Climate over the past million years has been dominated by glaciation cycles with periods near 23,000, 41,000, and 100,000 years. In a linear version of the Milankovitch theory, the two shorter cycles can be explained as responses to insolation cycles driven by precession and obliquity. But the 100,000-year radiation cycle (arising from eccentricity variation) is much too small in amplitude and too late in phase to produce the corresponding climate cycle by direct forcing. We present phase observations showing that the geographic progression of local responses over the 100,000-year cycle is similar to the progression in the other two cycles, implying that a similar set of internal climatic mechanisms operates in all three. But the phase sequence in the 100,000-year cycle requires a source of climatic inertia having a time constant (similar to 15,000 years) much larger than the other cycles (similar to 5,000 years). Our conceptual model identifies massive northern hemisphere ice sheets as this larger inertial source. When these ice sheets, forced by precession and obliquity, exceed a critical size, they cease responding as linear Milankovitch slaves and drive atmospheric and oceanic responses that mimic the externally forced responses. In our model, the coupled system acts as a nonlinear amplifier that is particularly sensitive to eccentricity-driven modulations in the 23,000-year sea level cycle. During an interval when sea level is forced upward from a major low stand by a Milankovitch response acting either alone or in combination with an internally driven, higher-frequency process, ice sheets grounded on continental shelves become unstable, mass wasting accelerates, and the resulting deglaciation sets the phase of one wave in the train of 100,000-year oscillations.
Whether a glacier or ice sheet influences the climate depends very much on the scale....The interesting aspect is that an effect on the local climate can still make an ice mass grow larger and larger, thereby gradually increasing its radius of influence.
Anderson, The Record of Sea-Level Fluctuations, 70, 87 (1991)
Baksi A. K., Hsu V., McWilliams M. O., Farrar E., 40Ar/39Ar Dating of the Brunhes-Matuyama Geomagnetic Field Reversal, 10.1126/science.256.5055.356
Bard Edouard, Hamelin Bruno, Fairbanks Richard G., Zindler Alan, Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals, 10.1038/345405a0
Bard Edouard, Fairbanks Richard G, Hamelin Bruno, Zindler Alan, Chi Track Hoang, Uranium-234 anomalies in corals older than 150,000 years, 10.1016/0016-7037(91)90115-l
Bard Edouard, Arnold Maurice, Fairbanks Richard G., Hamelin Bruno, 230Th-234U and 14C Ages Obtained by Mass Spectrometry on Corals, 10.1017/s0033822200013886
Berger André L., Long-Term Variations of Caloric Insolation Resulting from the Earth's Orbital Elements, 10.1016/0033-5894(78)90064-9
Berger, A Simple Algorithm to Compute Long Term Variations of Daily or Monthly Insolation (1978)
Berger A., Loutre M.F., Insolation values for the climate of the last 10 million years, 10.1016/0277-3791(91)90033-q
BERGER A., LOUTRE M. F., LASKAR J., Stability of the Astronomical Frequencies Over the Earth's History for Paleoclimate Studies, 10.1126/science.255.5044.560
Berger A. L., Insolation signatures of quaternary climatic changes, 10.1007/bf02507714
Birchfield G. Edward, Broecker Wallace S., A salt oscillator in the glacial Atlantic? 2. A “scale analysis” model, 10.1029/pa005i006p00835
