of the curves on Figs. 5.5 and 5.6 is that
higher discrepancies occur for λ = 1. Stochastic analysis requires the ergodic
condition to be fulfilled, so that the statistical characterization of the structure
can be performed based on spatial averages. Typically, the ergodic condition is
fulfilled provided that the flow domain is at least 5 to 10 times larger than the
correlation length, which is obviously not the case when λ = h.

Least-square fitting was then used to determine optimal values for Va and
λK . The fitting indicator εc ranges between 1 and 7 % (Table B.2), meaning
that stochastic models can properly characterize the scale effect in apparent
dispersion. Optimal values for geostatistical parameters are shown in Figs. 5.7
and 5.8. The adimensional variance Va is always found too high compared to its
optimal value Va,opt. On the contrary, there is no clear tendency for correlation
lengths, but higher discrepancies are observed. This is linked to the higher
uncertainty on correlation lengths. Whereas variogram analysis can usually
yield reliable variance values, confidence on correlation lengths obtained using
this method is indeed known to be lower, due to variogram scatter [28].

Finally, ∆RMSu (Fig. 5.9) was computed using the solution of the clas-
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sical ADE with upscaled values of longitudinal dispersivity. This indicator is
found to be negative most of the time (except for K11), demonstrating that
the method brings an improvement. The slope of the curves in Fig. 5.9 is
found to be monotonic, except in a few low variance cases where the stochas-
tic method probably exagerates apparent dispersivity, leading to worse result
than the ADE with local parameters. For other cases, as long as the observation
scale increases, whatever be the level of heterogeneity, the stochastic method
continues to yield better results than the ADE. ∆RMSc (Fig. B.4) was com-
puted using optimal transport parameters given in Table B.2, but only a slight
improvement could be observed compared to ∆RMSu.

5.3.2 Fractal methods

To determine Hurst coefficients, a dispersional analysis was performed using
bin shifting. As the number of data to be processed must be a power of 2,
36 sets of 64 consecutive data were extracted from the original 100 points K
fields. Dispersional analysis was performed on each of these 36 data sets and
all of them were incorporated at the same time in the linear regression required
to estimate H . Fig. 5.10 shows the values of the Hurst coefficient, as well as
their corresponding 95 % confidence interval. Results are relatively consistent,
as H tends to increase with λ. However, negative H values found for small λ
have no physical significance. The best realistic value of H for λ = 0.01 is 0,
which corresponds to a totally uncorrelated field. In the case λ = 0.1, one could
reasonably assume that an appropriate H value lies in the positive part of the
confidence interval.

Zhan and Wheatcraft [201] indicate that, in the case of a perfectly stratified
medium, Lm simply corresponds to the aquifer thickness. As molecular diffusion
is not included in Eqs. 2.42 and 2.43, effective local transverse dispersivity was
again taken equal to αT +Dd/v.

Figs. 5.11 and 5.12 show the values obtained for εu using results from
dispersional analysis. For λ = 0.01 and λ = 0.1, the fractal method does not
predict any scale effect in apparent dispersivity. For smaller correlation lengths,
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Figure 5.9: Improvement of S compared to the classical ADE. i = 1 - σ2
Y = 0.01 (continuous

line), i = 2 - σ2
Y = 0.1 (dashed line), i = 3 - σ2

Y = 1 (dot-dashed line), i = 4 - σ2
Y = 2 (small-

dotted line) and i = 5 - σ2
Y = 4 (large-dotted line).
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correlation is almost zero and cannot be detected using dispersional analysis.
However, correlation exist as a scale effect could be detected in apparent longi-
tudinal dispersivity. In the case λ = 0.1, the error simply lies in the estimation
of H . For larger correlation lengths, better results than the stochastic method
are achieved, as the mean value of εu is about 40 %.

H and Lm were also determined by fitting of Eq. 2.43 on the curves in
Fig. 5.4. Results for all stratified examples are shown in Figs 5.13 and 5.14
and are summarized in Table B.3. The εc indicator lies between 0.1 and 7 %,
meaning that the model could be well-suited, provided better characterization
methods are available for H and Lm. Optimal Hurst coefficients Hopt are rel-
atively low and do not reach values obtained from dispersional analysis. They
however tend to increase with correlation length, as already observed from
analysis of K fields.

The question of the physical meaning of Lm is also raised, as Zhan and
Wheatcraft [201] state that it is linked to a physical boundary of the flow
domain. Lm is found to sensitively vary over the range of investigated examples,
which are all characterized by a similar flow domain. Lm tends to increase both
with variance and correlation length, and does not seem to be representative
of a geometrical feature of the problem.

∆RMSu (Fig. 5.15) and ∆RMSc (Fig. B.5) were computed using the solu-
tion of the ADE with upscaled values of longitudinal dispersivity. When Hurst
coefficient is found to be equal to zero, no scale effect is predicted and ∆RMSu

is equal to zero as well. Global trends are similar to what was observed for
the stochastic method. However, results seem to be of slightly worse quality, as
∆RMSu (absolute) values are smaller here.

5.4 Application of upscaled transport equations

In this section, one will focus on the modelling of the full observed breakthrough
curves, using upscaled transport equations. Theories presented in Chapter 3 will
be applied and compared to numerical results. First, Scheidegger’s telegraph
equation will be tested in Section 5.4.1. CTRW models will then be evaluated in
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Y = 0.01 (contin-

uous line), i = 2 - σ2
Y = 0.1 (dashed line), i = 3 - σ2

Y = 1 (dot-dashed line), i = 4 - σ2
Y = 2

(small-dotted line) and i = 5 - σ2
Y = 4 (large-dotted line).



5.4. Application of upscaled transport equations 73

Kij j = 1 j = 2 j = 3 j = 4 j = 5

i = 1
λe = 2.96 λe = 2.70 λe = 2.23 λe = 24.9 λe = 31.9
εu = 914.9 εu = 81.6 εu = 34.7 εu = 119.1 ε = 64.4

i = 2
λe = 2.07 λe = 2.88 λe = 2.95 λe = 37.1 λe = 48.4
εu = 519.9 εu = 105.4 εu = 46.8 εu = 130.1 εu = 96.4

i = 3
λe = 3.24 λe = 3.08 λe = 5.21 λe = 46.4 λe = 47.0
εu = 623.6 εu = 160.4 εu = 203.5 εu = 157.2 εu = 111.0

i = 4
λe = 4.65 λe = 3.63 λe = 7.03 λe = 57.7 λe = 44.6
εu = 884.7 εu = 241.1 εu = 335.1 εu = 182.0 εu = 117.3

i = 5
λe = 7.75 λe = - λe = - λe = - λe = 42.1

εu = 1492.1 εu = - εu = - εu = - εu = 129.2

Table 5.2: Upcaling results from modal analysis.

Section 5.4.2. Mobile-immobile models will not be investigated in this chapter.
Again, symbols will be used to refer to upscaled models : telegraph equation
(TE), temporal CTRW (TC) and spatial CTRW (SC).

5.4.1 Telegraph equation

Assuming that the vertical velocity profile is fully determined, it is possible to
compute an effective relaxation time and an effective longitudinal dispersion
coefficient according to Eqs. 4.37 and 4.38. Results for the various numerical
examples are summarized in Table 5.2 and are shown in Figs 5.16 and 5.17.
λe = 〈v〉τe is an effective relaxation distance corresponding to the effective
relaxation time. The variance of the velocity field can be computed from the
variance of the permeability field (which is given in Table B.1) as σ2

v/〈v〉
2 =

σ2
K/〈K〉2 for a stationary flow regime.

These results were computed for 700 modes, determined using a refined per-
meability field of 1000 data points (obtained by interpolating linearly between
the 100 initial data points). Effective correlation distance is found to increase
with geostatistical correlation length and does not depend on variance. It is
moreover found that the method yields unphysical negative relaxation times
in a few high-variance cases. Actually, Berentsen [20] did not provide a formal
proof of the positiveness of the eigenvalues of the matrix DT . He simply ob-
served that, for every case he tested, he obtained realistic (i.e. positive) values
for τe. The numerical examples tested in this study reveal that the method
might fail in highly heterogeneous cases.

Results in terms of the εu indicator also indicate that the modal method
gives worse results than stochastic and fractal methods. For small correlation
lengths, the predicted apparent dispersivity is up to 10 times larger than the
actual one. For larger correlation lengths and variances below 1, the accuracy
is about the same as for the stochastic method.

Optimal transport parameters are given in Table B.4 and are plotted in
Figs. 5.18 and 5.19. In general, εc is higher than values obtained using the
stochastic and the fractal methods, meaning that a simple exponential model is
less suited to describe the temporal development of macrodispersivity. The op-
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Figure 5.16: Efficiency of TE. λ = 0.01
(continuous line), λ = 0.05 (dashed line),
λ = 0.1 (dot-dashed line), λ = 0.5 (small-
dotted line) and λ = 1 (large-dotted line).

10
−2

10
−1

10
0

0

500

1000

1500

ε u [%
]

λ [m]

Figure 5.17: Efficiency of TE. σ2
Y = 0.01

(continuous line), σ2
Y = 0.1 (dashed line),

σ2
Y = 1 (dot-dashed line), σ2

Y = 2 (small-
dotted line) and σ2

Y = 4 (large-dotted
line).

10
−4

10
−2

10
0

10
2

10
−4

10
−2

10
0

10
2

V
a
 [−]

V
a,

op
t [−

]

Figure 5.18: Optimal velocity variance
required by TE. λ = 0.01 (circle), λ = 0.05
(x-mark), λ = 0.1 (plus), λ = 0.5 (star)
and λ = 1 (square).
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timal variance is always smaller than the actual one, as it was already observed
for the stochastic method. Relaxation processes seem to be underestimated, as
optimal values of λe are systematically greater than values estimated using the
velocity profile.

The analytical solution of Scheidegger’s telegraph equation was then con-
fronted to experimental BTC. ∆RMSu indicator is plotted in Fig. 5.20, whereas
∆RMSc is given in Fig. B.6. It was highlighted in Section 4.4.2 that τe is scale-
dependent itself and that Eq. 4.37 used to compute it from the velocity profile
is best valid to model large-scale behavior. The consequence is that the predic-
tion for intermediate-scale is worse than the ADE with local-scale parameters,
as ∆RMSu is generally positive for x < 10 m. However, large-scale behavior
(10 < x < 100 m) is modelled with an improvement comparable to stochas-
tic and fractal methods. Scatter is due to numerical problems appearing when
computing the analytical solution of the telegraph equation. Finally, the differ-
ence between ∆RMSu and ∆RMSc is found to be limited, meaning that the
use of optimal parameters from the point of view of apparent dispersivity does
not usually yield a sensitive improvement in BTC modelling.
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Figure 5.20: Improvement of TE compared to the classical ADE. i = 1 - σ2
Y = 0.01

(continuous line), i = 2 - σ2
Y = 0.1 (dashed line), i = 3 - σ2

Y = 1 (dot-dashed line), i = 4 -
σ2

Y = 2 (small-dotted line) and i = 5 - σ2
Y = 4 (large-dotted line).
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Kij j = 1 j = 2 j = 3 j = 4 j = 5

βt = 1.70 βt = 1.70 βt = 1.66 βt = 1.88 βt = 1.73
i = 1 va = 1.02 va = 1.02 va = 1.02 va = 1.02 va = 1.02

εu = 141.7 εu = 13.60 εu = 16.16 εu = 63.83 ε = 65.33

βt = 1.64 βt = 1.59 βt = 1.48 βt = 1.96 βt = 1.65
i = 2 va = 1.04 va = 1.06 va = 1.08 va = 1.10 va = 1.12

εu = 6.87 εu = 27.14 εu = 22.45 εu = 74.18 εu = 66.25

βt = 1.37 βt = 1.23 βt = 1.24 βt = 1.78 βt = 1.32
i = 3 va = 1.29 va = 1.60 va = 1.58 va = 2.08 va = 2.65

εu = 11.14 εu = 8.42 εu = 8.21 εu = 67.26 εu = 49.92

βt = 1.25 βt = 1.14 βt = 0.93 βt = 1.71 βt = 1.21
i = 4 va = 1.70 va = 2.49 va = 1.42 va = 3.72 va = 5.94

εu = 10.68 εu = 10.88 εu = 54.01 εu = 64.06 εu = 43.05

βt = 1.16 βt = 1.08 βt = 1.12 βt = 1.71 βt = 1.57
i = 5 va = 3.00 va = 5.53 va = 4.25 va = 8.97 va = 8.99

εu = 16.32 εu = 8.00 εu = 21.24 εu = 63.06 εu = 53.87

Table 5.3: Upcaling results of TC. va = 〈v〉 ∗ C1 is an adimensional velocity

5.4.2 CTRW and fractional-order equations

Temporally anomalous transport

The application of CTRW in a temporally anomalous transport framework re-
quires breakthrough curve analysis. Therefore, in order to capture early devel-
opment of the scale effect and include it in the modelling, transport parameters
were obtained from the joint analysis of the BTC recorded at x = 1 m and at
x = 10 m. βt values are shown in Table 5.3. Basically, βt is not found to be
sensitive to correlation in the permeability field, but is found to decrease when
the variance increases. Indeed, when σ2

Y is high, the corresponding distribution
of migration velocity is skewed and heavy-tailed, leading to lower βt values.

For the sake of convenience, characteristic velocity 1/C1, also obtained from
the BTC analysis, is expressed under an adimensional form as va = 〈v〉C1 in
Table 5.3. 1/C1 is found to be always smaller than 〈v〉, and decreases both
when correlation length and variance increase.

εu values were calculated by (1) computing apparent dispersivity from ana-
lytical breakthrough curves obtained using parameters showed in Table 5.3 and
(2) comparing these values with apparent longitudinal dispersivities obtained
from actual synthetic curves. Temporal moment analysis is not indicated to ob-
tain apparent Fickian transport parameters from analytical curves computed
using the temporal CTRW framework, as temporal moments of BTC are the-
oretically infinite. Instead, fitting of the corresponding analytical solution of
the ADE on the analytical CTRW curve was used to obtain apparent disper-
sivity values. Figs. 5.21 and 5.22 show that the model gives better results than
previous methods for small correlation lengths (except when σ2

Y = 0.01). For
larger correlation lengths, predictions of apparent longitudinal dispersivity are
of a precision of a similar order of magnitude as using e.g. the fractal upscaling
method.
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Figure 5.21: Efficiency of TC. λ = 0.01
(continuous line), λ = 0.05 (dashed line),
λ = 0.1 (dot-dashed line), λ = 0.5 (small-
dotted line) and λ = 1 (large-dotted line).
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Figure 5.22: Efficiency of TC. σ2
Y = 0.01

(continuous line), σ2
Y = 0.1 (dashed line),

σ2
Y = 1 (dot-dashed line), σ2

Y = 2 (small-
dotted line) and σ2

Y = 4 (large-dotted
line).

Optimal CTRW transport parameters were also obtained for each break-
through curve. Fig. 5.23 shows optimal βt values and illustrate that it is also
scale-dependent. It can be seen on Fig. 5.23 that, for small variance and small
correlation length, this situation is reached at intermediate scales, as βt con-
verges to its threshold value of 2. For larger correlation length and larger vari-
ance, this situation does not happen and βt stabilizes at a value smaller than 2.
In the particular case λ = 0.5, breakthrough curves all have a Gaussian shape
as the best value for βt is 2 at every scale.

Fig. 5.24 shows the results of the upscaling procedure in terms of ∆RMSu

indicators. Most of the time, the latter is found to be negative, indicating that
temporal CTRW yields a better prediction of concentration distributions than
the ADE with local parameters. However, for small variances and small corre-
lation lengths, ∆RMSu occurs to be positive. In these cases, the scale effect
has a relatively limited amplitude and BTC obey quasi-normal distributions.
Therefore, the Fickian model yields relatively good results, even with local pa-
rameters, and CTRW predicts heavy-tailed concentration distributions that do
not match actual data, leading to worse upscaling results.

For small correlation lengths, as for other upscaling methods, the improve-
ment of the temporal CTRW model globally increases with the variance (i.e.
when the scale effect is stronger) and seems to stabilize to a constant level at
about x = 30 m. In the case of higher correlation lengths, contrary to other
results shown in this chapter, ∆RMSu usually reaches a peak at that distance
and then tends to become positive for large distance. Considering this, the up-
scaling capacities of the CTRW model seem to remain limited to about 1/3 of
order of magnitude. The problem might lie in the scale-dependence of βt itself
(Fig. 5.23). Inference of the transport parameters based on early behavior of
the concentration distributions leads to an over-estimation of the scale-effect,
that finally leads to worse upscaling results than the no-upscaling model.

εc indicator was not computed here. Other methods tested provide explicit
analytical expressions to compute apparent dispersivity, that were used to ob-
tain optimal transport parameters and calculate εc. In the temporal CTRW
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Figure 5.23: Optimal values of βt. i = 1 - σ2
Y = 0.01 (continuous line), i = 2 - σ2
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Figure 5.24: Improvement of TC compared to the classical ADE. i = 1 - σ2
Y = 0.01

(continuous line), i = 2 - σ2
Y = 0.1 (dashed line), i = 3 - σ2

Y = 1 (dot-dashed line), i = 4 -
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framework, transport parameters are fitted to mimic the whole BTC, not only
its apparent dispersion. Therefore, εc values that could have been calculated
would have been different and a comparison with other methods would not
have been meaningful.

Finally, as expected since Fickian transport is a particular case of CTRW,
values of ∆RMSc indicator (Fig. B.7) were systematically found to be negative,
indicating an improvement in the (non-predictive) modelling. For small corre-
lation lengths, the improvement goes up to about three times ∆RMSc values
obtained with other upscaling methods (∆RMSc ≈ 30 % for K51), meaning
the temporal CTRW can better describe concentration distributions than the
stochastic or the fractal methods. The drawback of this method thus lies in
its parametrization, as parameter values inferred from small-scale data anal-
ysis yield upscaling results much poorer than results obtained with optimal
parameters.

Spatially anomalous transport

In order to keep a level of small-scale information similar to what was used
in previous section, the methodology proposed by Benson et al. [16, 18] and
described in Section 4.4.3 was applied to simulated breakthrough curves at
x = 1 m and x = 10 m. Therefore, βx is estimated from Eq. 4.39 using

m =
log (α∗

L|x=10) − log (α∗
L|x=1)

log(10) − log(1)
= log

(

α∗
L|x=10

α∗
L|x=1

)

(5.5)

and the BTC recorded at x = 10 m was afterwards fitted with the analytical
solution of Eq. 3.12 for a continuous injection to determine Dx and γB. The
results of this procedure are summarized in Table 5.4. εu indicators, also shown
in Table 5.4 and graphically presented in Figs. 5.26 and 5.27, were computed
as in previous section, by first calculating theoretical BTC and by analyzing
them using an adequate method. In this case, the temporal moment method
could be used as temporal moments remain finite (but spatial moments are
infinite). However, as theoretical BTC are characterized by long tails and as
an accurate evaluation of temporal moments would require temporal scales to
be several orders of magnitude larger, the curve-fitting method was again used
to compute apparent Fickian transport parameters.

Contrary to temporal CTRW, βx is found to vary with correlation length,
but dependence on variance is less obvious. The characteristic length λB =

(Dx/〈v〉)
1/(1−βx) incorporates a generalized dispersion coefficient, supposed to

be scale-invariant. λB increases both with correlation length and variance, and
could therefore be interpreted as a measure of the overall magnitude of the
scale-effect. The bias increases with the variance, as velocity distribution are
skewer for higher σ2

Y . Considering εu, results seem to be much more homoge-
neous than previous methods. All values are below 80 % for the whole range of
correlation lengths and variances.

As a point of comparison, optimal values for βx were computed from the
slope of the apparent dispersivity obtained from the regression over the 100
available BTC. It therefore embodies a description of the scale-effect over the
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Kij j = 1 j = 2 j = 3 j = 4 j = 5

i = 1

βx = 1.83 βx = 1.32 βx = 1.26 βx = 1.03 βx = 1.06
λB = 0.006 λB = 0.000 λB = 0.000 λB = 0.000 λB = 0.000
γB = 0.18 γB = 0.05 γB = 0.02 γB = 0.02 γB = 0.02
εu = 17.65 εu = 63.31 εu = 56.00 εu = 24.99 εu = 39.74

i = 2

βx = 1.52 βx = 1.26 βx = 1.30 βx = 1.05 βx = 1.05
λB = 0.003 λB = 0.001 λB = 0.002 λB = 0.001 λB = 0.089
γB = 0.40 γB = 0.17 γB = 0.19 γB = 0.19 γB = 0.07
εu = 7.51 εu = 9.64 εu = 16.33 εu = 70.89 εu = 71.02

i = 3

βx = 1.41 βx = 1.29 βx = 1.48 βx = 1.78 βx = 1.12
λB = 0.038 λB = 0.091 λB = 0.216 λB = 2.190 λB = 0.894
γB = 0.81 γB = 0.50 γB = 0.85 γB = 0.56 γB = 0.58
εu = 13.00 εu = 22.75 εu = 29.97 εu = 83.71 εu = 71.55

i = 4

βx = 1.36 βx = 1.30 βx = 1.47 βx = 1.05 βx = 1.13
λB = 0.119 λB = 0.305 λB = 0.607 λB = 0.392 λB = 2.196
γB = 0.95 γB = 0.70 γB = 0.99 γB = 0.84 γB = 0.86
εu = 6.58 εu = 24.89 εu = 28.14 εu = 77.61 εu = 59.02

i = 5

βx = 1.33 βx = 1.29 βx = 1.40 βx = 1.05 βx = 1.12
λB = 0.645 λB = 1.067 λB = 1.821 λB = 1.546 λB = 9.073
γB = 0.99 γB = 0.88 γB = 0.99 γB = 0.97 γB = 0.94
εu = 36.01 εu = 20.84 εu = 26.85 εu = 56.73 εu = 45.14

Table 5.4: Upcaling results of SC. λB = (Dx/〈v〉)1/(1−βx) is a characteristic length.

full range of distances investigated. Most of the time, the estimation of βx

using only the BTC at x = 1 m and at x = 10 m is relatively close to the value
quantifying the slope of the full apparent dispersivity curve versus scale on a
log-log-scale graph.

