User menu

Decomposition of Malcev-neumann Division-algebras With Involution

Bibliographic reference Dherte, H.. Decomposition of Malcev-neumann Division-algebras With Involution. In: Mathematische Zeitschrift, Vol. 216, no. 4, p. 629-644 (1994)
Permanent URL http://hdl.handle.net/2078.1/48749
  1. Arason, J.: Cohomologische Invarianten quadratischer Formen. J. Algebra36, 448–491 (1975)
  2. Amitsur, S.A., Rowen, L.H., Tignol, J.-P.: Division algebras of degree 4 and 8 with involution. Isr. J. Math.33, 133–148 (1978)
  3. Chacron, M., Dherte, H., Tignol, J.-P., Wadsworth, A.R., Yanchevskii, V.I.: Discriminants of involutions on Henselian division algebras. Pac. J. Math. (to appear)
  4. Dherte, H.: Invariants d'algèbres centrales simples à involution. Doctoral dissertation, Université Catholique de Louvain (1992)
  5. Jacobson, N.: Clifford Algebras for Algebras with Involution of Type D. J. Algebra1, 288–300 (1964)
  6. Knus, M., Parimala, R., Sridharan, R.: On the discriminant of an involution. Bull. Soc. Math. Belg, Sér. A43, 89–98 (1991)
  7. Knus, M., Parimala, R., Sridharan, R.: Involutions on rank 16 central simple algebra. J. Indian Math. Soc.57, 143–151 (1991)
  8. Parimala, R., Sridharan R., Suresh, V.: A Question of the Discriminants of Involutions of Central Division Algebras. Math. Ann.297, 575–580 (1993)
  9. Rowen, L.H.: Polynomial identities in ring theory. New York, NY: Academic Press 1980
  10. Rowen, L.H.: Central simple algebras. Isr. J. Math.29, 285–301 (1978)
  11. Scharlau Winfried, Quadratic and Hermitian Forms, ISBN:9783642699733, 10.1007/978-3-642-69971-9
  12. Tao, D.: Doctoral dissertation, University of California San Diego (1992)
  13. Tits, J.: Formes quadratiques, groupes orthogonaux et algèbres de Clifford. Invent. Math.5, 19–41 (1968)
  14. Tignol, J.-P.: Cyclic and elementary abelian subfields of Mal'cev-Neumann division algebras. J. Pure Appl. Algebra42, 199–220 (1986)
  15. Yanchevskii, V.I.: Oral communication