Berger, André
[UCL]
Loutre, Marie-France
[UCL]
Tricot, C.
Solar irradiance received on a horizontal surface depends on the solar output, the semimajor axis of the elliptical orbit of the Earth around the sun (a), the distance from the Earth to the sun (r), and the zenith distance (z). The spectrum of the distance, r, for a given value of the true longitude, lambda, displays mainly the precessional periods and, with much less power, half precession periods, eccentricity periods, and some combination tones. The zenith distance or its equivalent, the elevation angle (E), is only a function of obliquity (epsilon) for a given latitude, phi, true longitude, and hour angle, H. Therefore the insolation at a given constant value of z is only a function of precession and eccentricity. On the other hand, the value of the hour angle, H, corresponding to this fixed value of z varies with epsilon, except for the equinoxes, where H corresponding to a constant z also remains constant through time. Three kinds of insolation have been computed both analytically and numerically: the instantaneous insolation (irradiance) at noon, the daily irradiation, and the irradiations received during particular time intervals of the day defined by two constant values of the zenith distance (diurnal irradiations). Mean irradiances (irradiations divided by the length of the time interval over which they are calculated) are also computed for different time intervals, like the interval between sunrise and sunset, in particular. Examples of these insolations are given in this paper for the equinoxes and the solstices. At the equinoxes, for each latitude, all insolations are only a function of precession (this invalidates the results obtained by Cerveny [1991)). At the solstices, both precession and obliquity are present, although precession dominates for most of the latitudes. Because the lengths of the astronomical seasons are secularly variable (in tenus of precession only), a particular calendar day does not always correspond to the same position relative to the sun through geological time. Similarly, a given longitude of the Sun on its orbit does not correspond to the same calendar day. For example, 103 kyr ago, assuming arbitrarily that the spring equinox is always on March 21, autumn began on September 13, and 114 kyr ago, it began on September 27, the length of the summer season being 85 and 98 calendar days, respectively, at these remote times in the past.
- BERGER A. L., Support for the astronomical theory of climatic change, 10.1038/269044a0
- Berger A., Long-term variations of the Earth's orbital elements, 10.1007/bf01229048
- Berger AndréL., Long-Term Variations of Daily Insolation and Quaternary Climatic Changes, 10.1175/1520-0469(1978)035<2362:ltvodi>2.0.co;2
- Berger, A., , A simple algorithm to compute long term variations of daily or monthly insolation, Contrib., 18, Inst. d'Astron. et de Géophys. G. Lemaître, Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium, 1978, b
- Berger André L., Long-Term Variations of Caloric Insolation Resulting from the Earth's Orbital Elements, 10.1016/0033-5894(78)90064-9
- Berger A. L., Insolation signatures of quaternary climatic changes, 10.1007/bf02507714
- Berger André, The Milankovitch astronomical theory of paleoclimates: A modern review, 10.1016/0083-6656(80)90026-4
- Milankovitch and Climate, ISBN:9789027717788, 10.1007/978-94-017-4841-4
- Berger A., Pleistocene climatic variability at astronomical frequencies, 10.1016/1040-6182(89)90016-5
- Berger, A., , The spectral characteristics of Pre-Quaternary climatic records, an example of the relationship between the astronomical theory and Geo-Sciences, Climate and Geo-Sciences, a Challenge for Science and Society in the 21st Century, A., Berger, , S., Schneider, , J. Cl., Duplessy, , NATO ASI Ser. C: Math. and Phys. Sci., 285, 47-76 Kluwer Academic, Hingham, Mass., 1989, b
- Berger, A., , M. F., Loutre, , Origine des fréquences des éléments astronomiques intervenant dans le calcul de l'insolation, Bulletin de la Classe des Sciences, Communication Paleo-Climatologie, Ser. 6, 1/3, , , , 45-106 Académie Royale de Belgique, 1990,