Birchfield G. Edward, Ghil Michael, Climate evolution in the Pliocene and Pleistocene from marine-sediment records and simulations: Internal variability versus orbital forcing, 10.1029/93jd00200
Birchfield G. Edward, Grumbine Robert W., “Slow” physics of large continental ice sheets and underlying bedrock and its relation to the Pleistocene ice ages, 10.1029/jb090ib13p11294
Birchfield G. E., Weertman Johannes, A note on the spectral response of a model continental ice sheet, 10.1029/jc083ic08p04123
BIRCHFIELD G. E., WERTMAN J., Topography, Albedo-Temperature Feedback, and Climate Sensitivity, 10.1126/science.219.4582.284
Bond Gerard, Broecker Wallace, Johnsen Sigfus, McManus Jerry, Labeyrie Laurent, Jouzel Jean, Bonani Georges, Correlations between climate records from North Atlantic sediments and Greenland ice, 10.1038/365143a0
Boyle, Climate Processes and Climate Sensitivity, 29, 360 (1984)
Boyle Edward A, Sampling statistic limitations on benthic foraminifera chemical and isotopic data, 10.1016/0025-3227(84)90124-5
Boyle E.A., Keigwin L.D., Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories, 10.1016/0012-821x(85)90154-2
Broccoli A J, Manabe S, The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum, 10.1007/bf01054478
Broecker Wallace S., van Donk Jan, Insolation changes, ice volumes, and the O18record in deep-sea cores, 10.1029/rg008i001p00169
Broecker Wallace S, Denton George H, The role of ocean-atmosphere reorganizations in glacial cycles, 10.1016/0016-7037(89)90123-3
Broecker Wallace S., Bond Gerard, Klas Millie, Bonani Georges, Wolfli Willy, A salt oscillator in the glacial Atlantic? 1. The concept, 10.1029/pa005i004p00469
Clemens Steven C., Prell Warren L., Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: Eolian records from the lithogenic component of deep-sea sediments, 10.1029/pa005i002p00109
Clemens Steven C., Prell Warren L., Late Quaternary forcing of Indian Ocean summer-monsoon winds: A comparison of Fourier model and general circulation model results, 10.1029/91jd02205
CROWLEY T. J., KIM K.-Y., MENGEL J. G., SHORT D. A., Modeling 100,000-Year Climate Fluctuations in Pre-Pleistocene Time Series, 10.1126/science.255.5045.705
Curry William B., Crowley Thomas J., The δ13C of equatorial Atlantic surface waters: Implications for Ice Age pCO2levels, 10.1029/pa002i005p00489
Dansgaard W., Johnsen S. J., Clausen H. B., Dahl-Jensen D., Gundestrup N. S., Hammer C. U., Hvidberg C. S., Steffensen J. P., Sveinbjörnsdottir A. E., Jouzel J., Bond G., Evidence for general instability of past climate from a 250-kyr
ice-core record, 10.1038/364218a0
DeBlonde G., Peltier W. R., A One-Dimensional Model of Continental Ice Volume Fluctuations through the Pleistocene: Implications for the Origin of the Mid-Pleistocene Climate Transition, 10.1175/1520-0442(1991)004<0318:aodmoc>2.0.co;2
Denton, The Last Great Ice Sheets (1981)
Fairbanks Richard G., A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, 10.1038/342637a0
Gallée H., van Ypersele J. P., Fichefet Th., Tricot Ch., Berger A., Simulation of the last glacial cycle by a coupled, sectorially averaged climate—ice sheet model: 1. The climate model, 10.1029/91jd00874
Gallée, J. Geophys. Res., 97, 15,713 (1992)
Gallée, Ice in the Climate System (1993)
Genthon G., Barnola J. M., Raynaud D., Lorius C., Jouzel J., Barkov N. I., Korotkevich Y. S., Kotlyakov V. M., Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle, 10.1038/329414a0
