
UNIVERSITÉ CATHOLIQUE DE LOUVAIN
INSTITUT DE STATISTIQUE
Voie du Roman Pays, 20
B-1348 Louvain-la-Neuve
Belgique

ADAPTIVE METHODS FOR MODELLING,

ESTIMATING AND FORECASTING

LOCALLY STATIONARY PROCESSES

Membres du jury: Thèse présentée en vue de

l’obtention du grade de

Prof. Rainer Dahlhaus Docteur en Sciences

Prof. Irène Gijbels (orientation statistique) par :

Prof. Guy P. Nason

Prof. Jean-Marie Rolin Sébastien Van Bellegem
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Introduction

This work is concerned with data coming in the form of a univariate,
discrete-time stochastic process Xt (t = 0, 1, 2, . . .). We focus on the
analysis of its covariance structure, and therefore we assume that the
process is zero-mean.

Zero-mean processes arise, for example, when the global trend has
been removed from the data. Trend estimation is a well studied problem
in the literature, and we refer to [51, 52, 97, 120] for some existing
methods. Sometimes, the global trend of a time series can be removed
without computing an estimator explicitely. In that case, a first-order
difference is applied on the observed process, that is we compute Xt −
Xt−1, and the resulting process is zero-mean. It is well-known that this
phenomenon arises for a lot of economic indices [7]. An example is given
in Figure 1(a), which represents the values of the Nasdaq-100 index from
January 3, 2000 through May 31, 2002. This index includes hundred of
the largest non-financial domestic and international companies listed on
the Nasdaq National Market. It is clear that this process contains a
trend, which can be removed if we compute the first-order difference of
the logarithm of the Nasdaq-100 series (the log-return index), see Figure
1(b). The resulting zero-mean process still contains valuable information
for the analyst, in terms of the volatility of the time series.

In time series analysis, most existing models assume that the zero-
mean process Xt is covariance stationary. This means that the covari-
ance between Xs andXt depends only on the lag |s−t|. This assumption
is very useful in order to have some estimators for the autocovariance
structure of the process with good statistical properties, such as consis-
tency, efficiency or central limit theorems (see Brockwell and Davis [15]
for a review).

However, many time series in applied science are not covariance sta-
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(b) The log-returns of the index.

Figure 1: The Nasdaq-100 index includes 100 of the largest non-financial do-
mestic and international companies listed on the Nasdaq National Market.
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tionary and show a time-varying second-order structure. That is, vari-
ance and covariance can change over time. For instance, the log-returns
showed in Figure 1(b) are likely to have an inhomogeneous variance.
By this, we mean that the variance of the process is clearly not con-
stant over time. In this thesis, we apply a test of covariance stationarity
to these data, and it confirms this observation. Many other examples
may be found in economics, as is showed in Chapter 1 of this thesis.
But this lack of covariance-stationarity has also been observed in many
other fields of the applied science, such as biomedical time series (see
Chapter 5 of this thesis, or [83, 87]), seismology [103] or meteorology
(see Chapter 6 of this thesis, or [80]), to name but a few.

Gradually, more and more attention has been paid to this challenging
problem on how to model such processes with an evolutionary autoco-
variance structure. Among the pioneers, we can cite the work of Loynes
[65], Page [90], Priestley [94], Silverman [104]. For instance, this last
author proposed in 1957 the approximation

Cov(Xs, Xt) ≈ m

(
s+ t

2

)
c(s− t)

i.e. the covariance behaves locally as a typical stationary autocovariance
but then varies from place to place depending of the midpoint between s
and t. As in Silverman’s definition, each model on nonstationary covari-
ance has to define explicitely its departure from stationarity. However,
from a statistical viewpoint, many questions remain. For instance, with
this lack of an invariant second-order structure, how can we estimate
the time-varying covariance with a high accuracy? Even if we add some
regularity assumptions on the function m, a serious problem here is that
we cannot build an asymptotic theory for the estimation of m. Conse-
quently, the standard statistical properties like consistency, efficiency
or central limit theorems cannot be used to measure and compare the
quality of different estimators.

In the last decades, many authors worked on this problem of mod-
elling and estimating an evolutionary autocovariance structure [44, 46,
54, 55, 69, 71, 73]. A decisive idea was introduced recently by Dahlhaus
[23] with his new concept of “local stationarity”. This concept allows
the modelling of a time-varying autocovariance structure which can be
estimated rigorously. By this, we mean that an appropriate asymptotic
theory can be developed and the usual statistical properties of estima-
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tors may be derived. This simple and elegant idea is reviewed in the
beginning of Chapter 1.

The thesis contributes to the development of this approach of non-
stationarity. Herewith, by “nonstationarity”, we always refer to a zero-
mean process with a possibly time-varying autocovariance structure. Our
contributions concern both the theoretical and empirical analysis of non-
stationary processes. We bring new results in terms of modelling and
estimating the autocovariance of these processes. We also address the
problem of how to forecast nonstationary data. The proposed estima-
tion and forecasting procedures are adaptive, in the sense that all the
parameters needed in the procedure are chosen in a data-driven way.
Applications are provided on economic, biomedical and meteorological
time series.

The first chapter presents a simple model for nonstationarity, where
only the variance is time-varying. The aim of this chapter is twofold.
First, it makes the reader familiar with the fundamental concepts of
the whole thesis. The notion of “local stationarity” is discussed, and
the fundamental problems of the analysis of nonstationary data are pre-
sented on a model which is particularly simple to understand. These
problems concern the modelling, the estimation and the forecasting of
nonstationary data. The second aim of this chapter is to show that this
simple model satisfactorily explains the nonstationary behaviour of sev-
eral economic data sets, among which are the U.S. stock returns and
exchange rates. The nonstationary behaviour of the economic processes
has been neglected in the past, and very often estimation and forecasting
procedures based on the assumption of stationarity are applied without
checking the covariance-stationarity of the data. Our major contribu-
tion here is to show that very often, the assumption of stationarity is
rejected by standard testing procedures, and we provide a simple model
for explaining this nonstationary behaviour. This chapter is based on
[111].

In the second chapter, we study more complex semiparametric mod-
els, where not only the variance is evolutionary. A typical example of
these models is given by ARMA(p, q) models with time-varying coeffi-
cients. Our aim is to fit such semiparametric models to some nonstation-
ary data. Our data-driven estimator is constructed from a minimisation
of a penalised contrast function, where the contrast function is an ap-
proximation to the Gaussian likelihood of the model. The theoretical
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performance of the estimator is analysed via non asymptotic risk bounds
for the quadratic risk. In our results, we do not assume that the observed
data follow the semiparamatric structure, that is our results hold in the
misspecified case.

The third chapter introduces a fully nonparametric model for local
nonstationarity. This model is a wavelet-based model of local station-
arity which enlarges the class of models defined by Nason et al. [83].
Our main contribution here is for modelling: we allow the evolutionary
autocovariance to change very suddenly in time. This is in contrast with
the work of Nason et al. [83], who model a smoothly varying autocovari-
ance. This extension is not only proposed in order to work in a general
setting. It is also crucial if one wishes to model time series with inter-
mittent phenomena, such as transients followed by regions of smooth
behaviour. A notion of time-varying “wavelet spectrum” is uniquely de-
fined as a wavelet-type transform of the autocovariance function with
respect to so-called “autocorrelation wavelets”. This leads to a natural
representation of the autocovariance which is localised on scales. We
also provide some useful mathematical properties of the autocorrelation
wavelet system. Chapter 3 is based on [39] and [112].

Similarly to the classical theory of stationary time series, a wavelet
periodogram can be defined as a preliminary estimator of the wavelet
spectrum. One particularly interesting question is to test the signifi-
cance of the coefficients of the wavelet periodogram. This question has
been presented in Nason et al. [83] as a challenging problem, with poten-
tially important practical applications. In Chapters 4 and 5, we address
this problem. We derive some theoretical properties of our test of sig-
nificance, including a discussion on its consistency, its power, and its
local alternative. The test rule is based on a non-asymptotic result on
the deviations of a functional of the periodogram. This key result also
allows to derive a new pointwise adaptive estimator of the wavelet spec-
trum. Theoretical properties of this new estimator are also presented in
Chapter 4. This chapter is based on [112].

However, the use of the test of significance and the pointwise adap-
tive estimators is not straightforward and necessitates the study of some
appropriate algorithmic procedures. This is provided in the next Chap-
ter 5, where we give a description of a full algorithm for each procedure.
These algorithms are evaluated on simulated nonstationary processes,
and applied on a case study in biostatistics. In this chapter, we also
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derive a new test of covariance stationarity. This test is illustrated on
another case study in biostatistics, and compared with the wavelet-based
test of stationarity of von Sachs and Neumann [99]. This chapter is based
on [113]

Finally, Chapter 6 addresses the problem how to forecast the gen-
eral nonstationary process introduced in Chapter 3. We present a new
predictor and derive the prediction equations as a generalisation of the
Yule-Walker equations. We propose an automatic computational pro-
cedure for choosing the parameters of the forecasting algorithm. Then
we apply the prediction algorithm to a meteorological data set. This
chapter is based on [39] and [110].

Diagram of the thesis

1. Time-modulated processes

2. Semiparametric models 3. Nonparametric wavelet model

4. Local significance/Adaptive estimator (theory)

5. Local significance/Adaptive estimator (algorithms)

6. Forecasting



CHAPTER 1

Modelling and forecasting

economic time series

with unconditional

time-varying variance

1.1 Motivation

To forecast economic time series, many analyses are based on the as-
sumption that the probabilistic properties of the underlying process are
time-invariant. Even if this assumption is very useful in order to con-
struct simple predictors, it seems not to be the best strategy in practice.
Indeed, taking into account structural changes of parameters may lead
to better forecasting performance because it is sometimes more adequate
to capture some aspects of the real world [18, Section 7.4]. More surpris-
ingly, some stylised facts, as the long range dependence of the absolute
returns of financial time series, can even be explained by a parameter
change of the model [77]. In terms of forecasting, Swanson and White
[108] conclude that models allowing parameter variability can show bet-
ter accuracy and adaptability than constant models on macroeconomic
data. These empirical and theoretical works suggest a model with evo-
lutionary parameters, reflecting the evolution of the economy over time.
An important consequence of this observation is the lack of stationarity
of the data, which means that the unconditional moments of the time
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series can vary over time.

This evolution of unconditional moments has been statistically tested
on various economic processes. For instance, Pagan and Schwert [88,
89] develop statistical tests rejecting the hypothesis that the monthly
U.S. stock returns are covariance stationary, as long as the period of
Great Depression (1929–1939) is included in the series. Loretan and
Phillips [63] confirm this conclusion for stock returns, but also for a
set of exchange rate data. Similar results have been found by Los [64]
on short series of weekly price indeces of Asian stock markets. Other
approaches for testing structural changes in the variance of economic
time series are reviewed in Hansen [47].

In this introductory chapter, we go one step further and study how
this nonstationary behaviour can be modeled. We focus on a very sim-
ple model of nonstationarity with an unconditional variance evolving
with time. This model includes the so-called “time-modulated proces-
ses” defined in Section 1.2 below. In this section, we also derive some
basic properties of these processes. Estimation and forecasting proce-
dures are described in Section 1.3. Section 1.4 is devoted to the practical
evaluation of these nonstationary processes on several financial time se-
ries among which are the U.S. stock returns and exchange rates. We
show that our simple and meaningful model of nonstationarity provides
a satisfactory explanation power of the nonstationary behaviour of the
observed data.

In Section 1.5, a comparison between our forecasts and standard
ARCH-type models is provided. However, the standard comparison tests
of forecast accuracy cannot be used in our context, as they usually work
under the maintained assumption that the process is variance-stationary.
Hence, we show that a generalisation of the Meese and Rogoff’s test [72]
may be used for comparing the mean forecasts, while the Christoffersen’s
test [17] may be used to compare the interval forecasts.

Finally, Section 1.6 presents some concluding remarks including the
essential points for the understanding of the whole thesis.

1.2 Modelling evolutionary variance

The most simple nonstationary model consists of a second-order sta-
tionary process modulated by a deterministic time-varying variance. If
Yt, t = 0, 1, 2, . . ., is a zero mean stationary process, a very simple non-
stationary model is given by Xt = σtYt, where σt is a deterministic
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time-varying function which is strictly positive. As we suppose the pro-
cess Yt to be zero mean and stationary, the nonstationarity of Xt is only
explained by its evolving unconditional variance.

With this model of variance nonstationarity, it may seem contradic-
tory to construct a forecasting theory, since a predictor exploits gener-
ally an invariance structure in the unconditional moments of the process.
This problem is overcome if we add regularity assumptions on the deter-
ministic function σt. For instance, we can impose that σt is a piecewise
constant function. More generally, we can assume that σt is nearly
constant along intervals of a certain length τ . Using this regularity as-
sumption, we can estimate and extrapolate the deterministic variance
to build a predictor.

However, this approach is not satisfactory since it implicitly imposes
that the function σt is estimable only using τ observations. In this
framework, when the length of the data set increases, no improvement
is possible in the estimation of σt over this interval of length τ . This
implies that asymptotic considerations can not be used in the statistical
inference of such process. This is a substantial drawback, because the
usual statistical properties of estimators such as consistency, efficiency
or central limit theorems cannot be used to measure and to compare the
quality of different estimators.

To overcome this (theoretical) problem, Dahlhaus [23] introduced a
concept of “local stationarity” in a general context of covariance evolu-
tion. In our situation, this concept is as follows: Suppose we observe
the series from time 0 up to T −1 (T observations). The local stationar-
ity assumption postulates the existence of a deterministic function σ(z)
defined for z ∈ [0, 1) such that the approximation σt ≈ σ(t/T ) holds
in an appropriate way that we will define below. In this approach, two
scales of time are defined: The observed time, which is the usual scale
of time 0, . . . , T − 1, and the rescaled time defined on the interval [0, 1).
The deterministic function σ(z) is defined on the rescaled time. There
exists a mapping between these two scales of time, and since this map-
ping depends on the sample size T , the resulting nonstationary process
is doubly indexed:

Xt,T = σ

(
t

T

)
Yt, (1.1)

where Yt is a zero-mean stationary process with unit variance. Xt,T is
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called a time-modulated process. The regularity assumptions are now
made on the function σ(z) defined on [0, 1). Due to the mapping be-
tween 0, . . . , T − 1 and [0, 1), the estimation of σ(z) becomes a standard
statistical problem: For instance if σ(z) is constant on an interval of
length τ < 1 in the rescaled time, then it may be estimated using τ · T
observed data in the real time (see Figure 1.1).

0 T

0 1

Observed time

Rescaled time

T · τ

τ

Figure 1.1: The rescaled time principle.

Consequently, if T increases, we get more observations to estimate
σ(z) on τ . Estimation of σ(z) is then parallel to the estimation of a
regression function in a nonparametric regression problem.

An important consequence of the rescaled time is the interpretation
of “asymptotics”. When T tends to infinity, we get more information on
the local structure of σ2(z) in the rescaled time, because the mapping
defines a finer grid in the rescaled time. However, it does not mean that
we look into the future, because the rescaled time has a fixed bounded
support [0, 1). To understand this point, an analogy with the spectral
analysis of stationary time series may help. Indeed, the spectrum of a
stationary process is defined on the interval [−π, π]. When we observe
T data (T < ∞), the spectrum is not identifiable on [−π, π] because
we can only estimate the covariance of the process up to lag T − 1, and
then the lowest frequencies of the spectrum are not identifiable. When
T increases, we get more information on the spectrum on [−π, π], and
this spectrum is uniquely defined only asymptotically [21]. The rescaled
time framework is analogous, in the sense that “T tends to infinity” now
means that we observe finer details in the rescaled time.

In this chapter, we study model (1.1) in some particular cases, corre-
sponding to the specification of Yt and σ(z). In Section 1.4, we consider
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tm-WN. Time-modulated White Noise processes, which are processes
(1.1) where Yt is a White Noise process;

tm-ARMA. Time-modulated ARMA processes, which are processes
(1.1) where Yt is a general ARMA process;

In addition, we also consider the following model in Section 1.5:

tm-GARCH. Time-modulated GARCH processes, which are proces-
ses (1.1) where Yt is a general GARCH process.

Another important specification is the regularity assumption made
on the deterministic function σ(z). In this chapter, we study two cases
of regularity:

PC is the case where σ2(z) is modeled by a piecewise constant function,
with a finite number of jumps,

Lip is the case where σ2(z) is a continuous function without jump. In
this case, σ2(z) is modeled as a Lipschitz continuous function, i.e.
|σ2(z) − σ2(z0)| 6 C · |z − z0| for all 0 < z0, z < 1.

In addition, we assume in the two cases that the variance is bounded
away from zero, i.e. there exists δ > 0 such that σ(z) > δ uniformly in
z.

Let us now derive some properties of these processes. We first con-
sider the case of a tm-WN process {Xt,T }. Our definition implies that
the expectation and the conditional expectation of Xt,T is zero, which
we denote by

E (Xt,T ) = E (Xt,T |Ft−1,T ) = 0

where Ft−1,T stands for the set of the observed values X0,T , . . . , Xt−1,T .
Concerning the (conditional) variance, we get

Var (Xt,T ) = Var (Xt,T |Ft−1,T ) = σ2

(
t

T

)

(recall that the variance of the stationary process Yt in equation (1.1)
is assumed to be one). The covariance and conditional covariance of
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a tm-WN are trivially zero. A more interesting property concerns the
kurtosis κ2:

κ2 :=
EX4

t,T(
EX2

t,T

)2 =
EY 4

t,T(
EY 2

t,T

)2 (1.2)

and it follows that the kurtosis of a tm-WN model is the kurtosis of its
White Noise. This simple property has a particular importance in the
modeling of economic series, which are known to be leptokurtic. This
stylised fact and equation (1.2) indicate that the distribution of Yt in
equation (1.1) is potentially leptokurtic. Consequently, we allow the
white-noise process Yt to be non Gaussian and to follow a possible very
general distribution.

These results are easily extended to the case of tm-ARMA proces-
ses. Consider equation (1.1) where Yt is the stationary and invertible
ARMA(p, q) process

Yt − φ1Yt−1 − . . .− φpYt−p = Zt + θ1Zt−1 + . . .+ θqZt−q

where {Zt} is a zero-mean white noise process such that VarYt = 1.
Direct considerations yield

EXt,T = 0 , (1.3)

E (Xt,T |Ft−1,T )

= σ

(
t

T

)
{φ1Yt−1 + . . .+ φpYt−p + θ1Zt−1 + . . .+ θqZt−q}

and

VarXt,T = σ2

(
t

T

)
,

Var (Xt,T |Ft−1,T ) = Var (Yt|Ft−1) · σ2

(
t

T

)
.

In this last expression, Var(Yt|Ft−1) is replaced by the classical formula
for the conditional variance of a stationary ARMA process (again, note
that we have supposed the unconditional variance of Yt to be 1). In the
particular case of an MA(q) process, this conditional variance is

Var (Yt|Ft−1) = (1 + θ2
1 + . . . + θ2

q)
−1.
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In the case where Yt is an AR(p) process, this conditional variance is

Var (Yt|Ft−1) = 1 − a2
1 − . . .− a2

p.

The case where Yt is a mixed model with both an AR and a MA part
is formally more complicated to be written, but follows from the gen-
eral expression for the autocorrelation function of these processes (see
Brockwell and Davis [15] for instance).

A similar property holds for the kurtosis: The kurtosis of a time-
modulated ARMA process is the kurtosis of the constituting ARMA
process, and then the distribution of the process {Zt} can usefully be
non Gaussian. This allows the tm-ARMA process to be leptokurtic, in
accordance with one of the stylised facts of economic processes.

We now consider the case of time-modulated GARCH processes. In
that case, the model (1.1) is defined with a GARCH process for Yt.
Recall that Yt is a GARCH(p, q) process if YT |Ft−1 has a normal distri-
bution N (0, σ2

t ), where the conditional variance σ2
t follows the following

ARMA-type representation [12, 36]:

σ2
t = α0 + α1Y

2
t−1 + . . .+ αpY

2
t−p + β1σ

2
t−1 + . . .+ βqσ

2
t−q

for some parameters α0 > 0, αi > 0 (i = 1, . . . , p) and βj > 0 (j =
1, . . . , q). The unconditional variance of Yt is given by

Var(Yt) = α0 (1 − α1 − . . .− αp − β1 − . . .− βq)
−1

provided that α1 + . . . + αp + β1 + . . . + βq < 1. This imposes that
α0 = (1 − α1 − . . . − αp − β1 − . . . − βq) since we are assuming that
this variance is equal to 1. Then, the conditional variance of the time-
modulated GARCH process is given by

Var (Xt,T |Ft−1,T ) = σ2

(
t

T

)
σ2

t ,

and a similar property holds for the kurtosis: the kurtosis of a time-
modulated GARCH process is the kurtosis of the constituting GARCH
process, and these processes are known to be leptokurtic [7].

In our results, we also consider an extension of the GARCH model
given by the EGARCH model. The motivation of this model is to model
a conditional variance σt which is not symmetric in the lagged Yt’s.
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Indeed, Nelson [84] suggested that a symmetric conditional variance
function may be inappropriate for modelling the volatility of returns or
stocks because it cannot represent a phenomena known as the ”leverage
effect, which is a negative correlation between volatility and past returns.
More specifically, he proposed the model

log(σt) = α0 +

p∑

i=1

αig(Yt−i) +

q∑

i=1

βi log(σt−i)

where

g(Yt) = θYt + γ{|Yt| − E|Yt|}.

This specification of the conditional variance is known as exponential
GARCH (EGARCH). The sequence g(Yt) is independent with mean zero
and constant variance. Therefore, EGARCH represents a linear ARMA
model for log(Yt) with innovations g(Yt).

1.3 Estimation and forecasting

In the scope of the present chapter, we want to study how time-modula-
ted processes explain the nonstationary behaviour of some data sets.
This section introduces all the tools we need for this goal. First, we
recall two tests for stationarity studied in the literature. Then, we pro-
pose three different estimators of the local variance function from data.
Finally, we address the problem of how to forecast time-modulated pro-
cesses, and propose a way to construct prediction intervals in practice.

1.3.1 Testing for covariance stationarity

In what follows, we will use tests of covariance stationarity. Let us briefly
recall two of the tests presented in Pagan and Schwert [89].

The first test is called post-sample prediction test. Suppose we ob-
serve the zero-mean process X0,T , . . . , XT−1,T and split the time axis by
T = T1+T2 with T1 = T2. If we want to test the hypothesis that the vari-
ance on X0,T , . . . , XT1−1,T is equal to the variance on XT1,T , . . . , XT−1,T ,
a suitable test statistic is

τ̂ = σ̂2
1 − σ̂2

2

where σ̂2
i is the sample variance on the ith segment. Under the null

hypothesis, the distribution of T
1/2
1 τ̂ is asymptotically normal if X2

t,T is
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a stationary process with autocovariance γj [50]:

T
1/2
1 τ̂

d−→ N (0, 2ν) (1.4)

as T tends to infinity, where

ν = γ0 + 2

∞∑

j=1

γj .

ν is estimated using the kernel-based estimate

ν̂` = γ̂0 + 2
∑̀

j=1

(
1 − j

`+ 1

)
γ̂j

where γ̂j is the jth serial covariance of X2
t and ` is a truncation number.

A discussion on this estimator can be found in Newey and West [86],
where a consistency result is established when ` = `(T ) tends to infinity
with T and is such that `(T ) = O(T 1/4). Discussions about the choice
of ` may be found in Phillips [92] and White and Domowitz [118], who
proposed to first investigate the decay of the sample autocorrelations
γ̂j . In that case, ` is selected equal to the lag where γ̂j becomes non
significant.

Note that the post-sample prediction test crucially depends on the
time point where we split the series into two parts. As in practice this
time point is arbitrary, we recall a second test for covariance stationarity,
the CUSUM test. This test does not require to split the time series into
two parts. Define

ψ(r) =
1√
Tν

[Tr]∑

t=1

(
X2

t,T − σ̂2
T

)
(1.5)

where 0 < r < 1 and σ̂2
T is the classical variance estimate over the

whole segment of length T . This test compares the global variance
estimate with the partial sum of the squared process (recall that we
assume the process to be zero-mean). If the Xt,T obey the moment and
mixing conditions in Phillips [92], then Lo [62] proves that, under the
null, ψ(r) converges in distribution to a Brownian bridge. This means
that the probability Pr(ψ(r) < c) is equal to the probability that an
N (0, r(1 − r)) random variable is less than c.
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Remark 1.1. These two tests of stationarity come from the standard
literature in econometrics. In this thesis, a new test of stationarity is
developed in Chapter 5 below. ♦

1.3.2 Estimation of the unconditional variance

The unconditional variance function σ2(z), defined in the rescaled time
z ∈ [0, 1), is a function which is piecewise constant PC or continuous
Lip.

In the Lip case, the unconditional variance is estimated as follows.
Consider the squared process X2

t,T . This process is clearly an unbiased
estimate of σ(t/T ) but it suffers from a large variability (see Proposition
1.1 below for a precise quantification of this phenomenon). Then we
smooth it using a kernel estimator.

In the PC case, we proceed as follows. Suppose the variance function
has no structural break (jump) in the interval I = [z0, z1], 0 < z0 < z1 <
1. A natural estimate of σ(z) for z ∈ I is the empirical variance

ŝT :=
1

|z1 − z0|T

[z1T ]∑

t=[z0T ]

X2
t;T , (1.6)

where [ · ] denotes the integer part of a real number. The resulting esti-
mate is an unbiased and consistent estimator of σ2(z) on I (see Propo-
sition 1.2 below). However, we have to detect the structural breaks, and
for this we propose to follow one of these two procedures:

1. Consider the random variable

s(t) =
∣∣σ̂2

t+1 − σ̂2
t

∣∣ t = 0, . . . , T − 2, (1.7)

where σ̂2
t denotes the sample stationary variance computed on

{X0,T , . . . , Xt,T }. We decide that there is a structural break in
the variance at t = t0 if s(t0) is larger than a certain threshold λ.
In practice, we consider a data-dependent threshold: We choose λ
such that 3 % of the realisations of s(t) are larger than λ. Thus,
on average, 3 % of the data are considered as structural breaks.
Other numerical choices for λ could be taken but, as we shall see
later, this choice leads to good results in practice.
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2. We can also use the CUSUM test to decide if there is a struc-
tural break in the unconditional variance. Fixing the level of the
CUSUM test at α, we select the first structural break by searching
the time point t0 = r0T , 0 < r0 < 1, such that ψ(r0) in (1.5)
is outside the confidence interval of the test. Then, we reproduce
the procedure on segment X[r0T ],T , . . . , XT−1,T . In practice, we set
α = 0.10.

1.3.3 Forecasting procedure

In the local stationarity framework, the nonstationary process is dou-
bly indexed, see equation (1.1). If we want to forecast h values of
an observed process, we arrange the indices as follows: We denote by
X0,T , . . . , XT−h−1,T the observed values with the convention that the
ratio h/T tends to zero as T tends to infinity. This implies that the
forecasting horizon h may depend on T , but does not increase faster
than T .

The last observed realisation is denoted by XT−h−1;T , which implies
that, in the rescaled time, the local variance function σ2(z) can be esti-
mated only on the interval

[
0, 1 − h+ 1

T

]

which asymptotically tends to [0, 1). If we denote ζh = 1 − (h + 1)/T ,
then the value of σ2(z) outside [0, ζh] are the predicted values of the
unconditional variance in the rescaled time (see Figure 1.2).

Remark 1.2 (Future observations and rescaled time). With this
remark, we would like to give some explanations about the forecast-
ing mechanics for doubly indexed processes. For clarity of presentation,
we restrict ourselves to the case h = 1. An important ingredient of
the rescaled time is that the data come in the form of a triangular ar-
ray whose rows correspond to different stochastic processes, only linked
through the unconditional variance sampled on a finer and finer grid.
This mechanism is inherently different to what we observe in practice,
where, typically, observations arrive one by one and neither the values of
the “old” observations, nor their corresponding second-order structure,
change when a new observation arrives. One way to reconcile the prac-
tical setup with our theory is to assume that for an observed process



18 Chapter 1. Modelling economic time series

0

T − h− 1

T

0 ζh = T−h−1

T

σ2(z)

domain of

prediction

domain of

extrapolation

Figure 1.2: This picture illustrates the forecasting procedure explained in Sec-
tion 1.3.3.

X0, . . . , Xt−1, there exists a doubly-indexed time-modulated process Y
such that Xk = Yk,T for k = 0, . . . , t − 1. When a new observation Xt

arrives, the underlying time-modulated process changes, i.e. there exists
another TM process Z such that Xk = Zk,T+1 for k = 0, . . . , t. ♦

We can now present our forecasting procedure for time-modulated
processes. With our indices convention, the h-step predictor corresponds
to the index T − 1, and then is denoted by X̂T−1,T .

1. Predict the local variance. Predicted values of the variance consist
in an extrapolation of the estimated variance computed on [0, ζh].
In the PC case, the most natural extrapolation is to prolong the
last constant piece of the function by the same value. In the Lip
case, we use a kernel extrapolator.

2. Define σ̃2(z) as the estimator of the local variance for z 6 ζh and
its extrapolation for ζh < z < 1.



1.4 Empirical results 19

3. Define the standardised data by

X̃t,T =
Xt,T

σ̃
(

t
T

) t = 0, . . . , T − h− 1. (1.8)

4. From equation (1.1), the standardised process X̃t,T is a zero-mean
stationary process. Then, use a standard forecaster for stationary
process to forecast X̃t,T .

5. From equation (1.3), we define the h-step predictor X̂T−1,T =

X̂T−1,T (h) in a natural way as

X̂T−1,T = σ̃

(
T − 1

T

)
E (YT−1|FT−h−1) (1.9)

where E (YT−1|FT−h−1) denotes the classical h-step predictor of a
stationary process constructed from the standardised data (1.8).

Note that this predictor is zero for a tm-WN process.

The construction of the prediction intervals is similar. However,
recall that the unconditional distribution of Yt in equation (1.1) is not
supposed to be Gaussian due to (1.2). It means that the (zero-mean)
random variable X̃t,T is not Gaussian in general. Then, to construct the
prediction interval at the level α, we propose to compute the interval

[
q̃α

2
; q̃1−α

2

]

where q̃α is the α-quantile of the empirical distribution of the standard-
ised process {X̃t,T }, t = 0, . . . , n− 1. Finally the prediction interval for
the forecasted value of XT−1,T is given by

[
X̂T−1,T − σ̃

(
T − 1

T

)
q̃α

2
; X̂T−1,T + σ̃

(
T − 1

T

)
q̃1−α

2

]
. (1.10)

Based on the empirical distribution of {X̃t,T }, these prediction in-
tervals are more suitable for the model (1.1), in which the distribution
of the stationary process Yt may be very general.
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1.4 Empirical results

In this section, we focus on the practical evaluation of time-modulated
processes. Our experiments are presented for five different economic
data sets that we present in Section 1.4.1. In Section 1.4.2, we study the
question of the covariance stationarity of these time series, and we apply
the statistical tests recalled in section 1.3.1. Then, Section 1.4.3 studies
the covariance stationarity of the standardised process (1.8), when we
estimate the local variance σ̃(z) with the estimators proposed in Sec-
tion 1.3.2. Finally, Section 1.4.4 is devoted to evaluate the forecasting
performance of the procedure described in Section 1.3.3.