Prediction in terms of the full BTC is quantified in Fig. 5.28 using the
∆RMSu indicator. It appears to be relatively good, compared to other meth-
ods. The order of magnitude is similar to what was previously obtained, except
for small variance cases. As for the temporal CTRW, situations of low het-
erogeneity are not well predicted and tailing behavior is generally exagerated,
leading to positive values of ∆RMSu.

Optimal values of Dx and γB are determined for each BTC by curve-fitting,
using values of βx shown in Fig. 5.25. εc was not computed here, for similar
reasons as in previous section and Fig. B.8 shows the values of ∆RMSc. The
latter are found to be relatively close to ∆RMSu, and it must be noted that for
small variance cases, the indicator remains positive, meaning that the standard
ADE is better indicated to model transport in mildly heterogeneous cases.

5.5 Conclusion

A few general conclusions can already be drawn from the analysis carried out
in this chapter, regarding the general applicability and the capacities of tested
upscaling procedures.

First, the lack of reliability of characterization methods appeared through
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Figure 5.26: Efficiency of SC. λ = 0.01
(continuous line), λ = 0.05 (dashed line),
λ = 0.1 (dot-dashed line), λ = 0.5 (small-
dotted line) and λ = 1 (large-dotted line).
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Figure 5.28: Improvement of SC compared to the classical ADE. i = 1 - σ2
Y = 0.01 (contin-

uous line), i = 2 - σ2
Y = 0.1 (dashed line), i = 3 - σ2

Y = 1 (dot-dashed line), i = 4 - σ2
Y = 2

(small-dotted line) and i = 5 - σ2
Y = 4 (large-dotted line).
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results obtained in this chapter. For example, estimation of Hurst coefficient H
was subject to a relatively large uncertainty, resulting in large confidence in-
tervals for apparent dispersivity. In the temporal CTRW approach, parameters
inferred at small-scale are in a few cases so unadapted that the model gives
worse results than the ADE with local parameters. It must also be noted that,
if the stochastic method yielded relatively accurate estimations of transport pa-
rameters, K fields were generated according to a log-normal distribution. One
could wonder if this observation could have been done with K fields generated
using e.g. a fractal model. Moreover, the prediction of apparent dispersivity
and concentration distributions is not really worse using other methods, mean-
ing that the sensitivity of these non-Fickian models to their parameters is not
really high.

Then, as scaling effects increase with the variance of the ln(K) field, effi-
ciency of each non-Fickian method and model increased with σ2

Y compared to
the classical ADE (almost systematic negative values for ∆RMSu). However,
absolute model efficiency seems to remain comparable for each tested model.

Other conclusions will be structured in order to distinguish features of up-
scaling methods from those of upscaled transport equation, with an emphasis
on expected and surprising results.

5.5.1 Upscaling methods for dispersivity

Fig. 5.29 shows a table indicating which method yielded the best results with
respect to upscaling of apparent dispersivity (i.e. which method yielded the
smallest εu). Stochastic (S) and fractal (F) methods are considered, as well
as the modal method used to parametrize Scheidegger’s telegraph equation
(TE) since it also provides an analytical expression for transient dispersivity.
Actually, all methods gave upscaling results of a relatively similar quality, with
at best a relative error of 40 % and an improvement that seems to stabilize for
large scale.

It appears that S is the most efficient for intermediate correlation lengths.
For smaller correlation lengths, upscaling capacities of the stochastic method
decrease because local dispersivity becomes of a similar order of magnitude
as correlation length (which violates assumptions under which stochastic an-
alytical solutions are derived). For larger correlation length, the fulfillment of
the ergodic condition becomes questionable and, expectively, the efficiency of
S decreases. A surprising result is that the variance does not seem to influence
the capacities of the stochastic method.

For the fractal method, the relative error on Ĥ was found to be lower for
λ > 0.1 (see Fig. 5.10) and the sensitivity of the analytical solution of α∗

L

decreases for high H (i.e. an error on Ĥ has less influence on upscaling when Ĥ
is high). This could explain that F generally yields the best results for larger
correlation lengths. For small correlation lengths, the problem might lie in
the method used to obtain Ĥ , as unreasonable negative values were obtained.
Variance does not seem to influence upscaling capacities of F, but contrary to
S, no assumption of low variability has to be made in a fractal framework and
σ2

Y should indeed have no influence on efficiency of F.
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Figure 5.29: Prediction of apparent dis-
persivity for stratified media : best non-
Fickian model with respect to εu (exclud-
ing models not based on a description of
the soil structure).

Finally, the modal upscaling method appeared to be the best method in
only one isolated case.

5.5.2 Upscaled transport equations

Upscaled transport equations have the advantage of allowing the prediction of
non-symmetric concentration distributions, with heavy tails. Available analyt-
ical solutions are however relatively difficult to compute compared to solutions
of the ADE, as numerical instabilities may appear for given combinations of nu-
merical values for transport parameters. This is reflected by the more scattered
∆RMS curves of upscaled equations.

Fig. 5.30 show a table similar to Fig. 5.29 except that all tested models are
considered. Temporally and spatially anomalous transport models are relatively
equivalent regarding upscaling of dispersivity and usually yield the best results.
This observation could simply be explained by the parametrization method of
the models. Both temporal and spatial CTRW require a priori information on
concentration and apparent dispersivity in order to be applied, whereas other
methods are only based on a description of soil structure.

In Fig. 5.31, the models that yielded the best prediction in terms of the
whole outlet breakthrough curve (i.e. the models that yielded the largest neg-
ative ∆RMSu at 100 m from injection) are presented. Two models appear to
have the best upscaling capacities : the spatial CTRW model for large variance
and Scheidegger’s telegraph equation for large correlation length. Moreover, for
this indicator, a clear difference appears between spatial and temporal CTRW,
as temporal CTRW was found to have a limit scale beyond which upscaling
capacities decreased.

CTRW models are typically suited to situations were long-tailed BTC are
observed. This explains why these models are relatively efficient for high vari-
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Figure 5.30: Prediction of apparent dis-
persivity for stratified media : best non-
Fickian model with respect to εu.

Figure 5.31: Prediction of concentra-
tion distributions for stratified media :
best non-Fickian model with respect to
∆RMSu.

ance cases and yield poorer results for small variance cases. The difference
between temporal and spatial CTRW models investigated here might originate
from a different scale-dependency of βt and βx. It could also be explained by
the difference in the description of advective transport. Whereas SC embodies
a classical description of advection, TC do not allow a parametrization using a
mean migration velocity. Advective transport is estimated from BTC analysis
using a curve-fitting method, that can yield a biased information.

Finally, TE turned out to be the most efficient model for high correlation
lengths. Compared to its relatively low efficiency in upscaling of apparent dis-
persivity, this result would highlight that (1) a single exponential is a too sim-
plified model for transient dispersivity but (2) the quality of the predicition of
apparent dispersivity is sufficient to allow a correct prediction of concentration
distributions. However, the drawback linked to the modal upscaling method
used to parametrize TE is that it requires the full permeability profile, which
is generally not practically accessible.



Chapter 6

Solute transport in 2D

heterogeneous media

6.1 Introduction

In Chapter 5, efficiency of upscaling methods and upscaled equations was in-
vestigated for highly conceptual heterogeneous cases. The aim was to establish
tendencies with respect to variance and correlation length, in situations were
no other parameter is required to describe medium structure. It is propose to
refine the analysis by considering in this chapter more complex 2D situations
were longitudinal correlation lengths are finite and were flow is not parallel to
the bedding.

Two-dimensional problems are generally well developed in the literature,
mainly due to computational reasons [184]. There is indeed a trade-off between
simulating flow and transport for a high number of different two-dimensional K
fields and simulating more complex flow and transport problems in a few dif-
ferent three-dimensional systems. The approach adopted in this investigation is
to perform a relatively high number of parametric variations, therefore leading
to the need for restricting to two-dimensional problems. Another reason for
focusing on 2D problems is that the physical experiment performed in Part 3
uses a two-dimensional laboratory tank. As conclusions drawn in this chapter
should be used to design that experiment, it is necessary to investigate cases
of a geometry comparable to the experimental device presented in Chapter 7.

In Section 6.2, the design of the various examples that are investigated is
first detailed. Additional models to characterize heterogeneity are presented
and used to generate synthetic aquifers exhibiting multimodal permeability
distributions. Flow is solved numerically and compared to a few common ana-
lytical results available in the literature in Section 6.3. Transport is then solved
using similar numerical tools as in Chapter 5. In Section 6.4 and 6.5, non-
Fickian models are applied and compared to numerical values of apparent dis-
persivity and to concentration distributions.

It must be noted that model parameters will not be optimized for this set
of examples, and neither εc nor ∆RMSc will be calculated here. The number of
parameters needed to describe the structure of 2D permeability fields becomes
important and it is not possible to reasonably optimize all of them to correctly
simulate apparent dispersivity. Moreover, it is believed that if only some of
them are determined by bulk curve-fitting, their values might be completely
meaningless.

87
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6.2 Design of numerical simulations

6.2.1 Models of heterogeneity

Two- and three-dimensional Gaussian ln(K) fields can be easily generated by
extending the methodology that was used for vertical permeability profiles (see
Chapter 5). However, the scope of this work is to evaluate transport models in
physically-consistent situations. That is, one could not limit this analysis to log-
Gaussian permeability fields, which are well-suited to stochastic analysis but
may be unadapted in most real field-scale situations [84, 113]. Other methodolo-
gies have emerged to represent heterogeneity of natural media in hydrogeology,
being either descriptive, process-imitating or structure-imitating [60, 113].

Descriptive methods couple geologic conceptual models with hydrostrati-
graphic units of given geologic and hydraulic properties to divide an aquifer
into zones characterized by constant effective parameters, neglecting smaller-
scale heterogeneities [113]. These methods are however subjective, may depend
on the experience of the modeller [113] and the zonated image of the subsurface
can sometimes highly differ from real subsoil structure.

Process-imitating methods aim at simulating a medium by reproducing its
formation processes. They include geologic processes model, combining sedi-
ment transport processes to simulate spatial patterns in grain size distribu-
tion, and thermomechanical mechanisms for large-scale tectonic deformations
[29, 60, 112, 113, 181]. However, highly uncertain factors such as Paleoclimatic
trends play a key role in these methods [112], which makes them currently
impossible to apply to realistic models [60]. From this point of view, these
methods will not be further considered in this study.

Structure-imitating methods rely on available information to constrain the
geometry of spatial patterns of hydraulic properties. Koltermann and Gore-
lick [113] divided these methods into (1) spatial statistical methods and (2)
sedimentation pattern methods. The latter could be linked to process-imitating
methods and are of smaller extension compared to spatial statistical methods.
The generation of Gaussian log-permeability fields based on a geostatistical
analysis is typically a spatial statistical structure-imitating method. However,
non-Gaussian methods are much more powerful tools, allowing the generation
of multifacies and fractured media (although Gaussian methods can be adapted
to produce discrete permeability fields). These methods include indicator-based
methods, Boolean methods and Markov chains. Indicator random function
models are particularly well suited to characterize categorical (binary) vari-
ables [63, 110]. Indicator models can thus be used e.g. to characterize the spa-
tial pattern of a given facies of constant hydraulic conductivity (correlation
lengths being in this case an image of mean facies lengths). Boolean methods
involve generating objects in space that have a deterministic shape, but with
random positions and dimensions. The traditional object used to model a frac-
tured medium is a disk [60], but more complex structures can be adopted [64] .
This method is however rather conceptual and as Markov chains will be shown
to be more powerful than indicator variogram models, one will further focus
on this latter approach.

In practical applications of continuous and categorical geostatistical ap-
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proaches, geologic data sets are most of the time too sparse (or the geology is
too complicated) to fully support the development of an accurate experimental
variogram [38, 39, 84]. Yet, in the case of categorical variables, Markov chains
provide a tool can fully and directly take into account volumetric proportions,
mean length, juxtapositional tendencies and anisotropy [38, 39], by the use of
transition probabilities. For a one-dimensional spatial application, a Markov
chains model assumes that the permeability at a specified location depends
entirely on the permeability of the nearest datum. Markov chains models can
be either discrete [68] or continuous [40]. Mathematically, a one-dimensional
continuous Markov chains applied to a categorical variable in a direction φ
assumes a transition probability matrix Tφ of exponential form [38, 40]

T(hφ) = exp (Rφhφ) (6.1)

were Rφ is a transition rate square matrix of the size of the number of categories
to be considered for the variable of interest and hφ is the lag (separation)
between two points in direction φ. Term tij(hφ) in matrix T(hφ) represents the
probability of finding category j at a distance h in direction φ from a location
where category i is observed. Expectively, T(0) is a unit matrix. It can be
shown that for a stationnary random field

lim
hφ→∞

tij(hφ) = pj ∀i (6.2)

The transition rate corresponds to the slope of the transition probability plot as
the lag tends to zero. Consequently, transition rates for diagonal elements are
negative whereas non-diagonal transition rates are (usually) positive. Diagonal
transition rates are related to mean lengths of categories through [38, 40]

rjj,φ = −
1

Lφ
(6.3)

Other noticeable properties of the transition rate matrix are [38, 40]

K
∑

j=1

rij,φ = 0 (6.4)

K
∑

i=1

pirij,φ = 0 (6.5)

These two latter equations can be used to define a background category, whose
properties are inferred from those of other categories. Fig. 6.1 shows transition
probabilities for a three-category model, with approximatively p1 = 0.6 (back-
ground category), p2 = 0.3, p3 = 0.1, and characterized by the transition rate
matrix

R =





−0.8 −0.1667 0.9667
0.6 −1.0

0.5
0.7
0.5

3 0.7
0.1

−1.0
0.1



 (6.6)

were fractions were not computed so that mean lengths and superimposition
tendencies are highlighted. Mean lengths of category 2 and 3 are respectively
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Figure 6.1: Example of transition probabilities for a three-category model

L2 = 0.5 m and L3 = 0.1 m and the probability of finding category 2 above 3
is equal to the probability of finding 3 above 2 and equals 0.7 (i.e category 3 is
mainly embedded in category 2). Elements of the first row and the first column
were obtained using Eqs. 6.4 and 6.5. The negative transition rate appearing on
a non-diagonal element on the first line is caused by the strong juxtapositional
tendency that was imposed between category 2 and 3 [38].

Due to properties of the matrix exponential operator in Eq. 6.1, it can be
shown that a Markov chains model consists of linear combinations of expo-
nential structures, that could generate non-exponential-looking Gaussian and
hole-effect transition probabilities [38, 40], as illustrated on Fig. 6.1.

Multidimensional Markov chains models are obtained through elliptical in-
terpolation between one-dimensional Markov chains models in principal direc-
tions [38, 40]. Simulation of multifacies models based on transition probabilities
can then be achieved using the program T-Progs (Transition Probability Geo-
statistical Software [38]). Although Markov chains are defined very simply in
theoretical and mathematical terms, they have shown remarkable applicability
to the characterization of facies (hydrostratigraphic units) spatial variability in
alluvial and fluvial depositional systems [39, 40, 57, 126, 194, 195].

6.2.2 Synthetic two-dimensional examples

This section aims at briefly presenting the geometry, initial and boundary con-
ditions adopted for the investigation of two-dimensional problems, as well as
the particular set of K fields that will be tested. The geometry of the model is
inspired from an experimental setup available in the Laboratory of Civil Engi-
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Figure 6.2: Geometry and boundary conditions of the 2D synthetic examples. X and Y
refer to the coordinate system attached to the flow system, whereas 1 and 2 refer to the
coordinate system attached to the principal directions of the permeability field.

neering of the Université catholique de Louvain (that will however not be used
in Part 3 of this study). Flow and transport take place in a two-dimensional do-
main of 4 m long by 1.5 m wide, in confined conditions (Fig. 6.2). Left and and
right boundaries are fixed-head boundaries in order to impose a mean gradient
of 1 % in the longitudinal direction, whereas upper and lower boundaries are
no-flow/no-diffusion boundaries. Initial concentration is null everywhere and
purely one-dimensional transport problems are investigated through uniform
concentration injection along the inlet boundary (Fig. 6.2).

The reason for a domain of such a limited extension is twofold. First, numer-
ical results presented in the literature usually correspond to very large domains,
in which boundary conditions are supposed to have no influence on solute trans-
port, in order to validate semi-analytical models (see e.g. the results of Trefry
et al. [184]). Perfectly stratified examples investigated in Chapter 5 pursued
a rather similar objective, as these simulations were aimed at identifying ten-
dencies between models for systematic parametric variations. However, general
motivations of this study are oriented towards the practical use of non-Fickian
models, under realistic conditions and for transport over finite distances. A
domain of limited extension was therefore adopted. Secondly, as already men-
tioned, one of the objective of this chapter is to identify cases in which modelling
problems are encountered. As the final part of this study involves laboratory
experiments, the results obtained in this chapter must be used to design the
physical experiment to perform. Therefore, a domain of a size similar to that
of the setup that will be used in Chapter 7 is chosen.

First, a set a Gaussian log-permeability fields are generated using similar
spectral tools as in Chapter 5. Table 6.1 summarizes parameter values adopted
for each ln(K) field. Actual (observed) values of the geometric mean and the
variance are slightly different than the theoretical values, and will be used in
the remaining part of the analysis. Fig. 6.3 shows the 8 examples that were
generated.

Then, a set of two-facies models were generated using T-Progs. A back-
ground category of permeability K1 = 10−5 m/s was assigned a probability
occurrence of 60 % and a second facies of permeability K2 = 10−7 m/s was
assigned a probability occurrence of 40 %. As background categories do not
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ln (K01) ln (K02)

ln (K03) ln (K04)

ln (K05) ln (K06)

ln (K07) ln (K08)

Figure 6.3: Set of Gaussian log-permeability fields
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K01 K02 K03 K04 K05 K06 K07 K08

Kg [10−5 m/s] 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54

σ2
Y [-] 0.1 1.0 1.0 1.0 2.0 4.0 1.0 1.0

λ1 [m] 0.1 0.1 0.5 2.0 0.1 0.1 2.0 2.0

λ2 [m] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

θ [◦] 0 0 0 0 0 0 30 60

Kg,o [10−5 m/s] 4.54 4.54 4.54 4.54 4.54 4.54 4.92 5.16

σ2
Y,o [-] 0.099 0.990 0.950 0.911 1.979 3.958 0.734 0.954

Table 6.1: Geometric mean Kg, variance σ2
Y , correlation lengths λ1 and λ2 in direction 1 and

2 respectively, azimuth angle θ (counted positive if induces a clockwise rotation), observed
geometric mean Kg,o and observed variance σ2

Y,o of the Gaussian set of ln(K) fields

require a priori values of mean lengths, Table 6.2 only shows mean length and
azimuth angle adopted for the second category (K09 to K13). Fig. 6.4 shows
the various examples generated.

Three-facies models are generated similarly, assuming a refinement in the
second category of two-facies models. For that purpose, background categories
were kept the same probability occurrence (i.e. 60 %) but second facies were
this time assigned a probability occurrence of 30 %. Third facies have thus a
probability occurrence of 10 % and were assigned a low permeability of 10−9

m/s. Moreover, transitions probabilities were chosen to ensure that third facies
are mainly incorporated in second ones. The probability of having facies 2 just
before or just after facies 3 was set to 70 % (in each principal direction). This
yields a transition rate matrix of the form

T =





∗ ∗ ∗
∗ −1/Li2 0.7/Li2

∗ 0.7/Li3 −1/Li3



 (6.7)

where i stands either for direction 1 or 2, L is the mean length and ∗ stands
for background category data. Table 6.2 shows mean lengths adopted for each
of the secondary facies. Azimuth angles are kept equal to 0 in each case. It can
be observed that the Markov chains model for K14 in direction 1 corresponds
to the example shown in Section 6.2.1. Its transition rate matrix is detailed in
Eq. 6.6 and corresponding transition probabilities are shown in Fig. 6.1. The
various examples generated are shown in Fig. 6.4.

Finally, a 17th example was set up from the two-facies example K11. Two
independent realizations of a ln(K) field with a zero mean, a variance of 0.5 and
an isotropic exponential covariance function with a correlation length of 0.1 m
were generated and each of them were added to one of the two facies, yielding
a ln(K) field as shown in Fig. 6.5. Examples exhibiting non-stationarity in the
variance or in the correlation length could also have been investigated [68],
as well as other types of heterogeneous media [15, 58, 60, 125], but these are
beyond the scope of the present study. It must be noted that, in order to avoid
artifacts and boundary effects when generating highly correlated medium, each
example was sampled in the center of a larger simulated medium (of a size
being at least 5 times the mean/correlation lengths).
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ln (K09) ln (K10)

ln (K11) ln (K12)

ln (K13) ln (K14)

ln (K15) ln (K16)

Figure 6.4: Set of two- and three-facies Markovian permeability fields. Light-colored region
corresponds to first (background) material, intermediate-colored region corresponds to second
material and dark-colored region corresponds to third material.

ln (K11) ln (K17)

Figure 6.5: Two-facies model with and without intra-facies variability
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K09 K10 K11 K12 K13 K14 K15 K16 K17

p1 [%] 57.8 53.2 58.3 59.1 57.9 66.8 63.9 57.8 58.3

p2 [%] 42.2 46.6 41.7 40.9 42.1 23.6 27.2 31.4 41.7

p3 [%] - - - - - 9.6 8.9 10.8 -

K1 [10−5 m/s] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

K2 [10−7 m/s] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

K3 [10−9 m/s] - - - - - 1.00 1.00 1.00 -

L12 [m] 0.1 0.5 1.0 1.0 1.0 0.5 0.5 1.0 1.0

L22 [m] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

L13 [m] - - - - - 0.1 0.5 0.1 -

L23 [m] - - - - - 0.1 0.1 0.1 -

θ [◦] 0 0 0 30 60 0 0 0 0

Kg [10−6 m/s] 1.43 1.20 1.47 1.52 1.44 1.39 1.26 0.87 1.47

σ2
Y [-] 5.17 5.26 5.16 5.13 5.17 9.26 9.02 9.86 5.66

Kg,o [10−6 m/s] 1.43 1.16 1.47 1.52 1.44 1.39 1.26 0.87 1.52

σ2
Y,o [-] 5.17 5.28 5.16 5.13 5.17 9.28 9.03 9.87 5.65

λ1 [cm] 5.78 26.6 58.3 59.1 57.9 38.2 36.4 68.6 58.3

λ2 [cm] 5.78 5.32 5.83 5.91 5.79 7.64 7.28 6.86 5.83

Table 6.2: Parameters sets used for the generation of Markovian permeability fields. Kg and

σ2
Y are the theoretical values of the geometric mean and the variance, and Kg,o and σ2

Y,o are
the corresponding actual values. λ1 and λ2 are equivalent correlation lengths.