Ghil M., Climate sensitivity, energy balance models, and oscillatory climate models, 10.1029/jd089id01p01280
Ghil, Climate and Geo-sciences, 285, 211 (1989)
Ghil, The Sun in Time, 511 (1991)
Ghil, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics (1987)
Ghil M, Mullhaupt A, Pestiaux P, Deep water formation and Quaternary glaciations, 10.1007/bf01088850
Greenland Ice-core Project Members, Climate instability during the last interglacial period recorded in
the GRIP ice core, 10.1038/364203a0
Hagelberg Teresa, Pisias Nick, Elgar Steve, Linear and nonlinear couplings between orbital forcing and the marine δ18O record during the Late Neocene, 10.1029/91pa02281
Hamelin Bruno, Bard Edouard, Zindler Alan, Fairbanks Richard G., 234U/238U mass spectrometry of corals: How accurate is the UTh age of the last interglacial period?, 10.1016/0012-821x(91)90070-x
Hays J. D., Imbrie J., Shackleton N. J., Variations in the Earth's Orbit: Pacemaker of the Ice Ages, 10.1126/science.194.4270.1121
Heinrich Hartmut, Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean During the Past 130,000 Years, 10.1016/0033-5894(88)90057-9
Hooghiemstra, Orbital Forcing and Cyclic Sequences (1993)
Hughes T., Ice dynamics and deglaciation models when ice sheets collapsed, North America and Adjacent Oceans During the Last Deglaciation ISBN:0813752035 p.183-220, 10.1130/dnag-gna-k3.183
Imbrie, Milankovitch and Climate, Part 1, 269 (1984)
Imbrie, Climate and Geo-sciences, 285, 121 (1989)
Imbrie J., Boyle E. A., Clemens S. C., Duffy A., Howard W. R., Kukla G., Kutzbach J., Martinson D. G., McIntyre A., Mix A. C., Molfino B., Morley J. J., Peterson L. C., Pisias N. G., Prell W. L., Raymo M. E., Shackleton N. J., Toggweiler J. R., On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing, 10.1029/92pa02253
Imbrie, Global Changes in the Perspective of the Past, 263 (1993)
Imbrie J., Mix A. C., Martinson D. G., Milankovitch theory viewed from Devils Hole, 10.1038/363531a0
Jenkins, Spectral Analysis and Its Applications (1968)
Jones, Nor. Geol. Tidsskr., 71, 145 (1991)
Jones Glenn A., Keigwin Lloyd D., Evidence from Fram Strait (78° N) for early deglaciation, 10.1038/336056a0
Jouzel J., Barkov N. I., Barnola J. M., Bender M., Chappellaz J., Genthon C., Kotlyakov V. M., Lipenkov V., Lorius C., Petit J. R., Raynaud D., Raisbeck G., Ritz C., Sowers T., Stievenard M., Yiou F., Yiou P., Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period, 10.1038/364407a0
Karpuz Nalân Koç, Jansen Eystein, A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: Documentation of rapid climatic changes, 10.1029/92pa01651
Koc Karpuz Nalân, Schrader Hans, Surface sediment diatom distribution and Holocene paleotemperature variations in the Greenland, Iceland and Norwegian Sea, 10.1029/pa005i004p00557
KEFFER T., MARTINSON D. G., CORLISS B. H., The Position of the Gulf Stream During Quaternary Glaciations, 10.1126/science.241.4864.440
Keigwin L. D., Jones G. A., Lehman S. J., Boyle E. A., Deglacial meltwater discharge, North Atlantic Deep Circulation, and abrupt climate change, 10.1029/91jc01624
KELLOGG THOMAS B., DUPLESSY JEAN CLAUDE, SHACKLETON NICHOLAS J., Planktonic foraminiferal and oxygen isotopic stratigraphy and paleoclimatology of Norwegian Sea deep-sea cores, 10.1111/j.1502-3885.1978.tb00051.x
Kukla, Current Anthropology, 9, 37 (1968)
Kukla, Start of a Glacial, 3, 307 (1992)
Start of a Glacial (1992)
Kukla G., Berger A., Lotti R., Brown J., Orbital signature of interglacials, 10.1038/290295a0