1.4.1 The data sets

Nas-100. The log-returns of the Nasdaq-100 Index. This index includes
100 of the largest non-financial domestic and international com-
panies listed on the Nasdaq National Market tier of The Nasdaq
Stock Market, Inc. from January 3, 2000 through May 31, 2002
(603 observations);

NasFin-100. The log-returns of the Nasdaq Financial-100 Index. This
index includes 100 of the largest financial organizations listed on
the Nasdaq National Market tier of The Nasdaq Stock Market, Inc.
from January 3, 2000 through May 31, 2002 (603 observations);

Daily-SR. The daily stock returns to the Standard & Poor’s composite
portfolio from January 3, 1950 through December 29, 1962 (from
Schwert [102] – 3100 observations);

Ex-DM-BP. Daily percentage nominal returns for the Deutsche Mark/
British Pound exchange rate from January 3, 1984 to December
31, 1991 (from Bollerslev and Ghysel [13] – 1974 observations);

Ex-US-BP. Daily spot exchange rate of the US dollar to the British
pound over a period of 1000 days ending on August 9, 1996 (1000
observations).

1.4.2 Testing covariance stationarity

In a first step, we apply the two tests of covariance stationarity reviewed
in Section 1.3.1 on the five data sets. All results are summarized in the
column called “Original series” of Table 1.1. In this table, “PSP-test”
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Original series Stand. (i) — Lip Stand. (ii) — PC Stand. (iii) — PC

PSP-test CS-test PSP-test CS-test κ2 PSP-test CS-test κ2 PSP-test CS-test κ2

Nas-100 0.02 0.535 0.81 * 2.99 0.43 * 3.77 0.86 * 3.48

NasFin-100 0.20 0.053 0.74 * 3.51 0.58 * 9.64 0.71 * 6.83

Daily SR 0.37 0.291 0.78 * 3.62 0.17 0.23 9.13 0.69 0.70 5.30

Ex DM-BP < 10−2 1.338 0.71 * 4.26 0.22 0.15 7.80 0.69 * 8.68

Ex US-BP < 10−2 2.039 0.75 * 4.18 0.05 1.18 5.46 0.68 0.50 7.30

Table 1.1: “PSP-test” denotes the post-sample prediction test (1.4) for which we indicate the two-sided p-value. “CS-
test” refers to the CUSUM test of covariance stationarity. This test compares the values of ψ(r) defined in equation
(1.5) and the percentiles c±

0.01(r) of a Brownian bridge. If ψ(r) is fully contained in the confidence intervals, we
indicate *, and in the contrary, we compute δ as in equation (1.11) — see text. The table shows results for three
different standardisations (1.8) corresponding to the three different estimates (i), (ii) and (iii) of the local variance
σ̃2(z) explained in text. κ2 is the empirical kurtosis computed for each standardised process.
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stands for the post-sample prediction test (1.4) with ` = 7 and “CS-test”
refers to the CUSUM-test (1.5). For the first test, we indicate the p-value
of the test. For the CUSUM-test, we present the results in a different
way: We fix the level of the test at 0.01 and compare the values of ψ(r)
defined by equation (1.4) with the percentiles c±0.01 of a Brownian bridge.
If the curve ψ(r) is fully contained in the confidence intervals, the test
does not reject the null assumption of covariance stationarity and, in
this case, we indicate the symbol *. In the contrary, if ψ(r) intersects
the curve c+0.01 or c−0.01, then the CUSUM test rejects the assumption of
covariance stationarity. In this case, we indicate in the table the value
of

δ := max
0<r<1

(
|ψ(r)| − c+0.01(r)

)
(1.11)

which measures the maximal deviation between |ψ(r)| and c+0.01(r) with
respect to r.

To illustrate the CUSUM-test, we plot in Figure 1.3(a) the result of
the CUSUM test applied on the Nas-100 series. This test concludes to a
lack of homogeneity in the unconditional variance of Nas-100, with δ =
0.535, which motivates the introduction of time-modulated processes.
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(a) The CUSUM test applied on the
Nasdaq index
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(b) The CUSUM test applied on the
standardised Nasdaq index

Figure 1.3: In the CUSUM test, the function ψ(r) is ploted for 0 < r < 1 (see
equation (1.5)). The smooth lines which are (partly) plotted are the confidence
intervals of the CUSUM test at level 0.01.

From Table 1.1, we can see that the post-sample prediction test (1.4)
concludes to the lack of homogeneity in the variance of Nas-100, Ex-DM-
BP and Ex-US-BP. On the other hand, the CUSUM test (1.5) shows the
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lack of stationarity of all the series. Note that the PSP-test splits the
time interval into two segments of equal length and tests the equality
of variance on these two segments. This test crucially depends on the
time point where we split the series into two parts. Contrary to this
test, the CUSUM test controls the variance changes at each time point.
Consequently, the reason why the series Daily-SR and NasFin-100 are
not considered to be inhomogeneous in variance by the first test is simply
due to the fact that the variance is not clearly broken at the middle of
the series. Nevertheless, observe that there is only little doubt about
the lack of homogeneity for NasFin-100.

1.4.3 Empirical properties of the standardised process

As a second step, we estimate the local variance and, for this, we have
three possibilities, given by the three procedures mentioned in Section
1.3:

(i) in the Lip case, we smooth the squared data using a normal kernel
and a bandwidth of 40/n, where n is the total number of observa-
tions of the series;

(ii) in the PC case, we use the estimator (1.6) and a segmentation based
on s(t), see equation (1.7);

(iii) in the PC case the estimator (1.6) is used with the segmentation
based on the CUSUM procedure.

Using our estimation, we standardise the data in the three cases, and run
again the two tests of stationarity onto the standardised data. Figure
1.3(b) shows the result for Nas-100 with standardisation (iii), and we
observe that the standardised process is variance homogeneous. In other
words, the time-varying variance σ2(z) modeled with PC fully explains
the lack of stationarity of the original Nas-100 series.

The results for the other series are given in Table 1.1. For each
series, we apply the PSP-test and the CUSUM-test on the original data.
Then, these two tests are applied on standardised data (1.8) for the
three different standardisations (i), (ii) and (iii). If we focus on the
CUSUM-test, we see that there is a large doubt about the stationarity
of the five original series. This is partly confirmed by the PSP-test,
which rejects the null of stationarity at a sensible level of test for the
series Nas-100, Ex DM-BP and Ex US-BP. At a first glance, the result
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of the two tests seems contradictory for the data NasFin-100 and Daily
SR. However, as we have mentioned above, the PSP-test is not a good
test when the breakpoint in the variance does not occur at the middle
of the time series. Then, the observed difference between the two tests
may be explained by this phenomenon.

If we focus on the CUSUM-test and standardisation (i) only, then
Table 1 shows that the curve ψ(r) (see (1.5)) is fully contained in the
confidence intervals of the test. In other words, this test does not reject
the null of stationarity for the standardised data in the Lip case. This
result is not so clear for the two other standardisations.

However, even for the PSP-test, some results are still interesting.
Consider for instance the series Ex DM-BP. On the original series, the
PSP-test rejects the null of stationarity (p-value < 10−2). But for each
standardised data, this test does not reject the null (p-value > 0.22).
This conclusion applies also for Ex US-BP and Nas-100 data. This
means that if the original series has a breakpoint in the variance occuring
in the middle of the series, then the corresponding standardised process
no longer presents this breakpoint.

In conclusion, the first standardisation fully explains the lack of ho-
mogeneity of the series. The two other standardisations, correspond-
ing to the PC case, provide less clear results. However, except for the
Daily-SR series, the third standardisation leads to better results than
the second standardisation in the PC case. Then, we can conclude that,
in most of the cases, time-modulated processes satisfactorily explain the
nonstationary behaviour observed in Section 1.4.2.

These first results are in favour of a smooth variance modelling. We
could also model a time-modulated process (1.1) with a piecewise smooth
variance. However, in this case, the estimation of the variance leads to
the simultaneous problem of finding a good segmentation and choosing
an appropriate smoother. Since the Lip and the PC conditions lead to
satisfactory results, we will not consider this general case for the scope
of this chapter.

In Table 1.1, we also mention the empirical kurtosis of the standard-
ised process. This is in order to remark that the standardised process
generally does not have a Gaussian distribution, and this motivates the
construction of prediction intervals based on the empirical quantiles, as
explained in Section 1.3.3 for tm-ARMA processes.
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1.4.4 Forecasting

In the next step, we want to compare the forecasting accuracy of time-
modulated models using the PC and Lip condition. In this section, we
will only consider the estimators (i) and (iii). We now explain how we
measure this accuracy for the one-step ahead prediction.

First, we clip the series at time t0 and consider the prediction at
time t0 +1. With notations of Figure 1.2, we set t0 = T −h− 1 = T − 2
because the horizon prediction is h = 1. Then, we can proceed to the
forecast as described in Section 1.3.3. In our experiments, we work as
follows:

1. Fit an autoregressive model to the standardised process obtained
in Section 1.4.3. This is done through the minimisation of the AIC
criterion [3];

2. Compute the forecasted value at t0 + 1 for the stationary process;

3. To compute the forecasted value at time t0 +1, we need to extrap-
olate the local variance (see equation (1.9)). This extrapolation
is constant in the case of the estimator (iii). For the estimator
(i), we compute σ̃ ((t0 + 1)/T ) as the average of the local variance
estimated at t0/T, (t0 −1)/T, . . . , (t0−39)/T . (We also could take
a weighted sum on more than 40 data. 40 leads to good results
in practice, and, in our experimental results, the results are rather
robust with respect to the choice of this parameter.)

This procedure is repeated for different values of t0. Consequently,
the autoregressive process fitted at each t0 may also change with time,
in accordance with Swanson and White [108]. In our experiments, we
applied this algorithm to the 100 last values of the observed process.

We follow a similar procedure for h-step ahead prediction. In this
case however, the estimator (i) is computed recursively: First, we ex-
trapolate the variance at t0 + 1, then we extrapolate the variance at
t0 + 2 averaging the estimated values of the local variance at (t0 +
1)/T, t0/T, . . . , (t0 − 38)/T , and so on until the extrapolation at (T −
1)/T . From this moving average procedure, we can see that, for a long-
range prediction, the extrapolated variance is a weighted sum of the
estimated variance at t0/T, (t0 − 1)/T, . . . , (t0 − 39)/T .



26 Chapter 1. Modelling economic time series

1.4.5 Evaluating the forecasts

The empirical results are listed in tables 1.2 and 1.3 for a one-step ahead
prediction and a four-steps ahead prediction. For each series, the three
following criteria are computed [121]:

• The Root-Mean-Square Error (RMSE), given by

√√√√ 1

100

T−1∑

t=T−101

(
Xt,T − X̂t,T

)2
,

is a widely used measure of forecast accuracy.

• The Mean-Absolute Deviation (MAD), defined by

1

100

T−1∑

t=T−101

∣∣∣Xt,T − X̂t,T

∣∣∣.

• The Mean-Absolute Percentage Error (MAPE)

1

K100

T−1∑

t=T−101

∣∣Xt,T − X̂t,T

∣∣
|Xt,T |

IXt,T 6=0

where IXt,T 6=0 is 1 if Xt,T 6= 0 and 0 if not, and K100 is the number
of nonzero terms in the sum.

These three criteria concern the accuracy of the predicted mean. We
are also interested in the accuracy of the predicted variance of the pro-
cess. To measure this accuracy, we compute the two following measures:

• the percentage of observations (denoted by “Cov.” for “Coverage”)
which fall within the corresponding prediction intervals. These
intervals are constructed using formula (1.10).

• the median of the length of these prediction intervals (MLPI).

Finally, we provide a statistical test of accuracy for the interval fore-
cast. This test is based on the methodology of Christoffersen [17], which
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Series For.
hor.

RMSE MAD MAPE Cov. MLPI Christoffersen
test (p-values)

Lip Nas-100 h = 1 0.024 0.019 1.362 95 % 0.090 0.39

NasFin-100 0.009 0.007 1.034 96 % 0.032 0.76

Daily SR 0.004 0.003 1.022 96 % 0.020 0.76

Ex DM-BP 0.267 0.188 0.997 93 % 0.928 1

Ex US-BP 0.005 0.004 1.150 92 % 0.020 0.03

Nas-100 h = 4 0.024 0.019 1.214 95 % 0.092 0.30

NasFin-100 0.009 0.007 0.997 96 % 0.032 0.75

Daily SR 0.005 0.003 1.004 95 % 0.020 0.70

Ex DM-BP 0.266 0.188 1.000 91 % 0.913 0.98

Ex US-BP 0.005 0.004 1.090 92 % 0.020 0.03

Table 1.2: This table summarizes the prediction accuracy of time-modulated processes with Lip condition, i.e. using
the estimator (i).



2
8

C
h
a
p
te

r
1
.

M
o
d
e
ll
in

g
e
c
o
n
o
m

ic
ti

m
e

se
ri

e
s

Series For.
hor.

RMSE MAD MAPE Cov. MLPI Christoffersen
test (p-values)

PC Nas-100 h = 1 0.024 0.019 1.558 99 % 0.137 0.09

NasFin-100 0.008 0.007 1.057 100 % 0.063 1

Daily SR 0.004 0.003 1.107 100 % 0.026 1

Ex DM-BP 0.266 0.188 1.000 99 % 2.013 0.09

Ex US-BP 0.005 0.004 1.074 100 % 0.038 0.98

Nas-100 h = 4 0.025 0.020 1.494 99 % 0.137 0.09

NasFin-100 0.009 0.007 0.997 100 % 0.026 1

Daily SR 0.004 0.003 1.160 100 % 0.026 0.87

Ex DM-BP 0.266 0.188 1.000 99 % 2.014 0.09

Ex US-BP 0.005 0.004 1.002 100 % 0.038 0.87

Table 1.3: This table summarizes the prediction accuracy of time-modulated processes with PC condition, i.e. using
the estimator (iii).
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we now recall briefly. For an interval forecast It|t−1(π) at time t with a
coverage probability π, define

It =

{
1 if Xt,T ∈ It|t−1(π) ,

0 if Xt,T 6∈ It|t−1(π) .

Christoffersen [17] notes that the quality of the interval forecasts should
be tested by a conditional coverage hypothesis, i.e.

H0 : E(It|It−1, . . . , I1) = π for all t. (1.12)

He shows that this test is equivalent to testing that the sequence {It}
consists in identically and independent distributed Bernoulli random
variables, with parameter π. The likelihood ratio test of conditional
coverage is

LT (π) = −2 log
`(π; I1, . . . , IT )

`(Π̂1; I1, . . . , IT )
, (1.13)

where

`(p; I1, . . . , IT ) = (1 − π)n0πn1

and

`(Π̂1; I1, . . . , IT ) = (1 − π̂01)
n00 π̂n01

01 (1 − π̂11)
n10 π̂n11

11 ,

where nij is the number of observations with value i followed by j (i, j =
0 or 1), ni is the number of observations i (0 or 1), and π̂ij is an estimator
of Pr(It = i|It−1 = j) given by

(
π̂00 π̂01

π̂10 π̂11

)
=

(
n00

n00+n01

n01
n00+n01

n10
n10+n11

n11
n10+n11

)
.

Christoffersen [17] proves that, under H0, the likelihood ratio LT (π)
is asymptotically distributed as a χ2 random variable with 2 degrees of
freedom.

Depending on the application we have in mind, one of these criteria
will be the most important for the practitioner. The ideal predictor will
have a minimal loss in the mean (RMSE, MAD or MAPE), with the best
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coverage, the shortest MLPI and the best accuracy (Christoffersen test).
However, it may happen that these quantities are balancing each other.
For instance, we can have a predictor with the best loss in the mean,
but which has not the best conditional or unconditional coverage, etc.
In this case, selecting the most appropriate predictor would be advised
by the goals of the practitioner or the physical nature of the series. In
other words, for an observed time series, if it is more important to get
a precise forecast in the mean, then select the predictor with the best
loss in the mean. On the contrary, if a precise value of the mean is less
of interest than accurate predicted variability, then consider a predictor
with the best MLPI, and having a sensible percentage of coverage and
loss in the mean.

1.4.6 Results

The results listed in tables 1.2 and 1.3 are an illustration of this bal-
ancing phenomenon. Indeed, this table indicates that the PC model
leads to better results than the Lip condition as long as the accuracy
in the predicted mean is considered. However, if we consider the vari-
ance prediction, the Lip model shows the best MLPI’s. It means that
at level 0.05 (i.e. if we accept 5 % of error in our prediction) the fore-
casting procedure based on the Lip condition leads to smaller prediction
intervals.

Another observation is the difficulty to have a good coverage for
exchange rate data. This phenomenon is often observed for these data.
This coverage is lower than 95 % with the Lip model. It is better with
the PC model if we consider the coverage and the Christoffersen’s test,
but is not satisfactory for the Ex-DM-BP series, which leads to very
large prediction intervals.

Finally, Figure 1.4 illustrates the forecasting procedure on a segment
of the Nas-100 series. This prediction is provided under the Lip assump-
tion, and we can observe in Figure 1.4(b) the smooth variation of the
local variance, which automatically follows the smooth evolution of the
actual series.

1.5 Comparisons with standard models

Our last empirical study is devoted to the comparison of our forecasting
procedure with standard models in econometrics, namely GARCH(1, 1)
and EGARCH(1, 1). Many out-of-sample tests are proposed in the lit-
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(a) The dotted line is the actual series,
and the solid line is the one-step ahead
prediction.
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(b) The prediction intervals of the
same forecasting procedure as in Fig-
ure 1.4(a).

Figure 1.4: One-step ahead prediction at 100 time points of the series Nas-100.
The prediction is done between January 3, 2000 and March 14, 2002 with the
Lip model.

erature in order to test the equality of forecast accuracy [34, 48, 117].
However, most of these tests are based on strong assumptions and can-
not be of a direct use in our situation. More precisely, these tests are
based on the maintained assumption that the data are stationary in
covariance, and, in our context, this assumption is precisely not accept-
able. As a consequence, we need to develop specific tests in order to
compare the forecasts between a stationary and a potential nonstation-
ary models. This section proposes two approaches of comparison. A
deeper study of this relevant question should be addressed in a future
work.

1.5.1 A generalised Meese-Rogoff test

This test of forecast accuracy is introduced in Meese and Rogoff [72] and
reviewed in Diebold and Mariano [34]. It is based on the maintained as-
sumptions that the forecasting error Xt,T − X̂t,T are zero-mean, covari-
ance stationary and Gaussian. These two last assumptions are certainly
too strong in our context, and, in this subsection, we show how to derive
this test under weaker conditions.

Suppose we would like to compare the forecasting performance be-
tween the two models

X
(1)
t,T = σ

(
t

T

)
Y

(1)
t
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and

X
(2)
t,T = σ

(
t

T

)
Y

(2)
t

with a known unconditional variance σ(t/T ) (possibly time-varying).
The standardised errors of prediction for these two models are denoted
by

e
(i)
t,T =

Xt,T − X̂
(i)
t,T

σ(t/T )
i = 1, 2, (1.14)

and the null hypothesis of equal forecasting performance (in a quadratic
sense) is

H0 : E

[
T−1

T−1∑

t=0

(
e
(1)
t,T

)2
]

= E

[
T−1

T−1∑

t=0

(
e
(2)
t,T

)2
]
.

Let xt,T = e
(1)
t,T + e

(2)
t,T and zt,T = e

(1)
t,T − e

(2)
t,T . If the processes Y

(i)
t are

Gaussian, computations similar to Priestley [95, Section 5.3.3] lead to

√
T γ̂xz

d−→ N (0, V ) under H0 (1.15)

where

γ̂xz =
x′z
T

and

V =
1

T

∑

s

[γxx(s)γzz(s) + γxz(s)γzx(s)]

with

γxx(s) = Cov (xt,T , xt−s,T ) , γzz(s) = Cov (zt,T , zt−s,T ) ,

γxz(s) = γzx(s) = Cov (xt,T , zt−s,T ) .

In our context, we allow the processes Y
(i)
t to be non-Gaussian, but

we assume the Central Limit Theorem (1.15) holds with

V =
1

T

∑

s

[γxx(s)γzz(s) + γxz(s)γzx(s)] +
1

T 2

∑

s,t

κ4,xz(s, t)
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where κ4,xz(s, t) is the fourth cumulant of the distribution of (xs,T , xt,T ,
zs,T , zt,T ). Estimation of V is done by plugging in the formula consistent
estimates for γxx, γxz, γzx, γzz, κ4,xz(s, t). There are many standard re-
sults in the literature for this estimation of V , and we use the estimator
reviewed in Diebold and Mariano [34] in our empirical comparisons.

In practice, an estimation of σ(t/T ) in (1.14) is needed. If the model

X
(i)
t,T is covariance-stationary (i.e. σ is constant over time), then we

compute the root variance of {X0,T , . . . , XT−1,T }. If the model X
(i)
t,T is

time-modulated with a time-varying variance, σ(·) is estimated like in
Subsection 1.3.2, using the whole data {X0,T , . . . , XT−1,T }.
1.5.2 Christoffersen tests

The generalised Meese-Rogoff test is for comparing the forecast accuracy
between two forecasting procedures focusing on the predicted mean. To
compare the forecasting in terms of conditional coverage, the Christof-
fersen’s test may be used, even for time-modulated processes. As in
Christoffersen [17], the test (1.12) may be applied for a wide range of π
between 0.9 and 0.99.

1.5.3 Results

The two procedures have been applied on the five data sets of Subsection
1.4.1. We compute the generalised Meese-Rogoff test to compare the
forecasting procedure of Subsection 1.3.3 (with estimator (i) and (iii))
against the two conditional models GARCH(1,1) and EGARCH(1,1).
Again, in our experiments, we compute 100 one-step ahead forecasted
values at the end of each time series. In all the cases, the p-value of
the test is larger than 0.91. This means that, in terms of the predicted
mean, the time-modulated approach does not show any improvement
over the two ARCH-type models. This is not a surprising result, as
time-modulated processes differ from standard models in terms of the
variance only.

More relevant is the comparison in terms of interval forecasts by the
Christoffersen test. Figure 1.5 plots the likelihood ratio statistics for
some values of π between 0.9 and 0.99. The three figures correspond
to the NasFin-100, Daily-SR and Ex-DM-BP data respectively. In each
figure, the likelihood ratio statistic (1.13) is computed for the tm-AR
model with a variance estimated under the Lip model (solid line) and the
tm-AR model with a variance estimated under the PC condition (short
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Figure 1.5: NasFin-100, Daily-SR and Ex-DM-BP: Likelihood ratio statistics
of conditional coverage with different models. The solid line corresponds to
tm-AR model with a variance estimated under the Lip model. The short dash
is tm-AR model with a variance estimated under the PC condition. The long
dash is GARCH(1,1) and the short-long dash is EGARCH(1,1) (these two lines
are very close in the first figure). The bold line corresponds to 10 per cent
significance level of the appropriate χ2 distribution.

dash). They are compared to the GARCH(1,1) model (long dash) and
the EGARCH(1,1) model (short-long dash). The bold line corresponds
to 10 per cent significance level of the appropriate χ2 distribution.

The behaviour of the tm-AR model is similar in the three cases. It
starts with high values at 0.9, then has good behaviour since its values
are below the significance level, and then increases near 0.99. Between
0.92 and 0.98, it performs better than the (E)GARCH models. The
tm-AR model with a variance estimated under the PC condition has a
more stable behaviour, except for the stock returns.

We have to note that, from a modelling viewpoint, the time-modula-
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Figure 1.6: NasFin-100, Daily-SR and Ex-DM-BP: Likelihood ratio statistics
of conditional coverage with different models. The solid line corresponds to tm-
GARCH(1,1) model with a variance estimated under the Lip model. The short
dash is tm-GARCH(1,1) model with a variance estimated under the PC condi-
tion. The long dash is GARCH(1,1) and the short-long dash is EGARCH(1,1).
The bold line corresponds to 10 per cent significance level of the appropriate
χ2 distribution.

ted AR processes is not a competitor to the GARCH models. Indeed, it
may happen that the standardised process (1.8) contains a time-varying
conditional variance. It then makes sense to fit an ARCH-type model to
the standardised process. Figure 1.6 presents the same results as Figure
1.5, except that a GARCH model is fitted to the standardised processes.
(Again, the solid line corresponds to the Lip modelling of the uncondi-
tional variance, while the dashed line is under the PC model.) Com-
paring figures 1.5 and 1.6, we see that the behaviour of time-modulated
GARCH models performs better than the time-modulated AR models.
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1.6 Concluding remarks

In this chapter, we have provided a methodology to forecast economic
time series when the assumption of variance stationarity is rejected by
statistical tests. This lack of homogeneity of unconditional variance has
been observed on daily stock returns and exchange rate data and they
confirm preliminary results published in the literature [63, 64, 88, 89].
Using the framework of rescaled time, we have shown that a simple pro-
cess with a time-varying variance may be defined and explains satisfac-
torily the nonstationary behaviour of the observed series. This process
consists in a stationary process modulated by a time-varying variance
defined in the rescaled time. Two kinds of time-varying unconditional
variance were considered: A smooth time-varying variance and a piece-
wise constant variance. The first specification gives better results for
forecasting the variance, and the second specification gives better re-
sults in order to forecast the mean.

Our results confirm that economic processes can evolve over time.
Consequently, it is advisable to do a test of covariance stationarity be-
fore fitting an econometric model which assumes the constancy of the
unconditional moments. This paper shows a simple and meaningful way
to standardise nonstationary data in order to obtain a process which
can be assumed to be stationary. It is then possible to apply the stan-
dard econometric modelling on the standardized data, and to forecast
it. Forecasting the actual series is then straightforward on the non-
standardized data.

Our method of standardisation is based on the estimation of an un-
conditional variance. The proposed estimation procedures require the
choice of parameters, like a smoothing parameter. In this chapter, these
parameters are not automatically chosen. In the next chapters, more
complex models are studied and adaptive data-driven procedures are
developped for the estimation of their parameters. However, even if our
parameters are chosen by hand in the empirical studies of this chapter,
they provide satisfactory results, as the standardised process is station-
ary and the results presented in this study are robust with respect to
these parameters. It means that, taking a slightly different parameter
does not significantly change the results.

We also point out the inherent statistical difficulty to compare the
forecasting accuracy between models which are possibly not covariance-
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stationary. We examine two procedures for comparing the accuracy
of the forecasting between time-modulated processess and ARCH-type
models. As time-modulated processes model a time-varying uncondi-
tional variance, the predicted mean does not show significantly better
results than ARCH-type models. However, when considering the ac-
curacy of interval forecasts, we show that time-modulated models with
Lipschitz-continuous variance perform better.

As a follow-up, we also compare the results with time-modulated
GARCH (1, 1) models. In terms of interval forecast, our results show
the gain in prediction accuracy, in comparison with stationary GARCH
(1, 1) and EGARCH (1, 1) models. Consequently, the conclusion of our
results may be summarized as follows:

1. Very often, economic processes exhibit a time-varying uncondi-
tional variance.

2. Standard ARCH-type models assume the stationarity of the data.
In this paper, we show how a standardisation of the data may
be applied in order to “stationarize” the data. Then ARCH-type
models may be applied on the standardised data and forecasts may
be provided.

3. If this standardisation is not provided, the accuracy of the interval
forecast decreases.

Then, one ultimate message of our results for the analysis of eco-
nomic processes is that it could be useful to perform more empirical
studies on modelling and fitting time-modulated GARCH processes to
time series. This poses some challenging problems both from a theoret-
ical and practical viewpoint, in particular for identification. Here, the
results of Dahlhaus and Subba Rao [29] may be a starting point.

Other approaches of forecasting nonstationary signals are possible
(see for instance Grillenzoni [43] or Ramsey and Zhang [96]). However,
our approach based on the rescaled time leads to a consistent statisti-
cal theory modelling time-varying processes. Moreover, analysis with
a time-modulated stationary process is related to classical statistical
problems, such as nonparametric regression problem, nonparametric ex-
trapolation and estimation of quantiles for a non-Gaussian distribution.
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*

This first chapter aimed to focus on the essential problems treated in
the thesis. We have introduced important concepts on a simple model:
the local stationarity, the rescaled time, the estimation problem and the
need of adaptive methods for selecting the parameters of the estima-
tion, and the forecasting problem with nonstationary data. In the next
chapters, we introduce more complex models for nonstationarity, and
develop adaptive methods for the estimation of their parameters and for
forecasting. In these models, not only the variance is time-varying, but
all the second-order quantities of the model (autocovariance function,
spectrum).

1.7 Appendix: Some statistical properties of the

variance estimator

In this Appendix, we focus on the statistical properties of the variance
estimates. We will successively consider the case of the Lip assumption
and the PC assumption.

Proposition 1.1. Assume that the function σ in equation (1.1) obeys
the Lip condition. Then,

EX2
[zT ],T = σ2 (z)

VarX2
[zT ],T = σ4 (z) (κ2 − 1)

for all 0 < z < 1, where κ2 is the kurtosis (1.2).

The proof of this proposition is straightforward from equation (1.1),
recalling that the variance of the stationary process is equal to one.

Proposition 1.2. Assume that the function σ in equation (1.1) obeys
the PC condition and has no structural break between z0 and z1, 0 <
z0 < z1 < 1. Then the estimator (1.6) is such that

EŝT =
1

|z1 − z0|

∫ z1

z0

dz σ2(z)
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and

Var ŝT =
1

|z1 − z0|2 T
γ(0)

∫ z1

z0

dz σ4(z)

+
1

|z1 − z0|2 T

[(z1−z0)T ]−1∑

u=1

γ(u)

∫ z1− u
T

z0

dz
[
σ4 (z) + σ4

(
z +

u

T

)]

where γ(s− t) = Cov
(
Y 2

s , Y
2
t

)
.