Geometric mean and variance of K fields exhibiting a multimodal distribu-
tion are computed from [152]

Kg = exp (p1m1 + p2m2) (6.8)

σ2
Y = p1σ

2
1 + p2σ

2
2 + (m1 −m2)

2p1p2 (6.9)

where pj, σ
2
j and mj are volumetric proportion, variance and mean of ln(K)

of facies j. In the case of constant hydraulic conductivity inclusions, it reduces
to [62]

σ2
Y = (m1 −m2)

2p1p2 (6.10)

For a three-facies medium, Eqs. 6.8 and 6.10 extent to

Kg = exp (p1m1 + p2m2 + p3m3) (6.11)

σ2
Y = (m1 −m2)

2p1p2 + (m1 −m3)
2p1p3 + (m2 −m3)

2p2p3 (6.12)

Theoretical values are generally close to actual (observed) values, as shown in
Table 6.2. In order to remain consistent with the approach adopted for K01

to K08, only actual values will however be used in the remaining part of the
analysis.

In order to apply stochastic theories to Markovian fields, it is necessary to
establish the link between the mean length of a facies and an equivalent geo-
statistical correlation length. It can be easily verified that a one-dimensional
bimodal Markov chains model characterized by an inclusion length L and an
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inclusion volumetric proportion p is equivalent to an exponential indicator co-
variance model with a variance p(1 − p) and a correlation length L(1 − p).
Therefore, in the case of an anisotropic bimodal Markovian field, equivalent
correlation lengths are λ1 = p1L12 and λ2 = p1L22 (using the same notations
adopted in Table 6.2). In the case of three-facies media, it will be assumed that
the material with the largest volumetric proportion (besides the background
formation) controls flow and transport. Volumetric proportions of remaining
materials are then summed to compute equivalent correlation lengths. Effec-
tive permeability of tilted and subvertical formations such as K12 and K13 is
computed according to Eq. 6.14. In the case of variable permeability within
inclusions, as inclusions may be anisotropic while within-facies permeability
variations may be isotropic (or vice-versa), it will also be assumed that the
material with the largest volumetric proportion (which, in this case, is also the
material with the largest correlation length) controls flow and transport.

The domain was discretized in 1 cm3 cubic cells. Flow was solved using
MODFLOW 2000 [96]. Transport was solved using the same particle tracking
code that was used in Chapter 5, RWHet [115]. 1.000.000 particles are released
uniformly over the cross-section X = 0 at time t = 0. As done in Chapter 5,
particles are set evenly on a line crossing cell centers along the transverse
direction (Fig. 6.2). In order to avoid particle reflexions on the upstream no-
diffusion boundary, the flow domain is extended upwards over a distance of 1.5
m (Fig. 6.2), as was done in Chapter 5. Velocities in that zone are set equal to
the velocities at the inlet boundary. Local dispersivities are both set equal to
1 cm and effective diffusion coefficient is Dd = 10−9 m2/s. Effective porosity is
assumed constant and equal to 40 %.

6.3 Upscaling of flow

In this section, a few common analytical expressions from flow theories in het-
erogeneous media are confronted to numerical results. Whereas statistics of the
velocity field in perfectly stratified aquifers are similar to those of the perme-
ability field, this is not the case anymore in general two-dimensional heteroge-
neous situations. Therefore, before moving towards transport theories, one will
first assess discrepancies between flow observations and corresponding theories,
which might account for part of the potential discrepancy between observed and
predicted concentration data.

6.3.1 Effective permeability

The permeability tensor of a two-dimensional ln(K) field characterized by an
exponential correlation function is computed as [79]

Ki = Kg

(

1 + σ2
Y

(

1

2
− gi

))

i = 1, 2 (6.13)

where g1 = λ2/(λ1+λ2) and g2 = λ1/(λ1+λ2). λ1 and λ2 are correlation lengths
in direction 1 and 2 respectively. In the case of isotropic lognormal conductivity
fields, variance has no influence on effective permeability and Ke,th is equal to
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K01 K02 K03 K04 K05 K06 K07 K08

Ke,o [10−5 m/s] 4.54 4.38 5.76 7.10 4.27 3.56 5.43 4.00

Ke,t [10−5 m/s] 4.54 4.54 5.98 6.41 4.54 4.54 5.73 4.04

Table 6.3: Observed effective permeability Ke,o of the Gaussian set of ln(K) fields. Ke,t is
the theoretical value computed using observed geometric mean and variance.

the geometric mean of the field Kg. Off-diagonal terms of the permeability
tensor are null provided the principal directions of the flow field are aligned
with the principal directions of the permeability tensor. If not, the effective
permeability tensor in the flow coordinate systems reads [68]

[

KX KXY

KY X KY

]

=

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

] [

K1 0
0 K2

] [

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

(6.14)

where θ is given in Table 6.1.
Table 6.3 shows observed effective permeability values Ke,o for each exam-

ple. Theoretical valuesKe,t are also indicated. Classical limitations of first-order
stochastic theories already appear for variances higher than 1 and when cor-
relation length increases compared to domain length. For high variance, first-
order approximations are not valid anymore and for high correlation length,
the ergodic assumption is not fulfilled anymore. The discrepancy then increases
between numerical and theoretical values. The general agreement between ob-
served and theoretical values is however relatively good, with a mean and a
maximum discrepancy of about 7 % and 27 % respectively.

Formally, it can also be shown that effective permeability is bounded by
its arithmetic and harmonic means [53]. The arithmetic mean corresponds to a
perfectly stratified aquifer oriented in the direction of flow and expresses for a
log-normal field as KA = Kg exp(σ2/2). The harmonic mean corresponds to an
aquifer perfectly stratified in a direction perpendicular to flow and expresses
for a log-normal field as KH = Kg exp(−σ2/2). For long correlations, these
expressions could also give a good approximation (or, at least upper and lower
bounds) of effective permeability. Looking at K04, for which the ratio of longi-
tudinal to transverse correlation lengths is very high, one observes indeed that
Ke,o = 7.10 10−5 < KA = 7.16 10−5 m/s and, looking at K08, one observes
that Ke,o = 4.00 10−5 > KH = 2.82 10−5 m/s.

In the case of Markovian fields, no analytical solution exists to compute
effective permeability. So far, the latter has been only investigated through
Monte Carlo simulations and no striking conclusion could be drawn from it,
as ensemble-PDF of effective permeability were very discontinuous [68]. How-
ever, Rubin [152] proposed to use results from first-order stochastic theories
developed for single-mode permeability distributions as a first approximation
to effective permeability in a bimodal permeability field. Table 6.4 shows that
the prediction of effective permeability of Markovian fields is worse than that
of log-Gaussian field. Elfeki et al. [68] had already underlined that the char-
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K09 K10 K11 K12 K13 K14 K15 K16 K17

Ke,o [10−6 m/s] 1.49 2.42 2.15 1.96 0.53 1.22 9.00 3.77 1.96

Ke,t1 [10−6 m/s] 1.43 3.20 4.56 3.11 < 0 5.68 5.04 4.38 5.04

Ke,t2 [10−6 m/s] 2.04 4.46 5.47 4.24 1.56 6.05 5.71 5.40 5.47

Table 6.4: Observed Ke,o effective permeability of the Markovian set of K fields. Ke,t1 is
the theoretical result from stochastic theories and Ke,t2 is the theoretical result obtained
using the self-consistent approach.

acterization of Markovian field using Gaussian distributions could not yield
valuable predictions. The results showed in Table 6.2 confirm this assertion,
as the ratio of predicted to observed permeability goes up to 400 %. Even,
a negative value of effective permeability was found for one of the tilted for-
mations, meaning that flow should occur in the upgradient direction ! A clue
to understanding such a bad behavior lies in the high variances calculated for
Markovian fields. As two-facies models already had a variance of more than
5, adding a third facies of minor volumetric proportion led to a variance of 9.
In this case, first-order stochastic theories suited to small variance problems
cannot help anymore.

Another definition of Ke which does not require an assumption of low vari-
ability can be obtained using the self-consistent approach [53], described in
Section 2.4. The effective permeability of a two-dimensional media computed
using this model is given in Appendix A. An analytical expression to com-
pute the effective permeability of a medium composed of two facies of constant
permeability is given in Eq. A.21, whereas the corresponding solution for a
three-facies medium is given in Eq. A.22. Results in Table 6.4 are not better,
as the mean error on predicted effective permeability is about 100 %. The the-
oretical value computed for K17 neglects second-order variability of the field
and is therefore supposed to underestimate Ke. It must be noted that the self-
consistent approach is not really adapted to compute effective permeability of
three-facies fields K14 to K16, as clay inclusions are assumed to be embedded in
facies 2, and do not constitute a separate family of inclusions in the background
domain.

6.3.2 Velocity distributions

Uncertainty (or unpredictability) of effective permeability is tightly linked to
uncertainty of mean longitudinal advective transport. Other features of the
velocity distributions might however be of importance with respect to solute
transport. First, the variance of the velocity field is directly linked to the scale
effect in apparent dispersion, and controls the overall macroscale plume spread-
ing. Then, global shapes of velocity distributions might reveal how biased and
heavy-tailed concentration distributions could potentially be.

Statistics of the velocity fields are summarized in Table 6.5 and 6.6. A theo-
retical value of expected longitudinal velocity 〈vX〉 can be found from effective
permeability and mean gradient. For log-Gaussian permeability fields, 〈vY 〉 is
theoretically equal to zero, and can be indeed generally neglected compared
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K01 K02 K03 K04 K05 K06 K07 K08

〈vX,o〉 [10−7 m/s] 4.54 4.38 5.76 7.10 4.27 3.56 5.43 4.00

〈vY,o〉 [10−9 m/s] 1.78 −1.45 21.2 8.48 −11.3 −16.8 −39.9 −35.2

σ2
vX ,o [10−13 m2/s2] 0.07 0.72 2.37 8.53 1.64 2.25 1.33 0.21

σ2
vY ,o [10−13 m2/s2] 0.02 0.25 0.17 0.06 0.60 0.99 0.42 0.30

〈vX,t〉 [10−7 m/s] 4.54 4.54 5.98 6.41 4.54 4.54 - -

〈vY,t〉 [10−9 m/s] 0 0 0 0 0 0 - -

σ2
vX ,t [10−13 m2/s2] 0.08 0.77 1.27 1.40 1.53 3.06 - -

σ2
vY ,t [10−13 m2/s2] 0.03 0.26 0.42 0.47 0.51 1.02 - -

Table 6.5: Statistics of the velocity field of 2D log-Gaussian permeability fields. Subscript
o refers to actual (observed) values and subscript t refers to theoretical values.

K09 K10 K11 K12 K13 K14 K15 K16 K17

〈vX,o〉 [10−8 m/s] 1.49 2.42 2.15 1.96 0.53 0.55 4.86 1.81 1.96

〈vY,o〉 [10−9 m/s] −0.98 −1.44 −0.12 −3.66 −0.63 −1.70 −6.33 −5.09 −0.48

σ2
vX ,o [10−16 m2/s2] 6.46 9.73 8.10 5.38 0.39 0.35 21.4 8.17 6.06

σ2
vY ,o [10−16 m2/s2] 2.10 1.01 0.49 1.55 0.45 0.15 2.49 2.44 0.58

〈vX,t〉 [10−8 m/s] 1.43 3.20 4.57 3.11 < 0 5.69 5.05 4.38 5.03

〈vY,t〉 [10−9 m/s] 0 0 0 - - 0 0 0 0

σ2
vX ,t [10−16 m2/s2] 3.96 20.3 40.4 18.6 0.01 112 86.4 71.1 53.7

σ2
vY ,t [10−16 m2/s2] 1.32 6.76 13.5 6.22 0.00 37.5 28.8 23.7 17.9

Table 6.6: Statistics of the velocity field of 2D Markovian permeability fields. Subscript o
refers to actual (observed) values and subscript t refers to theoretical (stochastic) values.

to 〈vX〉. For Markovian fields, 〈vY 〉 cannot be negelected with respect to 〈vX〉
anymore. This can be explained by the structure of the field itself. In hetero-
geneous media, flow is meandering between the zones of low permeability. In
the case of Markovian fields, for values of mean length adopted in this study,
only a few meanders can take place in the flow domain, and mean transverse
velocity cannot converge to a null value. This effect can also be observed for
log-Gaussian fields with a high variance. For tilted formations, expectively, 〈vY 〉
is found to be negative (due to the inclination of the formations towards the
negative part of the Y axis.

For a two-dimensional isotropic medium, first-order stochastic theories pre-
dict a longitudinal and a transverse velocity variance respectively equal to
σ2

vX
= 3q2σ2

Y /8 and σ2
vY

= q2σ2
Y /8, q being the specific discharge (or Darcy

velocity) [79]. This leads to a ratio of 3/1 for longitudinal to transverse velocity
variance, which is indeed the case for K01 (which is the only example that could
correctly fit this theoretical result regarding ergodicity and variance value) and,
to a lesser extent, for K02, K05 and K06. On the contrary, velocity variance of
Markovian fields is totally mispredicted. If the ratio 3/1 is observed in a few
cases (i.e. K09, K12, K14 and K16), predicted velocity variance can exagerate
the actual value by up to three orders of magnitude.

Figs. 6.6 to 6.8 illustrate several typical tendencies for velocity fields of log-
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Figure 6.6: Influence of ln(K) variance on velocity distribution of log-Gaussian fields. σ2
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dot-dashed line).
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Figure 6.8: Influence of ln(K) orientation on velocity distribution of log-Gaussian fields.
θ = 0◦ (K04 - continuous line), θ = 30◦ (K07 - dashed line) and θ = 60◦ (K08 - dot-dashed
line).
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Figure 6.9: Influence of ln(K) variance on velocity distribution of Markovian fields. Two-
facies without local variability (K11 - continuous line), Three-facies (K16 - dashed line) and
two-facies with local variability (K17 - dot-dashed line).
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Figure 6.10: Influence of facies mean length on velocity distribution. L12 = 0.1 (K09 -
continuous line), L12 = 0.5 (K10 - dashed line) and L12 = 1.0 (K11 - dot-dashed line).
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Figure 6.11: Influence of K field orientation on velocity distribution. θ = 0◦ (K11 - contin-
uous line), θ = 30◦ (K12 - dashed line) and θ = 60◦ (K13 - dot-dashed line).
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Figure 6.12: Influence of a third facies on velocity distribution. No facies (K11 - continuous
line), Isotropic third facies (K14 - dashed line) and anisotropic third facies (K15 - dot-dashed
line).

Gaussian cases. First, Fig. 6.6 shows that an increase of the variance yields
a shift of longitudinal velocity distributions towards high velocities. The bias
is sensitively increased, leading to non-Gaussian distributions [14, 157, 184].
The shape of transverse velocity distributions is relatively not influenced by
the variance provided it is higher than 1 and, like in the simulations of Trefry
et al. [184] and unlike those of Bellin et al. [14], does not exhibit a Gaussian
shape (except for a small variance).

It can also be observed that longitudinal correlation length has an influence
on the regularity of longitudinal velocity distributions (Fig. 6.7). A high corre-
lation length means non-ergodic flow and biased distributions. On the contrary,
for small lateral correlation lengths, no sensitive influence can be noticed on
transverse velocity distributions. Fig. 6.8 also illustrates the effect of rotating
the principal directions of K fields. Both longitudinal and transverse velocities
tend to decrease for flow perpendicular to the formation.

Fig. 6.9 to 6.12 show velocity distributions of Markovian cases. Distribu-
tions are less smooth and less heavy-tailed, due to the discrete distribution of
permeability. It is moreover difficult to identify tendencies.

Looking at figures and graphs shown it this section, it should be already
possible to detect cases in which apparent dispersivity will reach a constant
asymptotic value. For Gaussian longitudinal velocity distributions (i.e. with a
strong downwards curvature), a large-scale fictional diffusion coefficient should
be able to correctly model solute macroscale dispersion. When velocity distribu-
tions exhibit heavy tails, dispersivity is likely not to converge to an aymptotic
value and CTRW models should be more appropriate to describe concentration
distributions. Intermediate situations correspond to a longitudinal dispersivity
that is likely to converge to an asymptotic macroscale value in the long run.

6.4 Upscaling of longitudinal dispersivity

In this section, upscaling methods and upscaled equations reviewed in Chap-
ter 2 and Chapter 3 will be applied. A methodology similar to what was done
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in Chapter 5 will be used. First, apparent dispersivity will be computed and
presented. Then, efficiency of upscaling methods for apparent longitudinal dis-
persivity will be investigated. All of the methods presented in Chapter 2 will
be investigated : stochastic (S), fractal (F) and inclusion (I) models (using a
similar notation as in Chapter 5). Finally, upscaled transport equations derived
in temporal and spatial CTRW frameworks (respectively TC and SC) will be
applied. As no method to parametrize telegraph equations in 2D media could
be identified in the literature, this type of model will not be used here, nor
will mobile-immobile models (which were actually introduced in an attempt to
analyze data presented in Part 3).

6.4.1 Numerical results

Due to the reduced domain size, it is not possible to use spatial moments to
compute apparent dispersivity. The same method as in Chapter 5 is used to
perform temporal moment analysis. Concentrations are averaged over the full
aquifer cross-section (Fig. 6.2) and cumulative breakthrough curves are calcu-
lated. As stated previously, the aim of this study is not to apply theories under
theoretical situations designed to validate them. On the contrary, boundary
effects are present in real situations (e.g. due to the presence of the bedrock or
impervious layers) and have an influence on flow and transport. Therefore, they
will not be removed from this analysis. Apparent longitudinal dispersivity val-
ues obtained from BTC analysis is shown in Figs. 6.13 and 6.14 for log-Gaussian
and Markovian fields respectively.

Compared to perfectly stratified examples investigated in Chapter 5, ap-
parent dispersivity in log-Gaussian fields is less monotonic and it is not easy to
discern whether macroscale Fickian behavior occurs or not. It must be noted
that Trefry et al. [184] performed similar computations for much larger do-
mains (over 200 correlation lengths) for similar variance values and did not
obtain smoother curves. General theoretical trends are however observed in
Fig. 6.13. For isotropic fields, normalized asymptotic dispersivity should be
equal to 1 in Figs. 6.13.a. and b. In Fig. 6.13.c., it is observed that apparent
dispersivity decreases when flow is tilted with respect to bedding, as predicted
by theoretical models.

Apparent dispersivity of Markovian fields, like that of log-Gaussian fields,
is found to be linearly proportional to variance (Fig. 6.14.a.). However, trends
for other parameters are less obvious : it is difficult to conclude whether curves
in Fig. 6.14.b. are surperimposed or not, there is no general trend for tilted
formations and the influence of a third facies is not straigthforward to establish.
It must be noted that negative apparent dispersivity values observed close to
injection are probably due to numerical artifacts linked to spatial and temporal
discretizations adopted.

6.4.2 Stochastic analysis

Asymptotic dispersivity computed within a stochastic framework is given in
Eq. 2.29 for a general anisotropic situation, with a flow oriented at an angle θ
with respect to the bedding. An analytical solution for transient dispersivity
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Figure 6.13: Apparent dispersivity of log-Gaussian fields. a. Influence of the variance (K01

: σ2
Y = 0.1, continuous line ; K02 : σ2

Y = 1.0, dashed line ; K05 : σ2
Y = 2.0, dot-dashed

line and K06 : σ2
Y = 4.0, dotted line). b. Influence of the correlation length (K02 : λ1 = 0.1,

continuous line ; K03 : λ1 = 0.5, dashed line and K04 : λ1 = 1.0, dot-dashed line). c. Influence
of the orientation angle (K04 : θ = 0◦, continuous line ; K07 : θ = 30◦, dashed line and K08 :
θ = 90◦, dot-dashed line).
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Figure 6.14: Apparent dispersivity of Markovian fields. a. Influence of the variance (K11 :

σ2
Y = 5.16, continuous line ; K16 : σ2

Y = 9.16, dashed line and K17 : σ2
Y = 5.66, dot-dashed

line). b. Influence of the mean length (K09 : L12 = 0.5, continuous line ; K10 : L12 = 0.5,
dashed line and K11 : L12 = 1.0, dot-dashed line). c. Influence of the orientation angle (K11

: θ = 0◦, continuous line ; K12 : θ = 30◦, dashed line and K13 : θ = 90◦, dot-dashed line) d.
Influence of a third facies (K11 : no third facies, continuous line ; K14 : isotropic third facies,
dashed line and K15 : anisotropic third facies, dot-dashed line).
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j αj ηj σ2
j

1 λin1 p2
1 σ2

1

2 λIλin1 + (λI + λin1) 1 p1p2σ
2
1

3 λin2 p2
b σ2

2

4 λIλin2 + (λI + λin2) 1 p1p2σ
2
2

5 λI (m1 − m2)
2 p1p2

Table 6.7: Coefficients for Eq. 6.15

is however only available in the isotropic case, for a flow parallel to the main
principal direction of the permeability field (Eq. 2.28). It is proposed to assume
that anistropy and flow orientation have a negligible effect on temporal devel-
opment of macrodispersivity and that they only influence its asymptotic value.
Theoretical parameters to be used with these equations are given in Tables 6.1
and 6.2.

