User menu

Compatible Poisson Structures and the Virasoro Algebra

Bibliographic reference Adler, M. ; Van Moerbeke, Pierre. Compatible Poisson Structures and the Virasoro Algebra. In: Communications on Pure and Applied Mathematics, Vol. 47, no. 1, p. 5-37 (1994)
Permanent URL http://hdl.handle.net/2078.1/49028
  1. Adler, Inv. Math., 50, 219 (1979)
  2. , and , From the w∞-algebra to its central extension: a τ-function approach, Comm. Math. Phys., 1994, in press.
  3. Adler, Comm. Math. Phys., 147, 25 (1992)
  4. and , String equations and the algebra of symmetries of the Toda lattice, Bull. Sci. Math., in press.
  5. Avan, Mod. Phys. Letters A, 7, 357 (1992)
  6. and , Tensor Analysis on Manifolds, Macmillan, New York, 1968.
  7. , and , Bihamiltonian manifolds and Sato's equations, in: Proceedings of the AMS-IMS-SIAM 1991 Joint Summer Research Conference on Mathematical Aspects of Classical Field Theory, , and , eds., AMS, in press.
  8. , and , Bihamiltonian manifolds and τ-function, in: Proceedings of the AMS-IMS-SIAM 1991 Joint Summer Research Conference on Mathematical Aspects of Classical Field Theory, , and , eds., AMS, in press.
  9. Damianou, Letters in Math. Phys., 20, 101 (1990)
  10. , , and , Transformation groups for soliton equations, pp. 39–119 in: Proc. RIMS Symp. Nonlinear Integrable Systems, Classical and Quantum Theory (Kyoto 1981), World Scientific, Singapore, 1983.
  11. Dickey L A, Soliton Equations and Hamiltonian Systems, ISBN:9789810202156, 10.1142/1109
  12. Additional symmetries of KP, Grassmannian, and the string equation, I and II, Modern Phys. Lett. A 13 and 14, 1993, pp. 1259–1272 and 1357–1377.
  13. Di Francesco, Comm. Math. Phys., 146, 543 (1991)
  14. Duistermaat, Comm. Math. Phys., 103, 177 (1986)
  15. Enriquez, Ecole Poly-technique, Preprint No., 1081 (1993)
  16. Boson-Correspondence for W-Algebras, Bäcklund-Darboux Transformations and the Equation [[L,P]] = Ln, Doctoral Dissertation, University of Louvain, 1993.
  17. Fuchssteiner, Prog. Theor. Phys., 70, 1508 (1983)
  18. Fukuma, UT, 572 (1990)
  19. Gervais, Phys. Lett. B, 60, 277 (1985)
  20. and , Symplectic Techniques in Physics, Cambridge University Press, 1984.
  21. Haine, Bull. Sci. Math., 1993, 485
  22. and , Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Adv. Series Math. Phys. 2, World Scientific, Singapore, 1987.
  23. Khesin, Funct. Anal. Appl., 21, 329 (1987)
  24. Kirillov, Funct. Anal. Appl., 15, 135 (1981)
  25. Kosmann-Schwarzbach, Séminaire de Math. Sup., Presses Universitaires de Montréal, 102, 185 (1986)
  26. Proceedings of the 1991 AMS-IMS-SIAM Joint Summer Research Conference on Mathematical Aspects of Classical Field Theory, Mark , and , eds., AMS, in press.
  27. Lichnérowicz, J. Diff. Geom., 12, 253 (1977)
  28. Lichnérowicz, C.R. Acad. Sci. Paris A, 280, 523 (1975)
  29. Magri, Comm. Math. Phys., 141, 329 (1991)
  30. Integrable systems and algebraic curves, pp. 83–200 in: Springer Lecture Notes in Math. No. 755, Springer-Verlag, 1979.
  31. Compatible Bracket in Hamiltonian Mechanics, Harvard-Brandeis-MIT Colloquium Talk, Spring 1991, reprint, 1991.
  32. and , Poisson-Nyenhuis structures and Sato hierarchy, preprint, 1991.
  33. Tata Lectures on the Theta II, Birkhäuser, Boston-Basel-Stuttgart, 1984.
  34. Nijenhuis Albert, Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, 10.1016/s1385-7258(55)50054-0
  35. Oevel, Prog. Theor. Phys., 75, 1328 (1986)
  36. Oevel, Phys. Lett. A, 88, 323 (1982)
  37. Orlov, Lett. Math. Phys., 12, 171 (1986)
  38. Perelomov A. M., Integrable Systems of Classical Mechanics and Lie Algebras, ISBN:9783764323363, 10.1007/978-3-0348-9257-5
  39. Radul, Funct. Anal. Appl., 25, 33 (1991)
  40. Private communication.
  41. Sato, Lect. Notes in Num. Appl. Anal., 5, 259 (1982)
  42. On the differential operators of first order in tensor calculus, pp. 1–7 in: Conv. Intern. Geom. Diff. Italia, 1953, Ed. Cremonese, Roma, 1954.
  43. Smit, Comm. Math. Phys., 128, 1 (1990)
  44. Integrable foundations of string theory, CIMPA summer school at Sophia-Antipolis 1991, World Scientific, Singapore, 1993.
  45. Witten, J. Diff. Geom., 1, 243 (1991)
  46. Zubelli, Physica D, 43, 269 (1990)