Proof. Taking the expectation of (1.6) we get, with definition (1.1):

EŝT =
1

|z1 − z0| T

[z1T ]−1∑

t=[z0T ]

σ2

(
t

T

)

=
1

|z1 − z0|

[z1T ]−1∑

t=[z0T ]

∫ 1
T

0
dz σ2

(
t

T

)

Because σ2(·) is constant over [z0, z1], it follows

EŝT =
1

|z1 − z0|

[z1T ]−1∑

t=[z0T ]

∫ 1
T

0
dz σ2

(
z +

t

T

)

=
1

|z1 − z0|

[z1T ]−1∑

t=[z0T ]

∫ t+1
T

t
T

dz σ2 (z)

which leads to the result for the expectation. The computation of the
variance is similar: If γ(u) denotes the autocovariance function of the
process {Y 2

t }, then we can write

Var ŝT =
1

|z1 − z0|2 T 2

[z1T ]−1∑

s,t=[z0T ]

γ(s− t) σ2
( s
T

)
σ2

(
t

T

)

=
1

|z1 − z0|2 T

[z1T ]−1∑

s,t=[z0T ]

γ(s− t)

∫ t+1
T

t
T

dz σ2

(
s− t

T
+ z

)
σ2 (z)

Because σ2(·) is constant over [z0, z1], it follows

Var ŝT =
1

|z1 − z0|2 T

[z1T ]−1∑

s,t=[z0T ]

γ(s− t)

∫ t+1
T

t
T

dz σ4 (z)
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Defining u := s− t, direct computations lead to

Var ŝT =
1

|z1 − z0|2 T





[(z1−z0)T ]−1∑

u=0

γ(u)

[z1T ]−1−u∑

t=[z0T ]

∫ t+1
T

t
T

dz σ4(z)

+
−1∑

u=[(z0−z1)T ]+1

γ(u)

[z1T ]−1∑

t=[z0T ]−u

∫ t+1
T

t
T

dz σ4(z)





and the result follows using the symmetry of γ(u). �



CHAPTER 2

Semiparametric estimation

by model selection

for locally stationary processes

2.1 Introduction

In the previous chapter, we have introduced a simple model of nonsta-
tionarity where only the variance is time-varying. A typical model in
this class is an ARMA process with an evolutionary variance.

The present chapter studies more complex models, where not only
the variance is evolutionary, but all the coefficients of the model. A
typical example is given by the time-varying ARMA(p, q) model (tv-
ARMA in short) defined by

p∑

j=0

aj

(
t

T

)
Xt−j,T =

q∑

k=0

bj

(
t

T

)
εt−j,T . (2.1)

where a0(·) ≡ b0(·) ≡ 1 and εt,T are independent normal random vari-
ables N (0, σ(t/T )2). In this example, the parameter of interest is the
D-dimensional vector of curves

θ(u) = (a1(u), . . . , ap(u), b1(u), . . . , bq(u), σ
2(u))

with D = p+ q + 1.
More generally, this chapter concerns processes characterised by such

a D-dimensional time-varying curve θ and we address the problem of
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how to estimate this vector. This is what we call a semiparametric
estimation problem because, on one hand, the parameter of interest is
parametrised by D curves and, on the other hand, each of these curves
will be estimated nonparametrically.

The example of tv-ARMA shows that this task is complicated by
the fact that the curve θ is not observed “directly”. This is in contrast
with the situation of the classical nonparametric regression framework,
where the curve θ(·) is observed plus some noise. In this chapter, the
characteristics of the process (such as the spectrum) may depend on the
parameter curves in a highly nonlinear way.

The goal of this chapter is to develop a data-driven method that
automatically selects an estimator θ̂m̂ from a collection of estimators
θ̂m for varying index m. These estimators are constructed as minimum
contrast estimators, and the contrast function is an approximation of
the Gaussian likelihood of the model. The estimator θ̂m̂ follows from
a method of model selection procedure. We show that the estimator
achieves good theoretical properties, in a sense which is described in
Section 2.3.

The precise definition of the nonstationary model is given in the next
section. This definition starts from the spectral representation of time
series. It is worth mentioning that, in this chapter, we do not assume
the model to follow the semiparametric structure explained below. In
other words, our results include the case of model misspecification. In
Section 2.3, we describe our fitting procedure, and present the main
results of the chapter. For sake of clarity, all technical tools and proofs
are deferred to Section 2.4.

2.2 The model of local stationarity

The model of local stationarity is defined in the spectral domain. We
first recall some facts about the spectral representation of time series.

2.2.1 Spectral representation of time series

Spectral analysis of time series is a large field presenting a great interest
from both theoretical and practical viewpoints. The fundamental start-
ing point of this analysis is the Cramér representation, stating that all
second-order zero-mean stationary process Xt, t ∈ Z may be written

Xt =

∫

[−π,π)
A(λ) exp(iλt)dZ(λ), t ∈ Z , (2.2)
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where A(λ) is the amplitude or transfer function of the process Xt and
dZ(λ) is an orthonormal increment process, i.e. E(dZ(λ), dZ(µ)) =
δ0(λ − µ), see Priestley [95]. Correspondingly, under mild conditions,
the autocovariance function can be expressed as

cX(τ) =

∫

[−π,π)
fX(λ) exp(iλτ)dλ,

where fX is the spectral density of Xt.
There is not a unique way to relax the assumption of stationarity,

i.e. to define a second-order process with a time-depending spectrum.
However, this modelling is a theoretical challenge which may be helpful
in practice, since a lot of studies have shown that models with evo-
lutionary spectra or time-varying parameters are necessary to explain
some observed data, even over short periods of time. Examples may be
found in numerous fields, such as economics (Chapter 1), biostatistics
(Chapter 5 or [87]) or meteorology (Chapter 6 or [80]) to name but a
few.

Among the different possibilities for modelling nonstationary second-
order processes, we can emphasize the approaches consisting in a mod-
ification of the Cramér representation (2.2). Different modifications
of (2.2) are possible. First, we can replace the process dZ(λ) by a
nonorthonormal process, leading for instance to the harmonizable pro-
cesses [61]. A second possibility is to replace the amplitude function A(λ)
by a time-varying version At(λ) and assume a slow change of At(λ) over
time. Such approach is followed to define oscillatory processes [94].

However, a major statistical drawback of the oscillatory processes
is the intrinsic impossibility to construct an asymptotic theory for con-
sistency and inference. To overcome this problem, Dahlhaus [23] in-
troduced the class of locally stationary processes, in which the transfer
function is rescaled in time. In this approach, a doubly-indexed process
is defined as

Xt,T =

∫

[−π,π)
A

(
t

T
, λ

)
exp(iλt)dZ(λ),

t = 0, . . . , T − 1, T > 0 , (2.3)

where the transfer function A(z, λ) is defined on (0, 1) × [−π, π).
Dahlhaus [23, 24] investigated statistical inference for such processes,

with a discussion on maximum likelihood, Whittle and least squares
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estimates, and showed that asymptotic results when T tends to infinity
can be considered. A precise definition is given in the next subsection.

2.2.2 Locally stationary processes

Assume we observe data X1, . . . , XT from some nonstationary process
and we want to fit a semiparametric model to the data. An appro-
priate framework, which allows for a rigorous asymptotic treatment of
nonstationary time series, is the following model for locally stationary
processes introduced in Dahlhaus [23].

Definition 2.1 ([23]). A sequence of stochastic processes {Xt,T ; t =
1, . . . , T} is called locally stationary with transfer function A◦ if there
exists a representation

Xt,T =

∫ π

−π
A◦

t,T (λ) exp(iλt)dZ(λ), t = 1, . . . , T, T > 0, (2.4)

where

1. Z(λ) is a complex valued Gaussian process on [−π, π] with Z(λ) =
Z(−λ), EZ(λ) = 0 and orthonormal increments, i.e.

E{dZ(λ1), dZ(λ2)} = η (λ1 + λ2) dλ1dλ2

where η(λ) =
∑∞

j=−∞ δ(λ+ 2πj) is the period 2π extension of the
Dirac delta function (Dirac comb [76]), and where

2. there exists a positive constant K and a smooth function A(u, λ) on
[0, 1]× [−π, π] which is 2π-periodic in λ, with A(u,−λ) = A(u, λ),
such that for all T ,

sup
t,λ

|A◦
t,T (λ) −A(t/T, λ)| 6 K/T .

Moreover, a locally stationary process is said to be Gaussian if its incre-
ment process {Z(λ), λ ∈ [−π, π]} is Gaussian.

In this definition two different functions A◦
t,T (λ) and A(t/T, λ) are

defined. This complicated construction is necessary if we want to model
a class of processes which is rich enough to cover interesting applications.
In particular, if we do not define these two functions, i.e. if A◦

t,T (λ) =
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A(t/T, λ) in the above definition, then the class does no longer include
time-varying AR(p) processes (as showed in Dahlhaus [22]).

Observe that we have used the same convention for the asymptotic
concept than in Chapter 1. This implies that the nonstationary process
is doubly-indexed. The smoothness of A in u defines the departure from
stationarity and ensures the locally stationary behaviour of the process.
In order to formulate the smoothness assumptions on A, we first need
to recall the definition of the total variation norm.

The total variation norm of a univariate function f defined on an
interval [a, b] is

TV[a,b](f)

= sup

{
I∑

i=1

∣∣∣f (ai) − f (ai−1)
∣∣∣ : a < a0 < . . . < aI < b, I ∈ N

}
.

If there is no risk of ambiguity of the domain of f , we sometimes write
TV(f) for the total variation norm of f .

We can now formulate the exact smoothness assumptions on A, fol-
lowing the setting of Neumann and von Sachs [85].

Assumption 2.1 ([85]). The function A in Definition 2.1 is such that

1. supu TV[−π,π] (A(u, ·)) 6 C1 <∞

2. supλ TV[0,1] (A(·, λ)) 6 C2 <∞

3. supu,λ |A(u, λ)| 6 κs <∞

4. infu,λ |A(u, λ)| > κ for some κ > 0

5. Let

Â(u, s) := (2π)−1

∫ π

−π
dλ A(u, λ) exp(iλs)

for s ∈ Z and u ∈ [0, 1]. Then supu

∑
s |Â(u, s)| <∞. ♦
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2.2.3 Evolutionary spectral density

Let {Xs,T } be a locally stationary process as defined in Definition 2.1.
The Wigner-Ville spectrum for fixed T and u ∈ (0, 1) is given by

fT (u, λ) =
1

2π

∞∑

s=∞
Cov

(
X[uT−s/2],T , X[uT+s/2],T

)
exp(−iλs),

where we have used the convention A◦
t;T (λ) = A(0, λ) for t < 1 and

A◦
t,T (λ) = A(1, λ) for t > T (the quantity A◦

t;T (λ) is actually only de-
fined for t = 1, . . . , T and this convention is for sake of simplifications in
the proofs). The Wigner-Ville spectrum has been introduced by Mar-
tin and Flandrin [70] in order to define a time-varying spectrum of a
nonstationary process. The next result shows that fT (u, λ) converges
asymptotically (in a sense defined below) to

f(u, λ) =
∣∣A(u, λ)

∣∣2.

Therefore, we call f(u, λ) the evolutionary spectral density (ESD) of the
process.

Proposition 2.1 ([22, 85]). If Xt,T is locally stationary (Definition
2.1) and under Assumption 2.1,

∫ 1

0
du

∫ π

−π
dλ |fT (u, λ) − f(u, λ)|2 = oT (1)

Proof. See Theorem 3.1 of Neumann and von Sachs [85]. �

This result is important because it shows the uniqueness of the evo-
lutionary spectral density f(u, λ). Even if the spectral representation
(2.4) is not unique [22, 95], Proposition 2.1 shows that if there exists a
spectral representation with a A(u, λ) such that Assumption 2.1 is ful-
filled, then |A(u, λ)|2 is uniquely determined. As it is the limit of the
Wigner-Ville spectrum, we may call this quantity a spectrum with no
ambiguity.

To conclude this section, we give some specific examples of ESD.
First, we consider the case of time-modulated processes studied in Chap-
ter 1. Recall that these processes are zero-mean stationary proces-
ses with unit variance that are multiplied by a time-varying function
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Xt,T = σ(t/T )Yt (see (1.1)). If fY (λ) denotes the spectral density of the
stationary process Yt, then it is straightforward to derive the ESD of the
process Xt,T , which is fX(u, λ) = σ2(u)fY (λ).

The second example is for tv-ARMA(p, q). This case is more involved
and leads to the following ESD [22]:

fθ(u) =
σ2(u)

2π

|∑q
k=0 bk(u) exp(iλk)|2

|∑p
j=0 aj(u) exp(iλj)|2 . (2.5)

2.3 Semiparametric estimation

The model we like to be fitted is characterized by a D-dimensional para-
mameter function θ(u), u ∈ (0, 1), which defines the evolutionary spec-
tral density fθ(u)(λ). A typical example is the time-varying ARMA
process (2.1) with evolutionary spectral density (2.5).

In that context, Dahlhaus and Neumann [26] suggested to use a min-
imum distance method for the estimation of θ(·), which is based on a
distance between the evolutionary spectral density and some nonpara-
metric pre-estimate of it. We follow this method, and first need to define
a suitable nonparametric pre-estimate in the next subsection.

2.3.1 The preperiodogram

Motivated by the convergence result in Proposition 2.1, Neumann and
von Sachs [85] define the preperiodogram as

JT (u, λ) =
1

2π

∑

k

X[uT+ k+1
2 ],TX[uT− k−1

2 ],T exp(−ikλ) (2.6)

where the sum over k if for k ∈ Z such that 1 6 [uT − (k − 1)/2], [uT +
(k + 1)/2] 6 T . (In fact, there is a slight difference with the definition
of Neumann and von Sachs [85] due to a time-shift in the indices.)

Dahlhaus [24] has derived a meaningful relation between the prepe-
riodogram and the ordinary periodogram. Recall that the periodogram
is defined as

IT (λ) =
1

2πT

∣∣∣
T∑

t=1

Xt,T exp(−iλt)
∣∣∣
2

(2.7)

=
1

2π

T−1∑

k=−(T−1)


 1

T

T−|k|∑

t=1

Xt,TXt+|k|,T


 exp(−iλk).
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The periodogram is a widely used tool in the context of stationary pro-
cesses, i.e. when the spectral density does not vary in time [14, 95]. For
stationary processes, it is the Fourier transform of the covariance esti-
mator of lag k over the whole segment of time. In contrast, the prepe-
riodogram JT (t/T, λ) of a locally stationary process just uses the pair
X[uT−(k−1)/2],TX[uT+(k+1)/2],T as a “local estimator” of the covariance of
lag k at time point [uT ] (because [uT +(k+1)/2]− [uT −(k−1)/2] = k).
That is the reason why Neumann and von Sachs [85] also call JT (t/T, λ)
the localised periodogram.

What Dahlhaus [24] pointed out is the following relation between
the ordinary periodogram and the preperiodogram:

IT (λ) =
1

T

T∑

t=1

JT

(
t

T
, λ

)
(2.8)

that is, the periodogram is the average of the preperiodogram over time.
The preperiodogram may be regarded as a raw estimate of the ESD

at time u and frequency λ. Similarly to the behaviour of the ordinary
periodogram for stationary processes, the preperiodogram of locally sta-
tionary time series is asymptotically unbiased but has a diverging vari-
ance as T → ∞. In the following, it is used as a pre-estimator of the
evolutionary spectral density. The advantage of this definition is that
it does not contain any implicit smoothing, neither in frequency nor
in time. Then, the decision about the degree of smoothing in each of
these directions is left to the major smoothing step itself [85]. This is
in contrast with other pre-estimators of the evolutionary spectral den-
sity proposed in the literature, like the periodogram computed on small
segments of time of length N [23, 100]. In that case, an additional pa-
rameter, the segment length N , acts like a smoothing parameter in time
direction.

2.3.2 The contrast function

Suppose we observe data {X1,T , . . . , XT,T } from a locally stationary pro-
cess with evolutionary spectral density f(u, λ). If the goal of the analysis
is the estimation of the evolutionary spectral density f(u, λ), then we
can use a fully nonparametric estimate (e.g. by smoothing the preperi-
odogram [85], or using the procedure developed in the next chapters).

In this chapter, our goal is to fit a semiparametric model fθ(u)(λ)
to the data. We do not assume that f obeys the structure of the semi-
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parametric model to be fitted. In other words, we do not assume that
the evolutionary spectral density generating the process takes the form
fθ(u)(λ).

The distance between the semiparametric model fθ and the true
evolutionary spectral density generating the process f is measured by a
contrast function. Here, we use

L(θ) =
1

4π

∫ 1

0
du

∫ π

−π
dλ

{
log fθ(u)(λ) +

f(u, λ)

fθ(u)(λ)

}
,

which is up to a constant the asymptotic Kullback-Leibler information
divergence of a locally stationary process [22]. Thus, we define the em-
pirical contrast function

LT (θ) =
1

4πT

T∑

t=1

∫ π

−π
dλ

{
log fθ(t/T ) (λ) +

JT (t/T, λ)

fθ(t/T )(λ)

}

where Jn(t/T, λ) is the preperiodogram. LT (θ) is an approximation to
the negative log-likelihood of locally stationary stationary process [24].

Remark 2.1. For stationary processes, i.e. if f(u, λ) = f(λ), equation
(2.8) implies that LT (θ) is the classical Whittle likelihood. For univari-
ate stationary processes with mean zero, Whittle [119] introduced an
approximation of the negative Gaussian likelihood. This approximation
has been used in many different situations. A general overview may be
found in the monograph of Dzhaparidze [35]. ♦

2.3.3 The sieve estimator

Our aim is to develop a nonparametric estimator of the parameter curve
θ(·) = (θ(1)(·), . . . , θ(D)(·)). In the following, we include the case of
model-misspecification, that is we do not assume that the true spectral
density f(u, λ) follows the semiparametric structure fθ(u)(λ). Hence,
our estimator will not converge to the true parameter curve (which does
not exist) but to

θ◦ = arg min
θ∈Θ

L(θ).

Theoretically, an estimator may be constructed by minimizing the em-
pirical contrast function LT (θ) over the class Θ of parameter curves.
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Such estimator is called a minimum contrast estimator . However, this
minimisation procedure may pose serious numerical (computational)
problems, in particular if the class Θ is a complicated infinite dimen-
sional space. Another problem arising when the set of parameters is too
large, is that we could get suboptimal rates of convergence (as compared
to the minimax risk). This phenomenon has been observed in even sim-
pler contexts, e.g. for the maximum likelihood estimator with iid data
[9].

The approach we follow here is based on the method of sieves, as
named by Grenander [41]. In this chapter, each component θ(i) of the
target curve is approximated in a finite-dimensional and linear space
of approximation F . This means that the empirical contrast function
LT (θ) is minimised over the product space FD := F⊗ . . .⊗F , where the
dimension of FD is D times the dimension of one single F . The space
FD may be considered as an approximation space of Θ. The result-
ing estimator is denoted by θ̂F . Figure 2.1 summarizes this estimation
procedure.

The first main result of this chapter concerns the convergence of θ̂F
(Theorem 2.1) to θ◦. The distance for measuring this convergence is the
L2-norm: if θ◦ and γ are two D-dimensional curves, we define

‖θ◦ − γ‖2
2 :=

D∑

i=1

∫ 1

0
du
(
θ(i)(u) − γ(i)(u)

)2
.

Then, our main Theorem 2.1 to be formaly stated below basically says
that

E‖θ◦ − θ̂F‖2 . ‖θ◦ − θF‖2 + cθ

√
D · dim(F)

T
+O

(
1√
T

)
(2.9)

where the symbol . means less or equal up to a finite constant indepen-
dent of the parameters, where

θF = arg min
θ∈FD

L(θ)

and

θ̂F = arg min
θ∈FD

LT (θ) ,
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true ESD f
•

Θ

FD

•
θ◦L

• θF

L

data {X0,T , . . . , XT−1,T}
•

•

LT

θ̃F

Figure 2.1: This picture illustrates the estimation procedure on one single
sieve FD. The true evolutionary spectral density f is not assumed to follow
a semiparametric structure. The space Θ is the space of all ESD that follow
the semiparametric structure with fixed D, with a certain regularity on the
coefficients θ for instance. The distance between the true ESD f and Θ is
given by the Kullback-Leibler information divergence L, and defines the point
θ◦ of Θ as the “nearest” density in Θ from f . FD is a finite-dimensional
approximation space (a sieve) in Θ and we define θF ∈ FD similarly to the
definition of θ◦. Empirically, if we observe data {X0,T , . . . , XT−1,T } generated

from the ESD f , the estimator θ̃F is defined through the empirical distance
LT , i.e., the Whittle likelihood of locally stationary processes (see text).

and where cθ is a constant depending on θ◦ and the O() term does not
depend on θm, θ̂m, θ

◦, D and F . The first term of the right-hand side of
(2.9) is known as the bias term, and the second as the variance term of
the risk.

In order to be more specific on the choice of the approximation space
FD, let us expand the component θ(i) in some suitable orthonormal basis
{ϕj}. Then, θ(i) =

∑∞
j=1 θijϕj(u) and a typical choice for the space

F is to take the m-dimensional linear space generated by ϕ1, . . . , ϕm.
We denote this space by Fm and the correponding minimum contrast
estimator by θ̂m := θ̂Fm .

The problem of choosing the dimensionm of the approximation space
Fm occurs. Suppose we have a set MT of possible dimensions. The
problem is to determine from a data set some m̂ in MT in such a way
that the minimum contrast estimator θ̂m̂ performs as well as the best
estimator θ̂m amongm ∈ MT , the criterion for comparing the estimators
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being the L2-risk. The procedure explained below provides a data-driven
algorithm for the choice of m̂, and the second main result of this chapter
(Theorem 2.2) basically says that the inequality

E‖θ◦ − θ̂m̂‖2
2 . inf

m∈MT

{
‖θ◦ − θm‖2

2 + Lm
Dm

T

}
+O

(
1

T

)

holds true for some weights Lm and for θm := θFm . In other words,
the procedure leads to a risk which, up to some multiplicative constant,
realises the best trade-off between ‖θ − θm‖2

2 and DmLm/T .
We now give the precise estimation procedure. Consider a collection

of nested finite-dimensional linear spaces Fm,m ∈ MT . The estimation
procedure on sieves has two steps:

1. On each space Fm, we minimize the empirical contrast function
and compute the minimum contrast estimator

θ̂m = arg min
θ∈Fm

LT (θ)

for each m ∈ MT .

2. From the set {θ̂m : m ∈ MT } of estimators, we choose m̂ among
the family MT such that

m̂ = arg min
m∈M

{
LT

(
θ̂m

)
+ pen(m)

}

where pen(m) is a penalty function to be specified later.

Finally, the sieve estimator is

θ̂ = θ̂m̂.

The precise form of the penalty function is derived in Theorem 2.2 below.
We note that the set MT of dimensions is depending on T . The

precise quantification of this dependence will be illustrated on some ex-
amples in the next subsection.

The above procedure is inspired by the work of Barron et al. [5],
Birgé and Massart [10, 11], who studied several types of contrasts and
estimates in various contexts but under the assumption of linearity of
the contrast function, and under the assumption of independence. An
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extension of the procedure to more complex estimation problems, like
the estimation of the spectral density for a stationary time series or the
estimation of the parameters in a β-mixing regression may be found in
the literature [4, 20]. We note that the contrast function used in [4, 20]
is the L2 norm. Our situation is different and complex in the sense
that we are dealing with dependent and covariance nonstationary data.
Moreover, our contrast function is the Whittle likelihood, which is more
natural in the context of spectral density estimation.

The next section presents some remarks on the collection of mod-
els {Fm,m ∈ MT } with some typical examples. Then, the two main
results are presented in their precise form in Section 2.3.5. All formal
considerations and proofs are deferred to Section 2.4.

2.3.4 The collections of models

The choice of a family of models {Fm,m ∈ MT } (i.e. the choice of a
sieve) is basically guided by the approximation theory. One would like to
use some sieves which are suitable for the approximation of the unknown
component θ(i)(·) of the target curve θ◦ ∈ Θ. Typical examples are
trigonometric polynomials, wavelet expansions or piecewise polynomials,
because their approximation properties are well studied in the literature
(see De Vore and Lorentz [33] for instance).

In this chapter, each space Fm is a linear finite-dimensional subspace
of L2([0, 1])∩L∞([0, 1]) spanned by some orthonormal basis {ϕj ; j ∈ Λm}
with |Λm| = dm. For a given linear sieve, we need to describe the
relationships between its L2 and L∞ structures. That is the reason
why we introduce the two indices rm and Φm, that will be involved in
the upper bound for the risk of minimum contrast estimators on this
sieve. These indices already play a crucial role in the work of Birgé and
Massart [11] and the other work cited above. However, in our context,
their definition is slightly different due to the complexity of our situation.

Consider the expansion of θ(i) in the basis Fm:

θ(i) =
∑

j∈Λm

θijϕj(u) i = 1, . . . , D .

Denote by ‖ · ‖p the Lp-norm on [0, 1], and write |θi•|p for the `p-norm
of the sequence θij over j ∈ Λm and for a fixed component i. Then, set

r(i)m =
1√
dmD

sup
‖∑j∈Λm

θijϕj(u)‖∞
|θi•|∞
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where the supremum is taken over all sequences (θij)j∈Λm (i is fixed)
such that |θi•|∞ 6= 0. Finally, rm is defined by

rm = sup
i=1,...,D

r(i)m . (2.10)

Next, we define

Φm = d−1/2
m sup

θ(1)∈Fm\{0}

‖θ(1)‖∞
‖θ(1)‖2

. (2.11)

where θ(1) refers to one single component. From Lemma 1 in [11], we
derive the following identity

Φ2
mdm =

∥∥∥∥∥∥

∑

j∈Λm

ϕ2
j

∥∥∥∥∥∥
∞

between the index Φm and the system {ϕj}.
There is a link between these two indices, given by

Φm 6 rm 6 Φm

√
dm ,

see [5].
For the statement of our results, the general assumptions made on

the collection of models is summarized now.

Assumption 2.2. For all m ∈ MT , the linear space Fm is included
in L2([0, 1]) ∩ L∞([0, 1]) with finite dimension dim(Fm) = |Λm| = dm

such that ΛT := maxm∈MT
Λm 6 T . This space is generated by the

orthonormal functions {ϕj ; j ∈ Λm} which are such that there exists
a finite and positive ṽm with supj∈Λm

TV(ϕj) 6 dmṽm uniformly in d.

Moreover, rm 6 Cr

√
T/dm for all m ∈ MT and the collection of models

{Fm : m ∈ MT } is nested, that is Fm ⊂ Fm′ for m < m′. ♦

Now we describe some examples of models. These are taken from
the standard literature [5, 20, 33].

Example 2.1 (Trigonometric polynomials). Consider spaces Fm

generated from the functions ϕj(u) =
√

2 cos(2πju) for j = 0, . . . ,m−1.
The dimension of Fm is dm = m and any component i of the vector
θ can be written θ(i) =

√
2
∑m−1

j=0 θij cos(2πju). This collection is such

that MT = {1, . . . , T}. It follows from [33] that Cr 6
√

2 provided that
|ΛT | 6

√
T , and ṽ = 1. ♦
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Example 2.2 (Polynomials). In that case, Fm is the linear space of
polynomials on [0, 1] with degree bounded by m− 1. The next example
is a generalisation. ♦

Example 2.3 (Piecewise polynomials). Consider first dyadic parti-
tions of [0, 1] given by Im = {[j2−m, (j+1)2−m], j = 0, . . . ,m−1}. Given
some integer s, the space Fm is defined as the space of piecewise polyno-
mials with degree bounded by s− 1 on the partition Im. The dimension
of Fm is r2m and Assumption 2.2 holds with Cr =

√
(r + 1)(2r + 1)

independently of m. ♦

Example 2.4 (Regular compactly supported wavelets). Consider
an orthonormal wavelet basis {φj,k : j > 0, k ∈ Z} of L2 (see Chapter 3)
with the following conventions: ψ0,k are translated of the father wavelet
and for j > 1, φjk are affine transforms of the mother wavelet. We
consider this construction for compactly supported wavelets, such that
the index k ∈ {1, . . . , 2jL}, j, L > 0 [32]. Then, we define Fm as the
space generated by {φj,k} for (j, k) such that 0 6 j 6 m and k ∈
{1, . . . , 2jL}. Then, Fm has dimension dm = L

∑m
j=0 2j = L(2m+1 − 1)

for all m ∈ MT = {1, . . . ,MT }, where MT is such that L(2MT +1 − 1) 6

T , i.e. MT = O(lnT ). From Chapter 2, Lemma 8 of Meyer [76] and
from [5] it can be showed that Cr is bounded by a constant depending
on L. ♦

Finally, we also need the following assumption which controls the
number of models in each collection.

Assumption 2.3. There exists some weights Lm and a finite constant
Υ such that

∑

m∈MT

exp(−Lmdm) 6 Υ <∞ . ♦

For the three examples above, the weights Lm are of order 1. For
piecewise polynomials Lm = 1/r can be used [5].

2.3.5 Main results

Before stating the main results, we have to give two more assumptions.
We first introduce the following notation. If g(u, λ) is a function over
[0, 1] × (−π, π), then we set

g̃(u, j) :=

∫ π

−π
dλ φ(u, λ) exp(iλj) ,
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and define

ρ2(g) =

(∫ 1

0

∫ π

−π
dλ du |g(u, λ)|2

)1/2

,

ρ∞(g) :=

∞∑

j=−∞
sup

u
|g̃(u, j)| ,

ṽ(g) := sup
j

TV (g̃(·, j)) .

Correspondingly, we set ρ2(g1, g2) := ρ2(g1 − g2), ρ∞(g1, g2) := ρ∞(g1 −
g2) and ṽ(g1, g2) := ṽ(g1 − g2).

If θ is a D-dimensional curve, we also need the following definitions:

‖θ‖2
2 :=

D∑

i=1

∫ 1

0
du
(
θ(i)(u)

)2
, (2.12)

‖θ‖∞ := sup
i=1,...,D

sup
u∈[0,1]

|θ(i)(u)| , (2.13)

TV(θ) :=

D∑

i=1

TV(θ(i)) . (2.14)

We can now formulate the assumptions. The first assumption is on
the total variation norm of the evolutionary spectrum with respect to
its time argument.

The second assumption is needed to describe the relationship be-
tween, on one side, the distance between the two spectra fθ and fγ and,
on the other side, the distance between the corresponding curves θ and
γ.