For Markovian fields, the analytical solution of transient dispersivity pro-
posed by Rubin [152] is also evaluated. This solution assumes that the perme-
ability distribution is bimodal, that the global spatial structure is described by
an exponential indicator variogram, and that intra-facies permeability is log-
normally distributed and characterized by an exponential covariance function.
The solution is derived in a two-dimensional isotropic case and reads [152]

α∗
L =

5
∑

j=1

αjηjσ
2
j

[

1 +
3

2 exp(τj)τ3
j

(

2(exp(τj) − τj − 1) − exp(τj)τ
2
j

)

]

(6.15)

where τj = vt/αj and with αj , ηj and σ2
j defined in Table 6.7. λI is the

(isotropic) correlation length of the indicator variogram (and therefore corre-
sponds to λ1 in Table 6.2. λin1 and λin2 are intra-facies (isotropic) correlation
lengths, both equal to 0.1 m for K17 and zero otherwise. As done previously,
subscripts 1 and 2 refer to facies number.

In the case of facies of constant permeability, j = 5 is the only remaining
term in Eq. 6.15. Rubin [152] suggests that each of these terms represents a
different source of spreading for solutes. j = 1 and j = 3 terms represent
spreading due to intra-facies variability, j = 2 and j = 4 terms represent
spreading due to irregularity of inclusions in space and j = 5 term represents
spreading due to permeability contrasts at inclusion boundaries.

Table 6.8 shows computed values of εu. Values are of a similar order of
magnitude as perfectly stratified cases, except for tilted formations and for
long correlation lengths. For Markovian fields, the bimodal stochastic method
provides however better upscaling results than the classical stochastic method
with respect to apparent dispersivity. As in the perfectly stratified case, up-
scaling results do not seem to degrade for high variance. Results could not be
plotted under graphical form, as parametric variations are less systematic than
in Chapter 5.

Figs. 6.15 and 6.16 show ∆RMSu for log-Gaussian and Markovian fields
respectively. The mean migration velocity used to compute that indicator is the
one characterizing the BTC measured at X = 0.4 m. The stochastic method
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K01 K02 K03 K04 K05 K06 K07 K08

εu [%] 107 42.7 44.9 22.9 150 32.7 58.3 244

K09 K10 K11 K12 K13 K14 K15 K16 K17

εu1 [%] 30.2 91.1 92.1 68.1 1810 81.5 98.1 99.8 94.0

εu2 [%] 61.3 61.9 57.2 85.2 52.3 101 52.8 76.3 55.9

Table 6.8: Results of the stochastic upscaling method. For Markovian fields, εu1 is computed
using the general analytical expression of dispersivity and εu2 is computed using a bimodal
stochastic framework.
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Figure 6.15: Improvement of S compared to the classical ADE for log-Gaussian fields. a.

Influence of the variance (K01 : σ2
Y = 0.1, continuous line ; K02 : σ2

Y = 1.0, dashed line ; K05

: σ2
Y = 2.0, dot-dashed line and K06 : σ2

Y = 4.0, dotted line). b. Influence of the correlation
length (K02 : λ1 = 0.1, continuous line ; K03 : λ1 = 0.5, dashed line and K04 : λ1 = 1.0,
dot-dashed line). c. Influence of the orientation angle (K04 : θ = 0◦, continuous line ; K07 :
θ = 30◦, dashed line and K08 : θ = 90◦, dot-dashed line).
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Figure 6.16: Improvement of S compared to the classical ADE for Markovian fields. a.

Influence of the variance (K11 : σ2
Y = 5.16, continuous line ; K16 : σ2

Y = 9.16, dashed line
and K17 : σ2

Y = 5.66, dot-dashed line). b. Influence of the mean length (K09 : L12 = 0.1,
continuous line ; K10 : L12 = 0.5, dashed line and K11 : L12 = 1.0, dot-dashed line). c.
Influence of the orientation angle (K11 : θ = 0◦, continuous line ; K12 : θ = 30◦, dashed
line and K13 : θ = 90◦, dot-dashed line) d. Influence of a third facies (K11 : no third facies,
continuous line ; K14 : isotropic third facies, dashed line and K15 : anisotropic third facies,
dot-dashed line).

allow the upscaling of permeability, but the latter can induce an additional
error on transport prediction (see Section 6.3). Temporal and spatial CTRW
need local-scale BTC to be applied, and have therefore a direct access to actual
effective permeability through concentration data. In order to keep upscaling
results comparable, it was decided to use a direct measurement of advective
transport. ∆RMSu is found to be almost systematically negative, meaning that
there is an improvement in model predictions compared to the classical ADE
with local parameters. For log-Gaussian cases, the improvement increases when
the variance of the correlation length increases, but decreases when flow is not
oriented with the principal directions of the permeability field. For Markovian
fields, ∆RMSu is relatively small compared to values found for other exam-
ples, and it is decreasing when heterogeneity and complexity of soil structure
increases. For tilted formations (i.e. K13), ∆RMSu is positive at each scale of
observation.
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K01 K02 K03 K04 K05 K06 K07 K08

HX [-] 0.04 0.13 0.14 0.29 0.06 0.09 0.06 0.12

95 % CI [± %] 190 35.1 70.3 17.7 151 67.0 170 47.6

HY [-] 0.08 0.14 0.10 0.13 0.08 0.06 0.02 0.15

95 % CI [± %] 55.5 31.5 63.2 35.8 70.6 86.6 383 38.9

Ĥ [-] 0.06 0.14 0.12 0.21 0.07 0.07 0.04 0.13

αX/αY [-] 1.00 1.00 1.21 1.50 1.00 1.00 1.75 0.09

Table 6.9: Hurst coefficient estimates of log-Gaussian permeability fields in X and Y direc-
tions

K09 K10 K11 K12 K13 K14 K15 K16 K17

HX [-] 0.04 0.07 0.04 0.08 0.09 0.09 0.06 0.10 0.15

95 % CI [± %] 89.7 49.4 111 48.5 52.5 67.8 110 47.2 24.7

HY [-] 0.09 0.12 0.14 0.12 0.07 0.11 0.11 0.13 0.06

95 % CI [± %] 43.1 28.2 24.4 30.8 70.0 70.1 43.5 37.1 74.4

Ĥ [-] 0.06 0.09 0.09 0.10 0.08 0.10 0.09 0.12 0.10

αX/αY [-] 1.00 0.76 0.53 0.82 1.12 0.90 0.73 0.87 1.46

Table 6.10: Hurst coefficient estimates of Markovian permeability fields in X and Y direc-
tions

6.4.3 Fractal methods

Methods for the estimation of Hurst coefficients of multidimensional fields are
relatively scarce in the literature. The straightforward method adopted here
consists in sampling all rows and columns from the field and applying one-
dimensional methods [15]. Tables 6.9 and 6.10 show the results of the disper-
sional analysis. As the number of data was sufficient, there was no need to use
bin shifting to multiply to number of data series to include in the analysis.

For log-Gaussian fields, H estimates are found to be close to 0. They seem
to increase with λ and seem to be relatively independent of the variance. Uncer-
tainty is higher for low Ĥ, which can also be observed from anisotropy. Indeed,
as H increases when correlation increases, one expects the ratio HX/HY to
follow the same trend as λX/λY . For small correlation, it is not the case (see
e.g. K01 and K06), whereas it is for larger correlation (see e.g. K03, K04, K07

and K08).
Markovian fields with constant permeability inclusions are more difficult to

characterize using fractal tools. Indeed, for small bins, permeability increments
are null. The corresponding bin mean is zero for all bins, yielding a standard
deviation equal to zero that cannot accomodate a logarithmic transformation.
The solution to this issue is to exclude smallest bins from the analysis.

The analytical solution of transient dispersivity is only available in the
perfectly stratified case (Eq. 2.43). This solution will be used for anisotropic
cases only. Asymptotic theoretical values are available in the isotropic case
(Eq. 2.44) and in the anisotropic case for flow parallel and perpendicular to the
bedding (respectively Eqs. 2.46 and 2.46). Intermediate orientation cases K07,
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K01 K02 K03 K04 K05 K06 K07 K08

εu [%] 63.4 139 62.0 42.1 145 15.9 32.4 30.2

K09 K10 K11 K12 K13 K14 K15 K16 K17

εu [%] 44.8 48.3 33.2 62.0 20.2 1300 90.6 51.7 153

Table 6.11: Results of the fractal upscaling method.

K08, K12 and K13 will be solved by assuming θ = 30◦ ≈ 0◦ and θ = 60◦ ≈ 90◦.

Strictly speaking, Eqs. 2.46 and 2.47 are valid for anisotropic fractal me-
dia with equal fractal dimensions along horizontal and vertical directions. The
fractal anisotropy ratio αX/αY represents the ratio of relative hydraulic con-
ductivity variation in direction X and Y . Zhan and Wheatcraft [201] indicate
that in general, if αX > αY , the statistical hydraulic conductivity variation
in direction X is smaller than in direction Y or, in other words, the medium
exhibits a more pronounced fractal behavior in the transverse direction and
should be characterized using a smaller Hurst coefficient in that direction. As,
moreover, α2

X + α2
Y = 1, it is proposed to adopt Ĥ = (HX + HY )/2, αX =

√

(HX/(HX +HY ) and αY =
√

(HY /(HX +HY ). In the case of isotropic
medium, the ratio αX/αY was forced to 1.00. It must be noted that if αX/αY

is positively correlated with λX/λY for log-Gaussian permeability fields, it is
correlated with its inverse for Markovian field. Fractal cutoff limit Lm will be
set equal to 4.

Table 6.11 shows the results of the fractal upscaling method. Prediction of
apparent dispersivity is of a similar accuracy as the stochastic method, and
yields much better results than the stochastic method for tilted formations (at
least for log-Gaussian fields). It must be emphasized that stronger assumptions
than in the stochastic framework are made to compute analytical expressions
of dispersivity. As in Chapter 5, although uncertainty on fractal parameters is
higher than uncertainty on stochastic parameters, upscaling of apparent dis-
persivity is of a similar quality.

Figs. 6.17 and 6.18 show values of ∆RMSu. The modelling improvement
increases in highly heterogeneous cases and decreases when flow is not oriented
with the principal directions of the permeability field. For log-Gaussian fields,
∆RMSu is always negative, whereas for Markovian fields, ∆RMSu is positive
at short distances, but decreases and eventually becomes negative at large
distance. Thus, there seems to be a scale limit under which the fractal upscaling
method is not efficient, this limit being in this case between 1/10 to 1/2 of the
total domain length.

6.4.4 Inclusion models

As already mentioned, Dagan et al. [55] state that, provided the distribution of
ellipse sizes and permeabilities is correctly chosen, any permeability distribution
and any covariance function can be approximated by an inclusion model. As
the determination of this appropriate ellipse distribution is beyond the scope
of this study, inclusion models will only be applied to Markovian fields.
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Figure 6.17: Improvement of F compared to the classical ADE for log-Gaussian fields. a.

Influence of the variance (K01 : σ2
Y = 0.1, continuous line ; K02 : σ2

Y = 1.0, dashed line ; K05

: σ2
Y = 2.0, dot-dashed line and K06 : σ2

Y = 4.0, dotted line). b. Influence of the correlation
length (K02 : λ1 = 0.1, continuous line ; K03 : λ1 = 0.5, dashed line and K04 : λ1 = 1.0,
dot-dashed line). c. Influence of the orientation angle (K04 : θ = 0◦, continuous line ; K07 :
θ = 30◦, dashed line and K08 : θ = 90◦, dot-dashed line).
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Figure 6.18: Improvement of F compared to the classical ADE for Markovian fields. a.

Influence of the variance (K11 : σ2
Y = 5.16, continuous line ; K16 : σ2

Y = 9.16, dashed line
and K17 : σ2

Y = 5.66, dot-dashed line). b. Influence of the mean length (K09 : L12 = 0.1,
continuous line ; K10 : L12 = 0.5, dashed line and K11 : L12 = 1.0, dot-dashed line). c.
Influence of the orientation angle (K11 : θ = 0◦, continuous line ; K12 : θ = 30◦, dashed
line and K13 : θ = 90◦, dot-dashed line) d. Influence of a third facies (K11 : no third facies,
continuous line ; K14 : isotropic third facies, dashed line and K15 : anisotropic third facies,
dot-dashed line).
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[m] K09 K10 K11 K12 K13 K14 K15 K16 K17

αL,1 [m] 0.169 1.606 11.07 11.38 1.029 0.911 7.852 1.507 11.07

αL,2 [m] 1.102 15.32 40.84 41.51 6.341 21.00 19.77 40.31 40.84

αL,3 [m] - - - - - 28182 21437 20122 -

α∗

L [m] 0.563 8.026 23.48 23.70 3.266 2711 1918 2187 23.48

εu [%] 33.3 2976 8421 3042 546 4242800 765430 456520 8668

Table 6.12: Results of the inclusion upscaling model.

The analytical solution for flow tilted with respect to the bedding was not
implemented. Therefore, theoretical apparent dispersivity in cases K07, K08,
K12 and K13 will be again determined by assuming θ = 30◦ ≈ 0◦ and θ = 60◦

≈ 90◦. Table 6.12 show predicted asymptotic dispersivities for Markovian fields.
Contribution of each facies is indicated, as well as total apparent dispersivity.
As mentioned by Dagan and Lessoff [56] and by Dagan et al. [55], the apparent
dispersivity computed for high permeability contrast (typically for κ < 10−2) is
limited by diffusion. Values indicated for the third facies are thus unrealistically
high. Regarding εu values, apparent dispersivity is however exaggerated even
for smaller permeability contrast. The only case in a relative agreement with
predicted values isK09, for which it must be moreover noted that the largest ob-
served dispersivity values are about 0.57 m, which is close to the value obtained
by the self-consistent method. Regarding the overall bad upscaling capacity of
the method, no attempt to compute ∆RMSu will be done.

6.5 Application of upscaled transport equations

6.5.1 Characterization using temporal FADE

A similar method as that used in Chapter 5 is applied. Local transport param-
eters are determined from the simultaneous analysis of two local-scale BTC’s
(observed respectively at X = 0.1 m and X = 0.4 m). Results are reported
in Tables 6.13 and 6.14 for log-Gaussian and Markovian fields respectively.
As done previously, characteristic velocities 1/C1 also obtained from the BTC
analysis are expressed as va = vmC1, with vm being a mean velocity computed
from the observed geometric mean of the ln(K) field.

For log-Gaussian fields, βt is found to be lower than observed for stratified
cases, indicating a higher level of heterogeneity, even for low variance cases.
It is moreover found to be constant and equal to 1, whatever be the values
of variance, correlation length and orientation angle. This might indicate that
transport is mainly controlled by advection and that local dispersion and dif-
fusion play a negligible role. Unlike in the stratified case, va is found to be rel-
atively constant too, and no clear correlation can be established between this
parameter and the soil structure. εu values are also indicated in Table 6.13.
For log-Gaussian fields, except for higher variance (> 1) and higher correla-
tion lengths (> 0.5), they are found to be relatively high compared to other
methods. On the contrary, for Markovian fields, εu is found to be particularly
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K01 K02 K03 K04 K05 K06 K07 K08

βt [-] 1.05 1.01 1.01 1.01 1.01 1.02 1.01 0.99

va [-] 0.30 2.55 3.25 3.57 2.34 1.94 3.35 1.37

εu [%] 1642 293 36.7 75.5 146 52.8 291 702

Table 6.13: Results of TC for log-Gaussian fields.

K09 K10 K11 K12 K13 K14 K15 K16 K17

βt [-] 1.03 1.07 1.07 0.97 0.92 1.33 1.09 1.09 1.08

va [-] 3.04 0.35 0.33 1.64 1.99 0.37 0.08 0.15 0.39

εu [%] 20.3 34.4 33.2 36.7 50.7 25.4 46.9 71.6 30.4

Table 6.14: Results of TC for Markovian fields.

low.
Figs. 6.19 and 6.18 show the values of ∆RMSu. It is found to be negative for

distances smaller than 40 cm (i.e. the scale at which transport parameters were
determined) and positive for larger distances. This observation is comparable
to what was obtained in stratified cases, where a scale limit was observed.

6.5.2 Characterization using spatial FADE

As similar method as in Chapter 5 is also used here. βx is obtained from the
comparison of apparent dispersivity at X = 0.1 and X = 0.4 and is reported
in Tables 6.15 and 6.16. In this case, the characteristic length is computed ac-
cording to λB = (Dx/vm)1/(1−βx), vm being defined similarly as in previous
section. For log-Gaussian fields, contrary to βt, βx is found to be linked to
heterogeneity : it is close to 2 for K01 and decreases for increasing variance and
correlation length. It is also found to increase with the orientation angle. Char-
acteristic lengths are found to increase with variance, but not with correlation
length. Bias is most of the time close to zero. εu is found to be relatively low,
in every case. For Markovian fields, βx values are lower. Characteristic lengths
are much more variable and bias is also negative

Values of εu are relatively low, and ∆RMSu, shown in Figs. 6.21 and 6.22,
are also relatively good. However, the analytical solution of the space-FADE
(which is actually a semi-analytical solution involving integrals which have to
be computed numerically) is prone to high numerical errors for βx < 1 and was
not computed for K09, K10, K12, K13 and K14.

6.6 Conclusion

The scale-effect of apparent longitudinal dispersivity was simulated using a nu-
merical model, for various heterogeneous synthetic aquifers. Both log-Gaussian
and Markovian permeability fields were tested. Log-Gaussian fields are widely
investigated in the literature (e.g. Trefry et al. [184]) but relatively few results
are presented for permeability fields exhibiting larger variance and preferential
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Figure 6.19: Improvement of TC compared to the classical ADE for log-Gaussian fields. a.

Influence of the variance (K01 : σ2
Y = 0.1, continuous line ; K02 : σ2

Y = 1.0, dashed line ; K05

: σ2
Y = 2.0, dot-dashed line and K06 : σ2

Y = 4.0, dotted line). b. Influence of the correlation
length (K02 : λ1 = 0.1, continuous line ; K03 : λ1 = 0.5, dashed line and K04 : λ1 = 1.0,
dot-dashed line). c. Influence of the orientation angle (K04 : θ = 0◦, continuous line ; K07 :
θ = 30◦, dashed line and K08 : θ = 90◦, dot-dashed line).

K01 K02 K03 K04 K05 K06 K07 K08

βx [-] 1.94 1.37 1.16 1.15 1.44 1.41 1.25 1.43

λB [m] 44.4 198 294 116 196 342 241 520

γB [-] 0.99 −0.08 −0.19 −0.04 0.03 −0.53 0.09 −0.07

εu [%] 28.0 31.4 75.4 62.4 44.0 59.1 47.5 65.9

Table 6.15: Results of the spatial CTRW upscaling method for log-Gaussian fields.

K09 K10 K11 K12 K13 K14 K15 K16 K17

βx [-] 0.89 1.02 1.43 0.98 0.65 0.52 1.34 1.39 1.37

λB [m] - - 27.4 - - - 0.99 11.8 44.6

γB [-] - - −0.99 - - - −0.99 −0.99 −0.99

εu [%] - - 76.4 - - - 323 25.4 70.7

Table 6.16: Results of the spatial CTRW upscaling method for Markovian fields.
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Figure 6.20: Improvement of TC compared to the classical ADE for Markovian fields. a.

Influence of the variance (K11 : σ2
Y = 5.16, continuous line ; K16 : σ2

Y = 9.16, dashed line
and K17 : σ2

Y = 5.66, dot-dashed line). b. Influence of the mean length (K09 : L12 = 0.1,
continuous line ; K10 : L12 = 0.5, dashed line and K11 : L12 = 1.0, dot-dashed line). c.
Influence of the orientation angle (K11 : θ = 0◦, continuous line ; K12 : θ = 30◦, dashed
line and K13 : θ = 90◦, dot-dashed line) d. Influence of a third facies (K11 : no third facies,
continuous line ; K14 : isotropic third facies, dashed line and K15 : anisotropic third facies,
dot-dashed line).
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Figure 6.21: Improvement of the spatial CTRW upscaling method compared to the classical

ADE for log-Gaussian fields. a. Influence of the variance (K01 : σ2
Y = 0.1, continuous line ;

K02 : σ2
Y = 1.0, dashed line ; K05 : σ2

Y = 2.0, dot-dashed line and K06 : σ2
Y = 4.0, dotted

line). b. Influence of the correlation length (K02 : λ1 = 0.1, continuous line ; K03 : λ1 = 0.5,
dashed line and K04 : λ1 = 1.0, dot-dashed line). c. Influence of the orientation angle (K04 :
θ = 0◦, continuous line ; K07 : θ = 30◦, dashed line and K08 : θ = 90◦, dot-dashed line).
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Figure 6.22: Improvement of the spatial CTRW upscaling method compared to the classical

ADE for Markovian fields. Influence of the variance (K11 : σ2
Y = 5.16, continuous line ; K16

: σ2
Y = 9.16, dashed line and K17 : σ2

Y = 5.66, dot-dashed line).
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Log-Gaussian fields Markovian fields
εu ∆RMSu εu ∆RMSu

S Correct upscaling in all cases Correct upscaling
in all cases

Non-optimal up-
scaling for tilted
formations

F Correct upscaling in all cases Correct upscaling
in all cases

Limit scale below
which the quality
of prediction de-
creases

I Systematic over-
estimation of lon-
gitudinal disper-
sivity

TC Non-optimal
upscaling for low
heterogeneity
and tilted cases.
Correct upscaling
otherwise.