Kukla, Trans. R. Soc. Edinburgh Earth Sci., 81, 263 (1990)
Kutzbach John E., Model simulations of the climatic patterns during the deglaciation of North America, North America and Adjacent Oceans During the Last Deglaciation ISBN:0813752035 p.425-446, 10.1130/dnag-gna-k3.425
Kutzbach John E., Guetter Peter J., The Influence of Changing Orbital Parameters and Surface Boundary Conditions on Climate Simulations for the Past 18 000 Years, 10.1175/1520-0469(1986)043<1726:tiocop>2.0.co;2
Lambeck Kurt, Nakada Masao, Constraints on the age and duration of the last interglacial period and on sea-level variations, 10.1038/357125a0
Lautenschlager M., Herterich K., Atmospheric response to Ice Age conditions: Climatology near the Earth's surface, 10.1029/jd095id13p22547
Lehman Scott J., Keigwin Lloyd D., Sudden changes in North Atlantic circulation during the last deglaciation, 10.1038/356757a0
Lehman Scott J., Keigwin Lloyd D., Deep circulation revisited, 10.1038/358197b0
Le Treut Hervé, Ghil Michael, Orbital forcing, climatic interactions, and glaciation cycles, 10.1029/jc088ic09p05167
Le Treut Hervé, Portes Jacques, Jouzel Jean, Ghil Michael, Isotopic modeling of climatic oscillations: Implications for a comparative study of marine and ice core records, 10.1029/jd093id08p09365
Leuenberger Markus, Siegenthaler Ulrich, Langway Chester, Carbon isotope composition of atmospheric CO2 during the last ice age from
an Antarctic ice core, 10.1038/357488a0
Maasch Kirk A., Saltzman Barry, A low-order dynamical model of global climatic variability over the full Pleistocene, 10.1029/jd095id02p01955
Manabe S., Broccoli A. J., The influence of continental ice sheets on the climate of an ice age, 10.1029/jd090id01p02167
Martinson Douglas G., Pisias Nicklas G., Hays James D., Imbrie John, Moore Theodore C., Shackleton Nicholas J., Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy, 10.1016/0033-5894(87)90046-9
Mercer, Antarctic ice and Sangamon sea level International Association of Scientific Hydrology Commission of Snow and Ice, 79, 217 (1968)
Meskó, Digital Filtering Applications in Geophysical Exploration for Oil (1984)
Mesolella Kenneth J., Matthews R. K., Broecker Wallace S., Thurber David L., The Astronomical Theory of Climatic Change: Barbados Data, 10.1086/627434
Milankovitch, Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen (1930)
Miller Kenneth G., Fairbanks Richard G., Mountain Gregory S., Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, 10.1029/pa002i001p00001
Mix A. C., Pisias N. G., Zahn R., Rugh W., Lopez C., Nelson K., Carbon 13 in Pacific Deep and Intermediate Waters, 0-370 ka: Implications for Ocean Circulation and Pleistocene CO2, 10.1029/90pa02303
Pestiaux P., Van Der Mersch I., Berger A., Duplessy J. C., Paleoclimatic variability at frequencies ranging from 1 cycle per 10 000 years to 1 cycle per 1000 years: Evidence for nonlinear behaviour of the climate system, 10.1007/bf00140262
Pisias, Milankovitch and Climate, Partlt, 307 (1984)
Pisias Nicklas G., Rea David K., Late Pleistocene paleoclimatology of the central equatorial Pacific: Sea surface response to the southeast Trade Winds, 10.1029/pa003i001p00021
Pisias Nicklas G., Shackleton Nicholas J., Modelling the global climate response to orbital forcing and atmospheric carbon dioxide changes, 10.1038/310757a0
Pollard, J. Clim., 1, 965 (1983)