Assumption 2.4. The norms ρ2 and ‖ · ‖2 are equivalent, i.e. there
exists two constants K2,K

′
2 (which may depend on D) such that

K ′
2‖θ − θ?‖2 6 ρ2 (1/fθ − 1/fθ?) 6 K2‖θ − θ?‖2. (2.15)

for all θ and θ? in Θ. Moreover, there exists constants K∞ and Ktv

depending on D such that

ρ∞ (1/fθ − 1/fθ?) 6 K∞‖θ − θ?‖∞ (2.16)

TV (1/fθ − 1/fθ?) 6 Ktv TV(θ − θ?) (2.17)

for all θ and θ? in Θ. ♦
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To illustrate this last assumption, let us consider a simple exam-
ple. We consider a time-varying AR(p) model with a known, constant
variance σ2. In this example, the vector θ is the set of p time-varying
parameters of the model, (a1(u), . . . , ap(u)). From (2.5), we see that the
ESD of this process is given by

fθ(u) =
σ2

2π

∣∣∣
p∑

j=0

aj(u) exp(iλj)
∣∣∣
−2

,

and it is a simple exercice to derive the bounds of Assumption 2.4 in
this model. The equivalence between the two quadratic norms holds
with constants K2 = ‖1/fθ‖∞

√
2π/σ and K ′

2 = ‖1/fθ‖−1
∞

√
2π/σ. Here,

we used Assumption 2.1, which ensures that the ESD and its inverse
are uniformly bounded (points 2 and 3 of Assumption 2.1). The other
constants of Assumption 2.4 are K∞ =

√
2π/σ and Ktv = 2(2π)2/σ4, if

we use |aj(u)| 6 1.
The first result is on the mean square error for the estimation of θ

by θ̂m for a fixed space Fm. In the formulation of the result, we denote
by Σ the covariance matrix of the process {Xt,T }, i.e. the entry (s, t) of
Σ is Cov(Xs,T , Xt,T ). Moreover, ‖Σ‖spec denotes the spectral norm of
the matrix Σ (see Appendix A).

Theorem 2.1. Suppose that we observe data X1,T , . . . , XT,T from a
Gaussian locally stationary process (Definition 2.1). Under Assumptions
2.1, 2.2 and 2.4, the minimum contrast estimator θ̂m is such that

E‖θ◦ − θ̂m‖2 6 ‖θ◦ − θm‖2 + ωd + T−1/2(c1 + c2‖Σ‖spec)

where

ωd =

√
dD

c2T

{
1 ∨ αK2‖Σ‖spec

K ′
2K∞r2π

√
20

e
B +

200dD

e2c2T
A2

}
(2.18)

with

A = 108
√

2K2
∞r

2/K2

and

B = 1 + 36
√

2K∞rK
−1
2

√
π(K2 + d

√
KtvDrṽK∞/T ) .

and where c1, c2 and α are specific constants depending on κ1,K∞,K2, r
and derived in the proof below.
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The second theorem is about the estimator θ̂m̂ computed from the
data-driven procedure described above.

Theorem 2.2. Suppose that we observe data X1,T , . . . , XT,T from a
Gaussian locally stationary process (Definition 2.1) and suppose that
Assumptions 2.1 to 2.4 hold true. Moreover, let us suppose that the
space Θ = {Fm : m ∈ MT }. With the same constant α as in the
previous theorem, we define

τ = 8πα/K ′
2 (2.19)

Φ = inf
m∈MT

√
dmΦm (2.20)

A = K2 + 2T−1KtvK∞ṽΦ (2.21)

B = K∞κ
2
s (2.22)

ζ = 4

{(
2πA ∨ K2

2

K2∞r
2

)
‖Σ‖2

spec +B‖Σ‖specτ

}
/τ2 , (2.23)

where the constants are the constants of Assumptions 2.1 and 2.4. If
the penalty function pen(·) defined on MT satisfies

pen(m) >
4π

τ

(
ω2

dm
∨ ζLmdm

T

)
+

κ1

8πT
+

C

2Tτ
(ρ∞ + ṽ) ,

where the constant C is derived in the proof, then

E‖θ◦ − θ̂m̂‖2
2 6 inf

m∈MT

{
‖θ◦ − θm‖2

2 +
8π

τ
pen(m)

}
+

3.6Υζ + 1

T
.

In this result, we assumed that the parameter space Θ coincides with
the largest sieve Fm (m ∈ MT ). It is also possible to state a similar
result if Θ is larger than this largest sieve. In that case, an additional
bias term appears in the right hand side of the inequality. This bias
measures the distance in Θ between θ◦ and

θT := arg minL(θ) ,

where the minimum is over θ in the largest sieve Fm. This bias is
proportional to L(θ◦) −L(θT ).

A comparison between Theorem 2.1 and Theorem 2.2 shows that the
automatic selection of the parameter m does not increase the estimation
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error significantly. More precisely, the upper bound derived in Theorem
2.1 is still valid for θ̂m̂ and is the best upper bound among all the classes
{Fm : m ∈ MT }. Of course, this comment is of asymptotic nature
and the constants involved in the O(T−1) term are different in the two
theorems.

From Theorem 2.2, it is easy to derive adaptation results with respect
to the unknown smoothness of f . Let us suppose for instance that each
component θ◦i of the target vector θ◦ belongs to a Besov space Bβ,2

∞
(see Appendix B for a review on functional spaces). If we consider
the trigonometric polynomials, the piecewise polynomials or the regular
compactly supported wavelets described above, it is known from classical
approximation theory (see De Vore and Lorentz [33]) that if r > β and

θ◦i ∈ Bβ,2
∞ , then

‖θ◦ − θm‖2 6 C(β)

D∑

i=1

‖θ◦i ‖Bβ,2
∞
m−β

where r is the regularity. For these models, Lm = 1 and the term in
brackets in the upper bound of Theorem 2.2 becomes

(
D∑

i=1

‖θ◦i ‖Bβ,2
∞

)2

m−2β +
Cm

T

where C is a constant independent of T . Minimising this bound with
respect to m, we derive immediately

E‖θ◦ − θ̂m̂‖2
2 6 C

(
D∑

i=1

‖θ◦i ‖Bβ,2
∞

)2/(1+2β)

T−2β/(2β+1)

where the constant C only depends on β, ‖Σ‖∞, τ, A,B and ζ. In other
words, the proposed estimator converges to the corresponding target θ◦

with a rate which is the usual rate of convergence in Besov spaces. This
rate is the optimal minimax rate of convergence for a lot of problems (re-
gression, density estimation). However, this optimality has not yet been
proved in the framework of semiparametric locally stationary models,
but we conjecture that this result also holds in that framework.
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2.4 Formal complements and proofs

In this section, we develop the mathematical tools for proving the results
of Section 2.3.5.

2.4.1 The main tool: The empirical spectral process

As usual in the context of minimum contrast estimation on sieves, the
key point is to establish exponential bounds for the fluctuation of the
empirical process. The empirical spectral process [27, 28] is defined by

ET (φ) =
√
T (FT − F ) (φ)

where

F (φ) =

∫ 1

0
du

∫ π

−π
dλ φ(u, λ)f(u, λ)

and

FT (φ) =
1

T

T∑

t=1

∫ π

−π
dλ φ

(
t

T
, λ

)
JT

(
t

T
, λ

)
.

In order to explain the need of the empirical spectral process, a
useful connection with the contrast functions LT (·) and L(·) can be
derived [28]. By definition of θm, the inequality L(θm) 6 L(θ) holds for
all θ ∈ Fm. Similarly, by definition of θ̂m, it holds LT (θ̂m) 6 LT (θ) for
all θ ∈ Fm. Combining these two inequalities, we get

0 6 L(θ̂m) −L(θm)

6 (LT −L) (θm) − (LT −L) (θ̂m)

6
1

4π
√
T
ET

(
1

fθm

− 1

fθ̂m

)
+R(θm) −R(θ̂m) (2.24)

where

R(θ) :=
1

4π

∫ π

−π
dλ

{
1

T

T∑

t=1

log fθ(t/T ) (λ) −
∫ 1

0
du log fθ(u)(λ)

}

=
1

4π

∫ π

−π
dλ

T∑

t=1

∫ 1/T

0
du
{
log fθ(t/T ) (λ)

− log fθ(u+(t−1)/T ) (λ)
}
.
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Thus,

|R(θ)| 6
1

4πT

∫ π

−π
dλTV

(
log fθ(·)(λ)

)
6 κ1/(4πT ) = O

(
T−1

)

(2.25)

by Assumption 2.1(2) that implies sup−π6λ<π TV[0,1] log fθ(·)(λ) 6 κ1 <
∞, where κ1 is a constant depending only on the constant κs. Thus,
(2.24) indicates that the convergence of L(θ̂m)−L(θm) depends only on
the behaviour of the empirical spectral process on (1/fθm) − (1/fθ̂m

).

In Section 2.4.2 we derive an exponential inequality on the empiri-
cal spectral process. This point is the most technical part of the proof.
Then, we combine this element with (2.24) and show that the conver-
gence of ‖θ − θm‖2

2 depends on the behaviour of the empirical spectral
process on (1/fθm) − (1/fθ̂m

). Finally, in Section 2.4.3, we can derive
the bound given in Theorem 2.1. The exponential bound is also used in
Section 2.4.4 for proving Theorem 2.2.

2.4.2 Maximal exponential inequality

An exponential inequality, or Bernstein inequality, is an exponential
bound for the probability of deviation of an empirical process. This
inequality is a maximal inequality if it holds on the deviation of the
supremum of the empirical process, over a certain class of functions de-
noted by G in this section. We also denote by d the dimension of G. In
our applications, in particular in the proof of the first theorem, G (resp.
d) will be replaced by a fixed sieve Fm (resp. the dimension dm).

Preliminaries

For the sake of clarity, we first decompose the empirical spectral process
as

ET = ẼT +ET

where

ẼT =
√
T (FT − EFT ) (2.26)

is a stochastic term and

ET =
√
T (EFT − F ) .
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is a deterministic term. In the following, a maximal exponential inequal-
ity is proved for the process ẼT .

The usual way for proving maximal inequalities is to start with a
Bernstein inequality and then to use the chaining technique, provided
that the complexity (entropy) of G is well controlled [93, 114]. We follow
this scheme in our proof, and start by presenting a lemma with the
Bernstein inequality.

Lemma 2.1 ([28]). Suppose that {Xt,T } is a locally stationary process
(Definition 2.1) and suppose that the function φ : [0, 1] × [−π, π] → R

is such that ρ∞(φ) < ∞, ρ2(φ) < ∞ and ṽ(φ) < ∞ (these norms are
defined in Section 2.3.5). Set

ρ2,T (φ) =

{
1

T

T∑

t=1

∫ π

−π
dλ φ

(
t

T
, λ

)}1/2

and define the process ẼT as in (2.26). Then the Bernstein inequality

Pr
[
|ẼT (φ)| > 2‖Σ1/2‖2

spec

√
T
(
2ξ ρ∞(φ) +

√
2πξ ρ2,T (φ)

)]

6 exp (−Tξ)

holds true for all ξ > 0.

Proof of the lemma. Straightforward application of Theorem 3.4 in Dah-
lhaus and Polonik [28]. �

Note that

ρ2,T (φ) 6 ρ2(φ) +

√
ρ∞(φ)ṽ(φ)

T
, (2.27)

then we can replace ρ2,T (φ) by this upper bound in the Bernstein in-
equality. In the following, we also use the following alternative formula-
tion of Lemma 2.1:

Pr
(
|ẼT (φ)| > η

)

6 exp


−1

4
· η2

2π‖Σ1/2‖4
specρ

2
2,T (φ) + ‖Σ1/2‖2

spec
ρ∞(φ)η√

T


 (2.28)



2.4 Formal complements and proofs 63

Above, we have mentioned that we also need a control on the com-
plexity of the approximation space. The next lemma shows that this is
precisely the technical advantage of using the method of sieves.

Lemma 2.2 ([5]). Suppose that G is a finite-dimensional linear space
of dimension d such that Assumption 2.2 holds, and define the product
space GD = G⊗· · ·⊗G. Then, for any positive δ one can find a countable
set E(δ) ⊂ GD and a mapping µ : GD → E(δ) such that

• For each ball B in R
D with radius ω > 5δ, |E(δ) ∩ B| 6 (5ω/δ)dD,

• ‖θ − µ(θ)‖2 6 δ for all θ ∈ GD,

• supt∈E(δ) ‖t− µ−1(t)‖∞ 6 rδ for all t ∈ N (δ) ,

where r is defined in (2.10). (The norms are defined in (2.13) and
(2.12).)

Proof of the lemma. Straightforward generalisation to the multidimen-
sional case of Lemma 9 in Barron et al. [5]. �

Observe that, with Assumption 2.2, we may bound the total variation
norm between θ ∈ G and µ(θ) ∈ T (δ). With θ(i) =

∑
j θijϕj and

µ(θ(i)) =
∑

j θ̄ijϕj , we get

D∑

i=1

TV
(
θ(i) − µ(θ(i))

)

6

D∑

i=1

sup
06u0<...<uN 61

N∈N0

∑

j∈Λ

|θij − θ̄ij|
N−1∑

k=0

∣∣ϕij(uk+1) − ϕij(uk)
∣∣

6 Dδrṽd2 . (2.29)

Chaining on a ball

Fix γ in G. We shall first prove a maximal inequality on a ball B(γ, ω)
centered in γ with radius ω > 0, included in G. More precisely, our goal
now is to derive an exponential bound for

P1 := Pr

{
sup

θ∈B(γ,ω)

∣∣∣∣ẼT

(
1

fθ
− 1

fγ

)∣∣∣∣ >
√
T
K2

K∞r
‖Σ‖specξω

2

}
.
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To this end, we start with the chaining argument. We fix the se-
quence δk = 2−kδ0, k = 0, 1, . . . (δ0 will be fixed later on). A straight-
forward application of Lemma 2.2 shows that there exists a sequence of
subsets E(δk) ⊂ G such that 5δk 6 ω and

• |E(δk) ∩ B| 6 (5ω/δk)dD,

• Given θ ∈ B, there exists a sequence (θk) with θk ∈ E(δk) and such
that ‖θ − θk‖2 6 δk and ‖θ − θk‖∞ 6 rδk hold.

Given some point θ ∈ B(γ, ω), we select an element θk in N (δk) for each
k. Then, θk → θ in the L2 and the L∞ norms, and

θ = θ0 +

∞∑

k=1

(θk − θk−1) .

Then, if we choose the sequence (ξk) such that

∑

k

ξk 6 (K2/K∞r)‖Σ‖specξω
2, (2.30)

we can write

P1 6
∑

θ0∈E(δ0)

Pr

{∣∣∣∣ẼT

(
1

fθ0

− 1

fγ

)∣∣∣∣ > ξ0
√
T

}

+

∞∑

k=1

∑

θk∈E(δk)
θk−1∈E(δk−1)

Pr

{∣∣∣∣ẼT

(
1

fθk

− 1

fθk−1

)∣∣∣∣ > ξk
√
T

}

=: P0 +
∞∑

k=1

Pk. (2.31)

We now bound P0, Pk, k > 1. Set Hk = ln |E(δk)|. Using the Bernstein
inequality (Lemma 2.1), we get P0 6 exp(H0 − c2Tη0) provided that

ξ0 = 2‖Σ1/2‖2
spec

{
2η0 ρ∞

(
1

fθ0

− 1

fγ

)

+
√

2πη0 ρ2,T

(
1

fθ0

− 1

fγ

)}
,
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where η0 will be chosed later. Using (2.27) with assumptions (2.16),
(2.15) and (2.17), ξ0 is bounded by

2‖Σ1/2‖2
spec

{
2η0K∞‖θ0 − γ‖∞

+
√

2πη0

(
K2‖θ0 − γ‖2 +

√
Ktv TV(θ0 − γ)K∞‖θ0 − γ‖∞

T

)}
.

Similarly, Pk 6 exp(Hk +Hk−1 − c2Tηk) with

ξk 6 2‖Σ1/2‖2
spec

{
2ηkK∞‖θk − θk−1‖∞ +

√
2πηk×

×
(
K2‖θk − θk−1‖2 +

√
Ktv TV(θ0 − γ)K∞‖θk − θk−1‖∞

T

)}
.

Now, we set L such that the inequality L > ξ2 ∨ 2 ln(5α) holds with

α := 1 + 36
√

2
K∞r
K2

{
3K∞r

√
dDL

c2T

+
√
π

(
K2 +

√
KtvdDrṽK∞

T

)}
. (2.32)

We also choose δ0 = ω/α and assume that the radius of the ball is such
that

ξω =
√
dDL/c2T . (2.33)

Now, we choose η0, ηk such that c2Tη0 = H0 + dDL and c2Tηk = Hk +
Hk−1 + (k + 1)dDL for k > 1. From (2.31), this leads to

Pr

{
sup

θ∈B(γ,ω)

∣∣∣∣ẼT

(
1

fθ
− 1

fγ

)∣∣∣∣ >
√
T
K2

K∞r
‖Σ‖specξω

2

}

6 exp(−dDL)

{
1 +

∞∑

k=1

exp(−kdDL)

}

6 exp(−dDL) {1 − exp(−dDL)}−1

6 e(e − 1)−1 exp(−dDL)

= e(e − 1)−1 exp(−c2ω2ξ2T ) (2.34)
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which is the maximal exponential inequality on the ball B(γ, ω), for a
radius ω such that (2.33) holds, and provided that (2.30) and dDL/2 >

1 hold true. As dD > 1, the last constraint holds since α > 1 and
then L > 2. Moreover, a very long computation derived at the end of
this section shows that (2.30) indeed holds true. Then, the maximal
inequality on the ball B(γ, ω) is proved provided that (2.33) holds true,
i.e. ω2 > dD(c2T )−1{1 ∨ 2ξ−2 ln(5α)}. In what follows, we show that a
sufficient condition for this inequality is

ω2 >
dD

c2T

{
1 ∨ 1

ξ2

(
20

e
B +

200dD

e2c2T
A2

)}
(2.35)

where A := 108
√

2K2
∞r

2/K2 and

B := 1 + 36
√

2K∞rK
−1
2

√
π(K2 + d

√
KtvDrṽK∞/T ).

Indeed, with ln |x| 6 |x|/e,

2dD

c2T
ln(5α) 6

10dD

ec2T
α =

10dD

ec2T

(
A

√
dDL

c2T
+B

)

=
10dD

ec2T
(Aξω +B)

and with (2.35),

6
10dDA

ec2T
ωξ +

1

2
ξ2ω2 − 100d2D2A2

e2c22T
2

=
3

4
ξ2ω2 −

(
10dDA

ec2T
− 1

2
ωξ

)2

6 ξ2ω2

Then the exponential inequality (2.34) on a ball B(γ, ω) holds provided
that ω obeys (2.35).
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Extension to G
In order to proof the maximal inequality on the whole space G, we define
ω0 = 0 and ωj = 2jω, j > 0. Then

Pr



sup

θ∈G

∣∣∣ẼT

(
1
fθ

− 1
fγ

) ∣∣∣
ω2 ∨ ‖θ − γ‖2

2

> τ
√
T





6

∞∑

j=0

Pr



 sup

θ∈G;ω2
j 6‖θ−γ‖2

2<ω2
j+1

∣∣∣ẼT

(
1
fθ

− 1
fγ

) ∣∣∣
ω2

j

> τ
√
T





6

∞∑

j=0

Pr

{
sup

θ∈B(γ,ωj+1)

∣∣∣ẼT

(
1

fθ
− 1

fγ

) ∣∣∣ > ω2
j τ

√
T

}
. (2.36)

We can now use the Bernstein inequality on the balls B(γ, ωj+1), with
τ = K2‖Σ‖specξ/(K∞r). From (2.35), with condition

ω2 >
dD

c2T

{
1 ∨

K2
2‖Σ‖2

spec

K2∞r
2τ2

(
20

e
B +

200dD

c2e2T
A2

)}
(2.37)

we can bound (2.36) from above by:

e

e− 1

∞∑

j=0

exp

(
−
c2Tτ

2K2
∞r

2ω2
j

K2
2‖Σ‖2

spec

)

6
e

e− 1
exp

(
−c2Tτ

2K2
∞r

2ω2

K2
2‖Σ‖2

spec

)
×

×



1 +

∞∑

j=1

exp

(
−c2Tτ

2K2
∞r

2ω2(22j − 1)

K2
2‖Σ‖2

spec

)


6
e2

(e− 1)2
exp

(
−c2Tτ

2K2
∞r

2ω2

K2
2‖Σ‖2

spec

)
.

since (2.37) with dD > 1 implies that K2
∞r

2τ2ω2T > K2
2‖Σ‖2

spec.

We sumarize the result in the following proposition.
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Proposition 2.2 (Maximal Inequality). Under assumption 2.4 and
2.2, for all γ ∈ G,

Pr



sup

θ∈G

∣∣∣ẼT

(
1
fθ

− 1
fγ

) ∣∣∣
ω2 ∨ ‖θ − γ‖2

2

> τ
√
T



 6

e2

(e− 1)2
exp

(
−Tτ

2ω2K2
∞r

2

4K2
2‖Σ‖2

spec

)

provided that ω2 > ω2
d(τ) with

ω2
d(τ) =

dD

c2T

{
1 ∨

K2
2‖Σ‖2

spec

K2∞r
2τ2

(
20

e
B +

200dD

e2T
A2

)}
(2.38)

with

A = 108
√

2K2
∞r

2/K2

and

B := 1 + 36
√

2K∞rK
−1
2

√
π(K2 +

√
KtvdDrṽK∞/T ) .

This key result helps for controling the fluctuations of the empirical
spectral process ET . It is a generalisation of Theorem 5 of Birgé and
Massart [11], who proved a similar result for the empirical process of an
iid sequence.

Derivation of (2.30)

For ease of presentation, we set s = 2‖Σ‖2
spec. Direct considerations

yield:

‖θ0 − γ‖2 6 δ0, ‖θ0 − γ‖∞ 6 rδ0 (2.39)

‖θk − θk−1‖∞ 6 r (δk + δk−1) 6 3rδk (2.40)

‖θk − θk−1‖2 6 δk + δk−1 6 3δk (2.41)

Moreover, from (2.29), we can write TV(θ0 −γ) 6 dDrṽδ0. Considering
property (A.4) on the spectral norm of matrices, we can write

ξ0 6 s
{
2K∞rη0δ0 +

√
2πη0

(
K2δ0 + δ0d

√
T−1KtvDrṽK∞

)}

= s {δ0(x0 +
√
y0)}
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with

x0 := 2K∞rη0

y0 := 2πη0

(
K2 + d

√
T−1KtvDrṽK∞

)2

Similarly,

ξk 6 s {δk(xk +
√
yk)}

for k > 1 with

xk := 6K∞rηk

yk := 18πηk

(
K2 + d

√
T−1KtvDrṽK∞

)2

Then, using (a+ b)2 6 2a2 + 2b2,

( ∞∑

k=0

ξk

)2

6 2s2


δ0x0 +

∑

k>1

δkxk




2

+ 4s2


δ0

√
y0 +

∑

k>1

δk
√
yk




2

=: 2s2A+ 2s2B.

We first evaluate A. By definition of δk, x0 and xk, we get

A = 4K2
∞r

2δ20


η0 + 3

∑

k>1

2−kηk




2

6 36K2
∞r

2δ20



∑

k>0

2−kηk




2

.

We now evaluate B. With repeated use of the inequality (
√
a +√

b)2 6 2a+ 2b we can write

B =


δ0

√
y0 +

∑

k>1

δk
√
yk




2

6 2δ20y0 + 22δ21y1 +
∑

k>2

2k+1δ2kyk

= 2δ0
∑

k>0

δkyk 6 36πδ20

(
K2 + d

√
T−1KtvDrṽK∞

)2∑

k>0

2−kηk.
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We now compute
∑

k>0 2−kηk. First, we note that, by Lemma 2.2,
Hk 6 dD ln(5ω/δk) and this last bound is bounded bydD ln(5ω/δ0) +
dDk ln 2 6 dDL+ dDk ln 2. Then we get

η0 6
2dDL

c2T
and ηk 6 (k + 3)

dDL

c2T
+ (2k − 1)

dD

c2T
ln 2. (2.42)

Using
∑

k>1 2−k = 1 and
∑

k>1 k2
−k = 2, a direct calculation leads to

∑

k>0

2−kηk 6
2dDL

c2T
+

5dDL

c2T
+

3dD

c2T
ln 2

and, with (2.33) and 7 + 1.5 ln 2 6 9,

∑

k>0

2−kηk 6 9
dDL

c2T
.

Finally,

∞∑

k=0

ξk 6
√

2s
(√

A+
√
B
)

6 18
√

2sδ0

√
dDL

c2T

{
3K∞r

√
dDL

c2T

+d
√
π

(
K2 +

√
KtvDrṽK∞

T

)}

with (2.33), δ0 = ω/α and (2.32), we get (2.30).

2.4.3 Proof of Theorem 2.1

Recall that the sieve m is fixed in this proof. We first need to establish
a link between the error ‖θ◦ − θ̂m‖2 and the empirical process Ẽn. The
following lemma will be useful for this task.

Lemma 2.3 ([28]). If the class Fm is such that θm exists and is unique,
and if ρ∞(1/fθ) and ρ2(1/fθ) are uniformly bounded under θ ∈ Fm, then
there exists an α > 0 such that

ρ2

(
1

fθ
,

1

fθm

)2

6 α {L(θ) −L(θm)}

for all θ ∈ Fm.
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Proof. We refer to Dahlhaus and Polonik [28]. �

We start the proof of the theorem with the decomposition ‖θ◦ −
θ̂m‖2 6 ‖θ◦ − θm‖2 + ‖θm − θ̂m‖2 and the goal now is to bound the
second term of the right hand side in this inequality. Let 1 − p(ω) be
the probability of the event A defined by

{
∀ν ∈ Fm :

1√
T
ẼT

(
1

fν
− 1

fθm

)
6 k

(
ω2 ∨ ‖ν − θm‖2

2

)}

where k is a positive constant that will be specified later on. On A,
using Assumption 2.4, we may write, with C = K ′−1

2 ,

‖θm − θ̂m‖2
2 6 Cρ2

2

(
1/fθm , 1/fθ̂m

)

6 αC
[
L(θ̂m) −L(θm)

]
by Lemma 2.3

6
αC

4π
√
T
ET

(
1

fθm

− 1

fθ̂m

)
+

κ1

4πT

where the last term comes from (2.25). Straightforward calculations lead
to

|ET (φ) − ẼT (φ)| = |ET (φ)| 6
C√
T

{ρ∞(φ) + ṽ(φ)}

6
C√
T

(ρ∞ + ṽ)

Then we can write

‖θm − θ̂m‖2
2 6 αCk(4π)−1

(
ω2 ∨ ‖θm − θ̂m‖2

2

)
+RT

where

RT =
αCκ1

4πT
+
αCC

4πT
(ρ∞ + ṽ) .

and thus

‖θm − θ̂m‖2
2

6 αCk(4π)−1
(
ω2 + ‖θm − θ̂m‖2

2

)
+ αC(κ1 + C)/(4πT ) .
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We choose k = 2π/(αC) and rearrange the inequality to get

‖θm − θ̂m‖2
2 6 (2π)−1

(
2πω2 + αCT−1(κ1 + C)

)

a.s. on A. Denote V = ‖θm−θ̂m‖2
2−αC(2πT )−1(κ1+C)). Then, V 6 ω2

a.s. on A with Pr(A) = 1−p(ω). Then, Pr(V > ω2) 6 1−Pr(A) = p(ω)
and we get

E(V ) =

∫ ∞

0
dx Pr(V > x)

6

∫ ∞

0
dx p(

√
x)

=

∫ ∞

0
dy 2yp(y)

=

∫ ωd( 2π
αC )

0
dy 2yp(y) +

∫ ∞

ωd( 2π
αC )

dy 2yp(y)

(ωd is defined in (2.38))

6 ωd

(
2π

αC

)
+

2e2

(e− 1)2

∫ ∞

ωd( 2π
αC )

dy y exp

(
−Tk

2y2K2
∞r

2

K2
2‖Σ‖2

spec

)

6 ω2
d

(
2π

αC

)
+

e2

(e− 1)2
K2

2‖Σ‖2
spec

Tk2K2∞r
2

With the Jensen’s inequality and using e/(e− 1) 6 2, we get

E‖θ◦ − θ̂m‖2 6 ‖θ◦ − θm‖2 + ωd

(
2π

αC

)
+

√
αC(κ1 + C)

2πT

+
2αCK2‖Σ‖spec

K∞r
√
T

and the result follows. �

2.4.4 Proof of Theorem 2.2

Fix (ν,m′) such that the two conditions

• ν ∈ Fm′ , and
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• LT (ν) + pen(m′) 6 LT (θm) + pen(m) for each m ∈ MT

are fulfilled. For all m ∈ MT , we can write, with C = K ′−1
2 ,

‖θ◦ − ν‖2
2 6 Cρ2

2 (1/fθ◦ , 1/fν) by Assumption 2.4

6 αC {L(ν) −L(θ◦)} by Lemma 2.3

6 αC
{
L(ν) −LT (ν) + LT (θm) −L(θ◦) + pen(m) − pen(m′)

}

= αC

{
1

4π
√
T
ẼT

(
1

fθm

− 1

fν

)
+RT + Um

+ pen(m) − pen(m′)

}
(2.43)

for all m ∈ MT , where Um = L(θm) − L(θ◦) is positive and such that
infm∈MT

Um = 0 (by definition of θ◦), and where

RT =
κ1

4πT
+

C

4πT
(ρ∞ + ṽ)

as in the proof of Theorem 2.1.

Now, we fix m ∈ MT . For all m′ ∈ MT , define

ω2
m′(y) = ω2

dm
(16π2/τ)∨ω2

dm′
(16π2/τ)∨

(
ζ(Lmdm ∨ Lm′dm′)

T

)
+
y

T

for y > 1, where ωdm(·) is defined in (2.38), and let p(y) the probability
of the set

Ay =



 sup

m′∈MT

sup
ν∈Fm′

∣∣∣ẼT

(
1

fθm
− 1

fν

) ∣∣∣
‖θ◦ − θm‖2

2 ∨ ‖θ◦ − ν‖2
2 ∨ ω2

m′(y)
>

2π
√
T

αC



 .

Bound for ‖θ◦ − θ̂m̂‖2 on Ac
y

On Ac
y, we can bound ‖θ◦ − ν‖2

2 from (2.43) as follows:

‖θ◦ − ν‖2
2 6

1

2

(
‖θ◦ − θm‖2

2 + ‖θ◦ − ν‖2
2 + ω2

m′(y)
)

+ αC
(
RT + Um + pen(m) − pen(m′)

)
.
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If we rearrange the sum, then the minimum penalized likelihood estima-
tor θ̂m̂ ∈ Fm̂ satisfies

‖θ◦ − θ̂m̂‖2
2 6 ‖θ◦ − θm‖2

2 + ω2
m̂(y)

+ 2αC (RT + Um + pen(m) − pen(m̂)) . (2.44)

As the penalty function is such that

pen(m) > (2αC)−1

(
ω2

dm

(
16π2

τ

)
∨ ζLmdm

T

)
+
RT

2
,

then (2αC)−1ω2
m̂(y) + RT 6 pen(m̂) + pen(m) + (2αC)−1y/T and we

can write

‖θ◦ − θ̂m̂‖2
2 6 ‖θ◦ − θm‖2

2 + 2αC (Um + 2pen(m)) +
y

T
(2.45)

almost surely on Ac
y and for all fixed m ∈ MT .