Systematic mis-
prediction of
concentration
distributions

Correct upscaling
in all cases

Limit scale be-
yond which the
quality of predic-
tion decreases

SC Correct upscaling in all cases Numerical instabilities in analytical
solutions for βx < 1. Correct upscal-
ing otherwise.

Table 6.17: Summary of main observations for upscaling methods and upscaled equations
applied to 2D media.

pathways flow architecture (e.g. Elfeki et al. [68], Liu et al. [123] or Zinn and
Harvey [206]). From this point of view, as well as regarding the range of struc-
tural parameters investigated (i.e. large correlation length), the simulations
performed in this chapter are relatively original.

6.6.1 Comparison of methods and models

Results concerning upscaling of transport are summarized in Table 6.17. Main
observations made when applying each model are recalled here, with an empha-
sis on the quality of predictions of apparent dispersivity (i.e. observations linked
to εu) and of concentration distributions (i.e. observations linked to ∆RMSu).

First, methods to predict effective permeability of log-Gaussian heteroge-
neous fields are relatively efficient. Even for high variance, high correlation
length or tilted cases, the stochastic approach allowed a relatively correct up-
scaling of permeability. The method also yields good performance with respect
to effective permeability of Markovian fields, provided flow is parallel to the
bedding. Surprisingly, the self-consistent approach, which is theoretically better
suited to situations where permeability distributions are multimodal, yielded
less adequate effective permeability values, except in the particular case of flow
occuring at an angle with respect to the bedding.

Although the prediction of apparent dispersivity generally reaches a rea-
sonable precision, ∆RMSu values are particularly low, and can even become
positive in particular cases for several models (S, F and TC). This indicates
that a bad prediction of advection transport might be the source of discrep-
ancy. Indeed, even if a migration velocity corresponding to the breakthrough
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curve at X = 0.4 m was adopted, this value might not be representative of
the long-term velocity of the solute plume (which has to be constant since all
investigated K fields are stationary random fields). For the range of correlation
lengths used, flow and transport are not necessarily ergodic at such a small
distance from injection and one does not expect the velocity experienced by
the particle plume to be representative of the whole velocity distribution.

The non-optimal behavior of temporal CTRW is also linked to this issue.
βt values obtained from the joint analysis of X = 0.1 m and X = 0.4 m BTC
mainly reflect the mean velocity difference between both curves rather than the
rate of narrowing of concentration distributions. This is why βt values were all
found to be close to 1. The model then assumes a constant decrease in apparent
velocity, and upscaling results degrade for large times as predicted BTC are
more and more shifted compared to observed BTC. This is reflected by the
increasing value of ∆RMSu for this model. Such a result would plead for an
explicit description of advection, like in other models.

Although space-FADE methods seem to have a higher upscaling efficiency,
their analytical solutions are prone to numerical difficulties in highly heteroge-
neous cases. This indicates that upscaling methods for apparent dispersivity,
to be used with well-known analytical solutions of the classical ADE, might be
more interesting from a practical point of view. Moreover, regarding the gen-
eral similarity between stochastic and fractal methods, and taking into account
that part of the investigated examples are log-Gaussian fields typically suited
for stochastic analysis, results obtained here would indicate that fractal meth-
ods should be considered with a regained interest. The fractal method seem to
be general enough to depict with a sufficient accuracy any type of heterogeneity
and to allow transport upscaling with a relative confidence.

6.6.2 Recommendation for further studies

In this section, several observations are made with respect to issues that could
be potentially solved by further studies. In particular, recommendations are
given to design the physical experiment performed in Part 3. This experiment
could be indeed viewed as a 18th example, aimed at testing assumptions linked
to the numerical code used to solve synthetic examples in this chapter and in
Chapter 5.

First, if upscaling methods and upscaled models yield comparable results for
two-dimensionsional log-Gaussian fields, strong differences appear for Marko-
vian fields. This, added to the fact that relatively few laboratory-scale tracer
tests have been performed using Markovian heterogeneous samples, tends to
indicate that it would be interesting to further investigate transport in such
conditions.

It was also shown that variance was not necessarily a parameter of high
importance with respect to applicability of stochastic methods to transport in
log-Gaussian permeability fields. For the range of variance values investigated
with Markovian fields, typically higher than that of log-Gaussian fields, upscal-
ing results remain of a good quality. A higher-variance case could help to draw
conclusions regarding the applicability of S more confidently. High-correlation
length and tilted cases were also observed to be more problematic.
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Finally, inclusion models exhibited particularly poor performances. Such a
result could be expected to a limited extent, as relatively high permeability
contrasts were investigated, leading to a potentially high influence of diffusion
and local-scale dispersion processes. It is proposed to further elucidate the
effect of these local-scale processes on global transport in Part 3. In particular,
it is proposed to study a situation where diffusion between zones of different
permeability is known to have an influence. This will allow one to assess if
diffusion is indeed highly limitating for inclusion models, and this will also
allow one to introduce mobile-immobile models in the comparison.
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Chapter 7

Transport in a highly

heterogeneous medium

7.1 Introduction

Numerical models are relatively convenient when performing parametrical stud-
ies, in which a large number of different situations have to be evaluated and
compared. However, they are rather artificial as they rely on a conceptual (the-
oretical) model that might be biased and as the whole information is theoreti-
cally known. Although they also rely on conceptual assumptions, physical ex-
periments have to be performed in order to depart from these drawbacks and to
assess flow and transport theories in field-like situations. Field experiments are
expensive as a correct characterization of the subsoil over the scale of interest
(involving the identification of the spatial distribution of permeabilities and the
identification of appropriate boundary conditions) require an extensive char-
acterization and measurement network. On the contrary, Intermediate-Scale
Experiments (ISE) are performed in the laboratory at a smaller scale (usually
of the order of a few meters), under known and identified boundary condi-
tions and permeability distributions. They are cheaper to conduct due to the
smaller volume of soil involved, the smaller duration and the reduced need for
characterization.

This chapter must be considered as a continuation of the previous ones. In
Chapter 5, highly conceptual transport situations were investigated in order to
identify tendencies in model upscaling capacities with respect to variance and
correlation length. In Chapter 6, 2D situations involving both log-Gaussian and
Markovian permeability fields were investigated. Influence of other structural
parameters, such as anisotropy and azimuth angle, was also studied. It came
out of these numerical simulations that Markovian fields might require a deeper
investigation, and that the influence of local-scale processes, such as diffusion,
should be further examinated. The example studied in this chapter must then
be viewed as a 18th example, following the 17 cases investigated in Chapter 6.
It is proposed to simulate the transport problem using a physical rather than
a numerical model, in order to depart from limitations attached to numerical
studies evoked before. It must be emphasized that the objective pursued in this
section is not to validate the numerical code that was used in Chapter 5 and 6.
This code was validated elsewhere and it is assumed to yield accurate results,
within the limits of spatial, temporal and mass discretization adopted.

An important proportion of ISE have been designed by researchers to vali-
date results of stochastic theories. These experiments involve a heterogeneous

123
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synthetic aquifer characterized by a log-normal permeability distributions that
is generated according to a given covariance function. The continuous perme-
ability distribution is then discretized into a finite number of different mate-
rials and is usually characterized by a relatively small variance. For example,
Danquigny et al. [59] investigated transport in a 3D heterogeneous media char-
acterized by a variance σ2

Y = 1.03. Barth et al. [10] performed a 2D experiment
on a synthetic aquifer characterized by a variance σ2

Y = 1.22. The 2D experi-
ment of Silliman and Zheng [170] was characterized by a variance of 0.5. Jose
et al. [109] performed a 2D experiment on a medium characterized by a higher
variance (σ2

Y ≈ 2.4). Welty and Elsner [196] performed tests on two 1D het-
erogeneous soil columns characterized by a variance of 0.25 and 1 respectively.
Ursino et al. [185] performed 2D experiments in unsaturated conditions using
three different materials. They did not indicate saturated permeability values
but, based on d50 values, the maximum permeability ratio can be estimated
at about 1/20. Levy and Berkowitz [121] aimed at validating temporal CTRW
theories, but used three different sands with a maximum permeability ratio of
1/35, resulting in relatively mildly heterogeneous synthetic aquifers.

Tracer experiments involving discrete (bimodal) theoretical permeability
distributions also generally involve mildly heterogeneous media. Silliman and
Simpson [174] were among the first to perfom tracer tests on artificially re-
constructed heterogeneous media, on order to give experimental evidence of
the scale effect under controlled conditions. They used two materials with a
permeability contrast of about 1/20, the finer one being in minor volumetric
proportion (about 16 %). Silliman and Caswell [172] performed experiments on
bimodal media of stochastic and fractal pattern. They however used materials
with a relatively low permeability ratio (about 1/10).

Related transport problems are also usually investigated using low-variance
heterogeneous media. Silliman [171] realized experiments using two realizations
of a log-normal exponentially correlated K field to assess chemical transport to
wells. The influence of heterogeneity on tracer test results has also been widely
assessed using low-variance K field reconstructed in ISE [41, 70, 71]. Wood et
al. [198] investigated biodegradation using a two-layer perfectly stratifed syn-
thetic aquifer with a permeability ratio of 1/13. Murphy et al. [140] performed
similar experiments in an heterogeneous medium composed of a background
formation containing about 3 % of inclusions of a material about 50 times more
permeable. Illangasekare et al. [104] performed experiments on movement and
distribution of DNAPL in heterogeneous media using three sand types with a
maximum permeability ratio 1/33. Schincariol and Schwartz [166] investigated
density effects in perfectly stratified and lenticular heterogeneous media, with
permeability ratio going up to 1/150 but did not consider diffusion processes
in low permeability material.

On the contrary, laboratory studies involving highly heterogeneous medium
are generally limited to very simple heterogeneous patterns. For example, Sil-
liman et al. [173] investigated the effect of preferential pathways and imper-
vious inclusions using hollow plastic tubes and impermeable disks buried in
a porous medium. This experimental approach did not allow them to take
into account mass transfer between zones of very different permeability. Su-
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dicky et al. [177] investigated physical nonequilibrium models, but used a
rather simple soil structure (a three-layer perfectly-stratified model : a thin
layer of sand embedded between two thicker layers of silt). Other diffusion-
dominated problems are typically investigated at the core scale, using column
studies [9, 30, 32, 33, 44, 149, 190, 191].

To the author’s knowledge, no detailed test (i.e. with a known permeability
distribution) on diffusion-dominated problems has already been performed us-
ing a field-like highly heterogeneous medium. Besides attempting to answer to
questions raised in Chapter 6 regarding efficiency of upscaling methodologies
reviewed so far, the aim of this part of the study is thus to alleviate the lack of
experimental data for this type of soil structure and to explore whether obser-
vations and conclusions obtained using a numerical study can be extrapolated
to a physical model set up at the laboratory scale.

It is therefore proposed to create a highly heterogeneous 2D composite per-
meability field in an intermediate-scale laboratory tank and perform a tracer
test. The permeability field will have to be carefully designed as (1) the struc-
ture of the velocity field must exhibit preferential pathways along which dif-
fusion through low-permeability zones can occur and (2) flow through high-K
zones must be, one one hand, fast enough to have a rapid breakthrough (so
that total experiment duration remains reasonable) and, on the other hand,
slow enough for transfer towards low-K zones to occur. A special attention will
have to be dedicated to the choice of materials as (1) chemical interaction be-
tween tracer and the low-permeability material has to be minimized and (2)
tracer must be used at low concentrations (in order to avoid density effects)
but must still be detecteable over a wide range of concentrations. Another
challenge lies in the preparation of the experiment as (1) the synthetic aquifer
must be carefully packed in order to avoid undesired connexions between high-
K zones and (2) the sampling program must be designed in order to minimize
perturbation on the system (which can be critical when sampling in less mobile
zones).

First, the experimental setup is presented in Section 7.2, and a special at-
tention is drawn on the design of the synthetic aquifer. Then, experimental data
collected are presented and a first analysis is conducted in Section 7.3. In Sec-
tion 7.4, numerical models for flow and transport are set up in order to estimate
actual soil parameters using various measurement data. In Section 7.5, upscal-
ing theories are used to attempt to predict apparent longitudinal dispersivity
and tailing behavior observed at the tank outlet.

7.2 Materials and methods

7.2.1 Experimental setup

The experimental setup consists of a 221.0 cm long, 8.0 cm wide, and 45.0
cm high plexiglas tank (Figs. 7.1 and C.1). It is equipped with inlet and out-
let reservoirs, separated from the heterogeneous aquifer by a 3-cm thick filter
made of very coarse sand (d50 ≈ 2 mm) maintained with stainless steel screens
covered with a geotextile. A peristaltic pump was used to impose a constant-
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Figure 7.1: Schematic view of the experimental setup. Position of pressure measurement
ports and sampling ports.

flux inlet hydraulic boundary condition (Fig. C.2) and a fixed-head condition
was applied at the tank outlet (Fig. C.3). Deaired tap water was used for the
whole experiment. Sample confinement was achieved using bentonite, separated
from the soil using a plastic film to prevent physical and chemical interaction
between tracer and bentonite.

A total of 21 pressure measurement ports were set evenly along the sample
(including upstream and downstream reservoirs). Pressure ports installed in
the aquifer were made of needles plugged into rubber septas installed in the
tank wall (Fig. C.4). Needle diameter had to be small enough so that soil grains
could not clog it. All pressure measurement ports were connected to a pressure
transducer (Validyne P55) through a scanning fluid switch (Double Scanivalve
System DSS-24C), allowing one to take measurements on a regular time basis
for the whole experiment (Figs. C.6 and C.7). Fig. 7.1 and Table C.1 show the
locations of the pressure ports.

Rhodamine WT (RWT) was used as tracer. Reasons justifying that choice
are described in Section 7.2.3. As, in this study, a particular attention needs
to be devoted to tail behavior, a high-concentration injection was performed
in the upstream reservoir. Samples with higher concentration have then to be
diluted in order to be analyzed. This was done in order to increase precision of
late-time concentration data and obtain relative concentration curves extend-
ing over several orders of magnitude (i.e. over a larger range than allowed by
the measurement device). Mixing in the upstream tank was maintained using
a mechanical laboratory stirrer (Fig. C.8). In such conditions, concentration
curve at injection decays exponentially and induces heavy-tailed concentration
distributions. As this could potentially hide tailing effects due to local-scale
processes in the sample, the upstream reservoir was flushed about 60 minutes
later in order to create a Dirac-like injection condition.

Sampling ports were built similarly to pressure ports, but were equipped
with a small tap allowing one to manually take samples (Fig. C.5). 2-ml samples
(Fig. C.9) were taken at 17 different locations, shown in Figs. 7.1 and 7.2.
Samples were diluted 6 to 216 times with deionized water and analyzed using
a 10-AU Turner Designs Fluorometer (Figs. C.10 and C.11).
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7.2.2 Design of the heterogeneous aquifer

The heterogeneous medium is composed of three different silica sands. A two-
material model would have only allowed one to simulate properly either an
advection-dominated problem (with mild permeability contrast) or a diffusion-
dominated problem (with a high permeability contrast) and the conclusions
to be drawn would have been straightforward according to the configuration
adopted. Moreover, a two-material synthetic K field is thought to be a too
simplified model for a real aquifer. On the contrary, multiplying the number
of material would lead to a log-Gaussian-like aquifer (e.g. Fernandez-Garcia et
al. [70] have discretized a log-normal distribution in 5 categories). Therefore, it
is believed that a three-material model is a relatively good candidate to perform
this study.

Materials with the highest permeability are silica sands corresponding to
mesh #8 (high K inclusions - further referred to as material 1) and #30 (back-
ground formation of intermediate K - material 2) respectively. Some of the
mechanical and hydraulic properties of these materials are summarized in Ta-
ble 7.1. Sorption properties of Rhodamine WT with these materials are inves-
tigated in Section 7.2.3. Filters separating the sample from inlet and outlet
reservoirs are actually made of material 1, from which the finer fraction was
removed.

Two main criteria guided the choice of the third material (material 3). First,
preliminary simulations showed that a permeability contrast of at least three
orders of magnitude between intermediate and low permeability materials was
required. This is in accordance with the results that Guswa and Freyberg [88]
obtained in their numerical study of transport through a single ellipse. Using
basic empirical formulae, this requirement could be converted into a constraint
on particle size distribution. Then, a geotechnical stability criterion added a
second constraint on particle size distribution. The material that was used
resulted from the mixing of a #325 silica flour with #140 and #70 silica sands,
respectively in 15 %, 45 % and 40 % weighing proportions. Permeability values
based on column test ranged between 10−4 cm/s and 5 10−4 cm/s.

Transition probabilities were used to set up the spatial distribution of per-
meabilities [39, 40]. Target volumetric proportion of high (material 1) and low
permeability (material 3) inclusions are respectively 10 % and 50 %. The syn-
thetic aquifer is characterized by a relatively high level of anisotropy, as inclu-
sions have a mean size of 20 cm × 2 cm. No preferential spatial sequences were
considered by setting transitions probabilities from material 1 to 2, 1 to 3, 3 to
1 and 3 to 2 equal. The relatively high proportion of low permeability material
and the high anisotropy ratio were chosen to ensure preferential pathways flow
architecture, with rapid flow in high-K channels surrounded by low-K lenses, to
stimulate diffusion-dominated transport. The permeability field was generated
using T-Progs [38] for a larger domain (5 m × 2 m), from which the reference
field to be used was extracted in order to avoid potential border effects. A
packing unit of 2 cm × 2 cm was adopted, resulting in inclusions having a slab
shape. Fig. 7.2 shows the distribution of permeability that was adopted for this
study. Figs. C.12 and C.13 show corresponding transition probabilities as well
as theoretical Markov chains models. Actual material proportions are 7.5 %,
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Figure 7.2: Spatial structure adopted for the heterogeneous aquifer. Background formation
is gray, low-K inclusions are white and high K inclusions are black. Pressure ports (+-cross)
and sampling ports (x-cross) are also represented.

Material Bulk density Porosity Permeability Longitudinal
[g/cm3] [%] [cm/s] dispersivity [cm]

1 1.43 − 1.60a 39.7 − 45.9a 1.613 − 2.730a 0.161 − 0.229b

2 1.31 − 1.61a 39.4 − 50.4a 0.150 − 0.307a 0.058 − 0.223b

3 - - 10−4 − 5 10−4 -
afrom Sakaki and Komatsu [156]
bfrom Fernandez-Garcia et al. [70]. Dispersivity values determined for Br− and Li.

Table 7.1: Summary of the properties of the two sand types used as high- and medium-K
material

42.5 % and 50.0 % for material 1, 2 and 3 respectively.
Packing was achieved under approximately 2 mm of standing water, so that

air entrapment was minimized (i.e. saturation is maximized) during the packing
process but fine particles (present in material 3) are not suspended. This could
result in fine upward sequences that would strongly affect transport and that
would be difficult to model. Vertical separation between regions of different
material was maintained using thin metal dividers. Packing was achieved in a
relatively loose way, as the tank was not vibrated due to potential disturbances
that could have been induced at slab boundaries.

7.2.3 Tracer characterization

Sutton et al. [178] enumerate five reasons to justify the suitability of RWT as a
groundwater tracer : (1) RWT can be detected at concentrations as low as 0.1
ppb using a sensitive flutorometer ; (2) RWT is considered the most stable of
the fluorescent dyes and its main degradating agents are not naturally present
in groundwater systems ; (3) fluorescence of RWT is not influenced by the pH
provided it is higher than 6 ; (4) the U.S. Environmental Agency does not expect
adverse health effects when RWT is used as tracer if sanitation guidelines are
followed and (5) Sutton et al. [178] report from Field et al. that RWT is not
an acute toxic threat above 1 mg/L.

However, for physical aquifer characterization, the ideal tracer should be
conservative, and RWT is known to be a reactive tracer. For example, Ptak
and Schmid [148] performed a tracer test in a highly heterogeneous and highly
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conductive aquifer over a short distance and observed significant differences
between RWT and fluoresceine (known to be less reactive). They obtained
an effective retardation coefficient for RWT ranging between 1.26 and 1.40.
Moreover, batch studies highlighted that RWT was sorptive even on mineral
surfaces (alumina and silica) [154].

Actually, other tracers could have been considered for this study. For exam-
ple, bromide (Br−) is usually assumed to be an ideal conservative tracer [122].
It can however only be measured within relatively high concentration ranges
(using e.g. a ion chromatograph), at which density effects can become impor-
tant [11]. This limitation, added to the need for a wide measurement range
at relatively low cost, constrains the choice of the tracing technique to fluo-
rescence. Fluoresceine could then have been considered, as it is less sorptive
than RWT [148, 155]. It is however known to be much more reactive to sun-
light [155]. As the sandbox walls are made of plexiglas and as the tracer test
is expected to last more than one month, the risk of exposure to sunlight was
found too high to adopt this tracer.

Batch tests were performed in order to explore sorption effects of RWT
on each of the materials that were used. The aim pursued by this orientation
testing was not to derive sorption models to be used in the analysis of concen-
tration series. In that case, column tests should have been preferred. The aim
was only to verify whether one should expect sorption of RWT on soil grains
or not. Material 3 was not investigated, but each of its three components were
tested independently, which is though to be sufficient here.

As a reminder, equilibrium chemical interaction is quantified using parti-
tioning coefficients Kd according to

Cs = KdC (7.1)

Cs = KdC
n (7.2)

where C [g/L] is the solute concentration in the liquid phase and Cs [g/kg] is
the sorbed concentration. Eq. 7.1 is a linear model that is suited to described
low-concentration situations. Eq. 7.2 is referred to as the Freundlich isotherm.

Table 7.2 shows the values of partitioning coefficients that were obtained and
Figs 7.3 and 7.4 show the agreement of sorption models with experimental data.
A linear model is usually adopted for concentrations lower than 100 ppb [122,
178]. However, for concentrations in the range investigated in this study (i.e.
up to 2000 ppb), a Freundlich model is usually better suited [155]. Both models
were fitted to experimental data and are reported here.