Prell Warren L., Kutzbach John E., Monsoon variability over the past 150,000 years, 10.1029/jd092id07p08411
Rasmusson Eugene M., Carpenter Thomas H., Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño, 10.1175/1520-0493(1982)110<0354:vitsst>2.0.co;2
Raymo, Start of a Glacial, 3, 207 (1992)
Raymo M. E., Ruddiman W. F., Tectonic forcing of late Cenozoic climate, 10.1038/359117a0
Raymo M.E., Ruddiman W.F., Shackleton N.J., Oppo D.W., Evolution of Atlantic-Pacific δ13C gradients over the last 2.5 m.y., 10.1016/0012-821x(90)90051-x
Reid, Deep Sea Res., 18, 1063 (1971)
Ruddiman W. F., Kutzbach J. E., Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west, 10.1029/jd094id15p18409
Ruddiman, Initial Rep. Deep Sea Drill. Proj., 94, 855 (1986)
Ruddiman W.F., Raymo M., McIntyre A., Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets, 10.1016/0012-821x(86)90024-5
Ruddiman W. F., Raymo M. E., Martinson D. G., Clement B. M., Backman J., Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean, 10.1029/pa004i004p00353
Saltzman, Adv. Geophys., 20, 183 (1978)
Saltzman Barry, Maasch Kirk A., Carbon cycle instability as a cause of the Late Pleistocene Ice Age Oscillations: Modeling the asymmetric response, 10.1029/gb002i002p00177
Saltzman, Trans. R. Soc. Edinburgh Earth Sci., 81, 315 (1990)
Shackleton Nicholas John, Opdyke Neil D., Oxygen Isotope and Palaeomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 Year and 106 Year Scale, 10.1016/0033-5894(73)90052-5
Shackleton N. J., Imbrie J., The ? 18O spectrum of oceanic deep water over a five-decade band, 10.1007/bf00134658
Shackleton, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, 32, 303 (1985)
Shackleton, Trans. R. Soc. Edinburgh Earth Sci., 81, 251 (1990)
Shackleton, A new late Neogene time scale: Application to leg 138 sites Proc. Ocean Drill. Program, Sci. Results (1993)
Short David A., Mengel John G., Crowley Thomas J., Hyde William T., North Gerald R., Filtering of Milankovitch Cycles by Earth's Geography, 10.1016/0033-5894(91)90064-c
Solheim, Glacimarine Environments: Processes and Sediments, 253 (1990)
Sowers Todd, Bender Michael, Raynaud Dominique, Korotkevich Y. S., Orchardo Joe, The δ18O of atmospheric O2from air inclusions in the Vostok Ice Core: Timing of CO2and ice volume changes during the penultimate deglaciation, 10.1029/91pa02023
Stuiver Minze, Braziunas Thomas F., Becker Bernd, Kromer Bernd, Climatic, Solar, Oceanic, and Geomagnetic Influences on Late-Glacial and Holocene Atmospheric 14C/12C Change, 10.1016/0033-5894(91)90091-i
Tauxe L., Deino A.D., Behrensmeyer A.K., Potts R., Pinning down the Brunhes/Matuyama and upper Jaramillo boundaries: a reconciliation of orbital and isotopic time scales, 10.1016/0012-821x(92)90114-b
Taylor, The Physics of Musical Sounds (1965)
Turon Jean-Louis, Direct land/sea correlations in the last interglacial complex, 10.1038/309673a0
Winograd I. J., Coplen T. B., Landwehr J. M., Riggs A. C., Ludwig K. R., Szabo B. J., Kolesar P. T., Revesz K. M., Continuous 500,000-Year Climate Record from Vein Calcite in Devils Hole, Nevada, 10.1126/science.258.5080.255
Wright D G, Stocker T F, Mysak L A, A note on quaternary climate modelling using Boolean delay equations, 10.1007/bf00211063
Wunsch, Deep Sea Res., 23, 371 (1976)
Bibliographic reference
Imbrie, J. ; Berger, André ; Boyle, EA. ; Clemens, SC. ; Duffy, A. ; et. al. On the Structure and Origin of Major Glaciation Cycles .2. the 100,000-year Cycle. In: Paleoceanography, Vol. 8, no. 6, p. 699-735 (1993)