Bound for Pr(Ay)

We now compute an upper bound of p(y) = Pr(Ay). First, we show
that, for all fixed m′ ∈ MT

Pr



 sup

ν∈Fm′

∣∣∣ẼT

(
1

fθm
− 1

fν

) ∣∣∣
‖θ◦ − θm‖2

2 ∨ ‖θ◦ − ν‖2
2 ∨ ω2

> τ ′
√
T





6

(
1 +

e2

(e− 1)2

)
×

× exp


− Tτ ′2ω2

(
K2

2

K2
∞r2 ∨ 2πAm,m′

)
‖Σ1/2‖4

spec +B‖Σ1/2‖2
specτ




(2.46)

holds for all fixed ω > ωdm(τ ′) ∨ ωdm′
(τ ′), where Am,m′ and B will

be derived now. In order to check this inequality, we note that, from
Proposition 2.2, for all γ ∈ Fm′ ,

Pr



 sup

ν∈Fm′

∣∣∣ẼT

(
1
fν

− 1
fγ

) ∣∣∣
ω2 ∨ ‖ν − γ‖2

2

> τ
√
T



 6

e2

(e− 1)2
exp

(
−Tτ

2ω2K2
∞r

2

4K2
2‖Σ‖2

spec

)
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provided that ω2 > ω2
dm′

(τ). Moreover, the Bernstein-type inequality

(2.28) allows to write a bound, for all γ ∈ Fm′ ,

Pr





∣∣∣Ẽn

(
1

fθm
− 1

fγ

) ∣∣∣
‖θm − γ‖2

2 ∨ ω2
> τ

√
T





6 exp

(
−1

4
· Tτ2(‖θm − γ‖2

2 ∨ ω2)

2A◦
m,m′π‖Σ1/2‖4

spec +B‖Σ1/2‖2
specτ

)

where, using Assumption 2.4, (2.16) and (2.17)

A◦
m,m′ :=

ρ2
2,T

(
1

fθm
− 1

fγ

)

‖θm − γ‖2
2 ∨ ω2

6
K2‖θm − γ‖2

2 + T−1KtvK∞‖θm − γ‖∞ TV (θm − γ)

‖θm − γ‖2
2 ∨ ω2

with Assumption 2.2 and equations (2.49), (2.50) derived below,

6
K2‖θm − γ‖2

2 +
KtvK∞‖θm−γ‖∞‖θm−γ‖2ṽD(d2

m∨d2
m′ )

T

‖θm − γ‖2
2 ∨ ω2

(2.47)

6 K2 + T−1KtvK∞(Φ2
mdm + Φ2

m′dm′)1/2ṽD3/2(d2
m ∨ d2

m′)
(2.48)

=: Am,m′

and with B = K∞ρ∞(1/fγ −1/fθm) 6 K∞κ2
s by Assumption 2.1. Then,

we can write

Pr





∣∣∣ẼT

(
1

fθm
− 1

fγ

) ∣∣∣
‖θm − γ‖2

2 ∨ ω2
> τ

√
T





6 exp

(
−1

4
· Tτ2ω2

2πAm,m′‖Σ1/2‖4
spec +B‖Σ1/2‖2

specτ

)
.
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With the equality ‖Σ‖spec = ‖Σ1/2‖2
spec, we finally get, for all γ ∈ Fm′ ,

Pr



 sup

ν∈Fm′

∣∣∣ẼT

(
1

fθm
− 1

fν

) ∣∣∣
‖γ − θm‖2

2 ∨ ‖γ − ν‖2
2 ∨ ω2

> τ
√
T





6 Pr



 sup

ν∈Fm′

∣∣∣Ẽn

(
1
fν

− 1
fγ

) ∣∣∣+
∣∣∣Ẽn

(
1

fθm
− 1

fγ

) ∣∣∣
‖γ − θm‖2

2 ∨ ‖γ − ν‖2
2 ∨ ω2

> τ
√
T





with a2 ∨ b2 ∨ c2 > a2 ∨ b2,

6

(
1 +

e2

(e− 1)2

)

× exp


−1

4
· Tτ2ω2

(
K2

2

K2
∞r2 ∨ 2πAm,m′

)
‖Σ1/2‖4

spec +B‖Σ1/2‖2
specτ




(2.46) follows since, with ω > 0 and for any ε > 0, there exists γ ∈ Fm′

such that

‖γ − θ◦‖2 6

[
(1 + ε) inf

ν∈Fm′

‖θ◦ − ν‖2

]
∨ ω2

and this implies

‖γ − θm‖2
2 ∨ ‖γ − ν‖2

2 6 ‖θ◦ − γ‖2
2 +

(
‖θ◦ − ν‖2

2 ∨ ‖θ◦ − θm‖2
2

)

6
{
(1 + ε)‖θ◦ − ν‖2

2 ∨ ω2
}

+
{
‖θ◦ − ν‖2

2 ∨ ‖θ◦ − θm‖2
2

}

6 (2 + ε)
{
ω2 ∨ ‖θ◦ − ν‖2

2 ∨ ‖θ◦ − θm‖2
2

}

where we applied the inequality a + b 6 2(a ∨ b), and this argument
holds for an arbitrary ε > 0.

(2.46) allows to bound p(y) = Pr(Ay) as follows: Using (2.19)–(2.23),
Dm > 1, Am,m′ > A (with (2.50) derived below) and (1+(e/(e−1))2) 6

3.6, if y > 1, then we may write

p(y) 6 3.6
∑

m′∈MT

exp

(
−(ζLm′dm′ + y)

ζ

)

6 3.6 exp

(
−y
ζ

) ∑

m′∈MT

exp (−Lm′dm′)

6 3.6Υ exp

(
−y
ζ

)
.
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Derivation of (2.47)

We need to quantify the total variation distance between two curves
in two different models Fm and Fm′ . Assume γ ∈ Fm and η ∈ Fm′ .
By assumption on our models, Fm ⊆ Fm′ or Fm′ ⊆ Fm. Then, if
γ(i) =

∑
j∈Λm

γijϕj and η(i) =
∑

j∈Λm′
ηijϕj , we get

TV(γ − η)

6

D∑

i=1

sup
06u0<...<uN 61

N∈N0

∑

j

|γij − ηij |
N−1∑

k=0

∣∣ϕij(uk+1) − ϕij(uk)
∣∣

6 ‖γ − η‖2ṽD(d2
m ∨ d2

m′) (2.49)

Derivation of (2.48)

We have to compute the supremum norm between two curves in two
different models. Assume γ ∈ Fm1 and η ∈ Fm2 . Assume: Fm =
Fm1 + Fm2 has a dimension dm 6 dm1 + dm2 . Then

‖γ − η‖∞ = sup
i

sup
u

∣∣∣
∑

j

(γij − ηij)ϕj(u)
∣∣∣

6
√
D‖γ − η‖2 sup

u

√√√√
dm∑

j=1

ϕ2
j (u)

6
√
D‖γ − η‖2Φm

√
dm

where Φm is defined in (2.11). Barron et al. [5, equations (3.2)–(3.3)]
prove that

Φ2
mdm 6 Φ2

m1
dm1 + Φ2

m2
dm2 (2.50)

and that Φm is such that

Φmdm > Φ (2.51)

where Φ is defined in (2.20).

Coda

We now define the random variable

V =
[
‖θ − θ̂m̂‖2

2 − ‖θ − θm‖2
2 − 2αC (Um − 2 pen(m))

]
∨ 0.
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From (2.45), we observe that V 6 y/T a.s. on Ac
y with Pr(Ay) = p(y).

Thus, if y > 1, Pr(V > y/T ) 6 p(y) and we may write, for any m ∈ M,

E(V ) =

∫ ∞

0
dy Pr(V > y)

= T−1

(
1 +

∫ ∞

1
dy p(y)

)

6 T−1 (1 + 3.6Υζ)

and then we conclude. �

2.5 Conclusions and future research

In this chapter, we have addressed the problem of fitting an evolutionary
semiparametric model to nonstationary time series using a data-driven
procedure. This procedure has two steps. First, a contrast function is
minimised over several linear and finite-dimensional models (the sieve).
Then, we select the model for the final estimation by minimising the
penalised contrast function. In our results, the contrast function is an
approximation of the log-likelihood of the nonstationary model, and we
have derived the form of the penalty function which is necessary to
perform the model selection procedure.

Very often one is interested in time-varying models that are purely
defined in the time domain, such as time-varying ARMA models. In
this case the proposed estimation procedure via the spectrum may just
be regarded as a technical tool for estimation.

To end this chapter, we would like to mention some possible direc-
tions for future research.

First of all, the quality of our estimation is measured with the global
norm L2 defined in (2.12). This means that each component of the
vector θ is estimated with the same regularity. It could be interesting to
derive the results of this chapter componentwise. The main difficulty to
establish such results is to provide a link between the empirical spectral
process and the behaviour of the estimator component by component.
A possible approach is to differentiate the contrast function, with some
regularity assumptions on the contrast L(θ) as a function of θ. This
approach has been followed in the work of Dahlhaus and Giraitis [25] for
another task, and it should be also fruitful here. Nevertheless, in that
case, the minimisation of the contrast function would lead to serious



2.5 Conclusions and future research 79

computational problems. Moreover, we note that the approach with
the product space FD considered in this chapter has a connection with
many previous works on tv-AR processes. For instance, this viewpoint
is also taken in Subba Rao [107]. This approach can also be found in
numerous work in the applied science [37, 42, 53, 109, 115].

A limitation of the preceeding method is the fact that the penalty
function depends on the spectral norm s := ‖Σ‖spec which is obviously
unknown from a practical viewpoint. The question here is to find a pre-
liminary estimator s̃ of s such that ‖s̃− s‖ = oP (1). With this property,
we think that the estimation error due to the preliminary estimation is
negligible with respect to the estimation error due to the model selection
procedure itself (i.e. the error derived in our two theorems). In other
words, the main error term is due to the main estimation procedure,
and the preliminary estimation procedure leads to higher order error
terms. Of course, a complete proof has not yet been given and would be
a useful result for the future. Moreover, the preliminary estimator needs
to be defined properly. In Chapter 4, we derive an oP (1) preliminary
estimator of this quantity in another context, and we think that this
estimator could be of use here.

A natural question arises if it could be possible to choose the pa-
rameter D by a data-driven procedure. (Recall that D is the number
of components of the curve θ.) In the context of tv-ARMA processes,
a similar question is how to choose p and q in practice. This problem
is not solved by our procedure, and could be a challenging question for
future research. The selection of D does not follow immediately from
our estimation procedure because our proofs are strongly using the true
value of this parameter. However, note that some rules for the selection
of D have already been proposed in the literature, among which is a
modified AIC criterion [23]. A detailed theoretical and empirical study
of such selection procedures is still to be done, and would be of a great
interest for future research.
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CHAPTER 3

A wavelet-based model

for locally stationary processes

3.1 Introduction

The theory of wavelets offers an interesting alternative to the Fourier
analysis. It permits the construction of orthogonal bases of L2(R) which,
in contrast to Fourier basis, are local both in time and frequency. As
a consequence, wavelets appear more appropriate to decompose signals
with high frequencies, like signals with jumps or peaks.

The origin of this theory is not easy to draw. A common starting
point is the article of Grossmann and Morlet for the decomposition of
seismic signals [45]. The term “wavelet” was used for the first time
at this occasion. Then, this theory has been developed and has now
numerous applications in many different fields, including statistics.

In the next chapters, we focus on a class of doubly-indexed lo-
cally stationary processes defined by replacing the harmonic system
{exp(iωt)} in Definition (2.1) by a wavelet basis. By this way, we move
from a time-frequency representation to a time-scale representation of
the nonstationary process. Because wavelet systems are well localized in
time and frequency, they appear more natural to model the time-varying
spectra of nonstationary processes. Indeed, by the uncertainty principle,
allowing the spectrum to be time-varying implies that we loose resolu-
tion in the frequency domain. As wavelets decompose the frequency
domain into discrete scales, they offer a well-adapted system to achieve
the trade-off resolution between time and frequency [116].
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The class of locally stationary wavelet processes studied in the next
chapters was initially introduced by Nason, von Sachs, and Kroisandt
[83]. Their definition of wavelet processes involves a time-varying am-
plitude which is smoothly varying and continuous as a function of time.
One first goal of this chapter is to extend this definition to the case of
time-varying amplitudes with possibly discontinuous behaviour in time.
This adds some technical difficulties in the proof of our results but we
believe the gain due to this extension to be crucial. Our new definition
now includes more important examples of nonstationary processes. For
instance, this extension of the definition is needed if we wish to model
a nonstationary process built as a concatenation of different stationary
processes. Moreover, wavelet processes can now be used for the analy-
sis of intermittent phenomena, such as transients followed by regions of
smooth behaviour.

Our definition of wavelet processes is presented in Section 3.4, where
we also define their evolutionary spectrum. This spectrum is a function
of time and scales, and measures the power of the process at a particular
time and scale.

Before introducing our definition of this process, we first recall some
basic results on wavelets (Section 3.2). We only recall the minimal no-
tions needed for the later developments. In the next Section 3.3, we
have a particular focus on the wavelet system that will be used in the
definition of the random process.

3.2 Standard wavelet systems

In this section, we summarize some standard results on wavelets. These
will be useful later in our work. An exhaustive introduction to this
theory may be found in [32], [49] or [68].

3.2.1 Multiresolution analysis of L2

The starting point for the construction of an orthonormal wavelet basis
is the notion of multiresolution analysis (MRA) of L2 (R), that is a
sequence of closed vector subspaces Vj of L2 (R)

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . (3.1)

such that

1.
⋂

j∈Z

Vj = {0}, ⋃
j∈Z

Vj is dense in L2 (R);
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2. for all f in L2 (R) and for all j in Z, we have f(x) ∈ Vj ⇔ f(2x) ∈
Vj+1;

3. for all f in L2 (R) and for all k in Z, we have f(x) ∈ V0 ⇔ f(x−k) ∈
V0;

4. there exists a function φ in V0 such that the system {φ0k(x) ≡
φ(x − k), k ∈ Z} of shifted functions is an orthonormal basis of
V0.

The function φ is called scaling function and is such that

φjk(x) ≡ 2j/2φ
(
2jx− k

)
, k ∈ Z (3.2)

constitutes an orthonormal basis of Vj. The functions φjk are the dilated-
translated functions of the scaling function. (We sometimes write φj,k if
an ambiguity may appear in the indices between the dilatation and the
time factor.)

Denote byWj the orthogonal complement of the subspace Vj in Vj+1.
In the next section, we recall the Meyer-Mallat Theorem, which says that
Wj is generated by some dilated-translated function ψ, that is

ψjk(x) = 2j/2ψ
(
2jx− k

)
, k ∈ Z, (3.3)

constitutes a basis of Wj . By definition of a multiresolution analysis,
the collection {ψjk(x), j, k ∈ Z} is an orthonormal basis of L2 (R). This
system is a wavelet basis generated by the function ψ called the mother
wavelet . Therefore, the wavelets are constructed from a scaling function
φ given in an MRA of L2 (R).

In the following, we shall recall how the functions φ and ψ are con-
structed from an MRA. Moreover, we shall see how the MRA structure
induces very useful properties on these two functions.

3.2.2 Construction and examples

The following explains how to derive a mother wavelet ψ from an MRA.
Since φ is in V0, which is included in V1, we can decompose φ in the
basis {φ1,k} of V1:

φ =
∑

k

hkφ1,k (3.4)
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with hk = 〈φ, φ1,k〉L2 , k ∈ Z. We expand this decomposition and it
comes

φ(x) =
√

2
∑

k

hkφ(2x− k) x ∈ R

which we can rewrite in the Fourier domain

φ̂ (λ) =
1√
2

∑

k

hke
−ikλ/2φ̂ (λ/2) λ ∈ [−π, π]

or, equivalently,

φ̂ (λ) = m0 (λ/2) φ̂ (λ/2) λ ∈ [−π, π] (3.5)

where

m0 (λ) =
1√
2

∑

k

hke
−ikλ. λ ∈ [−π, π] (3.6)

The following theorem gives the mother wavelet associated to φ. A proof
of this result may be found in Mallat [68].

Theorem 3.1 (Meyer [75], Mallat [66]). If (Vj)j∈Z
is a multiresolu-

tion analysis of L2 (R) with scaling function φ such that (3.4) and (3.5)
hold, then the function ψ defined by

ψ̂ (λ) =
1√
2
eiλ/2m0

(
λ

2
+ π

)
φ̂ (λ/2) λ ∈ [−π, π]

or, equivalently, with gk = (−1)k−1h−k−1,

ψ(x) =
∑

k

gkφ1,k(x) (3.7)

is a mother wavelet, i.e. the system (3.3) generates Wj.

In addition, if we start with an r-regular multiresolution analysis of
L2 (R), that is if we start with a multiresolution analysis whose scaling
function fulfils

∣∣∣∣
(
d

dx

)q

φ(x)

∣∣∣∣ 6 Cm (1 + |x|)−m

for all q 6 r and all integer m > 1, then one can show that the resulting
function ψ is such that:
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1. {ψjk}j,k∈Z is an orthonormal basis of L2 (R);

2. ψ(x) and all its derivatives until order r are in L∞ (R);

3.
∣∣∣
(

d
dx

)q
ψ(x)

∣∣∣ 6 Cm (1 + |x|)−m with m > 1 and 0 6 q 6 r;

4.
∫

R
xqψ(x)dx = 0 for 0 6 q 6 r.

The conditions (2), (3) and (4) show respectively the regularity, the
localization and the oscillatory behaviour of the function ψ, sometimes
called a mother wavelet of class r. The functions ψjk inherit these three
properties from the mother wavelet and are called wavelets. The trans-
lation parameter k represents the “time” and the dilatation parameter
j is the “scale”.

We now give some examples of such bases. For all examples, it suf-
fices to define a scaling function (or, by (3.4), a sequence {hk}). The
regularity of the corresponding wavelet system will depend on the regu-
larity conditions imposed on this scaling function.

Example 3.1 (Haar wavelet system). The simplest example of a
multiresolution analysis starts with the Haar scaling function φ(x) =
1[0,1[(x). It is easily verified that {φ(x−k); k ∈ Z} forms an orthonormal
set of functions. Moreover, the Haar scaling function leads to hk =
1√
2
δ0(k) + 1√

2
δ0(k − 1) and

ψ(x) = −φ(2x) + φ(2x− 1)

= −1[0,1/2[(x) + 1[1/2,1[(x).

ψ is the Haar mother wavelet and corresponds to a multiresolution anal-
ysis of regularity r = 0. Consequently, the regularity of the Haar wavelet
basis is limited. ♦

Example 3.2 (Daubechies wavelet system). After the example of
the Haar wavelet system, the natural question arises if it is possible
to define a more regular function which still has a compact support in
time. The answer is positive and was first given by Daubechies [30], who
showed that, for all integers r > 1, there exists an r-regular multireso-
lution analysis of L2 (R) such that the support of φ and ψ are compact.
She also obtained the following precision: There exists a constant C
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such that, for all r > 1, the support of φ and ψ are included in the inter-
val [−Cr,Cr], and there exists a constant c such that the length of the
supports of φ and ψ is larger than cr. Then, the supports increases lin-
early with the regularity of the multiresolution analysis. Details about
Daubechies wavelets may be found in [30, 31, 116]. ♦

Example 3.3 (Shannon wavelet system). Also called Littlewood-
Paley wavelets, the Shannon wavelet system has time-frequency prop-
erties which are complementary to those of the Haar basis as it is com-
pactly supported in the Fourier domain. We start with a scaling function
φ having a Fourier transform φ̂ (λ) = 1[−π,π] (λ) for λ ∈ [−π, π]. This
scaling function leads to m0(λ) = 1[−π/2,π/2](λ) and

ψ̂ (λ) = e−iλ/2
{
φ̂ (λ/2) − φ̂ (λ)

}

for λ ∈ [−π, π]. The inverse Fourier transform, ψ, is the Shannon mother
wavelet:

ψ(x) = sinc{2π(t− 1/2)} − sinc{π(t− 1/2)},

where sinc(α) := (sinα)/α. ψ is a very smooth function (in C∞), but
has obviously weak localisation property in time. ♦

3.2.3 The decimated wavelet transform for discrete data

Suppose we are given a deterministic sequence s0, . . . , sT−1 where T = 2J

for some integer J . In this section, we recall the algorithm of Mallat [67]
which provides an efficient scheme for performing a wavelet transforma-
tion of such sequence.

First, we set

c0,k = sk, k = 0, . . . , T − 1

and define the continuous function

s(x) =

∞∑

k=−∞
c0,kφ0,k(x) x ∈ R.

The function s is in the space V0 of the multiresolution analysis (3.1).
Recall that Wj is the orthogonal complement of Vj in Vj+1. Then, we
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may write the decomposition

s(x) =
∞∑

k=−∞
c−1,kφ−1,k(x) +

∞∑

k=−∞
d−1,kψ−1,k(x)

where

c−1,k = 〈s, φ−1,k〉L2 , d−1,k = 〈s, ψ−1,k〉L2 .

Using (3.2) and (3.7), we get the recursions

φj−1,k(x) =
∑

m

hm−2kφjm(x), ψj−1,k =
∑

m

gm−2kφjm(x) (3.8)

and therefore, after direct calculations, the coefficients above are such
that

c−1,k =
∑

m

hm−2kc0,m, d−1,k =
∑

m

gm−2kc0,m. (3.9)

These relations show how the coefficients at scale j = −1 may be com-
puted from the coefficients at scale j = 0 (the scale on which the given
sequence s “lives”). They involve the sequences h = (hk)k and g = (gk)k
in a linear way. Note that for compactly supported wavelets, such as
Haar or Daubechies wavelets, these two sequences have a finite number
of non-zero coefficients, and then the summations in formula (3.9) are
finite. Observe also that there are half as many coefficients at scale −1
than scale 0. This crucial phenomenon is called the decimation. For-
mulas (3.9) may be written in terms of operators [81]. Let H and G
represent the convolution operator with the sequences {hk} and {gk}
repectively, i.e.

(Hs)k =
∑

m

hm−ksm (Gs)k =
∑

m

gm−ksm

and denote by D0 the decimation operator, i.e.

(D0s)k = s2k

for all k ∈ Z. Then the relations (3.9) may be written

c(−1) = D0Hc
(0), d(−1) = D0Gc

(0). (3.10)
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where c(j) and d(j) denote the sequences (cj,k)k and (dj,k)k respectively.
With these conventions, a recursion of (3.10) leads to the following

algorithm, called the discrete wavelet transform or the pyramid algo-
rithm [67]: Given a sequence s = (s0, . . . , sT−1) as above, set c0 = s.
The wavelet coefficients of the sequence are obtained recursively using
the relations

c(j−1) = D0Hc
(j), d(j−1) = D0Gc

(j)

for j = −1,−2, . . . until a level J = − log2 T . The wavelet coefficients
are given by

(c(−J), d(−J+1), d(−J+2), . . . , d(−2), d(−1)).

Provided the sequence {hk} has a finite number of non-zero elements,
the step at level j in the transform requires O(2−j) operations. Then,
the total number of arithmetic operations in the algorithm is O(2−J), i.e.
O(T ). Due to the orthogonality of the wavelet system, this transform is
invertible, and it may be showed that the inverse transform is again an
O(T ) algorithm. We refer to Mallat [67, 68] for further considerations
about this algorithm.

3.2.4 Discrete wavelet system

In time series analysis, data are recorded at a finite number of discrete
points. As we would like to use wavelets in order to decompose such
processes, we need to define a discrete-time analog to the wavelet system
(3.3).

At the jth step of the pyramid algorithm, the vector of wavelet
coefficients is

d(j) = Wjc
(0)

where we know from the previous subsection that, at scale j = −1,
the matrix W−1 is D0G and, for scales j < −1, the matrix Wj is
D0G(D0H)−j−1. For fixed j, we note that, due to the MRA struc-
ture, the rows of matrix Wj are the same, except that they are simply
shifted by 2−j . The discrete-time wavelet ψj is defined as the first row
of the matrix Wj, and this matrix is orthonormal [98].

If we start the pyramid algorithm with finite sequences {hk} and
{gk} of length N[h] corresponding to Daubechies wavelets, then we get
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the associated discrete wavelet ψj = (ψj(0), . . . , ψj(Nj − 1)) with a
compact support of length Nj for scale j < 0 such that

ψ−1(n) =
∑

k

gn−2kδ0k = gn for n = 0, . . . , N−1 − 1,

ψj−1(n) =
∑

k

hn−2kψj(k) for n = 0, . . . , Nj−1 − 1,

Nj = (2−j − 1)(N[h] − 1) + 1,

where δ0k = δ0(k) is the Kronecker delta [83].
For example, for Haar wavelets we get

ψ−1 =
1√
2

(1,−1)

ψ−2 =
1

2
(1, 1,−1,−1)

ψ−3 =
1

2
√

2
(1, 1, 1, 1,−1,−1,−1,−1)

and so on.
Except for Haar wavelets, the discrete wavelets are not just the sam-

pled version of the associated continuous time wavelet ψ(x). They are,
however, precisely the vectors d(j) constructed in the discrete wavelet
transform described above [83].

3.3 Nondecimated wavelets

The wavelet system used to decompose locally stationary processes is
a discrete non-decimated system of compactly supported wavelets. In
this section, we give a definition for these wavelets and collect some
mathematical results about this system. These results will be useful
later in our work.

3.3.1 Nondecimated discrete wavelet system

The key point for nondecimated (or stationary) discrete wavelets is that
the wavelets can be shifted to any location and not just by shifts by 2−j

as in the discrete wavelet transform [19, 81]. If {ψj , j < 0} is a discrete
wavelet system (Section 3.2.4), we set ψj = ψj,0 and we redefine ψjk for
k ∈ Z as:

ψjk(τ) = ψj,0(τ − k) , τ ∈ Z ,
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that is the (τ − k)th element of the vector ψj . (Note the difference with
the standard wavelet system, equation (3.3).)

In the following, we consider discrete mother wavelets with a compact
support, that is the nondecimated discrete wavelet system is constructed
from a finite sequence {hk} of length N[h], corresponding to a Daubechies
wavelet. Then, the length of the support of the discrete wavelets ψj is
given by Nj = (2−j − 1)(N[h] − 1) + 1 for all j < 0 (see Section 3.2.4).

3.3.2 The autocorrelation wavelet function

The measure of the local autocovariance structure of the wavelet-based
process defined in the next section requires the study of the convolution

Ψj(τ) =

∞∑

k=−∞
ψjk(0)ψjk(τ)

where τ ∈ Z and j = −1,−2,−3, . . .. The function Ψj is called the dis-
crete autocorrelation wavelet function at scale j (ACW in short). They
inherit localisation properties from wavelets. However, they are sym-
metric about τ = 0, that is Ψj(τ) = Ψj(−τ) for all scales j and for all
τ . In this section, we derive some useful results of these functions.

First of all, one easily derives that Ψj is compactly supported for all
j < 0 and the length of its support is bounded by 2Nj −1. Furthermore,
the following reasoning shows that Ψj(0) = 1:

Ψj(0) =

∞∑

k=−∞
ψjk(0)

2 =

∞∑

k=−∞
ψ2

jk = 1 (3.11)

where the last equality comes from the orthonormality of decimated
wavelets.

The next result is not straightforward and is due to Nason et al. [83].

Lemma 3.1. The autocorrelation wavelet system {Ψj; j = −1,−2, . . .}
is linearly independent.

Proof. We refer to the proof of Theorem 1 of Nason et al. [83]. �

The autocorrelation wavelet system is related to the associated con-
tinuous-time autocorrelation function of wavelets studied by Saito and
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Beylkin [101]. This continuous autocorrelation wavelet is defined as

Ψ◦(x) =

∫ ∞

−∞
du ψ◦(u)ψ◦(u− x)

for the continuous-time compactly supported wavelet ψ◦ associated to
our discrete-time wavelet ψ (i.e. defined from the same sequence {hk}).
A link between these two functions is given in the following lemma.

Lemma 3.2. If Ψ◦(u) denotes the continuous-time autocorrelation wa-
velet associated to the discrete-time autocorrelation wavelet Ψ(τ), then
the formula

Ψj(τ) = Ψ◦ (2j |τ |
)

holds for all j = −1,−2, . . . and τ ∈ Z.

Proof. See Lemma 4.2 of Berkner and Wells [8]. �

The connection between the continuous-time and the discrete-time
ACW allows to prove the next resolution of the identity.

Lemma 3.3. The discrete-time autocorrelation wavelet system

{Ψj(τ); j < 0}
is such that the identity

−1∑

j=−∞
2jΨj(τ) = δ0(τ) (3.12)

holds for all τ ∈ Z.

Proof. Using Lemma 3.2 and Parseval’s identity,

−1∑

j=−∞
2jΨj(τ) =

−1∑

j=−∞
2jΨ

(
2j |τ |

)

=

−1∑

j=−∞

∫ ∞

−∞
dω |ψ̂(2−jω)|2 exp(iωτ)

=

−1∑

j=−∞

∫ 2π

0
dω

∑

k∈Z

∣∣∣ψ̂
(
2−j(ω + 2kπ)

)∣∣∣
2
exp(iωτ).

(3.13)
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By the Mallat-Meyer Theorem, we may write

∑

k∈Z

∣∣∣ψ̂
(
2−j (ω + 2kπ)

)∣∣∣
2

=
∑

k∈Z

∣∣m0

(
2−j−1ω + 2−j−1k2π + π

)∣∣2 ×

×
∣∣∣φ̂
(
2−j−1ω + 2−j−1k2π

)∣∣∣
2

(3.14)

and, using the 2πk-periodicity of m0,
∑

k∈Z

∣∣∣ψ̂
(
2−j (ω + 2kπ)

)∣∣∣
2

(3.15)

=
∣∣m0

(
2−j−1ω + π

)∣∣2∑

k∈Z

∣∣∣φ̂
(
2−j−1ω + 2−j−1k2π

)∣∣∣
2

=
∣∣m0

(
2−j−1ω + π

)∣∣2∑

k∈Z

∣∣m0

(
2−j−2ω + 2−j−2k2π

)∣∣2

∣∣∣φ̂
(
2−j−2ω + 2−j−2k2π

)∣∣∣
2

=
∣∣m0

(
2−j−1ω + π

)∣∣2 ∣∣m0

(
2−j−2ω

)∣∣2
∑

k∈Z

∣∣∣φ̂
(
2−j−2ω + 2−j−2k2π

)∣∣∣
2
.