Except for silica sand #70, Kd values reported here are generally consistent
with other results presented in the literature. For example, Sutton et al. [178]
observed Kd values between 0.142 and 0.198 L/kg for isomers of RWT and a
washed sand used for monitoring wells pack. For the range of bulk densities and
porosities given in Table 7.1, one expects the linear retardation coefficient to
range between 2.00 and 2.28 for material 1 and 1.23 and 1.37 for material 2. No
desorption test was performed to assess the reversibility of chemical reaction.
However, Sutton et al. [178] mention a mass recovery of about 80 % on column
studies for their washed sand. Lin et al. [122] conducted batch experiments
using natural soils with a relatively high organic content and indicate that only
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Material 1 Material 2 Material 3
#8 #30 #70 #140 #325 flour

Linear Kd 0.32 0.09 1.34 0.38 0.16

Freundlich
Kd 0.41 0.12 1.51 0.53 0.14
n 0.73 0.60 0.74 0.65 0.69

Table 7.2: Estimated partitioning coefficients and exponents for a Freundlich isotherm.
Kd for the linear model is expressed in [l/kg] and similar units are used for the Freundlich
isotherm.
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Figure 7.3: Linear adsorption isotherms
for Rhodamine WT. #8 (squares), #30
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(dashed line).

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

C
s [m

g/
kg

]

C [ppb]
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and corresponding fit (dashed line).

10 % of the sorption was reversible. Kd for silica sand #70 is extremely high
and is suspected to be influenced by an experimental error.

The aqueous diffusion coefficient of RWT was not found in the literature,
but Sabatini [154] estimates that of Sulforhodamine B at 4.7 10−10 m2/s. This
value will be used here with a tortosity factor of 0.7 [72], leading to an estimated
effective diffusion coefficient of 3.3 10−10 m2/s.

7.3 Experimental results

Bulk experimental data are presented in this section, as well as results from
preliminary analyses. First, considerations linked to flow in the sample are
summarized in Section 7.3.1. Then, concentration data recorded in the down-
stream reservoir is examined in Section 7.3.2 with respect to mass balance, and
in Section 7.3.3 with respect to apparent transport parameters. Finally, local
BTC (i.e. BTC recorded at sampling ports located in the tank) are presented
in Section 7.3.4 and sets of apparent transport parameters are computed.

7.3.1 Head and discharge data

Liquid phase samples were initially taken every 3 hours at every sampling
port for the first 5 days. This frequency was adopted in order to maintain
the estimated perturbation on total discharge below 5 %. It was moreover
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Figure 7.6: Concentration in the dow-
stream tank. Experimental values (circles),
late-time linear tailing behavior (continu-
ous line) and ADE fit (dashed line).

checked using a preliminary numerical model that this design allowed a proper
detection of concentration peaks. For the following 5 days, sampling frequency
was decreased to one sampling sequence every 6 hours, and then progressively
decreased to one sampling sequence every week. Besides daily variations due to
temperature and pressure fluctuations, pressure drops due to sampling can be
clearly observed (Fig. C.14). The reference gradient i = 1.45 % that is adopted
throughout the remaining part of this analysis corresponds to the average value
measured between 420 and 450 hours from injection (±3.2 cm of head difference
between upstream and downstream reservoirs). Numerical values adopted to
perform the analysis of other results are reported in Table C.1.

Total discharge was measured using a weighing method. A volume of about 2
liters was collected at the tank outlet, over a duration of 4 to 5 hours. Data also
reflect the influence of sampling, as the measured value increases when sampling
frequency decreases (Fig. C.15). The total discharge for the last (supposed
unperturbed) measurement is 4.988 ml/min, yielding an effective permeability
of 1.830 10−2 cm/s ± 2 % (95 % confidence interval estimated from the variance
of the measured gradient). Whether this value could be expected or not is
discussed in Section 7.4.2.

7.3.2 Mass recovery considerations

A perfect pulse injection condition could not be achieved, as the flushing could
only decrease concentration by one order of magnitude in the upstream tank
(Fig.7.5). It must be moreover observed that concentrations tend to recover
just after flushing. Two explanations can be invoked for this phenomenon :
back diffusion from the aquifer and desorption from bentonite residuals present
in the upstream reservoir. A second and a third flushing were also performed
at later times but had limited effects. Late-time behavior of the injection curve
decays exponentially, at a rate controlled both by total discharge and upstream
reservoir volume. Background concentration is about 1 ppb (as the fluorometer
was calibrated using standard solutions made from deionized water and tap
water is used in the tank). Integration of the curve yields a total injected
tracer mass of 19.912 mg.
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The total mass of tracer recuperated at the model outlet, obtained by in-
tegration of the outlet BTC (Fig. 7.6) up to 107 s, is 14.302 mg. As no leak
appeared during the experiment, about 28.2 % of the tracer mass is still trapped
in the tank after about 50 days. As the outlet BTC exhibits a strong tailing
behavior, assuming that the observed log-log linear late-time trend remains
unchanged until the background concentration is reached (e.g. 1 ppb at about
2 107 s), it is possible to compute an additional mass of about 4.5 mg that
could be potentially recuperated at the model outlet. The corresponding mass
balance would then be verified within 5 %. Based on results obtained by other
authors, irreversible sorption might be another explanation for incomplete mass
recovery.

7.3.3 Outlet breakthrough curve

The outlet breakthrough curve, shown in Fig. 7.6, is representative of concen-
tration distributions averaged over the whole sample cross-section. Therefore,
apparent transport parameters for this curve could be characteristic of an ho-
mogeneous medium equivalent to the heterogeneous aquifer. It will be shown
in this section that the definition of that equivalent homogeneous medium is
not straightforward and that analysis of the outlet BTC can yield different sets
of transport parameters, depending on the point of view adopted.

Similar tools as in previous chapters can be used to analyze temporal con-
centration series. It is first proposed to use curve-fitting to obtain apparent
Fickian transport parameters for the outlet BTC. The analytical solution of
the advection-dispersion equation (without retardation) corresponding to the
actual injection curve was used. A convolution product was also added in the
model to simulate mixing in the downstream reservoir. Mean migration ve-
locity and apparent longitudinal dispersivity were found equal to 1.169 10−5

cm/s ±121 % and 44.5 m ±119 % (95 % confidence interval) respectively. These
values are unrealistic, and both confidence intervals extent to non-physical neg-
ative values.

Instead, temporal moment analysis can be used. The value of apparent dis-
persivity that is obtained using this method better corresponds to its theoretical
definition : it is computed as the spreading of the concentration distribution
around its center of mass. Moreover, this method is more straightforward than
curve-fitting (it does not require an optimization algorithm) and embodies a
proper scaling for peak concentrations (as temporal moments are normalized
by the zeroth moment). It is however recognized that this method might lead
to biased results as (1) total recovery is not observed, (2) the injection condi-
tion is not a perfect Dirac point injection and (3) mixing in the downstream
reservoir is not accounted for. The second effect is believed to have a minor
influence. Flushing in the upstream reservoir induced sharp variations of in-
jection concentrations, having a limited effect on apparent dispersion. Only
a slight underestimation of apparent velocity is expected. The third effect is
known to induce a higher apparent dispersion but, as distributions are already
characterized by a high spreading, the relative increase is supposed to be of
minor influence. Transport parameter values are v = 1.829 10−4 cm/s and
α∗

L = 1.02 m.
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As a reminder, Darcy velocity obtained from discharge measurements was
2.598 10−4 cm/s. Assuming a reasonable value of porosity (e.g. 40 %), the mean
retardation factor would be about 3.6. This value seems to be unrealistic regard-
ing the set of Kd values obtained (assuming that the value obtained for sand
# 70 is erroneous). As observed by Rovey and Niemann for a sensitively less
heterogeneous sample [151], mean advective transport in heterogeneous media
is slower than predicted using the effective permeability, even for conservative
tracers, due to dispersion and diffusion towards less mobile zones which, in the
average, prevent solute particles to concentrate in preferential pathways.

If diffusion is indeed a key process for the case under consideration, it con-
trols late-time behavior of concentration distributions. Advection should then
be estimated from early-time data instead of from the whole curve. Fitting of
the analytical solution of the ADE (using actual injection condition and con-
volution to model mixing in the downstream tank) on the raising part of the
outlet BTC yields a mean migration velocity of 1.431 10−3 cm/s and an ap-
parent longitudinal dispersivity of 3.57 cm. As mass balance does not apply
when analyzing only part of the BTC, a scale factor was used in the curve-
fitting process to match peak concentration. Assuming no retardation and an
homogeneous sample, a value of 18.2 % can be calculated for the mean effective
porosity, which is clearly outside the bounds showed in Table 7.1 for material
1 and 2 and seems to be too low to be explained by the presence of material 3.
Accounting for retardation would decrease this value even more.

Actually, solute transport in heterogeneous media is controlled by connec-
tivity rather than effective porosity [71]. Connectivity is the concept that con-
templates the presence in an aquifer of high conductivity pathways between the
point of injection and the measurement point [71]. For a flux-type injection,
transport mainly occurs in these preferential pathways, at a velocity higher
than the mean migration velocity (i.e. corresponding to the mean Darcy ve-
locity divided by the mean porosity). Therefore, solute front is detected at the
measurement point earlier than predicted by the mean migration velocity. The
only way to account for this phenomenon assuming an equivalent homogeneous
medium is to take a lower mean effective porosity value.

Comparing both apparent dispersivity values is a direct illustration of the
scale effect. Dispersivity from early-time BTC data is representative of disper-
sion processes along preferential travel path in the high-K phase. This value
could therefore be interpreted as a local (microscopic) longitudinal dispersiv-
ity. The apparent dispersivity of the whole BTC includes the full complexity of
transport processes occuring in the sample : macroscopic differential advection,
mass transfer between preferential pathways and low-K zones, and microscopic
sorption processes. The ratio of macroscale to local longitudinal dispersivity is
about 30, which is particularly high.

Finally, the strong linear tailing behavior exhibited by the outlet concen-
tration curve typically highlights multiple-rate transfers between mobile and
immobile phases (see Section 3.4). Spatial variability in sorption properties of
the tracer might also contribute to the tailing behavior of the BTC [148, 165].
A linear model was fitted on the curve plotted on a log-log scals graph and the
slope was found equal to −1.1366.
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Port X Y v CV αL C 〈t〉 α∗

L 1/ω
[m] [m] [m/d] [-] [cm] [-] [d] [m] [d]

US 0.00 - - - - - - - -
DS 2.26 - 1.236 0.017 3.57 0.14 14.3 1.02 54.1

A1 0.601 0.331 0.740 0.009 0.94 0.44 7.35 0.55 29.0
A2 0.601 0.283 1.751 -a 0.18 0.44 4.43 1.12 21.5
A3 0.601 0.245 5.439 0.065 5.73 0.37 12.6 0.30 29.7
A4 0.601 0.181 7.777 0.047 1.13 0.08 13.6 0.21 37.2
A5 0.601 0.119 8.350 0.053 0.65 0.38 5.52 0.77 25.1
A6 0.643 0.055 1.077 0.204 4.34 0.38 3.99 1.10 28.1

B1 1.211 0.331 0.810 0.013 1.71 0.25 11.1 0.65 21.7
B2 1.211 0.281 0.841 0.035 3.78 0.32 11.6 0.65 27.7
B4 1.211 0.203 0.719 0.013 2.04 0.48 12.4 0.58 26.5
B5 1.211 0.157 0.473 0.019 4.65 0.39 15.0 0.48 43.3
B6 1.211 0.099 0.994 0.015 0.65 0.22 9.77 0.79 18.6

C1 1.809 0.307 0.543 0.008 3.96 0.33 17.3 0.69 81.4
C2 1.809 0.283 0.524 0.007 2.75 0.29 18.0 0.66 112.0
C3 1.809 0.233 0.576 0.013 4.06 0.22 17.1 0.71 96.4
C4 1.809 0.135 0.546 0.056 11.1 0.32 16.3 0.65 58.5
C5 1.809 0.097 1.042 0.014 4.51 0.29 10.9 1.02 29.0
C6 1.809 0.067 1.173 0.013 4.87 0.30 9.33 1.21 29.3

adue to too fee early-time measurements

Table 7.3: Position of sampling ports. Apparent velocity v, corresponding coefficient of
variation CV obtained from the confidence interval of v, local dispersivity αL and scale
parameter C are obtained from early-time behavior of BTC. Mean breakthrough time 〈t〉
and apparent dispersivity α∗

L are obtained from temporal moment analysis. Exchange rate
ω is obtained from the fitting of a linear model on the semilog plot of the BTC.

7.3.4 Local concentration data

Local breakthrough curves recorded at sampling ports A to C are showed in
Figs. 7.7 to 7.9. Again, early breakthroughs and late-time heavy tails are ob-
served.

First, apparent transport parameters are determined for each BTC using
entire curves. Temporal moment analysis was also used, with the limitations
highlighted in previous section (except that the downstream reservoir has no
influence here). Apparent velocities and longitudinal dispersivities are shown
in Figs. 7.10 and 7.12, and are indicated in Table 7.3. Apparent dispersivity
values, although smaller than observed for the outlet BTC, are of a similar
order of magnitude and exhibit a scale-effect.

Local apparent velocities and dispersivities were then estimated by fitting
of the ADE solution corresponding to the actual injection curve to the raising
part of the BTC. Local apparent velocities and dispersivities are plotted in
Figs. 7.11 and 7.13 respectively and their numerical values are indicated in
Table 7.3. Dispersivities are about two orders of magnitude smaller and do
not seem to exhibit a scale-effect. This tends to support the assumption that
apparent dispersivities from early-time data (i.e. using the raising part of BTC)
are local values, not necessarily influenced by heterogeneities.



7.3. Experimental results 135

0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]
0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]

A1 A2

0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]
0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]

A3 A4

0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]
0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]

A5 A6

Figure 7.7: Concentration recorded in sampling ports A. Experimental values (circles),
late-time linear tailing behavior (continuous line) and ADE fit (dashed line).
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Figure 7.8: Concentration recorded in sampling ports B. Experimental values (circles), late-
time linear tailing behavior (continuous line) and ADE fit (dashed line).



7.3. Experimental results 137

0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]
0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]

C1 C2

0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]
0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]

C3 C4

0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]
0 1 2 3 4 5

x 10
6

10
0

10
2

10
4

C
on

ce
nt

ra
tio

n 
[p

pb
]

Time from injection [s]

C5 C6

Figure 7.9: Concentration recorded in sampling ports C. Experimental values (circles),
late-time linear tailing behavior (continuous line) and ADE fit (dashed line).
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locity obtained from temporal moment
analysis of local breakthrough curves
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Figure 7.11: Apparent longitudinal ve-
locity obtained from curve-fitting on early-
time concentration data
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Figure 7.12: Apparent longitudinal dis-
persivity obtained from temporal moment
analysis of local breakthrough curves
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Figure 7.13: Apparent longitudinal dis-
persivity obtained from curve-fitting on
early-time concentration data

Finally, assuming that a single-rate transfer model between mobile and
immobile zones can be adopted, a linear model was fitted on the late-time
semilog plot of concentration ln(C) vs t. However, since a perfect Dirac injection
condition could not be achieved, concentration decays exponentially in the
upstream tank. One expects this exponential behavior to control very late-
time concentration curve and, therefore, only intermediate-time data (i.e. the
part of the curve occuring after the peak, that behaves linearly except for the
couple of last measurements) were analyzed to obtain local-scale transfer rates.
Fig. 7.14 shows a smoothened distribution of exchange rates with a lognormal
distribution fitted on the main peak. Its corresponding mean and standard
deviation are respectively ln(µ) = −14.681 and σ = 0.22.

7.4 Numerical model

Actual physical properties of the synthetic aquifer build in the tank may differ
from the range indicated in Table 7.1, due e.g. to settling and disturbances dur-
ing the packing process. These values are however required in order to apply
analytical methods presented in Part 1. Therefore, a numerical model corre-
sponding to the heterogeneous configuration shown in Fig. 7.2 has to be set
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up and validated against e.g. outlet concentrations (which is the data with
which upscaling models will be confronted). It is then proposed to use inverse
modelling to determine actual material properties based on local experimental
data.

7.4.1 Numerical codes

It is proposed to use the same codes as in Chapter 5 and Chapter 6, MOD-
FLOW 2000 [96] for flow and RWHet [115] for transport. RWHet does not em-
body the capacity to simulate reactive transport. However, linear retardation
results in apparent lower velocities, which can be easily accounted for by using
higher effective porosities. Transport codes able to simulate reactive transport
are available (e.g. MT3D [203]). These codes are however based on numerical
schemes prone to artificial dispersion. Regarding the range of local dispersivities
evoked in Table 7.1, the numerical grid required to avoid numerical dispersion
would lead to too high computational costs.

In a first step, only head and discharge measurements are used in this
process to determine actual permeabilities of material 2 and 3, using an au-
tomated parameter estimation procedure implemented in MODFLOW 2000.
Then, a simple trial-and-error method using outlet concentration data will be
applied to estimate lumped effective porosities using RWHet.

Actuallly, two attempts to incorporate local concentration data in opti-
mization algorithms combined with transport numerical codes were performed
but did not yield valuable results. First, early-time (according to the definition
already used) advective transport measurements were used in an automated pa-
rameter estimation procedure combined with a purely advective particle track-
ing algorithm [1, 2]. This highlighted that diffusion processes could not be ne-
glected in the model. Then, mean advective transport measurements obtained
from temporal moment analysis were used with an optimization algorithm and
a numerical code solving the steady-state ADE, but no useful result could be
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Figure 7.15: Comparison of experimental
(circles) and simulated (continuous line)
heads for optimal transport parameters.
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Figure 7.16: Comparison of experimental
(circles) and simulated (continuous line)
heads for optimal transport parameters.

obtained as well. The full transient numerical code for transport RWHet could
not be used in an automated calibration procedure due to computational costs.

7.4.2 Estimation of permeabilities

A numerical model for the flow field was set up using a 1 cm × 1 cm two-
dimensional square grid. The Parameter-Estimation package [99] was used to
estimate actual permeability values corresponding to the spatial distribution
shown in Fig. 7.2. As the sensitivity of heads to the permeability of material
1 was found to be very low, due to its low volumetric proportion, K value for
material 1 could not be determined and was estimated from the range reported
in Table 7.1. It must be noted that the filters isolating the sample from inlet
and outlet reservoirs were explicitly incorporated in the numerical model. Their
properties were set equal to those of material 1.

Weighted least-square fitting was used, and observation errors were esti-
mated from the variability of head measurements during the corresponding
discharge measurement. The latter was assigned a much higher weight, so that
its simulated value is close to its measured value. Permeabilities of material
2 and 3 were determined for various K values of material 1 and were found
to be relatively insensitive to it. Final values are K2 = 8.39 10−3 m/s ±59 %
and K3 = 3.32 10−6 m/s ±26 %. Fig. 7.15 shows that the agreement between
oberved and simulated heads is relatively good. Final discrepancy between ob-
served and simulated total discharge is about 0.3 %.

Fig. 7.17 shows the computed head. The lack of connectivity of the per-
meability is clearly visible in the head field, as most of the total head drop
happens between X = 1.5 m and X = 1.6 m.

7.4.3 Validation of the model

As previously stated, a trial-and-error method was performed using only outlet
concentration data with the numerical code RWHet [115]. A similar grid to that
of the flow model was used, but the flow domain was extended upwards by 20
cm in order to limit boundary effects (as already done in previous chapters).
1.000.000 particles were injected at time t = 0 over the boundary X = 0.
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In order to simulate a flux-type injection condition, the number of particles
in a cell was set proportional to the velocity in that cell. The outlet BTC was
calculated as the number of particles exiting the flow domain between two time
steps, which is a measurement in flux. The curve was afterwards convoluted
with the inlet concentration curve and mixing in the downstream tank was
accounted for by convoluting the curve with a negative exponential (as done
previously).

Local dispersivities were set constant and equal to αL = 1 cm and αT = 1
mm. Fig. 7.18 shows the predicted curve for effective porosities equal to 0.48,
0.52 and 0.42 for material 1, 2 and 3 respectively. These values are higher than
the maximum values reported in Table 7.1, which highlights retardation pro-
cesses. The agreement is only partially convincing : advective transport (i.e.
the raising part of the curve) is correctly modelled, as well as peak concentra-
tions. However, the tailing behavior could not be reproduced, whatever be the
values of porosities and diffusion coefficient. Actually, the model did not re-
veal a high dependence of tailing behavior on diffusion, indicating that another
explanation should be invoked for that observation. Enhanced tailing can also
be attributed to variability in sorption processes [47, 148]. As different lumped
porosities were estimated for each material, variability in retardation factor is
incorporated within the numerical model. Therefore, one could wonder if sorp-
tion/desorption kinetic effect take place. More precisely, such a tail could be
explained by a slow desorption process.

It must be emphasized that mobile-immobile processes should not be taken
into account in the detailed numerical model of the aquifer. Indeed, no in-
traparticle diffusion can be considered for the silica sands used here. Mobile-
immobile models can only be considered when attempting to replace the het-
erogeneous aquifer by an equivalent homogeneous one.

High lumped porosities are in agreement with the expected sorptive behav-
ior of Rhodamine WT on soil grains. As the sample was packed in a relatively
loose way, one estimates actual porosities to be in the higher part of the inter-
val indicated in Table 7.1. Therefore, retardation coefficients probably range
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Figure 7.18: Comparison of experimental
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Figure 7.19: Natural logarithm of the velocity field. Velocities are expressed in [m/s].

between 1.05 and 1.21 for material 1 and 1.03 and 1.16 for material 2. For
the latter material, results are smaller but close to values discussed in Sec-
tion 7.2.3. The lower influence of material 1 on transport might account for the
higher discrepancy.

