Abstract |
: |
One basic problem in statistical sciences is to understand the relationships among multivariate outcomes. Although it remains an important tool and is widely applicable, the regression analysis is limited by the basic setup that requires to identify one dimension of the outcomes as the primary measure of interest (the "dependent" variable) and other dimensions as supporting this variable (the "explanatory" variables). There are situations where this relationship is not of primary interest. For example, in actuarial sciences, one might be interested to see the dependence between annual claim numbers of a policyholder and its impact on the premium or the dependence between the claim amounts and the expenses related to them. In such cases the normality hypothesis fails, thus Pearson's correlation or concepts based on linearity are no longer the best ones to be used. Therefore, in order to quantify the dependence between non-normal outcomes one needs different statistical tools,
such as, for example, the dependence concepts and the copulas. This thesis is devoted to modelling dependence with applications in actuarial sciences and is divided in two parts: the first one concerns dependence in frequency credibility models and the second one dependence between continuous outcomes. In each part of the thesis we resort to different tools, the stochastic orderings (which arise from the dependence concepts), and copulas, respectively.
During the last decade of the 20th century, the world of insurance was confronted with important developments of the a posteriori tarification, especially in the field of credibility. This was dued to the easing of insurance markets in the European Union, which gave rise to an advanced segmentation. The first important contribution is due to Dionne & Vanasse (1989), who proposed a credibility model which integrates a priori and a posteriori information on an individual basis. These authors introduced a regression component in the Poisson counting model in order to use all available information in the estimation of accident frequency. The unexplained heterogeneity was then modeled by the introduction of a latent variable representing the influence of hidden policy characteristics. The vast majority
of the papers appeared in the actuarial literature considered time-independent (or static) heterogeneous models. Noticeable exceptions include the pioneering papers by Gerber & Jones (1975), Sundt (1988) and Pinquet, Guillén & Bolancé (2001, 2003). The allowance for an unknown underlying random parameter
that develops over time is justified since unobservable factors influencing the driving abilities are not constant. One might consider either shocks (induced by events like divorces or nervous breakdown, for instance) or continuous modifications (e.g. due to learning effect). In the first part we study the recently introduced models in the frequency credibility theory, which can be seen as models of time series for count data, adapted to actuarial problems. More precisely we will examine the kind of dependence induced among annual claim numbers by the introduction of random effects taking unexplained heterogeneity, when these random effects are static and time-dependent. We will also make precise the effect of reporting claims on the a posteriori distribution of the random effect. This will be done by establishing some stochastic monotonicity property of the a posteriori distribution
with respect to the claims history.[...] |