By similar transformations, we finally arrive at

=
∣∣m0

(
2−j−1ω + π

)∣∣2
−j∏

n=2

∣∣m0

(
2−j−nω

)∣∣2∑

k∈Z

∣∣∣φ̂ (ω + k2π)
∣∣∣
2

= (2π)−1
∣∣m0

(
2−j−1ω + π

)∣∣2
−j∏

n=2

∣∣m0

(
2−j−nω

)∣∣2

= (2π)−1
∣∣1 −m0

(
2−j−1ω

)∣∣2
−j−2∏

`=0

∣∣∣m0

(
2`ω
)∣∣∣

2
.

Using (3.13), we obtain

−1∑

j=−∞
2jΨj(τ) = (2π)−1

∫ 2π

0

−1∑

j=−∞
dω exp(iτω)

∣∣1 −m0

(
2−j−1ω

)∣∣2
−j−2∏

`=0

∣∣∣m0

(
2`ω
)∣∣∣

2
.
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Expanding the telescopic sum over j, we get

−1∑

j=−∞

∣∣1 −m0

(
2−j−1ω

)∣∣2
−j−2∏

`=0

∣∣∣m0

(
2`ω
)∣∣∣

2

= 1 − lim
j→−∞

−j−1∏

`=0

∣∣∣m0

(
2`ω
)∣∣∣

2
= 1 −

+∞∏

`=0

∣∣∣m0

(
2`ω
)∣∣∣

2
.

Thus, we obtain

−1∑

j=−∞
2jΨj(τ) =

1

2π

∫ 2π

0
dω exp (iτω)

{
1 −

+∞∏

`=0

∣∣∣m0(2
`ω)
∣∣∣
2
}

= δ0(τ) −
1

2π

∫ 2π

0
dω exp (iτω)

+∞∏

`=0

∣∣∣m0(2
`ω)
∣∣∣
2
.

(3.16)

Now, it remains to prove that the second term in (3.16) is equal to zero.

By definition, m0(ω) = 2−1/2
∑2N[h]−1

n=0 hne
−inω. We have

1

2π

∫ 2π

0
dω exp (iτω)

L∏

`=0

∣∣∣m0(2
`ω)
∣∣∣
2

=

L∏

`=0

2−`

2N[h]−1∑

n,m=0

hnhmδ0(n−m)

which clearly tends to 0 as L tends to infinity. �

3.3.3 The Gram matrix A

As the autocorrelation wavelet system is not orthogonal, we introduce
the Gram matrix A defined by

Aj` =
∑

τ

Ψj(τ)Ψ`(τ) j, ` = −1,−2, . . . . (3.17)

The invertibility of A has been established when {Ψj} is constructed
using Haar or Shannon wavelets [83]. If other compactly supported
wavelets are used, numerical results suggest that the invertibility of A
still holds, but a complete proof of this result has not been established
yet. As we need the invertibility of A in our following results, from now
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on we restrict ourselves to Haar wavelets, but we conjecture that all
results remain valid for more general Daubechies wavelets.

We collect the following properties of A, which will be used there-
after.

Lemma 3.4. For Haar and Shannon wavelets, there exists a finite pos-
itive constant ν such that the matrix A fulfills the following properties
for all j = −1, . . . ,−[log2 T ]:

−1∑

`=−[log2 T ]

A−1
j` = 2j +O

(
2j/2T−1/2

)
(3.18)

−1∑

`=−[log2 T ]

|A−1
j` | 6 ν(1 +

√
2)2j/2 (3.19)

−1∑

`=−[log2 T ]

2−`/2|A−1
j` | 6 ν · 2j/2 log2 T (3.20a)

−1∑

`=−[log2 T ]

2−`|A−1
j` | 6 ν(2 +

√
2)2j/2T 1/2. (3.20b)

For all compactly supported wavelets, the matrix A fulfills the following
property:

Aj` 6 (2Nj − 1) ∧ (2N` − 1) ∧
√
N`Nj (3.21)

where x ∧ y = min(x, y).

Proof. The following argument shows that the main term in (3.18) is 2j :
Using that Ψ`(0) = 1 for all ` < 0 and the identity (3.12), we may write

−1∑

`=−∞
A−1

j` =

−1∑

`=−∞
A−1

j`

∞∑

m,u=−∞
2mΨm(u)Ψ`(u)

=

−1∑

m=−∞
2mδ0(j −m) = 2j

from the definition of A. Observe that this argument holds for all com-
pactly supported wavelets. To compute the remainder of (3.18), we
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introduce the auxiliary matrix Γ = D ′ · A · D with diagonal matrix
D = diag(2`/2)`<0, i.e. Γj` = 2j/2Aj`2

`/2. Nason et al. [83, Theorem
2] have proved that the spectral norm of Γ−1 is bounded for Haar and
Shannon wavelets. Then, we get

− log2(T )−1∑

`=−∞
A−1

j` = 2j/2

− log2(T )−1∑

`=−∞
2`/2Γ−1

j` = O
(
2j/2T−1/2

)

To prove (3.19),

−1∑

`=− log2 T

|A−1
j` | =

−1∑

`=− log2 T

2j/22`/2|Γ−1
j` | 6 2j/2(1 +

√
2)ν

using supj` |Γ−1
j` | 6 ν. (3.20) is obtained similarly, using the approxima-

tion
∑−1

j=− log2 T 2−j/2 6 (2 +
√

2)
√
T . (3.21) follows from the definition

of Aj` and the support of the autocorrelation wavelets, using |Ψj(τ)| 6 1
uniformly in j and τ . �

3.4 The process and its evolutionary spectrum

As we will note below, our definition of locally stationary wavelet pro-
cesses differs from the original definition of Nason et al. [83] as we only
impose a total variation condition on the amplitudes instead of a Lips-
chitz condition.

Definition 3.1. A sequence of doubly-indexed stochastic processes Xt,T

(t = 0, . . . , T −1, T > 0) with mean zero is in the class of locally station-
ary wavelet processes (LSW processes) if there exists a representation
in the mean-square sense

Xt,T =

−1∑

j=−∞

T−1∑

k=0

wjk;T ψjk(t) ξjk, (3.22)

where {ψjk(t) = ψj0(t − k)}jk with j < 0 is a discrete non-decimated
family of wavelets based on a mother wavelet ψ(t) of compact support,
and such that:

1. ξjk is a random orthonormal increment sequence with Eξjk = 0
and Cov (ξjk, ξ`m) = δj` δkm for all j, `, k,m, where δj` = 1 if
j = ` and 0 if not;
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2. For each j = −1,−2,−3, . . ., there exists a function Wj(z) on
(0, 1) possessing the following properties:

(a)
∑−1

j=−∞ |Wj(z)|2 <∞ uniformly in z ∈ (0, 1),

(b) There exists a sequence of constants Cj such that for each T

sup
k=0,...,T−1

∣∣∣∣wjk;T −Wj

(
k

T

)∣∣∣∣ 6
Cj

T
, (3.23)

(c) W 2
j (z) is bounded by Lj in the total variation norm, i.e.

TV[0,1]

(
W 2

j

)
6 Lj, (3.24)

(d) The constants Cj and Lj are such that

−1∑

j=−∞
Nj(NjLj + Cj) 6 ρ <∞ (3.25)

where Nj = | suppψj0| = (2−j − 1)(N−1 − 1) + 1.

In this definition, the smoothness ofWj is determined by the constant
Lj for all j < 0. In view of (3.25), the sequence of constants (Lj)j is con-
strained to decrease rapidly when j tends to −∞ (because

∑
j<0 2−2jLj

must be uniformly bounded). Intuitively, this contraint means that the
variation of the EWS is lower for the coarsest scales, which is logical
since the coarsest scales correspond to the lowest frequencies.

LSW processes use wavelets to decompose a stochastic process with
respect to an orthogonal increment process in the time-scale plane. Due
to the overcompleteness of the non-decimated basis, LSW processes are
not uniquely determined by the sequence {wjk;T}. However, we can
build a theory which ensures the existence of a unique wavelet spectrum.
Similarly to the situation in Chapter 2, this property is a consequence of
the local stationarity setting which introduces a rescaled time z = t/T ∈
(0, 1) on which Wj(z) is defined. The rescaled time permits increasing
amounts of data about the local structure of Wj(z) to be collected as
the observed time T tends to infinity. Even though LSW processes are
not uniquely determined by the sequence {wjk;T}, the model allows to
identify (asymptotically) the model coefficients determined by uniquely
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defined Wj(z). Then, the evolutionary wavelet spectrum (EWS) of an
LSW process {Xt,T }t=0,...,T−1, with respect to ψ, is given by

Sj(z) = |Wj(z)|2 , z ∈ (0, 1) (3.26)

and is such that, by definition of the process, Sj(z) = limT→∞ |wj,[zT ];T |2
for all z ∈ (0, 1), and by Definition 3.1,

∑−1
j=−∞ Sj(z) <∞ uniformly in

z ∈ (0, 1).
The evolutionary wavelet spectrum Sj(z) is related to the time-

depending autocorrelation function of the LSW process. Observe that
the autocovariance function of an LSW process can be written as

cX,T (z, τ) = Cov
(
X[zT ],T , X[zT ]+τ,T

)

for z ∈ (0, 1) and τ in Z, and where [ · ] denotes the integer part of a
real number. The next result shows that this autocovariance converges
asymptotically to a local autocovariance defined by

cX (z, τ) =

−1∑

j=−∞
Sj(z)Ψj (τ) (3.27)

where Ψj(τ) is the autocorrelation wavelet function defined above.

Proposition 3.1. Under the assumptions of Definition 3.1, if T → ∞
∞∑

τ=−∞

∫ 1

0
dz |cX,T (z, τ) − cX (z, τ)| = O

(
T−1

)

for all LSW process.

Proof. In the following, we adopt the convention that |wjm;T |2 is zero if
m > T or m < 0, and Sj(u) = 0 if u is not in the interval [0, 1]. On one
hand, due to Definition 3.1, and equation (3.23), we have

cX,T (z, τ) = Cov
(
X[zT ],T , X[zT ]+τ,T

)

=
−1∑

j=−∞

∞∑

k=−∞
|wj,k+[zT ];T |2ψjk(0)ψjk(τ)

=

−1∑

j=−∞

∞∑

k=−∞
Sj

(
k + [zT ]

T

)
ψjk(0)ψjk(τ) + RestT (z, τ)
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where the remainder is such that

|RestT (z, τ)| 6 T−1
−1∑

j=−∞

∞∑

k=−∞
Cj |ψjk(0)ψjk(τ)|

by Assumption (3.23). On the other hand, we have

cX(z, τ) =
−1∑

j=−∞

∞∑

k=−∞
Sj (z)ψjk(0)ψjk(τ).

Then,

∞∑

τ=−∞

∫ 1

0
dz|cX,T (z, τ) − cX(z, τ)|

6

∞∑

τ=−∞

∫ 1

0
dz

−1∑

j=−∞

∞∑

k=−∞

∣∣∣Sj

(
k + [zT ]

T

)
−Sj (z)

∣∣∣|ψjk(0)ψjk(τ)|

+

∞∑

τ=−∞

∫ 1

0
dz |RestT (z, τ)|

With appropriate changes of variables, this bound may be written

∞∑

τ=−∞

−1∑

j=−∞

∞∑

k=−∞

T−1∑

t=0

∫ 1/T

0
dz
∣∣∣Sj

(
k + [zT ] + t

T

)
−Sj

(
z +

t

T

) ∣∣∣

× |ψjk(0)ψjk(τ)|

+

∞∑

τ=−∞

∫ 1

0
dz |RestT (z, τ)|

which is bounded by

T−1
∞∑

τ=−∞

−1∑

j=−∞

∞∑

k=−∞
|k|TV (Sj) |ψjk(0)ψjk(τ)|+

∞∑

τ=−∞

∫ 1

0
dz |RestT (z, τ)|
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where we have used the following property of the Total Variation norm:

T−1∑

t=0

∣∣∣Sp

(
t

T
+
α

T

)
− Sp

(
t

T
+
β

T

) ∣∣∣ 6 |α− β|TV (Sp) (3.28)

for all α, β ∈ N. As the support of ψjk(0) is of length Nj , we get |k| 6 Nj.
Together with condition (3.24) of Definition 3.1, this leads to

∞∑

τ=−∞

∫ 1

0
dz|cX,T (z, τ) − cX(z, τ)|

6 T−1
−1∑

j=−∞
(Cj +NjLj)

∞∑

τ=−∞

∞∑

k=−∞
|ψjk(0)ψjk(τ)|.

The compact support of ψjk limits the sums over k and τ as follows:

∞∑

τ,k=−∞
|ψjk(0)ψjk(τ)| =

Nj−1∑

τ=−Nj+1

∞∑

−∞
|ψjk(0)ψjk(τ)| 6 2Nj −1 (3.29)

by the Cauchy-Schwarz inequality for the sum over k. We get the result
by Assumption (3.25). �

In Section 3.3.2, we have studied some mathematical properties of
the ACW system appearing in (3.27). Like wavelets themselves, this
system enjoys good localisation properties. Consequently, we observe
that equation (3.27) is a multiscale decomposition of the autocovariance
structure of the process over time: The larger the wavelet spectrum
Sj(z) is at a particular scale j and point z in the rescaled time, the
more dominant is the contribution of scale j in the variance at time z.
Thus, the evolutionary wavelet spectrum describes the distribution of
the (co)variance at a particular scale and time location.

Moreover, the symmetry of the ACW implies the symmetry of the
local autocovariance function, i.e. c(z, τ) = c(z,−τ), as expected. Also,
Lemma 3.1 shows that the local autocovariance function is uniquely
defined. Furthermore, a consequence of the resolution of the identity
(Lemma 3.3) is that the EWS of a White Noise process is proportional
to 2j for all scales j < −1.

It is worth mentioning that a stationary process with an absolutely
summable autocovariance function is an LSW process [83, Proposition
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3]. Stationarity is characterized by a wavelet spectrum which is constant
over time: Sj(z) = Sj for all z ∈ (0, 1). As a consequence, the local
autocovariance function of a time-modulated process (see equation (1.1)
of Chapter 1) has the multiplicative structure

c(z, τ) = σ2(z)ρY (τ) ,

where ρY is the autocorrelation function of the process Yt in (1.1).
However, our motivation to study LSW processes lies in the mod-

elling of more complex time-varying spectra and time-varying covari-
ance functions. The regularity of the EWS in time is determined by the
smoothness of Wj(z) with repect to z. Figure 3.1 shows two examples
of realisations of an LSW process with a smooth wavelet spectrum. Fig-
ure 3.1(a) represents the wavelet spectrum of a time-modulated process,
while Figure 3.1(d) is a process which cannot be modelled by a time-
modulated process. This last example is such that c(z, 0) =

∑
j Sj(z) =

2.2 so that the variance of the process is constant over time. Note how-
ever that its covariance is not constant over time, which may be observed
on the realisation of the process: The regime of the process clearly goes
from high to low frequence regions and vice versa.

The wavelet spectra of Figure 3.1 are smooth in time. They corre-
spond to the spectra defined by Nason et al. [83], who assumed Sj(z) to
be Lipschitz continuous in z. In our definition of LSW processes, it is
worth mentioning that we only require the total variation norm of W 2

j

to be bounded. This weaker assumption is not only considered in order
to work with minimal assumptions, but also to allow a discontinuous
evolution of the wavelet spectrum in time. Consequently, our definition
of nonstationary processes includes many more interesting processes, as
piecewise stationary signals for instance. Figure 3.2 shows a simulated
example of a more general nonstationary process, now included in our
class of processes.
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(a) Theoretical wavelet spectrum equal
to zero everywhere except scale −2
where S−2(z) = 0.1 + cos2(3πz + 0.25π).
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(b) Theoretical wavelet spectrum
S−2(z) = 0.1 + cos2(3πz + 0.25π),
S−1(z) = 0.1 + sin2(3πz + 0.25π) and
Sj(z) = 0 for j 6= −1,−2.
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(c) A sample path of length 1024 simu-
lated from the wavelet spectrum defined
in (a).
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(d) A sample path of length 1024 simu-
lated from the wavelet spectrum defined
in (b).

Figure 3.1: These simulated examples show two examples of locally stationary
processes with a smooth continuous theoretical evolutionary wavelet spectrum.
The left-hand column shows an example of a smooth time-varying variance
function of a time-modulated process. The example on the right hand side is
constructed in such a way that the local variance function c(z, 0) is constant
over time. In this example, the only deviation from stationarity is in the
covariance structure. The simulations use Gaussian innovations ξjk and Haar
wavelets.
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Figure 3.2: The first figure is an example of theoretical spectrum Sj(z). This
spectrum is used to simulate the locally stationary wavelet process plotted at
the bottom. This simulation uses Gaussian innovations ξjk and non-decimated
Haar wavelets.
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3.5 The corrected wavelet periodogram

To end this chapter, we present a preliminary estimator of the EWS.
This estimator is constructed by taking the squared empirical coefficients
from the non-decimated transform:

Ij;T

(
k

T

)
=

(
T−1∑

t=0

Xt,Tψjk(t)

)2

for all j = −1, . . . ,− log2 T and k = 0, . . . , T − 1. Ij;T (z) is called the
wavelet periodogram, as it is analogous to the formula for the classical
periodogram in traditional Fourier spectral analysis of stationary pro-
cesses, see (2.7).

Some asymptotic properties of this estimator have been studied by
Nason et al. [83], who showed that the wavelet periodogram is not an
asymptotic unbiased estimator of the wavelet spectrum. Indeed, Propo-
sition 4 of Nason et al. [83] states that, for all fixed scales j < 0,

EIj;T (z) =
−1∑

`=− log2 T

Aj`S`(z) +O(T−1), (3.30)

uniformly in z ∈ (0, 1), where the matrix A is defined in (3.17).
Equation (3.30) motivates the definition of another preliminary esti-

mator of the EWS, given by an appropriate correction of the periodog-
ram in order to get an asymptotically unbiased estimator. First, define
J := [log2 T ] and define the J × J matrix AT := (Aj`)−16j,`6−J . Then,
define the corrected wavelet periodogram (CWP)

Lj;T

(
k

T

)
=

−1∑

`=− log2 T

(AT )−1
j`

(
T−1∑

t=0

Xt,Tψ`k(t)

)2

(3.31)

as a preliminary estimator of the EWS.
The two next chapters are dealing with testing and estimation prob-

lems on the EWS and make use of the CWP as a preliminary estimator.

3.6 Final remarks

We end this chapter by some remarks on the LSW model.
First, one could ask if it would not be easier to define LSW processes

using a decimated wavelet system because, for this system, the matrix A
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reduces to the identity. Unfortunately, the answer is negative: The use
of non-decimated wavelets, as described in von Sachs et al. [98], would
not allow to write the local autocovariance function as a wavelet-type
transform of an evolutionary spectrum, as in (3.27). Moreover, classical
stationary processes are not included in the model based on decimated
wavelets.

Another point is the link between the LSW class and the locally
stationary Fourier (LSF) processes of Chapter 2. For each LSF process
with an evolutionary spectral density (ESD) f , we denote by c its local
autocovariance function, which is given by

c(z, τ) =

∫ π

−π
dλ f(z, λ) exp(iλτ).

It is easy to show that if an LSF process has a local autocovariance
function such that

∑
τ |c(z, τ)| <∞ uniformly in z ∈ (0, 1), then it is in

the class of LSW processes. In that case, the EWS of the process is

Sj(z) =
∑

`

A−1
j`

∫ π

−π
dλ f(z, λ)|ψ̂`(λ)|2 ,

where ψ̂` denotes the Fourier transform of ψ`0.



CHAPTER 4

Locally adaptive estimation

in the wavelet model

4.1 Introduction

The aim of this chapter is to propose a new estimation procedure for
the evolutionary wavelet spectrum (EWS). The estimator is based on
the corrected wavelet periodogram (CWP) introduced in the previous
chapter, and can be seen as a local smoothing procedure of this perio-
dogram.

In this chapter, we also study a test of significance for the coefficients
of the CWP. The basic idea here is to test if the CWP is significant over
a given segment of time, at a given scale. This test is important for prac-
tical purposes because a scale of the EWS can be active (i.e. nonzero)
at a given time and not active at another time, and this evolution cor-
responds to physical changes in the process.

This test is defined and studied in Section 4.2. The test statistic
is based on a functional of the wavelet periodogram. It is actually a
quadratic form of the increments, which are assumed to be Gaussian,
and the test rule is provided through a nonasymptotic result on the
deviation of the quadratic form of Gaussian processes. However, the
variance of the test statistic crucially depends on the unknown spectrum,
and we present a pre-estimator of this nuisance parameter. Finally, we
establish a nonasymptotic bound for the deviation of the test statistics.
This bound is constructed with our pre-estimator of the variance. A
theoretical study of the test power concludes Section 4.2. In particular,
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we discuss the consistency and the local alternatives of the proposed test
procedure.

In the following Section 4.3, we show how the results of Section 4.2
may be useful for the local estimation of the EWS. We then derive an
estimation procedure following the locally adaptive method of Lepski
[59]. The behaviour of this estimator is studied for the two cases where
the evolutionary wavelet spectrum is either regular or irregular near the
point of estimation. For sake of clarity, all the technical material is
deferred to Section 4.4.

The last Section 4.5 concludes with some possible directions for fu-
ture research. The practical evaluation and the computational aspects
of the proposed procedures will be studied in the next chapter.

4.2 Testing the local significance of the corrected

wavelet periodogram

4.2.1 Local significance

As already observed in Nason et al. [83], the possibility of having an
EWS with many zero segments is a major advantage of LSW processes,
in comparison with other locally stationary models. The exploratory
analysis of such wavelet spectra is easier, for instance if we want to
detect significant variations in the multiscale structure of the process
(co)variance.

In this chapter, we address the problem how to test the significance of
the corrected wavelet periodogram (CWP, see Section 3.5) over a given
interval at a given scale. More formally, we will test the null hypothesis

H0 : Sj(z) = 0 for a fixed scale j < 0 and for all z ∈ R, (4.1)

where R ⊆ (0, 1) is an interval with non zero measure. It is then possible
to test if, for instance, a whole scale is “active” or not, or if it is non
zero before or after a fixed time point.

The next subsection defines a preliminary estimator of the wavelet
spectrum. Then, derivation of a test statistic is considered in subsections
4.2.2 and 4.2.3. This test is discussed in Subsection 4.2.4, where we also
study its power under some alternatives.

A practical description of the algorithm and a practical evaluation
of its perforances on simulated examples, is given in the next chapter.
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The current chapter will derive the theoretical properties of our test
procedure.

4.2.2 Derivation of the test statistic and its properties

Suppose we want to test (4.1), i.e. to check if the wavelet spectrum is
zero at a fixed scale j and on a given segment of time R = (s1, s2) ⊆ (0, 1)
for s1 < s2. Under the null (4.1), the averaged wavelet spectrum

Qj,R = |R|−1

∫

R
dz Sj(z) (4.2)

is zero. If we observe XT = (X0,T , . . . , XT−1,T )′, a natural estimate of
Qj,R is

Qj,R;T = |RT |−1
∑

k∈RT

Lj;T

(
k

T

)
(4.3)

where Lj;T (k/T ) is the corrected wavelet periodogram (3.31) and k ∈
RT means k/T ∈ R. Qj,R;T is the test statistic we use to test H0. In
this section, we will study the statistical properties of Qj,R;T under a
set of assumptions.

Assumption 4.1. The autocovariance function cX,T and the local au-
tocovariance function cX of the LSW process are such that

‖cX,T ‖1,∞ :=
∞∑

τ=−∞
sup

t=0,...,T−1

∣∣∣cX,T

(
t

T
, τ

) ∣∣∣ (4.4)

is uniformly bounded in T , and

‖cX‖1,∞ :=
∞∑

τ=−∞
sup

z∈(0,1)
|cX(z, τ)| <∞. (4.5)

♦

This assumption is needed to control the spectral norm of the covari-
ance matrix of the process (Lemma 4.3 in Section 4.4). For a stationary
process, it reduces to absolute summability of the autocovariance of the
process (short memory property).

Assumption 4.2. There exists an ε > 0 such that, for all z ∈ (0, 1),∑−1
j=−∞ Sj(z) > ε. ♦
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According to equation (3.27), the sum over scales of Sj(z) is the local
variance of the process at time [zT ], and this assumption says that the
local variance of the process is nowhere zero.

Assumption 4.3. The increment process {ξjk} involved in Definition
3.1 is Gaussian. ♦

This assumption allows substantial simplifications in the proofs. It
is also assumed to establish some results in Nason et al. [83]. However,
Fryźlewicz [38] mentions that non-Gaussian increment processes would
be more appropriate to capture some stylised facts of economic processes,
such as the leptokurtic behaviour of the data. To this end, the extension
of our results to non-Gaussian processes would be a feasible task using
the methodology presented in Neumann and von Sachs [85] or Spokoiny
[106] for instance.

Assumption 4.4. The evolutionary wavelet spectrum Sj(z) defined in
(3.26) is such that

−[log2(T )]−1∑

`=−∞
sup

z∈(0,1)
S`(z) = O

(
T−1

)
. ♦

This assumption is necessary in order to control the difference be-
tween the EWS and the CWP at lower scales. Recall that our definition
of the LSW processes involves the scales j = −1 up to −∞, while the
CWP is defined for scales j = −1 to j = −[log T ] only.

The following proposition describes the asymptotic properties of
Qj,R;T .

Proposition 4.1. Suppose Assumption 4.1 to 4.4 hold true. For all
LSW process (Definition 3.1), and for all R ⊆ (0, 1),

EQj,R;T −Qj,R =
K0 2j/2

√
T

−1∑

m=− log2 T

Nm TV (Sm)

+O
(
2j/2 |RT |−1

)
(4.6)

= O

(
2j/2

√
T

)
,
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for all j = −1, . . . ,−JT with JT = O(log2 T ), and where K0 is a constant
independent of j, T and |R|. Moreover, if Assumptions 4.1 to 4.3 hold,
then there exists T0 > 1 such that, for all T > T0,

K1 22j |RT |−1 (1 + oT (1)) 6 VarQj,R;T 6 K2 2j |R|−2T−1

for all j = −1, . . . ,−JT with JT = O(log2 T ), and where K1 and K2 are
two constants independent of j, T and |R|.

The proof of this proposition is in Section 4.4.1. Note that the
squared bias and the variance of the estimator have the same rate of
convergence. This phenomenon is due to the nonstationary behaviour
of the process. Indeed, for a stationary process, the total variation norm
of Sm is zero at all scales, and then the rate of the bias is T −1. This
is not the case for a general nonstationary process: When the wavelet
spectrum is not constant over time, an additional term resulting from
nonstationarity reduces considerably this rate of convergence. Moreover,
even when we are dealing with a local estimator of the wavelet spectrum
at a fixed scale j < 0 and a fixed time interval R, the nonstationarity
term in the bias involves the variation of the global wavelet spectrum.
This may be observed in equation (4.6), which involves a sum over all
scales m = −1, . . . ,− log2 T and the total variation norm of all Sm over
the whole rescaled time interval (0, 1).

This slow rate of convergence of the bias poses a problem to establish
the asymptotic normality of Qj,R;T . In the next proposition, we circum-
vent this problem and derive a non asymptotic exponential bound for
the deviation of Qj,R;T .

Proposition 4.2. Assume that (4.4) and Assumption 4.1 to 4.4 hold.
If σ2

j,R,T = VarQj,R;T , then, for all η > 0 and for all scales j =
−1, . . . ,−JT , where JT = O(log2 T ),

Pr (|Qj,R;T −Qj,R| > σj,R,Tη)

6 c0 exp



−1

8
· η2

1 +
ηLj

|RT |σj,R,T
+ 2j/2ην

|R|
√

Tσj,R;T
(‖cX‖1,∞ + c1ρ)





with the positive constants c0 = 1 + e and c1 = (2 +
√

2)/2, where ρ
is given in Definition 3.1 and where ν is a universal positive constant
depending only on the wavelet ψ.
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The proof of this proposition is to be found in Section 4.4.2. This
proposition gives a non asymptotic bound for the deviation of the test
statistics Qj,R;T . It can be used in order to construct a test rule, i.e.
to choose η such that the exponential function in the proposition is the
nominal level of the test (see Section 4.2.4 below, where the test rule
is given explicitely). From an asymptotic viewpoint, i.e. as T → ∞,
we note that this exponential bound does not tend to zero, meaning
that the standardised statistic Qj,R,T is asymptotically non degenerate.
This phenomenon is well-known in the context of pointwise estimation
[16, 59]. In order to have a consistent result when T → ∞, it is then
necessary to impose that η = ηT grows with T . The appropriate rate for
ηT is derived in the next corollary. The proof is given in Section 4.4.2
and is essentially based on the bounds derived in Proposition 4.1.

Corollary 4.1. Under the assumptions of Propositions 4.1 and 4.2, if
kT tends to infinity and is such that

JT exp(−kT ) = oT (1), (4.7)

then there exists a T0 > 1 such that, for all T > T0,

Pr

(
sup

−JT 6j<0
|Qj,R;T −Qj,R| > kT

√
K2|R|−2T−1

)
= oT (1)

where K2 is as in the assertion of Proposition 4.1.

Remark 4.1. An example of admissible rates is JT ∼ log2 T and kT ∼
log2 T . Here, the sequence kT will play a crucial role in Section 4.3. ♦

4.2.3 Estimation of the variance

If we want to use Proposition 4.2 to test H0, an estimator of the variance
σ2

j,R,T = VarQj,R;T is needed. This variance depends on the unknown
autocovariance function of the LSW process in the following way (see
Lemma 4.1 with equation (4.21)):

σ2
j,R,T = 2 ‖U ′

j,R;T ΣT‖2
2,

where ΣT is the T × T (non-Toeplitz) covariance matrix of the LSW
process (X0,T , . . . , XT−1,T )′, and Uj,R;T is the T × T matrix with entry
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(s, t) equal to

U
(j)
st = |RT |−1

−1∑

`=−[log2 T ]

A−1
j`

∑

k∈RT

ψ`k(s)ψ`k(t). (4.8)

where the matrix A is actually the finite matrix AT (see Section 3.5).
We also denote by σs,s+u the entry (s, s + u) of the matrix ΣT . Some
useful properties of Σ are derived in Section 6.3 below.

We will estimate σ2
j,R,T by:

σ̃2
j,R,T = 2 ‖U ′

j,R;T Σ̃T‖2
2

where Σ̃T is an estimate of the covariance matrix ΣT . A first idea is
to define the elements σ̃s,s+u of Σ̃T by plugging Qj,R;T into the local
autocovariance function (3.27), i.e.