Fig. 7.19 shows the spatial distribution of the norm of migration velocity. It
indeed exhibits a preferential pathway architecture, with an important channel
in the lower part of the sample and a smaller one in the upper part of the
sample. The disconnected zone also appears between X = 1.5 m and X = 1.6
m.

7.5 Application of non-Fickian models

In previous sections, it was shown that transport was infuenced both by physical
and chemical processes. This sensitively complicates the analysis and the links
to draw with observations from Chapter 5 and Chapter 6. As upscaling methods
for apparent dispersivity only account for physical processes originating from
the presence of heterogeneity, one already expects them to yield poor results,
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especially regarding the extremely high value of apparent dispersivity obtained.
However, upscaled transport equations could account for chemical processes
through lumped parameters and are expected to yield better results. It must
be noted that filters, made of material 1, are supposed to be part of the synthetic
aquifer.

7.5.1 Upscaling of flow

According to the methodology adopted in Chapter 6, results with respect to
flow are first confronted to corresponding upscaling theories. As no measure-
ment of the velocity distribution could be performed in the experimental tank,
only effective permeability is considered in this analysis. As a reminder, a value
of 1.830 10−4 m/s was found for that parameter. That value could be correctly
predicted using the numerical model presented in previous section, since ade-
quate permeability values of each material were found to be close to measure-
ments performed in column studies (values presented in Table 7.1). It will be
verified in this section whether theories based on structural descriptions of the
permeability field allows an efficient upscaling of permeability.

The variance of the lnK field can be computed using Eq. 6.12 and is about
16. This value is really high compared to other experimental investigation of
transport in heterogeneous media at the laboratory scale. Similar assumptions
as in Chapter 6 are made regarding the computation of equivalent correlation
lengths. The material with the largest volumetric proportion (i.e. material 3)
is supposed to control flow and transport and correlation lengths are computed
from the mean facies length and from the volumetric proportion of other ma-
terials. This yields λ1 = 0.1 m and λ2 = 0.01 m.

The geometric mean of the permability field is computed using Eq. 6.11 and
equals 1.81 10−4 m/s. The effective permeability for a mean flow aligned with
theX direction is computed from Eq. 6.13 and equals 1.37 10−3 m/s. This value
is one order of magnitude higher than the value actually measured . Moreover,
the theoretical value of effective permeability for a mean flow parallel to the
Y direction would be negative, making the stochastic theory of flow upscaling
totally unadapted. In the self-consistent approach, the effective permeability
for a mean flow aligned with the X direction is given by Eq. A.22 and equals
4.60 10−3 m/s, which is a worse estimation than the stochastic result.

Analytical results from theories on solute transport in heterogeneous media
generally assume a constant effective porosity. Therefore, permeability values
will be corrected so that migration velocities correspond to a normalized con-
stant effective porosity, that will be arbitrarily taken equal to 40 %.

7.5.2 Upscaling of longitudinal dispersivity

In this section, upscaling theories for apparent dispersivity are tested based
on available data. The main difference with what was previously done is that
parametrization methods cannot always be applied as presented in Chapter
4, due to the lack of necessary data. Moreover, apparent dispersivity values
obtained from temporal moment analysis of the local breakthrough curves can-
not be compared with upscaling results of non-Fickian theories as they do not
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Figure 7.20: Dispersional analysis to de-
termine Hurst coefficient in the longitudi-
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Figure 7.21: Dispersional analysis to de-
termine Hurst coefficient in the transverse
direction. B is the bin length and SD is
the transscale statistic.

represent an average behavior over the full aquifer thickness. Therefore, non-
Fickian models will only be compared based on outlet BTC data. The value of
apparent dispersivity that was obtained from curve-fitting analysis α∗

L = 1.02
m is the reference value that will be used in this section. Considering the low
quality of the prediction of effective permeability, inclusion models will not be
applied in this section.

In the stochastic approach, asymptotic longitudinal dispersivity can be cal-
culated using Eqs. 2.29 and is equal to 3.2 10−3 mm ! This value is about 6 or-
ders of magnitude smaller than the measured one. Actually, for high anisotropy,
the scale-effect in apparent dispersivity is generally of limited extension and
decreases when variance increases (see Fig. 2.4). For high variance and high
anisotropy, if flow is parallel to the bedding, solute transport mainly occurs in
one single direction and velocity perturbations are of limited magnitude. Using
the analytical expression derived for a bimodal medium (Eq. 6.15), assuming
that material 1 is similar to material 3, a value α∗

L = 1.44 m is found. This
is in a better agreement with the observed value but, as this solution assumes
isotropy, an anisotropic version of it would probably yield a value of a similar
order of magnitude as the first estimation (i.e. ≈ 10−3 mm).

Figs. 7.20 and 7.21 show the results of the dispersional analysis conducted
along X and the Y direction respectively. HX is found equal to 0.11 ± 54 %
and HY = 0.03 ± 135 %. Using a similar method as in Chapter 6, one obtains
Ĥ = 0.067 and αX/αY = 1.93. In this case, and contrary to Markovian fields
investigated in Chapter 6, the ratio αX/αY is positively correlated with λX/λY .
Lm is representative of a physical boundary of the flow system and will be taken
equal to Lm = 2.26. Eq. 2.46 predicts an asymptotic value of macrodispersivity
equal to α∗

L = 2.01 m, which is of a correct order of magnitude. If transient
dispersivity is computed assuming a perfectly stratified system and a transverse
dispersivity of 1 mm, a value α∗

L = 1.09 m is found, which is relatively close to
the actual value.

Expectively, upscaling theories for apparent longitudinal dispersivity do not
yield acceptable predictions, since reactive transport is believed to play an
important role in observed tailing effects. The surprising result is that the
fractal method exhibit a relatively high efficiency. As this model only accounts
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for advective processes, which could indeed take place (as diffusion and slow
advection in low-K zones have a similar effect on tailing behavior [88]), this
result is believed to be a coincidence.

7.5.3 Application of upscaled transport equations

In this section, attempts to predict the outlet BTC using upscaled transport
equations are performed. Temporal and spatial CTRW methods are used, as
well as mobile-immobile models. Transport parameters are obtained from local
BTC. Since transport is believed to be reactive, using information from local
concentration data should highly improve the prediction of the outlet BTC
through lumped transport parameters. As already done when analyzing local
BTC in Section 7.3.4, non-ideal injection conditions are supposed to be of
minor influence but predicted outlet BTC are convoluted with a decreasing
exponential to account for mixing in the downstream reservoir.

It is not possible to use all 17 local BTC simultaneously in the parametriza-
tion process of the temporal CTRW model. As moreover BTC tailing behavior
is believed to be the principal evidence of anomalous transport, βt was ob-
tained from the separate analysis of each BTC. As optimization procedures are
found to work more efficiently for cumulative breakthrough curves, experimen-
tal curves were integrated. They were also normalized with respect to injected
mass and corrected in order to ensure a convergence towards 1. The scale factor
determined when fitting the ADE on the raising part of the BTC could not be
used as correction factor, as it usually led to concentrations higher than 1.

The curve-fitting tools already used in Chapters 5 and 6 were applied to de-
termine temporal CTRW transport parameters. The matching of experimental
data was relatively good for most of the BTC. Fig C.16 shows a smoothened
distribution of the 17 local βt values. Two peaks of equal amplitude are ob-
served, at values βt = 0.626 and βt = 0.985. Other transport parameters are
computed in a similar fashion. The distribution of ln(C1) is also found to exhibit
two peaks (Fig. C.17). Actually, C1 values for the smallest peak correspond to
βt values equal to 0.5, which might highlight numerical problems. The value
corresponding to the other peak is 1/C1 = 1.259 10−6 m/s, which is close to
the observed velocity from temporal moment analysis of the outlet BTC and
is a more realistic value. The distribution of ln(Cβ) exhibits two peaks as well,
at Cβ = 5597 and Cβ = 1.085 106, corresponding to the lowest and highest βt

peaks respectively (Fig. C.18).
Fig. 7.22 shows the outlet breakthrough curve, its best fit as well as the

prediction using transport parameter values determined previously. The opti-
mal βt value is 0.5 and 1/C1 = 8.42 107. It can be seen that the prediction
corresponding to the higher βt peak is relatively different than the actual con-
centration distribution. However, for βt = 0.62, though concentration levels
are a bit underestimated, the general shape of the curve is correctly predicted.
The problem arising for such a low βt value is that early-time concentration is
overestimated (with an instantaneous transfer of about 20 % of the total mass.

The value of βx obtained from the scale effect in apparent dispersivity
(Fig. 7.12) is 1.53. Dx and γB were determined for each local BTC and their
distribution are shown respectively in Figs. C.19 and C.20. The peak value for
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Figure 7.22: Outlet breakthrough curves
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Figure 7.23: Outlet breakthrough curves
and spatial CTRW solutions. Experimen-
tal data (circle), optimal fit (continuous
line)and prediction (dashed line).

Dx is 2.79 10−6. The distribution of γB is relatively uniform. The value that
will be taken into consideration is the mean value −0.575. The problem aris-
ing with the outlet BTC is the prediction of the average migration velocity. It
was concluded that upscaling methods for permeability failed to predict even
a correct order of magnitude for Ke. Based on concentration data, the mean
velocity from temporal moment analysis is v = 1.243 10−6 m/s. This value is
in a good agreement with the observed velocity at the tank outlet and will be
adopted for the prediction. The fitted values on the outlet BTC are respectively
Dx = 4.38 10−6 and γB = 0.04. Fig. 7.23 shows that the predicted distribution
is in a relatively close agreement with the optimal curve. The overall discrep-
ancy is also relatively small.

No methodology was introduced in Chapter 4 to determine mobile-immobile
model parameters. A relatively straightforward way to do this is then to perform
a curve-fitting analysis on local BTC, as done for fractional-order equations.
Application of MIM to Markovian fields can be however less artificial, as a
direct measure of the volumetric proportion of the immobile zone is available,
and as transfert rate is expected to be inversely proportional to the square of
the transversal size of the inclusions [202]. In this work, it is proposed to use
exchange rate parameters obtained in Section 7.3 to simulate outlet concentra-
tion. θim is computed as the volumetric proportion of material 3, i.e. 50.0 %.
Velocity and dispersivity are values obtained from early-time local concentra-
tion fit (local transport parameters) as well as from temporal analysis (global
transport parameters) are tested.

Two different exchange models are tested here, but are not optimized. A
single-rate model is compared to the multirate model corresponding to a log-
normal distribution of exchange rates. Analytical solutions are computed using
STAMMT-L [93]. Local parameters are unadapted to predict transport and
lead to an overestimation of the rate of recovery. On the contrary, and as for
the temporal CTRW model, global transport parameters lead to an underes-
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Figure 7.24: Outlet breakthrough curves
and multi-domain solutions with local
transport parameters. Experimental data
(circle), single rate prediction (continu-
ous line) and multirate prediction (dashed
line).
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Figure 7.25: Outlet breakthrough curves
and multi-domain solutions with global
transport parameters. Experimental data
(circle), single rate prediction (continu-
ous line) and multirate prediction (dashed
line).

timation of convergence. In general, one can consider that the use of global
transport parameters and a multirate model yields a better prediction.

7.6 Conclusion

In this section, an original laboratory experiment involving a highly hetero-
geneous composite model aquifer has been performed. The experiment was
carefully designed in order to ensure a preferential pathway flow architecture
and stimulate diffusion processes through low-permeability zones. Rhodamine
WT was used as a tracer in order to be able to measure a wide range of concen-
tration distributions. However, batch tests revealed that it was sorptive onto
soil grains, even though they were industrial silica sands. Concentration were
monitored at 17 locations in the sample and at the tank outlet. Heavy concen-
tration tails as well as a slow recovery were observed.

A numerical model accounting for both physical and chemical processes
could not be set up due to complexity of transport. A model allowing simulta-
neously the correct simulation of local dispersion and diffusion processes (i.e.
without numerical diffusion) and incorparating the possibility to simulate sorp-
tion processes (more complex than linear retardation) could not be identified.
Instead, a particle-tracking algorithm was used, taking into account retardation
through lumped porosities. Comparison of numerical concentration data with
actual measurement at the model outlet showed that chemical transport was
probably rate-controlled, with slow desorption processes.

Upscaling procedures were applied to predict apparent dispersivity. Using
only information on aquifer properties or local concentration data, attempts
were performed to predict the outlet concentration distribution. A direct com-
parison with results from Chapter 5 and Chapter 6 is not straightforward. In
this case, transport is known to be reactive and parametrization methods used
in this chapter are different. Several observations are however drawn here.

Contrary to previous simulations, it appeared that the stochastic method
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failed to predict both effective permeability and apparent longitudinal disper-
sivity. It seems that the combination of a high anisotropy and a high variance
is the cause of such a behavior. Application of a fractal model allowed a predic-
tion of apparent dispersivity close to the actual measured value. This model was
however incapable neither to simulate heavy concentration tails, nor to explic-
itly embody chemical interaction. Inclusion models yielded such a non-optimal
estimation of effective permeability that no attempt to predict apparent dis-
persivity was performed.

As in Chapter 5 and 6, upscaled equations, although somehow difficult to
parametrize based on the available data, revealed to be tools of a higher effi-
ciency. Lumped parameters embodying physical and chemical processes could
be estimated based on averaged parameters from local BTC. The spatial CTRW
method yielded the best results and, as expected since they are basically equiva-
lent, temporal CTRW and MIM produced upscaling results of a similar quality.



Chapter 8

Conclusions

The general objective of this study was to perform a comparison of existing
theoretical transport models in field-like heterogeneous situations. The classical
Fickian advection-dispersion model is indeed widely used but suffers from a lack
of upscalability. Its transport parameters, when measured at a local scale, are
most of the time upscaled using empiral relationships or using rules of thumb.
Therefore, in a first stage, a collection of upscaling methods and non-Fickian
models were identified in the literature and are reported in Chapter 2 and
Chapter 3.

Upscaling methods provide tools to estimate a macroscale apparent disper-
sion coefficient based on a model of the soil structure, which can be incorporated
in the standard ADE. As practitioners are used to deal with the ADE, which
moreover has relatively simple analytical solutions, this method is usually pre-
ferred to non-Fickian models. Another advantage of upscaling methods is that
numerical tools developped to solve the ADE under more complex heteroge-
neous conditions remain of use. However, apparent dispersivity is only part
of the information needed to predict concentration levels. It may occur that
concentration curves exhibit either early breakthrough or long tailing, due to
heterogeneity at a scale that cannot be resolved by common field character-
ization techniques. In that case, the ADE, even with an upscaled apparent
dispersivity, is useless and non-Fickian models have to be applied instead.

Two indicators have been defined in Chapter 4 to quantify the improvement
brought by either upscaling methods or non-Fickian models to solute transport
modelling. The first one (εu) focuses on apparent dispersivity. It measures the
relative difference between observed and predicted dispersivity, averaged over
the scale of interest. It is mainly aimed at evaluating upscaling methods for dis-
persion. A second indicator (∆RMSu) was defined in order to evaluate whether
the whole concentration curves are better predicted. It is defined as the dif-
ference between the root-mean-square of the ADE residuals and that of the
non-Fickian (or upscaled ADE) residuals. It therefore quantifies an improve-
ment relative to the local ADE.

8.1 Transport in stratified formations

As a first approach to solute transport in heterogeneous media, the case of a
perfectly stratified aquifer was investigated. Besides being a rather simple and
conceptual case for which the structure of the K field can be characterized using
a reduced parameter set, a variety of analytical solutions are available for the
various transport models of interest.

149
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In this study, 25 realizations of a log-normal permeability profile were in-
vestigated, characterized by an exponential covariance function with a variance
and a relative correlation length (defined as the ratio of the correlation length
divided by the aquifer thickness) ranging from 0.01 to 4 and 0.01 to 1 respec-
tively. To the author’s knowledge, no such detailed numerical computation of
solute transport in perfectly stratified media has been performed so far, ac-
counting for heterogeneous local longitudinal and transverse dispersion and
over distances as far as 100 times the aquifer thickness.

Apparent longitudinal dispersivity was found to exhibit a large scale effect.
Values up to 2000 times the local longitudinal dispersivity have been observed
and no convergence to an asymptotic constant value seemed to happen. Con-
sidering upscaling methods for apparent dispersivity, it appeared that for larger
correlation lengths (i.e. when the fulfilment of the ergodic condition becomes
questionable), the fractal method yields the best results, whereas for interme-
diate correlation length, the stochastic method is the most efficient. For smaller
correlation lengths, upscaling capacities of the stochastic method decrease be-
cause local dispersivity becomes of a similar order of magnitude as correlation
length (which violates the assumptions under which stochastic analytical so-
lutions are derived). A surprising result is that the variance does not seem to
influence the capacities of the stochastic method.

Considering upscaling of concentration distributions, two models appeared
to have the best upscaling capacities : the spatial CTRW model for large vari-
ance and the modal method (Scheidegger’s telegraph equation) for large corre-
lation length. Moreover, whereas temporally and spatially anomalous transport
models were found to be relatively equivalent regarding upscaling of longitudi-
nal dispersivity, temporal CTRW was found to have a limit scale beyond which
upscaling capacities for solute transport decreased.

8.2 Transport in 2D heterogeneous formations

Transport in two-dimensional heterogeneous media was studied both using nu-
merical and physical data. A similar numerical approach as for transport in
stratified formations was first adopted to refine the parametric study and as-
sess the influence of soil structure in more complex cases. Among others, that
study allowed one to give recommendations for the design a original laboratory
experiment. The latter was conducted to verify whether conclusions drawn from
synthetic numerical examples could be extended to a physical situation at the
laboratory scale.

8.2.1 Results from the numerical study

First, eight realizations of random log-normal permeability fields characterized
by various variance, correlation lengths and inclination angle with respect to
flow direction were studied. A scale-effect in apparent dispersivity could be
observed and could be simulated with a relative quality by all methods (except
the temporal CTRW). However, although methods for the prediction of effective
flow parameters were in a close agreement with observed values of permeability
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and velocity, a misprediction of advective transport revealed to be the main
cause of discrepancy between numerical observations of concentration and non-
Fickian models. This is due to the non-fulfilment of the ergodic condition for
measurements close to the injection. In particular, this caused poor upscaling
results for the temporal CTRW. It also highlighted the need for a separate
(large-scale) estimation of advective transport, that can be obtained e.g. from
head measurements. Globally, spatial CTRW yielded the best upscaling results

Then, eight realizations of bi- and tri-modal permeability fields were cre-
ated from Markov chains models. They were all characterized with similar facies
proportions and permeabilities, but various sets of correlation lengths and in-
clination angle were investigated. Finally, a last example was created from a
bimodal field and two zero-mean log-Gaussian fields. This example was set up
in order to introduce a multi-scale heterogeneous example in the analysis, and
be able to discern the relative importance of small-scale variations on overall
transport. Globally, due to the general higher level of heterogeneity for these
examples, upscaling results were of a poorer quality. Difficulty of transport pre-
diction even appeared through numerical problems for analytical solutions for
some of the non-Fickian models.

8.2.2 Results from the laboratory study

A highly heterogeneous (σ2
Y ≈ 16) composite aquifer was created in an interme-

diate-scale laboratory tank and a one-dimensional tracer test was performed
using Rhodamine WT. Transport was monitored at 17 locations evenly set
along the tank side, as well as in the downstream reservoir. BTC exhibited
strong tailing behavior, enhanced by chemical interaction between tracer and
soil grains.

Regarding upscaling methods, the fractal model predicted a value of ap-
parent dispersivity at the model outlet resulting in a relative agreement with
the observed value. Upscaled transport equations could be parametrized in a
rather empirical fashion, but upscaling results were of an acceptable quality.
The spatial CTRW model seemed again to yield the best prediction at model
outlet using only smaller-scale information.

Two other general conclusions from this part of this study deal with current
laboratory and numerical techniques. First, an accurate numerical model of the
laboratory experiment could not be set up due to the complexity of physical and
chemical processes. A model able to simulate both accurate local-scale diffusion
and dispersion and complex kinetic sorption reaction could not be identified.
Then, although the tracer was carefully chosen, some of its drawbacks increased
modelling difficulties. Rhodamine WT is relatively stable to sunlight and can
be detected over a wide range of concentrations. It is however reactive with soil
grains, even with washed industrial silica sands, and may undergo irreversible
sorption. This behavior significantly complicated the analysis of breakthrough
curves. Moreover, liquid phase samples were manually taken. This induced a
perturbation on the head field and the flow lines in the tank. Non-perturbative
methods should be preferred, like geophysical methods. These methodes have
moreover the advantage to allow one to perform a three-dimensional visualiza-
tion of solute plumes. However, geophysical methods like electrical tomography
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must be used with electrically conductive tracers (e.g. bromide) at relatively
high concentration. If high concentrations are needed, it is then necessary to
adapt density criteria (developped to assess the influence of density effects on
advection-dominated transport) to diffusion-dominated situations.

8.3 Perspectives

This study was mainly a theoretical and conceptual study, performed under
simple conditions (e.g. isothermal conditions, biphasic medium only, processed
soils, . . . ). A lot of links are still missing in the chain between our conclusions
and the practical implementation of efficient upscaling methods in the field.
Some of them are evoked in this section.

First of all, a general trend emerging throughout this study is the need for
better characterization methods. The stochastic method is widely developed in
the literature and a non-negligible part of it is devoted to the estimation of the
geostatistical parameters. However, as shown in this work, other non-Fickian
models yield better performances and might be worth having more elaborate
characterization methods. For example, for the set of examples investigated
here, the estimation of the Hurst coefficient of fractal media was subject to
a relatively high uncertainty. Similarly, research to link CTRW parameters
directly to the soil structure is needed in order to depart from the requirement
of concentration data (which has moreover to be obtained at different scales)
to parametrize fractional-order equations.