- Berger A., Gallée H., Fichefet T., Marsiat I., Tricot C., Testing the astronomical theory with a coupled climate—ice-sheet model, 10.1016/0031-0182(90)90055-c
- Berger A., Melice J. L., Mersch I. V. D., Beran M., Provenzale A., Stanford J. L., Evolutive Spectral Analysis of Sunspot Data over the past 300 Years [and Discussion], 10.1098/rsta.1990.0034
- Berger A., Loutre M.F., Insolation values for the climate of the last 10 million years, 10.1016/0277-3791(91)90033-q
- Berger Andre, Melice JL, Hinnov L, A strategy for frequency spectra of quaternary climate records, 10.1007/bf00210007
- Cerveny Randall S., Orbital signals in the diurnal cycle of radiation, 10.1029/91jd01958
- Imbrie, J., , J., Hays, , D. G., Martinson, , A., McIntyre, , A. C., Mix, , J. J., Morley, , N. G., Pisias, , W. L., Prell, , N. J., Shackleton, , The orbital theory of Pleistocene climate: support from a revised chronology of the marine18O record, Milankovitch and Climate, A., Berger, , et al. 269-305 D. Reidel, Hingham, Mass., 1984,
- Imbrie, J., , A., McIntyre, , A., Mix, , Oceanic response to orbital forcing in the late Quaternary: observational and experimental strategies, Climate and Geo-Sciences, A Challenge for Science and Societal in the 21st Century, A., Berger, , S., Schneider, , J. Cl., Duplessy, , NATO ASI Ser. C: Math. Phys. Sci., 285, 121-164 Kluwer Academic, Hingham, Mass., 1989,
- Kutzbach John E., Modeling of Paleoclimates, Issues in Atmospheric and Oceanic Modeling - Part A Climate Dynamics (1985) ISBN:9780120188284 p.159-196, 10.1016/s0065-2687(08)60223-x
- Lean Judith, Variations in the Sun's radiative output, 10.1029/91rg01895
- Mecherikunnel A. T., Lee R. B., Kyle H. L., Major E. R., Intercomparison of solar total irradiance data from recent spacecraft measurements, 10.1029/jd093id08p09503
- Milankovitch, M., , Théorie mathématique des phénomènes thermiques produits par la radiation solaire, Acad. Yougoslave des Sci. et des Arts de Zagreb, Gauthier-Villars, Paris, 1920,
- Milankovitch, M., , , Kanon der Erdbestrahlung und seine Anwendung auf des Eizeitenproblem, , pp., Ed. Sp. Acad. Royale Serbe, , Belgrade, , 1941, . ( English translation Canon of Insolation and Ice Age Problem, , Israel Program for Scientific Translation; published for the U.S. Department of Commerce and the National Science Foundation, , 1969.)
- North Gerald R., Coakley James A., Differences between Seasonal and Mean Annual Energy Balance Model Calculations of Climate and Climate Sensitivity, 10.1175/1520-0469(1979)036<1189:dbsama>2.0.co;2
- Ohmura, A., , H., Blatter, , M., Funk, , Latitudinal variation of seasonal solar radiation for the period 200,000 years BP to 20,000 AP, IRS84: Current problems in Atmospheric Radiation, G., Fiocco, , 338-341 A. Deepak, Hampton, Va., 1984,
- Sellers, W. D., , Physical Climatology, University of Chicago Press, Chicago, Ill., 1965,
- Stothers Richard B., Beat Relationships between Orbital Periodicities in Insolation Theory, 10.1175/1520-0469(1987)044<1875:brbopi>2.0.co;2
- Taylor, K. E., , Fourier representation of orbitally induced perturbations in seasonal insolation, Milankovitch and Climate, A., Berger, , et al. 113-125 D. Reidel, Hingham, Mass., 1984,
- Thomson D. J., Quadratic-Inverse Spectrum Estimates: Applications to Palaeoclimatology, 10.1098/rsta.1990.0130
- Tricot, C., , A., Berger, , Sensitivity of present-day climate to astronomical forcing, in Long and Short-Term Variability of Climate, 16, Lectures Notes in Earth Sciences, H., Wanner, , U., Siegenthaler, , 132-152 Springer Verlag, New York, 1988,
- Vernekar, A. D., , Long-Period Global Variations of Incoming Solar Radiation, Meteorol. Monogr., 12(34), American Meteorological Society, Boston, Mass., 1972,
- Woolard, E. W., , G. M., Clemence, , Spherical Astronomy, Academic, San Diego, Calif., 1966,
- Word Meteorological Organization, , Revised instruction manual on radiation instruments and measurements, WMO/TD Rep., 149, WCRP 7, Geneva, 1986,
Bibliographic reference |
Berger, André ; Loutre, Marie-France ; Tricot, C.. Insolation and Earths Orbital Periods. In: Journal of Geophysical Research, Vol. 98, no. D6, p. 10341-10362 (1993) |
Permanent URL |
http://hdl.handle.net/2078.1/49654 |