σ̃s,s+u =
−1∑

j=−[log2 T ]

Qj,R(s);T Ψj(u),

where R(s) denotes an interval which contains the time point s/T . How-
ever, the convergence in probability of σ̃s,s+u to σs,s+u is not faster than
the rate of σs,s+u itself, and we need to modify the estimator in two
ways.

(i) Assumption 4.1 indicates that the covariance |σs,s+u| is small for
large |u|. Then, following the method of Giurcanu and Spokoiny
[40], we set σ̃s,s+u to zero when |u| > MT , for an appropriate
sequence MT tending to infinity with T ;

(ii) It is necessary to control the distance in rescaled time between the
spectrum Sj(z), for z ∈ R(s), and Sj(s/T ). To do so, we allow
the window R(s) to depend on T , which is denoted by RT (s),
in such a way that its length |RT | shrinks to zero when T tends
to infinity. This is analogous to the estimation of a regression
function by kernel smoothing, where the window usually depends
on the length of the data set.

With these two ingredients, we propose to estimate σs,s+u by

σ̃s,s+u =

−1∑

j=−[log2 T ]

Qj,RT (s);T Ψj(u)1|u|6MT
, (4.9)
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and the following assumption makes precise the appropriate rates for
the sequences |RT | and MT .

Assumption 4.5. The sequence JT (i.e., the sequence that defines the
lower scale for the test of significance) is such that JT = o(log2 T ).
Moreover, |RT | tends to zero and the sequence kT (which appears in
Corollary 4.1) is such that JT exp(−kT

√
|RT |) = oT (1). Finally, the

sequence MT (involved in the preliminary estimator for the variance,
see (4.9)) tends to infinity such that

2JT |RTT |−1/2MT kT log3
2 T = oT (1). ♦

Admissible rates for this last assumption are JT ∼ log2 log2
2 T , kT ∼

log2 T , |RT | ∼ log−3
2 T and MT ∼ logα

2 T with α > 0. It is worth men-
tioning that, with this assumption, |RT | shrinks to zero in the rescaled
time, whereas, in the observed time, the interval length |TRT | tends
to infinity. This means that our estimate of Sj(s/T ) is built using an
increasing amount of data in the observed time, but, at the same time,
with an average around Sj(s/T ) in the rescaled time on a shrinking
segment around s/T .

The next proposition shows that on the random set where the esti-
mator Qj,RT (s);T is near Qj,RT (s), the estimator (4.9) has a good quality.
Our proof of this proposition may be found in Section 4.4.3 and needs
the following technical assumption, which is a slightly stronger condi-
tion than the point 2(a) of Definition 3.1, in the sense that we need to
control the decay of Sj(z) with respect to j and uniformly in z.

Assumption 4.6. The local autocovariance function c(z, τ) is such that

∞∑

u=−∞
sup

z
|cX(z, u)|1|u|>MT

= oT

(
2−JT

)
. ♦

This last assumption on the decay of the local autocovariance func-
tion uniformly in z, is very sensible in a context of short-memory pro-
cesses, i.e. when c(z, u) does not depend on z. With the rates specified
above, a typical condition is to assume |cX(z, u)| 6 c · 2−|u| uniformly in
z ∈ (0, 1). This assumption is sensible even for stationary short-memory
processes (it holds for instance for a stationary AR(1) process).
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Proposition 4.3. Suppose Assumptions 4.1 to 4.6 hold. Then, there
exists a positive number T0 and a random set A independent of j and
such that Pr(A) > 1 − oT (1) and

|Qj,RT (s);T −Qj,RT (s)| 6
kT

|RT |

√
K2

T

for all T > T0. Moreover, on A,

2JT −j T |σ̃2
j,R,T − σ2

j,R,T | = oP (1) (4.10)

holds for all j = −1, . . . ,−JT , where oP (1) does not depend on R.

Finally, Proposition 4.3 together with Proposition 4.2 leads to the
following result, which will be used to construct the test in practice.

Theorem 4.1. Suppose Assumptions 4.1 to 4.6 hold. Then, there exists
a ϕT = oT (2jT−1) and a positive number T0 such that, for all T > T0,

Pr
(
|Qj,R;T −Qj,R| > σ̃j,R,Tη

′)

6 c0 exp




−1

8
· η2

1 + η
|RT |σj,R,T

Lj +
2j/2ην(‖cX‖1,∞+c1ρ)

|R|
√

Tσj,R;T





+ oT (1)

for all j = −1, . . . ,−JT , where η′ = η(1−ϕT /σ
2
j,R;T )1/2, and the positive

constants c0, c1 are defined in the assertion of Proposition 4.2.

Remark 4.2. Theorem 4.1 gives an upper bound for the deviation of
the normalized loss |Qj,R;T −Qj,R|/σ̃j,R,T . This bound depends on the
unknown quantities ‖cX‖1,∞ and ρ, cf. (3.25). These two quantities
may be understood as nuisance parameters of the problem, depending
on the global spectrum. The estimation of these quantities is based on
a preliminary smoothing of Lj;T (z) with respect to z, which we denote
by L∗

j;T (z). Here, we think about using a kernel smoothing procedure,
or a wavelet transform shrinkage as studied in Nason et al. [83]. Then,
a preliminary estimate of ‖cX‖1,∞ is obtained by plugging L∗

j;T (z) into
‖cX‖1,∞, cf. (3.27) and (4.5). Next, the preliminary estimation of ρ
necessitates the estimation of TV(Sj), cf. (3.24). We estimate TV(Sj)
by
∑

i |L∗
j;T (zmax

i )−L∗
j;T (zmin

i )|, where the sum is over the local minima

and maxima of L∗
j;T (z), with zmax

i < zmin
i+1 < zmax

i+1 for all i. ♦
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4.2.4 Discussion of the test procedure

We now propose our test procedure. Under H0, see (4.1), the approxi-
mation of the deviation of the test statistic is given by

Pr
(
|Qj,R;T | > η′σ̃j,R,T

∣∣∣H0

)
6 h(η′) (4.11)

for T sufficiently large, and where h is the exponential function following
from Theorem 4.1. Let α be the nominal level of the test. We reject H0

if

|Qj,R;T | > η?σ̃j,R,T , (4.12)

where η? is such that h(η?) = α.
We now discuss the power of this test and, for this, we need to be

more specific about the alternative hypothesis H1. We will work with
the sensible alternative hypothesis that there exists a strictly positive
real number θ and a measurable set with a non zero measure U ⊆ R
such that Sj(z) > θ for all z in U . Figure 4.1 illustrates this situation.

θ

UR

Figure 4.1: Alternative hypothesis.

Formally, if |U| denotes the Lebesgue measure of U :

H1 : ∃ θ > 0 and U ⊆ R with |U| > 0 and Sj(z) > θ ∀z ∈ U . (4.13)

The next proposition evaluates the type II error of the test. The proof
is to be found in Section 4.4.5.

Proposition 4.4. Suppose Assumption 4.1 to 4.6 hold true. Let the
null hypothesis (4.1) against the alternative hypothesis (4.13) be given
and consider the test rule (4.12) with

η? < 2(1−j)/2‖cX‖−1
1,∞|RT |1/2Qj,R.
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Then, there exists T0 > 1 such that, for all T > T0, the type II error of
the test is bounded as follows:

Pr
(
H0 is not rejected

∣∣∣H1

)

6 C ′ · exp

{
−c′ T

log2
2 T

θ2|U|2
|R|2

}
+ C ′′ · exp

{
−c′′

√
T

log2
2 T

θ|U|
|R|

}

+ oT (1),

where the positive constants c′, C ′, c′′, C ′′ and the oT (1) term do not de-
pend on R, U and θ.

The last result shows the consistency of the test procedure. More-
over, it allows to discuss the local alternative of the test. We first note
that the alternative hypothesis (4.13) depends on the two parameters θ
and U . Consequently, to study the local alternative of the test, we need
to investigate both cases θ = θT → 0 and U = UT such that |UT | → 0.
However, the upper bound of the type II error in Proposition 4.4 depends
on the product θT |UT |, and then the local alternative of the test is stud-
ied when this product tends to 0 when T → ∞. By straightforward
considerations, we see that if

log2
2 T

θT |UT |
√
T

tends to zero as T → ∞, then the type II error of the test aymptotically
vanishes.

4.3 Pointwise adaptive estimation

Theorem 4.1 may be also useful for other statistical applications. In
this section, we derive one important application given by the pointwise
estimation of the wavelet spectrum.

Indeed, the estimator Qj,R;T may be seen as a smoothing over time
of the inconsistent corrected wavelet periodogram. It can then be used
for the pointwise estimation of the wavelet spectrum. In this problem,
we want to estimate Sj(z0) at a fixed point z0. This estimation can
be done by computing the histogram Qj,R;T constructed on a segment
R containing the fixed time point z0. Consequently, the question how
to choose the best segment R arises, and the goal of this section is to
provide a data-driven procedure to select R automatically.
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The proposed method goes back to the pointwise adaptive estimation
theory of Lepski [59, 60, 105]. Suppose that the wavelet spectrum at
Sj(z0) is well approximated by the averaged spectrum Qj,U for a given
interval U containing the reference point z0. The idea of the procedure
is to consider a second interval R containing U and to test if Qj,R differs
significantly from Qj,U . As we describe below, this test procedure is
based on Proposition 4.2 or Theorem 4.1. If there exists a subset U
of R such that |Qj,R − Qj,U | is significantly different from zero, then
we reject the hypothesis of homogeneity of the wavelet spectrum Sj(z)
on z ∈ R. Finally, the adaptive estimator corresponds to the largest
interval R such that the hypothesis of homogeneity is not rejected.

This section contains a formal description of this algorithm and de-
rives some properties of the estimator.

4.3.1 Testing homogeneity

Let R be an interval containing z0, U a subset of R and define

∆j(R,U) = |Qj,R −Qj,U |. (4.14)

Under assumptions 4.1 to 4.3, Proposition 4.2 implies

Pr [|Qj,R,T −Qj,U ,T | > ∆j(R,U) + η (σj,R,T + σj,U ,T ) kT ]

6 h(U , η) + h(R, η) (4.15)

with

h(R, η)

= c0 exp




−1

8
· η2k2

T

1 +
ηkT Lj

|RT |σj,R,T
+ 2j/2ηkT ν√

|RT |σj,R;T

√
|R|‖cX‖1,∞+c1ρ√

|R|





and where the sequence kT is such that (4.7) holds. Under the assump-
tion that the wavelet spectrum Sj is homogeneous on the segment R,
the difference ∆j(R,U) is negligeable. Then, as a test rule, we reject
the homogeneity hypothesis on R if there exists a subset U ⊂ R such
that |Qj,R;T −Qj,U ;T | > η(σj,R,T + σj,U ,T )kT for a given η.

In the case where the variances σj,R,T and σj,U ,T are unknown, they
may be estimated as in Section 4.2.3 above. In that case, the homogene-
ity test is based on Theorem 4.1 and the modification of the following
results is straightforward.
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In practice, we choose a set Λ of interval-candidates R. Then, for
each candidate R, we apply the homogeneity test with respect to a given
set ℘(R) of subintervals U of R.

Assumption 4.7. In the estimation procedure described below, we as-
sume the following properties on the test sets Λ and ℘(R):

1. For all R, the shortest interval of ℘(R) is of length at least δ > 0,

2. The cardinality of ℘(R) is such that ](℘(R)) 6 |RT |κα
√

δ for some
0 < α < 1 and κ 6

√
K1/[ν(‖c‖1,∞ + c1ρ)],

3. When we test the homogeneity of the wavelet spectrum on R, we
assume that there exists a subinterval U ∈ ℘(R) such that U ⊂ R
and U contains z0. ♦

A precise example of test sets Λ and ℘(R) will be described in Chap-
ter 5 (Section 5.4), where the computational aspects of the procedure is
discussed with details and evaluated on empirical simulations.

4.3.2 The estimation procedure

The estimation procedure simply starts with the smallest interval in Λ,
assuming that the wavelet spectrum is homogeneous on this short inter-
val. Then, it selects iteratively longer intervals in Λ until the homone-
geneity assumption is rejected. Finally, the adaptive segment R̃ is the
longest segment R of Λ for which the homogeneity test is not rejected:

R̃ = arg max
R∈Λ

{
|R| such that

|Qj,R;T −Qj,U ;T | 6 η(σj,R,T + σj,U ,T )kT for all U ⊂ ℘ (R)
}
.

(4.16)

The adaptive estimator of Sj(z0) is then defined by

S̃j(z0) = Qj,R̃,T . (4.17)

4.3.3 Properties of the estimator in homogeneous regions

The next result quantifies the `p risk (p > 2) when the wavelet spectrum
Sj(z) is homogeneous on z ∈ R. To define this concept of homogeneity,
we introduce the bias

b(R) := sup
z∈R

|Sj(z) −Qj,R|,
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which measures how well the wavelet spectrum Sj is approximated by
Qj,R on z ∈ R. We say that the spectrum is homogeneous (or regular)
on R, if the inequality

b(R) 6 Cj σj,R,T kT (4.18)

holds with

Cj = 2−j/2√α+ p. (4.19)

In the inequality (4.18), σj,R,T is the square root of the variance of the
estimator Qj,R;T of Sj(z), z ∈ R. Inequality (4.18) can be viewed as
a balance relation between the bias and the variance of this estimate
[105]. The kT term then appears as the correction term necessary in the
pointwise estimation in order to bound the normalized loss [59, 60]. In
the following results, we set kT proportional to log2

2 T .

Proposition 4.5. Let R be an interval of (0, 1) and consider the test
rule (4.16). If the wavelet spectrum Sj is regular on R in the sense
of conditions (4.18)—(4.19), then, with λ = η = 2−j/25(2α + p) and
kT ∼ log2

2 T ,

Pr (R is rejected) = O
(
T−cp

√
δ
)

for some positive constant c = c(ν, ‖c‖1,∞, ρ) depending on ν, ‖c‖1,∞ and
ρ only.

Using this proposition, we can evaluate an upper bound for the `p

risk associated to our estimator.

Theorem 4.2. Assume that the wavelet spectrum at scale j, Sj(z), is
homogeneous on the segment R in the sense of (4.18)–(4.19) with

kT ∼ log2
2 T.

If S̃j(z) is the pointwise estimator of the wavelet spectrum obtained by
the estimation procedure (4.16)–(4.17) with

η = 2−j/25(2α + p),

then there exists T0 such that the pointwise `p-loss is bounded as follows

E|S̃j(z) − Sj(z)|p 6 c(δT )−p/2
[
21+j/2δ−1 + 11(2α + p) log2

2 T
]p

for all T > T0 with a positive constant c depending on p, ν, ‖cX‖1,∞.

The proof is to be found in Section 4.4.7.
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4.3.4 Properties of the estimator in inhomogeneous regions

We now describe the behaviour of our estimator near a breakpoint lo-
cated at a time point z?. We first need to be more specific about the
definition of a breakpoint in the evolutionary spectrum.

For a fixed scale j ∈ {−1, . . . ,−JT }, assume the evolutionary wavelet
spectrum to be homogeneous on R0 = [z0, z?) and on R1 = (z?, z1]. Let
us denote R = R0 ∪R1 = [z0, z1] and

θT := E [Qj,R;T −Qj,R0;T ]

Figure 4.2 illustrates this situation.

R1R0

R = R0 ∪R1

θT

Figure 4.2: Inhomogeneous region.

To prove the next proposition, we assume that the estimation pro-
cedure is such that R0 and R1 are in ℘(R).

Proposition 4.6. If the evolutionary wavelet spectrum at scale j con-
tains a breakpoint at z? as described above and if kT ∼ log2

2 T , then

Pr (R is not rejected)

= O

(
exp

[
−Tθ

2
T (|R0| ∨ |R1|)

log2
2 T

]
+ exp

[
−
√
TθT

log2
2 T

])
.

where c is a positive constant and x ∨ y = max(x, y).

The proof of this proposition is given in Section 4.4.8. In this result,
θT may be seen as the level of a jump in the wavelet spectrum. Then,
Proposition 4.6 informs about the minimal amplitude of the jump which
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may be detected by the estimation procedure. If θT is such that

log2
2 T

θT

√
T

→ 0,

then the estimation procedure is consistent in the sense that Pr(R is not
rejected) is asymptotically zero.

4.4 Proofs

In the sequel, we use the convention wjk;T = 0 for k < 0 and k > T ,
which leads to helpful simplifications in the following proofs.

4.4.1 Proof of Proposition 4.1

Our proof of Proposition 4.1 needs the following Lemma quoted from
Neumann and von Sachs [85].

Lemma 4.1. Let Zn = (Z1, . . . , Zn)′ be a vector of iid Gaussian random
variables with zero mean and VarZ1 = 1. If Mn is an n × n matrix,
then

E
(
Z ′

nMnZn

)
= trMn,

Var
(
Z ′

nMnZn

)
= 2 trM?

nMn = 2‖Mn‖2
2,

and, for all r > 2, if Cumr denotes the rth cumulant, we have

|Cumr

(
Z ′

nMnZn

)
| 6 2r−1(r − 1)! ‖Mn‖2

2 {λmax (Mn)}r−2 ,

where λmax denotes the maximal eigenvalue.

Define XT = (X0,T , . . . , XT−1,T )′. By definition, Qj,R;T is the qua-
dratic form

Qj,R;T = X ′
TUj,R;TXT (4.20)

where Uj,R;T is the T × T matrix with entry (s, t) equal to

Ust = |RT |−1
−1∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ`k(s)ψ`k(t),

where the matrix A is actually the finite-dimensional matrix AT . For
notational convenience, we omit the dependence of Ust in j and R. As-
suming that the orthonormal increment processes {ξjk} in Definition 3.1
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are Gaussian, XT is a multivariate Gaussian random variable with co-
variance matrix ΣT = Cov(XTX

′
T ). In that case, Qj,R;T is a quadratic

form of Gaussian variables and we can apply Lemma 4.1 with

Mj,R;T = Σ
′1/2
T Uj,R;T Σ

1/2
T (4.21)

in order to prove Proposition 4.1. The following lemmas derive some
bounds for the Euclidean and the spectral norm of Uj,R;T and ΣT .

Lemma 4.2. With fixed R ⊆ (0, 1), there exists a T0 such that, uni-
formly in T > T0,

K1 22j |RT |−1(1 + oT (1)) 6 ‖Uj,R;T‖2
2 6 K2 2j |R|−2T−1

for all j = −1, . . . , JT = oT (log2 T ), where K1 and K2 are two constants
independent of j, T and |R|.

Proof. The proof is straightforward when R = (0, 1). However, one
technical difficulty is to deal with a general interval R = (r1, r2) ⊂
(0, 1). A simple remark which simplifies the proof is to observe that the
quadratic form (4.20) involves X[r1T ],T , . . . , XT−1,T only. Consequently,
the matrix Uj,R;T is a (T − [r1T ] + 1) × (T − [r1T ] + 1) matrix, and we
can write, from direct computations,

‖Uj,R;T ‖2
2 = |RT |−2

T−1∑

s,t=[r1T ]




−1∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ`k(s)ψ`k(t)




2

The compact support of ψ`k(s) implies that 0 6 k−s, and, as k 6 [r2T ],
we can limit the sum over s, t as follows:

‖Uj,R;T‖2
2 = |RT |−2

∑

s,t∈RT




−1∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ`k(s)ψ`k(t)




2

. (4.22)

If we split the sum over ` at point `T such that |N`| 6 |RT | for all
` = −1,−2, . . . , `T , then |`T | = O(log2 |RT |) and ‖Uj,R;T‖2

2 is equal to

|RT |−2
∑

s,t∈RT




−1∑

`=−`T

A−1
j` Ψ`(s− t)

+

−`T−1∑

m=− log2 T

A−1
jm

∑

k∈RT

ψmk(s)ψmk(t)




2

.
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Expanding the square, we get three terms, herewith denoted by IT , IIT
and IIIT . By definition of Ψ` and Aj`, the first squared term is

IT = |RT |−2
∑

s,t∈RT




−1∑

`=−`T

A−1
j` Ψ`(s− t)




2

= |RT |−1
−1∑

`,m=−`T

A−1
j` A

−1
jmAm`.

If we write the sum over −`T 6 ` 6 −1 as the sum over − log2 T 6 ` 6

−1 minus the sum over − log2 T 6 ` 6 −`T − 1, then we get

IT = |RT |−1




−1∑

m=−`T

A−1
j` δjm −

−1∑

m=−`T

−`T −1∑

`=− log2 T

A−1
j` A

−1
jmAm`




= |RT |−1

(
A−1

jj 1{j>−`T } −
−`T −1∑

`=− log2 T

A−1
j` δj`

+

−`T−1∑

m,`=− log2 T

A−1
j` A

−1
jmA`m

)
,

and, using that the last sums overm, ` contain log2(T )−`T = O(log2 |R|)
elements,

IT 6 |RT |−1
[
A−1

jj 1{j>−`T } +A−1
jj 1{j<−`T } + 2j+1 log(|R|)ν2

]

6 2j+2ν|RT |−1.

In order to compute a bound for the double product IIT , we exploit the
compact support of ψ`k(s) implying that k 6 s+Nm 6 [r2T ]+Nm, and
then

IIT = 2|RT |−2
∑

s,t∈RT

−1∑

`=−`T

−`T−1∑

m=− log2 T

A−1
j` A

−1
jmΨ`(s− t)×

×
[r2T ]+Nm∑

k=[r2T ]+1

ψmk(s)ψmk(t).
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With u := s− t,

IIT = 2|RT |−2
−1∑

`=−`T

−`T−1∑

m=− log2 T

A−1
j` A

−1
jm

|RT |∑

u=0

Ψ`(u)×

×
[r2T ]∑

s=u+[r1T ]

[r2T ]+Nm∑

k=[r2T ]+1

ψmk(s)ψmk(s− u)

+ 2|RT |−2
−1∑

`=−`T

−`T −1∑

m=− log2 T

A−1
j` A

−1
jm

−1∑

u=−|RT |
Ψ`(u)×

×
u+[r2T ]∑

s=[r1T ]

[r2T ]+Nm∑

k=[r2T ]+1

ψmk(s)ψmk(s− u)

and, applying the Cauchy-Schwarz inequality for the sum over s, we
finally get

IIT 6 4|RT |−2




−1∑

m=−`T

Nm|A−1
jm|






−`T−1∑

`=− log2 T

N`|A−1
j` |




6 2(6 + 2
√

2)|R|−2N2
−1ν

22jT−1

using (3.20). Similar calculations lead to

IIIT 6 (2 +
√

2)νN2
−1|R|−22jT−1.

Putting these bounds together gives the upper bound of ‖Uj,R;T‖2
2.

On the other hand, from (4.22), we can write

‖Uj,R;T ‖2
2 > |RT |−2

∑

s∈RT




−1∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ2
`k(s)




2

.

If we split the sum over ` at point `T such that |N`| 6 |RT | for all
` = −1,−2, . . . , `T , then |`T | = O(log2 |RT |) and, as |k− s| 6 |RT | and
by definition of `T ,

∑
k∈RT ψ

2
`k(s) = 1 in the first term of the parenthesis,

and we obtain

‖Uj,R;T ‖2
2 > |RT |−2

∑

s∈RT




−1∑

`=`T

A−1
j` + RestT




2

.
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with |RestT | 6
∑`T−1

`=− log2 T |A−1
j` | = O(ν · 2j/2|RT |−1/2|), where the rate

follows using the same techniques to prove (3.19), except that here the
sum over ` goes from − log2 T to `T −1 with `T = O(log2 |RT |). On the
other hand, (3.18) implies that

∑−1
`=`T

A−1
j` = 2j + O(|RT |−1), and we

get the result. �

Lemma 4.3. Under Assumption 4.1, equation (4.4),

‖ΣT ‖spec = ‖Σ1/2
T ‖2

spec 6 ‖cX‖1,∞ <∞.

On the other hand, under Assumption 4.2, ‖Σ−1
T ‖spec is uniformly boun-

ded in T .

Proof. For x ∈ C
T with ‖x‖2 = 1 and if σs,t denotes the element (s, t)

of the matrix ΣT ,

‖Σ1/2x‖2
2 =

T−1∑

s,t=0

xsxtσs,t 6

T−1∑

s=0

T−1∑

u=−(T−1)

|xsxs+uσs,s+u|

6

T−1∑

u=−(T−1)

sup
s=0,...,T−1

|σs,s+u|

which gives the first result using (4.4). The second result is proved in
Lemma 6.3 below. �

We can now prove Proposition 4.1.

Expectation

EQj,R;T = |RT |−1
∑

k∈RT

−1∑

`=− log2 T

A−1
j`

T−1∑

s,t=0

ψ`k(s)ψ`k(t)×

×
−1∑

m=−∞

∞∑

n=−∞
w2

mn;Tψmn(s)ψmn(t)

= |RT |−1
∑

k∈RT

−1∑

`=− log2 T

A−1
j` ×

×
−1∑

m=−∞

∞∑

n=−∞
w2

mn;T

(
T−1∑

s=0

ψ`k(s)ψmn(s)

)2
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defining u := n− k,

EQj,R;T = |RT |−1
∑

k∈RT

−1∑

m=−∞

∞∑

u=−∞
w2

m,u+k,T×

×
−1∑

`=− log2 T

A−1
j`

( ∞∑

s=−∞
ψ`k(s)ψm,u+k(s)

)2

.

By Definition 3.1, we can write w2
m,u+k,T = Sm(k/T )+RT (m,u, k) with

|RT (m,u, k)| 6
∣∣∣Sm

(
u+ k

T

)
− Sm

(
k

T

) ∣∣∣+ Cm

T

which leads to

EQj,R;T = |RT |−1
∑

k∈RT

−1∑

m=−∞
Sm

(
k

T

) −1∑

`=− log2 T

A−1
j` ×

×
∞∑

u=−∞

( ∞∑

s=−∞
ψ`k(s)ψm,u+k(s)

)2

+ RestT

By construction of the matrix AT , we observe that

A`m =

∞∑

u=−∞

( ∞∑

s=−∞
ψ`k(s)ψm,u+k(s)

)2

(4.23)

which implies with Assumption 4.4

EQj,R;T = |RT |−1
∑

k∈RT

Sj

(
k

T

)
+ RestT

= |R|−1

∫

R
dz Sj (z) +O

(
|RT |−1Lj

)
+ RestT (4.24)

where the last equality is a standard result on the Total Variation norm
[14, Lemma P5.1].

We now bound |RestT |. As s goes from −∞ to ∞, we have

|RestT | 6 |RT |−1
−1∑

m=−∞

−1∑

`=− log2 T

|A−1
j` |

∞∑

u=−∞

∑

k∈RT

[∣∣∣Sm

(
u+ k

T

)
− Sm

(
k

T

) ∣∣∣+ Cm

T

]( ∞∑

s=−∞
ψ`0(s)ψmu(s)

)2

.
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Using (3.28) for the sum over k, |RestT | is bounded by

−1∑

m=−∞

∞∑

u=−∞

[ |u|TV (Sm)

|RT | +
Cm

T

]
×

−1∑

`=− log2 T

|A−1
j` |
( ∞∑

s=−∞
ψ`0(s)ψmu(s)

)2

In this last expression, the compact support of ψ`0 and ψmu implies that
|u| 6 N` ∨Nm. Together with (3.21) and (4.23), we get

|RestT |

6 |RT |−1
−1∑

m=−∞

−1∑

`=− log2 T

{TV(Sm)(N` ∨Nm) + Cm} |A−1
j` |A`m

6 |RT |−1
−1∑

m=−∞

−1∑

`=− log2 T

|A−1
j` |
{

TV(Sm)N`(2Nm − 1)

+ TV(Sm)Nm(2N` − 1) + Cm(2Nm − 1)
}

= (2 +
√

2)ν2j/2|RT |−1
√
T

−1∑

m=−∞
(2Nm − 1)TV(Sm)

+O
(
2j/2|RT |−1

)
(4.25)

using (3.20) and (3.25).

Variance

Using Lemma 4.1 with (A.5), Lemma 4.2 and Lemma 4.3, we get the
upper bound as follows

VarQj,R;T = 2‖Mj,R;T ‖2
2 6 2‖Σ1/2

T ‖4
spec‖Uj,R;T ‖2

2

6 ‖cX‖2
1,∞ 2j |RT |−1 (4.26)

To obtain the lower bound, we make use of (A.5) two times on Uj,R;T =

Σ
−1/2
T Mj,R;T Σ

−1/2
T :

VarQj,R;T = 2‖Mj,R;T ‖2
2 > 2‖Σ−1/2

T ‖−4
spec‖Uj,R;T‖2

2. (4.27)



4.4 Proofs 127

Since ΣT is a symmetric matrix, ‖Σ−1/2
T ‖2

spec = ‖Σ−1
T ‖spec and Lemma

4.3 shows that ‖Σ−1
T ‖ is uniformly bounded under Assumption 4.2. A

lower bound for ‖Uj,R;T‖2
2 is stated in Lemma 4.2 and the result follows.

�

4.4.2 Proof of Proposition 4.2 and its consequences

Our proof of Proposition 4.2 needs the use of an exponential bound for
quadratic forms of Gaussian random variables. For sake of presenta-
tion, we recall now this result and refer to Dahlhaus and Polonik [27,
Proposition 6.1].

Proposition 4.7. Let Zn = (Z1, . . . , Zn)′ be a vector of iid Gaussian
random variables with zero mean and VarZ1 = 1. If Mn is an n × n
matrix such that ‖Mn‖spec 6 τ∞ and σ2

n = 2‖Mn‖2
2, then for all λ > 0

Pr
(
(Z ′

nMnZn − trMn) > σnλ
)

6 exp

(
−1

2
· λ2

1 + 2λ τ∞
σn

)
.

As in the proof of Proposition 4.1, equation (4.21), we write Qj,R;T

as a quadratic form of Gaussian variables in order to apply Proposition
4.7 with

Mj,R;T = Σ
′1/2
T Uj,R;T Σ

1/2
T (4.28)

to prove the assertion.