The approach adopted in this study proceeded by successive increase of the
complexity of the soil structure, starting from a simple perfectly stratified case
and going to anisotropic two-dimensional situations with flow tilted with re-
spected to the principal directions of the permeability field. Therefore, a natural
extension of this study would be to investigate three-dimensional heterogeneous
situations. Along the same lines, only log-Gaussian and Markovian fields were
tested here. The definition of field-like aquifers adopted in this study could be
extended to fractal aquifers, as well as permeability field exhibiting multiscale
heterogeneity (similar to the K17 case investigated in Chapter 6).

The aim of this study was to assess solute transport in various situations,
each of them being one realization of a given random field. As recommenda-
tions are given on the applicability of each model with respect to the parametric
description of the aquifer, it could be of importance to verify whether conclu-
sions drawn in this study can be extended to other realizations of the K fields
investigated.

Only one-dimensional transport was investigated in this study, and one
focused exclusively on longitudinal apparent dispersivity. However, transverse
dispersivity is of primary importance too. It controls lateral mixing (see e.g.
Chapter 5) which, for point source pollution, is directly linked to the spatial
extension of the solute plume. Literature on transverse dispersivity is relatively
scarce, and even reliable local-scale experimental values are difficult to obtain.
Little work has focused on the prediction of transverse dispersivity in field
situation, and the general rule of thumb is to take as value for transverse
dispersivity one tenth of the longitudinal value. There is therefore a need to
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perform an in-depth study of the influence of heterogeneity on apparent values
of this parameter.

Finally, further on the way to the practical application of non-Fickian mod-
els, it is necessary to assess their capacities under conditions of non-uniform
flow, likely to occur in situations of remediation. Recent studies have indeed
revealed that apparent transport parameters are modified by flow conditions.
This is a rather alarming observation as it implies that transport parameters
obtained from different types of tracer tests would not be suited to situations
were different flow conditions occurs. Non-Fickian models involving parameters
that are not scale-dependent might solve this issue.
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Appendix A

Effective permeability of

two-dimensional media

In this section, an analytical expression for longitudinal effective permeabil-
ity of two-dimensional anistropic media is derived using the self-consistent
approach. This derivation is already available in the literature for isotropic
media [50] and for anisotropic three-dimensional media [53], but the two-
dimensional anisotropic case was left as an exercise by Dagan in his reference
textbook [53]. It will be resolved in this section by following step by step the
methodology proposed by Dagan in his original paper [50].

In the self-consistent approximation, space-averaged gradient and specific
discharge in the longitudinal direction consist of a sum of contributions from
each block [50]

〈J〉 = J0 + ΣN
i=1Σ

M
j=1∆ijJ (A.1)

〈q〉 = −K0J0 + ΣN
i=1Σ

M
i=j∆ijq (A.2)

where J0 is the gradient corresponding uniform velocity at infinity, and ∆ijJ
and ∆ijq respectively correspond to gradient and specific discharge fluctuation
caused by inclusion i of permeability Kj . Other parameters are defined in Sec-
tion 2.4. Effective permeability in the longitudinal direction is found according
to Ke = −q/J .

One will only consider in the remaining part of this section inclusions of
elliptical shape with semi axes Ai and Bi (with ei = Bi/Ai), described by

x2

A2
i

+
y2

B2
i

= 1 (A.3)

Provided that the inclusions are rescaled so that a cylindrical coordinate system
(ρ, θ) can be adopted, the solution of the head field φint

ij and φext
ij inside and

around an ellipse i of permeability Kj can be writtten as

φint
ij = J0

1 + ei

1 + eiκj
ρ cos(θ) r ≤ ai (A.4)

φext
ij = J0

(

1 + µ
a2

i

ρ2

)

ρ cos(θ) r ≥ ai (A.5)

in which κj = Kj/K0 and µ = ±|eiκj − 1|/(eiκj + 1), and has to be evaluated
as positive for κj < 1/ei and as negative for κj > 1/ei. ai = Ai(1+ ei)/2 is the
radial coordinate of the ellipse boundary in the transformed reference system.
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The physical cartesian coordinate system link with the tranformed cylindrical
coordinate system using

x = (ρ+ c2i /ρ) cos(θ) (A.6)

y = (ρ− c2i /ρ) sin(θ) (A.7)

with ci = Ai

√

1 − e2i /2.
Space-averages of longitudinal components of head gradient 〈Jij〉 and spe-

cific discharge 〈qij〉 due to a single inclusion are

〈Jij〉 =
1

v

∫

∇φijdv

=
1

πR2

∫

ρ=R

cos(θ)φext
ij dA (A.8)

〈qij〉 = −
1

v

∫

K∇φijdv

= −
K0

v

[
∫

ρ=R

cos(θ)φext
ij dA

+(κj − 1)

∫

ρ=a

cos(θ)φint
ij dA

]

(A.9)

where Green’s theorem was used. Integration is performed over a circle of radius
R >> a and dA = 2πρdρ. Subsituting Eqs. A.4 and A.5 into Eqs. A.8 and A.9
allows one to compute gradient and specific discharge fluctuation caused by an
inclusion

∆ijJ = 〈Jij〉 − J0 = pijµJ0 (A.10)

∆ijq = 〈qij〉 +K0J0

= −pijK0

(

(κj − 1)(1 + ei)

1 + eiκj
+ µ

)

J0 (A.11)

where pij = a2
i /R

2 is the total volumetric proportion of inclusions of shape
i and permeability Kj in the flow domain. Substitution in Eqs. A.1 and A.2
and taking into account that ΣM

i=1pij = pj is the total volumetric proportion
of phase Kj, yields

〈J〉 = J0

[

1 + ΣN
j=1µpj

]

(A.12)

〈q〉 = −K0J0

[

1 + ΣN
j=1

(

(κj − 1)(1 + ei)

1 + eiκj
+ µ

)

pj

]

(A.13)

At the continous limit N → ∞ and Kj → K is a continuous distribution, so
that pj → f(K)dK. Eqs. A.12 and A.13 then become

〈J〉 = J0

∫

(µ+ 1)f(K)dK (A.14)

〈q〉 = −K0J0

∫
(

(κ− 1)(1 + ei)

1 + eiκ
+ (µ+ 1)

)

f(K)dK (A.15)
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where κ is now equal to K/K0. The effective permeability is finally obtained
as

Ke = K0

∫

(

(κ−1)(1+ei)
1+eiκ

+ (µ+ 1)
)

f(K)dK
∫

(µ+ 1)f(K)dK
(A.16)

which can be simplified to

Ke −K0 = K0

∫ (κ−1)(1+ei)
1+eiκ

f(K)dK
∫

(µ+ 1)f(K)dK
(A.17)

Eq. A.17 provides a value of Ke in terms of permeability distribution f(K)
and unknown K0. Neither correlation of the permeability field, nor block size
influence Ke, which is accordance with results from stochastic theories [53]. K0

is an arbitrary reference permeability that is linked to Ke. In the self-consistent
approach, one assumes that K0 is precisely equal to Ke, i.e. that the matrix
surrounding each inclusion has the same effective permeability as the matrix
as a whole [50]. Hence, Ke can be found by solving

∫

(κ− 1)(1 + ei)

1 + eiκ
f(K)dK = 0 (A.18)

with, in this case, κ = K/Ke. In the isotropic case, Eq. A.18 writes
∫

K −Ke

K +Ke
f(K)dK = 0 (A.19)

which can be shown to be identical to the result obtained by Dagan [50]

Ke =
1

2

[
∫

f(K)dK

K +Ke

]−1

(A.20)

Analytical solutions can be easily obtained in the case of media composed
of two and three facies of constant permeability. For a two facies medium,
f(K) = δ(K − K1)p1 + δ(K −K2)p2 and it can be verified that the effective
permeability is the positive root of the second-order polynomial

K2
e + (p1(eK2 −K1) − p2(K2 − eK1))Ke − eK1K2 = 0 (A.21)

Fig. A.1 shows the solution to Eq. A.21 for e = 1/4 and investigates the influ-
ence of inclusion volumetric proportion p2 and permeability K2 on the effective
permeability. Expectively, the dependence of Ke on the inclusion permeability
K2 decreases with the volumetric proportion of inclusions p2 = 1 − p1. Two
different type of behavior can however be identified for low-permeability inclu-
sions. For low p2, Ke will converge towards a constant value and will not be
influenced by K2 anymore. This corresponds to a situation where the flow by-
passes the low permeability inclusions. However, for higher p2, such an asymp-
totic behavior does not exist and Ke remains strongly influenced by K2. This
corresponds to a situation where the volumetric proportion of low permeability
material is too high for a bypass to occur. For high K2, the inverse situation oc-
curs and flow remains strongly dependent on the permeability of the inclusions
for the whole range of possible volumetric proportions.
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portion of inclusions on effective perme-
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of inclusions on effective permeability of a
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Figure A.3: Influence of the permeability
of a third facies on effective permeability.
e = 1/4, p1 = p2 = p3 = 0.33.

The influence of anisotropy is illustrated in Fig. A.2 for p2 = 0.5. In the
isotropic case, log(Ke) and log(K2) are linearly dependent. This is consistent
with the well-known result Ke = Kg in a two-dimensional geometry.

For a three-facies medium, f(K) = δ(K −K1)p1 + δ(K −K2)p2 + δ(K −
K3)p3 and the effective permeability is the only positive root of the third-order
polynomial

K3
e + K2

e [e (K1 +K2 +K3) − (1 + e) (p1K1 + p2K2 + p3K3)]

+ Kee [(1 + e) (p3K1K2 + p2K1K3 + p1K2K3)

− (K1K2 +K1K3 +K2K3)]

− e2K1K2K3

= 0 (A.22)

Fig. A.3 shows the corresponding solution in the case of three facies present
in equal volumetric proportion for an anisotropy ratio e = 1/4. It can be verified
that the solution of a two facies system with p1 = 0.33 and p2 = 0.67 intersects
the various curves at K3 = K2.



Appendix B

Perfectly stratified

examples : Figures and

tables

In this section, secondary data from the analysis performed in Chapter 5 are
provided, either plotted under graphical form or given as numerical values in
tables. For the sake of brevity, similar notations as in Chapter 5 are used to
refer to upscaling methods and upscaled equations.
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Figure B.1: Experimental (circles) and theoretical (continuous line) variograms correspond-
ing to vertical ln(K) profiles adopted for stratified cases.
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Figure B.2: Migration velocity values obtained from temporal moment analysis. i = 1 -

σ2
Y = 0.01 (continuous line), i = 2 - σ2

Y = 0.1 (dashed line), i = 3 - σ2
Y = 1 (dot-dashed

line), i = 4 - σ2
Y = 2 (small-dotted line) and i = 5 - σ2

Y = 4 (large-dotted line).
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Figure B.3: Migration velocity values obtained from spatial moment analysis. i = 1 -

σ2
Y = 0.01 (continuous line), i = 2 - σ2

Y = 0.1 (dashed line), i = 3 - σ2
Y = 1 (dot-dashed

line), i = 4 - σ2
Y = 2 (small-dotted line) and i = 5 - σ2

Y = 4 (large-dotted line).
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Kij j = 1 j = 2 j = 3 j = 4 j = 5

Va = 0.010 σ2
K = 0.011 Va = 0.010 Va = 0.013 Va = 0.019

i = 1 λK = 0.015 λK = 0.054 λK = 0.081 λK = 0.615 λK = 1.96
εu = 151.8 εu = 31.94 εu = 93.84 εu = 160.9 εu = 332.8

Va = 0.100 Va = 0.104 Va = 0.089 Va = 0.153 Va = 0.183
i = 2 λK = 0.015 λK = 0.053 λK = 0.067 λK = 0.692 λK = 1.89

εu = 101.7 εu = 88.56 εu = 58.07 εu = 182.5 εu = 310.0

Va = 1.046 σ2
K = 0.949 Va = 0.817 Va = 1.413 Va = 1.246

i = 3 λK = 0.011 λK = 0.048 λK = 0.044 λK = 0.533 λK = 0.831
εu = 6.26 εu = 93.81 εu = 15.26 εu = 146.9 εu = 136.6

Va = 2.136 σ2
K = 1.799 Va = 1.722 Va = 2.300 Va = 2.121

i = 4 λK = 0.001 λK = 0.045 λK = 0.038 λK = 0.368 λK = 0.533
εu = 96.86 εu = 99.40 εu = 18.81 εu = 115.5 εu = 100.3

Va = 4.368 σ2
K = 3.378 Va = 3.799 Va = 3.549 Va = 3.501

i = 5 λK = 0.001 λK = 0.042 λK = 0.034 λK = 0.224 λK = 0.332
εu = 94.39 εu = 104.0 εu = 36.56 εu = 94.89 εu = 77.41

Table B.1: Upcaling results for S. Va = σ2
K/〈K〉2 is an adimensional variance.

Kij j = 1 j = 2 j = 3 j = 4 j = 5

Va = 0.008 Va = 0.008 Va = 0.007 Va = 0.007 Va = 0.006
i = 1 λK = 0.003 λK = 0.012 λK = 0.019 λK = 0.127 λK = 0.230

εc = 4.74 εc = 5.69 εc = 7.74 εc = 5.19 εc = 2.99

Va = 0.075 Va = 0.085 Va = 0.068 Va = 0.070 Va = 0.060
i = 2 λK = 0.004 λK = 0.011 λK = 0.018 λK = 0.141 λK = 0.239

εc = 4.19 εc = 3.77 εc = 5.54 εc = 3.81 εc = 3.20

Va = 0.394 Va = 0.729 Va = 0.406 Va = 0.667 Va = 0.574
i = 3 λK = 0.008 λK = 0.011 λK = 0.028 λK = 0.130 λK = 0.216

εc = 3.70 εc = 1.78 εc = 2.19 εc = 3.97 εc = 2.23

Va = 0.921 Va = 1.238 Va = 1.048 Va = 0.998 Va = 0.972
i = 4 λK = 0.007 λK = 0.011 λK = 0.020 λK = 0.152 λK = 0.269

εc = 3.23 εc = 1.28 εc = 5.89 εc = 1.45 εc = 0.22

Va = 3.316 Va = 1.473 Va = 0.998 Va = 1.620 Va = 1.663
i = 5 λK = 0.003 λK = 0.016 λK = 0.042 λK = 0.104 λK = 0.208

εc = 1.81 εc = 1.03 εc = 1.72 εc = 2.45 εc = 0.60

Table B.2: Optimal geostatistical parameters for S. Va = Va,opt = σ2
K/〈K〉2 is an adimen-

sional variance. λK = λK,opt.
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Figure B.4: Improvement of S with optimal parameters compared to the classical ADE.

i = 1 - σ2
Y = 0.01 (continuous line), i = 2 - σ2

Y = 0.1 (dashed line), i = 3 - σ2
Y = 1

(dot-dashed line), i = 4 - σ2
Y = 2 (small-dotted line) and i = 5 - σ2

Y = 4 (large-dotted line).
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Kij j = 1 j = 2 j = 3 j = 4 j = 5

H = 0.009 H = 0.041 H = 0.061 H = 0.091 H = 0.107
i = 1 Lm = 1.52 Lm = 1.80 Lm = 1.73 Lm = 6.86 Lm = 8.36

εc = 7.63 εc = 1.11 εc = 0.33 εc = 0.78 εc = 2.20

H = 0.009 H = 0.038 H = 0.051 H = 0.109 H = 0.097
i = 2 Lm = 1.68 Lm = 1.84 Lm = 1.79 Lm = 6.11 Lm = 10.3

εc = 7.56 εc = 1.65 εc = 0.34 εc = 0.66 εc = 1.88

H = 0.011 H = 0.033 H = 0.035 H = 0.096 H = 0.085
i = 3 Lm = 1.86 Lm = 1.66 Lm = 2.10 Lm = 7.11 Lm = 11.8

εc = 7.10 εc = 2.49 εc = 0.98 εc = 0.36 εc = 1.35

H = 0.014 H = 0.032 H = 0.033 H = 0.071 H = 0.062
i = 4 Lm = 1.45 Lm = 1.43 Lm = 2.10 Lm = 8.03 Lm = 24.1

εc = 6.92 εc = 2.68 εc = 1.62 εc = 0.25 εc = 0.99

H = 0.017 H = 0.031 H = 0.034 H = 0.049 H = 0.050
i = 5 Lm = 1.01 Lm = 1.25 Lm = 1.80 Lm = 7.48 Lm = 19.2

εc = 5.62 εc = 1.69 εc = 2.27 εc = 0.11 εc = 0.79

Table B.3: Optimal parameters for F.

Kij j = 1 j = 2 j = 3 j = 4 j = 5

Va = 0.001 Va = 0.001 Va = 0.002 Va = 0.004 Va = 0.004
i = 1 λe = 3.24 λe = 22.0 λe = 17.8 λe = 41.1 λe = 96.9

εc = 17.6 εc = 5.31 εc = 4.81 εc = 2.47 εc = 1.21

Va = 0.002 Va = 0.010 Va = 0.013 Va = 0.040 Va = 0.042
i = 2 λe = 19.0 λe = 21.6 λe = 20.7 λe = 67.8 λe = 89.4

εc = 10.9 εc = 5.80 εc = 4.68 εc = 2.73 εc = 1.15

Va = 0.032 Va = 0.089 Va = 0.111 Va = 0.426 Va = 0.446
i = 3 λe = 23.3 λe = 19.4 λe = 22.1 λe = 49.8 λe = 55.7

εc = 10.6 εc = 6.64 εc = 5.23 εc = 2.46 εc = 1.02

Va = 0.078 Va = 0.185 Va = 0.231 Va = 0.740 Va = 0.869
i = 4 λe = 18.3 λe = 16.0 λe = 20.5 λe = 44.2 λe = 38.5

εc = 10.5 εc = 6.81 εc = 5.54 εc = 2.42 εc = 0.73

Va = 0.186 Va = 0.388 Va = 0.499 Va = 1.139 Va = 1.412
i = 5 λe = 12.6 λe = 13.3 λe = 16.5 λe = 34.5 λe = 45.8

εc = 9.25 εc = 5.71 εc = 5.79 εc = 2.34 εc = 1.10

Table B.4: Optimal parameters for TE.
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Figure B.5: Improvement of F with optimal parameters compared to the classical ADE.

i = 1 - σ2
Y = 0.01 (continuous line), i = 2 - σ2

Y = 0.1 (dashed line), i = 3 - σ2
Y = 1

(dot-dashed line), i = 4 - σ2
Y = 2 (small-dotted line) and i = 5 - σ2

Y = 4 (large-dotted line).
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Figure B.6: Improvement of TE with optimal parameters compared to the classical ADE.

i = 1 - σ2
Y = 0.01 (continuous line), i = 2 - σ2

Y = 0.1 (dashed line), i = 3 - σ2
Y = 1

(dot-dashed line), i = 4 - σ2
Y = 2 (small-dotted line) and i = 5 - σ2

Y = 4 (large-dotted line).
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Figure B.7: Improvement of TC with optimal parameters compared to the classical ADE.

i = 1 - σ2
Y = 0.01 (continuous line), i = 2 - σ2

Y = 0.1 (dashed line), i = 3 - σ2
Y = 1

(dot-dashed line), i = 4 - σ2
Y = 2 (small-dotted line) and i = 5 - σ2

Y = 4 (large-dotted line).
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Figure B.8: Improvement of SC with optimal parameters compared to the classical ADE.

i = 1 - σ2
Y = 0.01 (continuous line), i = 2 - σ2

Y = 0.1 (dashed line), i = 3 - σ2
Y = 1

(dot-dashed line), i = 4 - σ2
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Appendix C

Laboratory experiment :

Figures and tables

In this section, secondary data from the analysis performed in Chapter 7 are
provided, either plotted under graphical form or given as numerical values in
tables.
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Figure C.1: Overall view of the experimental setup

Figure C.2: View of the tap water filter-
ing system and the pump

Figure C.3: View of the downstream
fixed-head system
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Figure C.4: Pressure measurement port.
The scale is given by the size of the mate-
rial 1 layer (≈ 2 cm).

Figure C.5: Liquid phase sampling port.
The scale is given by the size of the mate-
rial 3 layer (≈ 4 cm).

Figure C.6: Pressure measurement sys-
tem. Mechanical multiplexer (down), pres-
sure transducer (middle) and acquisition
computer (up, not shown).

Figure C.7: Pressure measurement sys-
tem. Constant pressure reference point.

Figure C.8: View of mechanical stirrer in-
stalled in the upstream reservoir

Figure C.9: Sampling bottles
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Figure C.10: Material used to perform
sample dilution

Figure C.11: View of the fluorometer

Port X [m] Y [m] Head [m] CV [-]

P3 2.26 - 0 0
P4 0.00 - 0.0321 0

P5 0.096 0.305 0.0312 0.012
P6 0.096 0.155 0.0319 0.010
P7 0.350 0.331 0.0312 0.009
P8 0.350 0.050 0.0314 0.010
P9 0.652 0.335 0.0302 0.115
P10 0.650 0.185 0.0301 0.082
P11 0.662 0.055 0.0299 0.010
P12 0.953 0.331 0.0299 0.009
P13 0.953 0.184 0.0287 0.009
P14 1.258 0.331 0.0287 0.009
P15 1.258 0.232 0.0280 0.009
P16 1.258 0.130 0.0277 0.008
P17 1.558 0.331 0.0181 0.020
P18 1.558 0.130 0.0018 0.031
P19 1.856 0.331 0.0016 0.022
P20 1.856 0.232 0.0008 0.123
P21 1.856 0.130 0.0015 0.049
P22 2.122 0.097 0.0002 0.403
P23 2.122 0.331 0.0016 0.077

Table C.1: Position of head measurement ports, mean measured value between 420 and 450
hours after injection and corresponding coefficient of variation (defined as the ratio of the
standard deviation of the measurements divided by the mean value.)
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Figure C.12: Measured (circle) and Markov chains model (continuous line) transition prob-
abilities in the longitudinal direction.
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Figure C.13: Measured (circle) and Markov chains model (continuous line) transition prob-
abilities in the transverse (vertical) direction.
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