User menu

Hyperbolic involutions

Bibliographic reference Bayer-Fluckiger, Eva ; Shapiro, Daniel B. ; Tignol, Jean-Pierre. Hyperbolic involutions. In: Mathematische Zeitschrift, Vol. 214, no. 3, p. 461-476 (1993)
Permanent URL
  1. Albert, A.A.: Structure of algebras. (Colloq. Publ., Am. Math. Soc., vol. 24), Providence: Am. Math. Soc. 1961
  2. Allen, H.P.: Hermitian forms. II. J. Algebra10, 503–515 (1968)
  3. Bayer-Fluckiger, E., Lenstra, H.W. Jr.: Forms in odd degree extensions and self-dual normal bases. Am. J. Math.112, 359–373 (1990)
  4. Bourbaki, N.: Algèbre, chap. 8: Modules et anneaux semi-simples. Paris: Hermann 1958
  5. Fröhlich, A., McEvett, A.: Forms over rings with involution. J. Algebra12, 79–104 (1969)
  6. Jacobson, N.: Clifford algebras for algebras with involution of type D. J. Algebra1, 288–300 (1964)
  7. Knebusch, M.: Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinear-formen. Sitzungsber. Heidelb. Akad. Wiss., Math.-Naturwiss. Kl., 3. Abh. (1969/70)
  8. Knus, M.-A., Parimala, R., Sridharan, R.: On the discriminant of an involution. Bull. Soc. Math. Belg., Sér. A43, 89–98 (1991)
  9. Knus, M.-A., Parimala, R., Sridharan, R.: Involutions on rank 16 central simple algebras. J. Indian Math. Soc.57, 143–151 (1991)
  10. Knus, M.-A., Rost, M., Tignol, J.-P.: Involutions, Clifford algebras and triality (in preparation)
  11. Lam, T.Y.: The algebraic theory of quadratic forms. Reading: Benjamin 1973; revised printing: 1980
  12. Lewis, D.: Witt rings as integral rings. Invent. Math90, 631–633 (1991)
  13. Lewis, D., Tignol, J.-P.: On the signature of an involution. Arch. Math. (in press)
  14. Scharlau, W.: Induction theorems and the structure of the Witt group. Invent. Math.11, 37–44 (1970)
  15. Scharlau Winfried, Quadratic and Hermitian Forms, ISBN:9783642699733, 10.1007/978-3-642-69971-9
  16. Shapiro, D.B.: Cancellation of semisimple hermitian pairings. J. Algebra41, 212–223 (1976)
  17. Shapiro, D.B.: Compositions of quadratic forms. Berlin New York: de Gruyter (in preparation)
  18. Tao, D.: A variety associated to an algebra with involution. Ph.D. dissertation, University of California, San Diego (1992)
  19. Tits, J.: Formes quadratiques, groupes orthogonaux et algèbres de Clifford. Invent. Math.5, 19–41 (1976)
  20. Van Drooge, D.C.: Spinor theory of quadratic quaternion forms. Proc. K. Ned. Akad. Wet., Ser. A70, 487–523 (1976)
  21. Wadsworth, A.R.: 16-dimensional algebras with involution. Private papers (June 1990)