Proof of Proposition 4.2. Lemma 4.2 and 4.3 imply with (A.2) and
(A.4):

‖Mj,R;T ‖spec 6 2j/2ν‖cX‖1,∞|R|−1T−1/2 (4.29)

which, using Proposition 4.7, implies

Pr ((Qj,R;T −Qj,R) > ησj,R,T )

6 Pr ((Qj,R;T − EQj,R;T ) > ησj,R,T/2)

+ Pr ((EQj,R;T −Qj,R) > ησj,R,T/2)

6 exp


−1

8
· η2

1 + η
2j/2ν‖cX‖1,∞

|R|T 1/2σj,R,T




+ Pr ((EQj,R;T −Qj,R) > ησj,R,T/2) .
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To bound the second probability, we observe that

|EQj,R;T −Qj,R| 6 |RT |−1
{
Lj + 2(2 +

√
2)ρν2j/2

√
T
}

is obtained using (4.24) and (4.25). This implies

Pr ((Qj,R;T −Qj,R) > ησj,R,T )

6 exp


−1

8
· η2σj,R,T

σj,R,T + η
2j/2ν‖cX‖1,∞

|R|T 1/2




+ exp


1 − 1

2η

η2σj,R,T

Lj+2(2+
√

2)ρν2j/2
√

T )
|RT |




and the result follows. �

Proof of Corollary 4.1. In the following proof, K denotes a generic
constant and kT is an increasing function of T . By Proposition 4.1,
σ2

j,R,T := VarQj,R;T 6 2jK2|R|−2T−1 uniformly in j, which implies

Pr

(
sup

−JT 6j<0
|Qj,R;T −Qj,R| > kT

√
K2|R|−2T−1

)

6

−1∑

j=−JT

Pr
(
|Qj,R;T −Qj,R| > kT

√
K2|R|−2T−1

)

6

−1∑

j=−JT

Pr
(
|Qj,R;T −Qj,R| > 2−j/2kTσj,R,T

)
.

Using Proposition 4.2, this probability is bounded by

c0 JT max
−JT 6j<0

exp


−1

8
· 2−jk2

T

1 +
2−j/2kT Lj

|RT |σj,R;T
+

kT ν(‖cX‖1,∞+c1ρ)

|R|
√

Tσj,R;T




Proposition 4.1 shows that, σj,R,T > 2j
√
K1|RT |−1 for T sufficiently

large. This leads to the bound

c0 JT max
−JT 6j<0

exp


−1

8
· k2

T

2j +
2−j/2LjkT√

|RT |K1
+

kT ν(‖cX‖1,∞+c1ρ)√
K1|R|
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By equation (3.25), there exists a positive constant ρ′ such that Lj 6

2j/2ρ′. Then, asymptotically, the rate of convergence of the dominant
terms in this expression are given by JT · exp(−kT ) on kT . �

4.4.3 Proof of Proposition 4.3

In the following proof K is a generic constant.

Lemma 4.4. If

U
(j)
ts = |RT |−1

−1∑

`=− log2 T

A−1
j`

∑

k∈RT

ψ`k(s)ψ`k(t) ,

then

∞∑

t=−∞

∞∑

s,u=−∞
U

(j)
ts U

(j)
tu 1|s−u|6qT

6 |R|−2qTT
−12N0ν

22j log2
2 T

= O

(
2j qT log2

2 T

T

)

Proof. Direct calculations yields

∞∑

t=−∞

∞∑

s,u=−∞
U

(j)
ts U

(j)
tu 1|s−u|6qT

6 |RT |−2
−1∑

`,m=− log2 T

|A−1
j` ||A−1

jm|
∞∑

s,u=−∞
1|s−u|6qT

×

×
∞∑

t=−∞

(
∑

k∈RT

|ψ`k(s)ψ`k(t)|
)(

∑

n∈RT

|ψmn(u)ψmn(t)|
)
.

Using the Cauchy-Schwarz inequality for the sum over t, we get a prod-
uct between two terms similar to

√√√√∑

t

(
∑

k∈RT

ψ`k(s)ψ`k(t)

)2

=

√ ∑

k,r∈RT

Ψ`(k − r)ψ`k(s)ψ`r(s)
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if k = r+u, then the range of u is included in {−|RT |, . . . , 0, . . . , |RT |}:

6





|RT |∑

u=−|RT |

∑

r∈RT

|Ψ`(u)| · |ψ`,r+u(s)ψ`r(s)|





1/2

6





|RT |∑

u=−|RT |
|Ψ`(u)|





1/2

using Cauchy-Schwarz inequality for the sum over r and
∑

r ψ
2
`r(s) = 1.

Finally, using the basic properties of Ψj(τ) described in Section 3.3.2,
we get




∑

t

(
∑

k∈RT

ψ`k(s)ψ`k(t)

)2




1/2

6
√

2N` − 1. (4.30)

Then

∞∑

t=−∞

∞∑

s,u=−∞
U

(j)
ts U

(j)
tu 1|s−u|6qT

6 TqT |RT |−2
−1∑

`,m=− log2 T

|A−1
j` ||A−1

jm|
√

2N` − 1
√

2Nm − 1

and we obtain the result by (3.20). �

In the proof of Proposition 4.3, we need a modification of Corollary
4.1, in which R is replaced by RT . The proof of the following result is
along the lines of the proof of Corollary 4.1.

Lemma 4.5. Under Assumptions 4.1 to 4.6, there exists T0 > 1 such
that, for all T > T0,

Pr

(
sup

−JT 6j<0
|Qj,RT (s);T −Qj,RT (s)| > kT

√
K2|RT |−2T−1

)

6 c0JT exp




−1

8
· k2

T

1 + ρN0kT√
K1|RT T |

+
νkT (‖cX‖1,∞+c1ρ)√

K1|RT |





= oT (1) .
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Proof of Proposition 4.3. Define

σ̄s,s+u :=

−1∑

`=− log2 T

Q`,RT (s)Ψ`(u)1|u|6MT

the entries of a matrix Σ̄, and set σ̄2
j,R,T := 2‖U ′

j,R;T Σ̄T ‖2
2. Our proof is

based on the decomposition

σ̃2
j,R,T − σ2

j,R,T =
(
σ̃2

j,R,T − σ̄2
j,R,T

)
+
(
σ̄2

j,R,T − σ2
j,R,T

)

where the first term is stochastic while the second term is deterministic.
We will first show that the term |σ̄2

j,R,T − σ2
j,R,T | is o(2j−JT T−1).

Using (A.5), we can write

1

2

(
σ̄2

j,R,T − σ2
j,R,T

)
= ‖U ′

j,R;T Σ̄T‖2
2 − ‖U ′

j,R;T ΣT‖2
2

6 ‖U ′
j,R;T (Σ̄T − ΣT )‖2

2 + 2 · ‖U ′
j,R;T ΣT‖2 · ‖U ′

j,R;T (Σ̄T − ΣT )‖2

6 ‖Uj,R;T ‖2
2 · ‖Σ̄T − ΣT‖2

spec

+ 2 · ‖Uj,R;T ‖2
2 · ‖ΣT ‖spec · ‖Σ̄T − ΣT‖spec

where we know by Lemmas 4.2 and 4.3 that ‖Uj,R;T‖2
2 = O(2jT−1) and

‖ΣT ‖spec 6 ‖cX‖1,∞. Moreover, we can write:

‖Σ̄T − ΣT‖spec 6

∞∑

u=−∞
sup

s
(σs,s+u − σ̄s,s+u)

=

∞∑

u=−∞
sup

s

−1∑

`=−∞

∞∑

n=−∞

(
w2

`n;T −Q`,RT (s)

)
· ψ`n(s)ψ`n(s+ u)

+ R1 +R2 (4.31)

with

R1 =

∞∑

u=−∞
sup

s

−1∑

`=−∞
Q`,RT (s)Ψ`(u) 1|u|>MT

and

R2 =

∞∑

u=−∞
sup

s

−[log2(T )]−1∑

`=−∞
Q`,RT (s)Ψ`(u) 1|u|<MT

.
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As

∞∑

u=−∞
sup

s

−1∑

`=−∞
Q`,RT (s)Ψ`(u)

=
∞∑

u=−∞
sup

s
|RT |−1

∫

RT (s)
dz cX (z, u) ,

the rate of R1 is oT (2−JT ) by Assumption 4.6. Next, using |Ψ`(u)| 6 1
uniformly in ` < 0, we get

|R2 | 6

∞∑

u=−∞
sup

s
|RT |−1

∫

RT (s)
dz

−[log2(T )]−1∑

`=−∞
S`(z) 1|u|<MT

6 2MT

−[log2(T )]−1∑

`=−∞
sup

z
S`(z) = O(MT /T )

using Assumption 4.4. Assumption 4.5 on the rate of of clipping se-
quence MT implies MT /T = oT

(
2−JT

)
, and then

|R2 | = oT

(
2−JT

)
.

The main term of (4.31) is bounded by

∞∑

u=−∞
sup

s

−1∑

`=− log2 T

∞∑

n=−∞

|RT |−1

∫

RT (s)
dz |w2

`n;T − S`(z)| · |ψ`n(s)ψ`n(s+ u)|. (4.32)

By Definition 3.1, we can write

|w2
`n;T − S`(z)| 6

C`

T
+
∣∣∣S`

(n
T

)
− S`

(
n− s

T
+ z

) ∣∣∣

+
∣∣∣S`(z) − S`

(
n− s

T
+ z

) ∣∣∣

which, when replaced in (4.32), leads to three terms. By (3.29) and
(3.25), the first term is O(T−1). For the second term, with a change of
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variable z to z + s/T , we get:

∞∑

u=−∞
sup

s

−1∑

`=−∞

∞∑

n=−∞
|RT |−1

∫

RT (0)
dz
∣∣∣S`

(n
T

)
− S`

(n
T

+ z
) ∣∣∣×

× |ψ`n(s)ψ`n(s+ u)|,

where RT (0) denotes the interval RT (s) shifted by −s. If we use that
|ψ`n(s)| is uniformly bounded and that

∑∞
u=−∞ |ψ`n(s + u)| = O(N`),

the second term is bounded (up to a multiplicative constant) by

|RT |−1
−1∑

`=−∞
N`

∫

RT (0)
dz

∞∑

n=−∞

∣∣∣S`

(n
T

)
− S`

(n
T

+ z
) ∣∣∣

6 |RT |−1
−1∑

`=−∞
N`

∫

RT (0)
dz |z|TV(S`) 6 |RT |

−1∑

`=−∞
N`L`

= O(|RT |)

by assumptions (3.24) and (3.25). The third term is

∞∑

u=−∞
sup

s

−1∑

`=−∞

∞∑

n=−∞
|RT |−1

∫

RT (s)
dz
∣∣∣S`(z)−S`

(
n− s

T
+ z

) ∣∣∣×

× |ψ`n(s)ψ`n(s+ u)|.

If s0 denotes the infimum of RT (s), we decompose the integral as follows:

∞∑

u=−∞
sup

s

−1∑

`=−∞

∞∑

n=−∞
|RT |−1×

|RT T |−1∑

k=0

∫ s0+
k+1
T

s0+
k
T

dz
∣∣∣S`(z) − S`

(
n− s

T
+ z

) ∣∣∣|ψ`n(s)ψ`n(s+ u)|
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which can be rewritten with the change of variables y := z − s0 − k/T ,

∞∑

u=−∞
sup

s

−1∑

`=−∞

∞∑

n=−∞
|RT |−1×

×
|RT T |−1∑

k=0

∫ 1/T

0
dy
∣∣∣S`

(
y + s0 +

k

T

)
−S`

(
y + s0 +

n− s+ k

T

) ∣∣∣×

× |ψ`n(s)ψ`n(s+ u)|.
Assumption (3.24) for the sum over k with (3.28) leads to the bound

∞∑

u=−∞
sup

s

−1∑

`=−∞
L`

∞∑

n=−∞
|RTT |−1|n− s||ψ`n(s)ψ`n(s+ u)|.

The compact support of ψ`n(s) implies |n− s| < N`. Therefore, (3.29),
(3.24) and (3.25) leads to O(|RTT |−1). Finally, we summarize all the
rates that found we found above:

2−jT
(
σ̄2

j,R,T − σ2
j,R,T

)

= O
(
T−1 + |RT | + |RTT |−1

)
+ |R1 | + |R2 |

= O
(
T−1 + |RT | + |RTT |−1

)
+ oT (2−JT ) + oT (2−JT )

= oT (2−JT )

by Assumption 4.5.
Let us now turn to the stochastic term |σ̃2

j,R,T − σ̄2
j,R,T |. Lemma 4.5

implies the existence of a random set A which does not depend on j and
such that Pr(A) > 1 − oT (1) and

|Qj,RT (s);T −Qj,RT (s)| 6 kT

√
K2|RT |−2T−1 (4.33)

almost surely on A, for all T > T0 and j = −1, . . . ,−JT . We can write

|σ̄2
j,R,T − σ̃2

j,R,T | 6 2

T−1∑

h,t=0

∣∣∣
T−1∑

s,u=0

U
(j)
ts U

(j)
tu ×

×
−1∑

`,m=− log2 T

(
Q`,RT (s);TQm,RT (s);T −Q`,RT (s)Qm,RT (s)

)
×

× Ψ`(s− h)Ψm(u− h)
∣∣∣ · 1|s−h|6MT

1|u−h|6MT
(4.34)
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almost surely on A. Using the decomposition

Q`,RT (s);TQm,RT (s);T −Q`,RT (s)Qm,RT (s)

=
(
Qm,RT (s);T −Qm,RT (s)

)
Q`,RT (s)

+
(
Q`,RT (s);T −Q`,RT (s)

)
Qm,RT (s);T ,

the first term of the right hand side of (4.34) is split into two terms. On
A, the first of these two terms is bounded as follows (the other term is
bounded similarly):

2

T−1∑

h,t=0

T−1∑

s,u=0

∣∣∣U (j)
ts U

(j)
tu

−1∑

m=− log2 T

(
Qm,RT (s);T −Qm,RT (s)

)
Ψm(u−h)

×
−1∑

`=−MT

Q`,RΨ`(s− h)
∣∣∣1|s−u|62MT

6 2kT log2(T )
√
K2|RTT |−1

T−1∑

h,t=0

T−1∑

s,u=0

|U (j)
ts U

(j)
tu |×

×
∣∣∣

−1∑

`=−MT

Q`,RT (s)Ψ`(s− h)
∣∣∣1|s−u|62MT

6 2kT log2(T )
√
K2|RTT |−1

T−1∑

t=0

T−1∑

s,u=0

|U (j)
ts U

(j)
tu |1|s−u|62MT

×

×
∞∑

h=−∞
sup

z

∣∣∣
−1∑

`=− log2 T

S`(z)Ψ`(h)
∣∣∣

= O
(
2jMTkT |RTT |−1/2 T−1 log3

2 T
)

a.s. on A

using Assumption 4.1 (Equation (4.5)) and Lemma 4.4. The result fol-
lows from Assumption 4.5. �

4.4.4 Proof of Theorem 4.1

By Lemma 4.5 and Proposition 4.3 and for T large enough, there exists
of a random set A such that 1 − Pr (A) = oT (1) and (4.10) holds on A.
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Then, if Ac denotes the complementary random set of A, we can write:

Pr (|Qj,R;T −Qj,R| > σ̃j,R,Tη)

= Pr (|Qj,R;T −Qj,R| > σ̃j,R,Tη|A) Pr (A)

+ Pr (|Qj,R;T −Qj,R| > σ̃j,R,Tη|Ac) (1 − Pr (A)) .

The second term of this sum is bounded using Lemma 4.5. To bound the
first term, we observe that Proposition 4.3 implies σ̃2

j,R,T > σ2
j,R,T − ϕT

on A with ϕT = oT (2j−JT T−1). Together with Proposition 4.1, this
implies

σ̃2
j,R,T

σ2
j,R,T

> 1 − ϕT

σ2
j,R,T

= 1 − oT (1) → 1 (4.35)

for all j = −1, . . . ,−JT , as T tends to infinity. Then, we can write:

Pr (|Qj,R;T −Qj,R| > σ̃j,R,Tη)

6 Pr


|Qj,R;T −Qj,R| > σj,R,Tη

√
1 − ϕT

σ2
j,R,T

∣∣∣A




+ oT (1).

and Proposition 4.2 leads to the result. �

4.4.5 Proof of Proposition 4.4

We first prove the following lemma, stating an exponential inequality
for quadratic forms of Gaussian random variables. This result is a gen-
eralisation of a similar result obtained by Laurent and Massart [57] for
chi-squared distributions, and is proved in the spirit of Spokoiny [106].

Lemma 4.6. Let ZT = (Z1, . . . , ZT )′ be a vector of iid Gaussian random
variables with zero mean and VarZ1 = 1. If MT is a T × T symmetric
and positive definite matrix, then

Pr
(
Z ′

TMTZT 6 η
)

6 exp

(
−(η − trMT )2

4‖MT ‖2
2

)
.

provided that η 6 trMT .



4.4 Proofs 137

Proof. By assumption on the matrix MT , the decomposition MT =
O′

T ΛTOT holds with a diagonal T × T matrix ΛT and an orthonormal
matrix OT . If we denote Y T = U ′

TZT , then Y T is a vector of iid Gaus-
sian random variables with zero mean and Var Y1 = 1. We can write
Z ′

TMTZT = Y ′
T ΛTY T =

∑T
i=1 λiY

2
i with λi > 0. Moreover, trMT =

trΛT , tr Λ2
T = trM2

T = ‖MT ‖2
2 and ‖MT ‖spec = max{λ1, . . . , λT }. A

Chernoff bound on Y T leads to

Pr
(
Z ′

TMTZT 6 η
)

= Pr
(
Y ′

T ΛTY T 6 η
)

6 exp

[
inf
t<0

(
−tη + log E exp(tY ′

T ΛTY T )
)]

= exp

[
inf
t<0

(
−tη +

T∑

i=1

log E exp(λitY
2
i )

)]

and, using that

log E exp(αiY
2
i ) = −1

2
log(1 − 2αi) 6 αi + α2

i

holds for αi 6 0, we get

Pr
(
Z ′

TMTZT 6 η
)

6 exp

[
inf
t<0

(
−tη + t tr ΛT + t2 tr Λ2

T

)]
.

The result follows by taking t = (η − tr ΛT )/(2 tr Λ2
T ). �

Lemma 4.6 is not directly applicable on the quadratic form Qj,R;T =
Z ′

TMj,R;TZT because the matrix Mj,R;T is not definite positive in gen-
eral. In the next lemma, we show how this matrix can be approximated
by the matrix M ?

j,R;T , defined as

M?
j,R;T = Σ

1/2 ′
T U?

j,R;T Σ
1/2
T ,

where the entry (s, t) of the matrix U ?
j,R;T is

u?
st = γ0|RT |−1

−1∑

`=− log2 T

2`/2Ψ`(s− t),



138 Chapter 4. Locally adaptive estimation

with γ0 > supj<0 sup`<0 2−`/2|A−1
j` | > 0. The matrix M ?

j,R;T is clearly
symmetric. It is also positive definite because U ?

j,R;T is positive definite:

For all sequences x = (x1, . . . , xT )′ of `2, the quadratic form

x′U?
j,R;Tx = γ0|RT |−1

−1∑

`=− log2 T

2`/2
T−1∑

s=0

(
∑

k∈RT

xsψ`k(s)

)2

is strictly positive.

Lemma 4.7. Assume Assumptions 4.1 to 4.3 and Assumption 4.4 hold
true. Define γ1 such that

0 < γ1 < γ0 inf
m<0

−1∑

`=− log2 T

2`/2Am`.

The following properties hold true for T sufficiently large:

γ1|R|−1ε 6 tr(M ?
j,R;T −Mj,R;T ) 6 2‖cX,T ‖1,∞γ0|R|−1 (4.36)

where ε is defined in Assumption 4.2,

‖M?
j,R;T −Mj,R;T‖2

spec 6 ‖M?
j,R;T −Mj,R;T‖2

2

6 4N−1γ
2
0 |R|−2‖cX‖2

1,∞T
−1 log2

2(T ) +O(T−1), (4.37)

and, if ZT = (Z1, . . . , ZT )′ is a vector of iid Gaussian random variables
with zero mean and VarZ1 = 1, then

Pr
(
Z ′

T (M?
j,R;T −Mj,R;T )ZT > λT

)

= O

(
exp

[
−
√
T trMj,R;T

log2
2 T

])
(4.38)

where λT = trM?
j,R;T − trMj,R;T + trMj,R;T log−1

2 T .

Proof. 1. We prove (4.36). Write tr(M ?
j,R;T −Mj,R;T ) = tr(M ?

j,R;T )−
tr(Mj,R;T ), where, from Lemma 4.1 and Proposition 4.1, the sec-
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ond term is E(Z ′
TMj,R;TZT ) = Qj,R +O(2j/2T−1/2). Moreover,

tr(M?
j,R;T ) = tr

(
Σ′

TU
?
j,R;T

)

= γ0|RT |−1
∞∑

s,u=∞
cX,T

( s
T
, u
) −1∑

`=− log2 T

2`/2Ψ`(u) (4.39)

= γ0|RT |−1
∞∑

s,u=∞
cX

( s
T
, u
) −1∑

`=− log2 T

2`/2Ψ`(u)

+ RestT . (4.40)

We now derive a bound for RestT . First we denote ∆T (s/T, u) :=
cX,T (s/T, u)− cX(s/T, u). We first show that TV(∆T (·, u)) is uni-
formly bounded in u. For all I ∈ {1, . . . , T} and for every sequence
0 < a1 < a2 < . . . < aI < 1, we can write

∆T (ai, u) − ∆T (ai−1, u)

=
−1∑

j=−∞

∞∑

k=−∞

{
Sj

(
k

T

)
− Sj (ai)

}
×

× ψjk([aiT ])ψjk([aiT ] + u)

−
−1∑

j=−∞

∞∑

k=−∞

{
Sj

(
k

T

)
− Sj (ai−1)

}
×

× ψjk([ai−1T ])ψjk([ai−1T ] + u)

+O(T−1) ,

where the O(T−1) term comes from the approximation (3.23).
Now, substitute k by k+[aiT ] in the first sum, and by k+[ai−1T ]
in the second one. This leads to

∆T (ai, u) − ∆T (ai−1, u)

=
−1∑

j=−∞

∞∑

k=−∞

{
Sj

(
k

T
+ ai

)
− Sj

(
k

T
+ ai−1

)
+

+ Sj (ai−1) − Sj (ai)

}
ψjk(0)ψjk(u) +O(T−1).
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Consequently, using the Cauchy-Schwarz inequality and (3.25),

I∑

i=1

[∆T (ai, u) − ∆T (ai−1, u)]

6 2

−1∑

j=− log2 T

Lj

∞∑

k=−∞
|ψjk(0)ψjk(u)| 6 2ρ+K,

where K is a constant (because I 6 T ), leading to TV(∆T (·, u)) 6

2ρ + K uniformly in u. We can now bound RestT in (4.40) as
follows:

RestT = γ0|RT |−1
∞∑

s,u=−∞
∆T

( s
T
, u
) −1∑

`=− log2 T

2`/2Ψ`(u)

= γ0|R|−1
∞∑

s,u=−∞

∫ (s+1)/T

s/T
dz

{
∆T (z, u) + ∆T

( s
T
, u
)

+

− ∆T (z, u)

} −1∑

`=− log2 T

2`/2Ψ`(u) ,

as |Ψ`(u)| is uniformly bounded by 1,

6 γ0|R|−1

∫ 1

0
dz

∞∑

u=−∞
|∆T (z, u)|

+ γ0|R|−1
∞∑

s,u=−∞

∫ 1/T

0
dz

∣∣∣∆T

( s
T
, u
)
− ∆T

(
z +

s

T
, u
)∣∣∣ .

From Proposition 3.1, the first term is O(|RT |−1). Using (3.28)
and that TV(∆T (·, u)) is uniformly bounded in u, the second term
is also O(|RT |−1).

Now, using (3.27) and the definition of the matrix A, the first term
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of (4.40) is bounded from below as follows:

γ0|RT |−1
∞∑

s,u=−∞
cX

( s
T
, u
) −1∑

`=− log2 T

2`/2Ψ`(u)

= γ0|RT |−1
∞∑

s,u=−∞

−1∑

m=−∞
Sm

( s
T

)
Ψm(u)×

×
−1∑

`=− log2 T

2`/2Ψ`(u)

= γ0|RT |−1
T−1∑

s=0

−1∑

m=−∞
Sm

( s
T

)
inf
m<0




−1∑

`=− log2 T

2`/2Am`


 ,

and we get the lower bound with Assumption 4.2. The upper
bound is derived from (4.39), using Assumption 4.1, and |Ψ`(u)| 6

1 uniformly in ` < 0 and u ∈ Z.

2. We prove (4.37). The first inequality is (A.2). From (A.5), we
write ‖M ?

j,R;T −Mj,R;T ‖2
2 6 ‖Σ1/2‖4

spec‖U?
j,R;T − Uj,R;T‖2

2. Then,
with Lemma 4.2,

‖U?
j,R;T − Uj,R;T‖2

2 6 2‖U?
j,R;T ‖2

2 + 2‖Uj,R;T ‖2
2

6 γ2
0 |R|−2T−1

−1∑

m,`=− log2 T

2(`+m)/2A`m +K22
j |R|−2T−1

(4.41)

with (3.21) and
√
N`Nm 6 2−(`+m)/24N−1,

6 4N−1γ
2
0 |R|−2T−1 log2

2(T ) +O(T−1). (4.42)

The result follows from Lemma 4.3.

3. We prove (4.38). For T large enough, λT is strictly positive. Using
Proposition 4.7 and, from Lemma 4.1, using

p2
T = Var(Z ′

T (M?
j,R;T −Mj,R;T )ZT ) = 2‖M?

j,R;T −Mj,R;T ‖2
2
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and denoting

qT = ‖M?
j,R;T −Mj,R;T‖spec ,

we can write

Pr
(
Z ′

T (M?
j,R;T −Mj,R;T )ZT > λT

)

6 exp

(
−1

2
· (trMj,R;T )2

p2
T log2

2 T + 2qT tr(Mj,R;T ) log2 T

)
.

(4.37) gives the rates for pT and qT , leading to the result. �

Proof of Proposition 4.4. We can write

Pr (|Qj,R;T | 6 η?σ̃j,R,T ) 6 Pr (Qj,R;T 6 η?σ̃j,R,T ) .

In the proof of Proposition 4.3, we define a random set A such that
Pr(A) > 1−oT (1) and (4.10) holds. Proposition 4.3 implies that σ̃2

j,R,T 6

σ2
j,R,T + γT on A with γT = o(2j−JT T−1). Together with Proposition

4.1, this implies

σ̃2
j,R,T

σ2
j,R,T

6 1 +
γT

σ2
j,R,T

→ 1,

and then the probability is bounded by

Pr (Qj,R;T 6 ηTσj,R,T ) + oT (1)

with ηT = η?

√
1 + γT /σ2

j,R,T .

With the notations of Lemma 4.7, we can write

Pr (Qj,R;T 6 ηTσj,R,T )

= Pr
{
Z ′

TM
?
j,R;TZT 6 ηTσj,R,T + Z ′

T (M?
j,R;T −Mj,R;T )ZT

}

(4.43)

where ZT = (Z1, . . . , ZT )′ is a vector of iid Gaussian random variables
with zero mean and VarZ1 = 1. We now define the random set PT =
{Z ′

T (M?
j,R;T −Mj,R;T )ZT 6 λT } with λT = trM?

j,R;T − trMj,R;T (1 −
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log−1
2 T ). Lemma 4.7, equation (4.38), gives an upper bound for Pr(P c).

Conditioning on PT , we can write

Pr (Qj,R;T 6 ηTσj,R,T ) 6 Pr
(
Z ′

TM
?
j,R;TZT 6 ηTσj,R,T + λT

)

+O

(
exp

{
−
√
T trMj,R;T

log2
2 T

})
.

Then, we are in position to apply Lemma 4.6 and we get

Pr
(
Z ′

TM
?
j,R;TZT 6 ηTσj,R,T + λT

)

6 exp

{
−
(
ηTσj,R,T − trMj,R;T (1 − log−1

2 T )
)2

4‖M?
j,R;T ‖2

2

}

provided that ηTσj,R;T + λT 6 trM?
T (which holds true for T large

enough by definition of λT ). Proposition 4.1 allows to write EQj,R;T =
trMj,R;T = Qj,R + rT with rT = O(T−1/2), and then

Pr (|Qj,R;T | 6 η?σ̃j,R,T )

6 O
(
exp

{
−‖M?

j,R;T ‖−2
2 Q2

j,R
})

+O
(
exp

{
−
√
TQj,R log−2

2 T
})

+ oT (1).

We conclude using that, under H1, we can write

Qj,R = |U||R|−1Qj,U + (|R| − |U|)|R|−1Qj,R\U > |U||R|−1θ,

from (4.13). Moreover, the following bound can be derived similarly to
the derivation of (4.26), but using now (4.42):

‖M?
j,R;T ‖2

2 6 ‖cX‖2
1,∞‖U?

j,R;T ‖2
2

6 4‖cX‖2
1,∞N−1γ

2
0 |R|−2T−1 log2

2(T ) +O(T−1).

Then

Pr (|Qj,R;T | 6 η?σ̃j,R,T )

6 O

(
exp

{
−c′ T

log2
2 T

θ2|U|2
|R|2

})
+O

(
exp

{
−c′′

√
T

log2
2 T

θ|U|
|R|

})

+ oT (1)

�
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4.4.6 Proof of Proposition 4.5

Let U be a segment of ℘(R). Consider the a.s. inequality

|Qj,R;T −Qj,U ;T | 6 |Qj,U ;T −Qj,U | + |Qj,R;T −Qj,R| + ∆j(R,U)

where ∆j(R,U) is defined in (4.14). In the regular case, ∆j(R,U) 6

b(U) + b(R) 6 Cj(σj,U ,T + σj,R,T )kT . Consequently, in the regular case,

Pr (R is rejected)

6
∑

U∈℘(R)

Pr (|Qj,U ;T −Qj,R;T | > (ησj,U ,T + ησj,R;T ) kT )

6
∑

U∈℘(R)

Pr (|Qj,R;T −Qj,R| > −Cjσj,U ;TkT + ησj,U ;TkT )

+
∑

U∈℘(R)

Pr (|Qj,R;T −Qj,R| > −Cjσj,R,TkT + ησj,R,T kT )

Proposition 4.2 implies

Pr (R is rejected)

6 (]℘(R)) c0 exp




−1

8
· η2

T

1 +
ηT Lj

|RT |σj,R,T
+

2j/2ηT ν(‖cX‖1,∞+c1ρ)

σj,R;T |RT |
√

T





+ c0
∑

U∈℘(R)

exp




−1

8
· η2

T

1 +
ηT Lj

|UT |σj,U,T
+

2j/2ηT ν(‖cX‖1,∞+c1ρ)

σj,U;T |U|
√

T





with

ηT := ηkT

√
1 − ϕT − CjkT

= kT 2−j/2
[
5(2α + p) −√

α+ p
]
.

Proposition 4.1 leads to σ−1
j,R,T 6 2−j

√
K−1

1 |RT | and similarly for σ−1
j,U ,T .

As δ 6 |R| 6 |U| 6 1, we consider the dominant terms in the sum, and
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we can write, for T large enough, and with 2−jLj 6 ρN−1,

Pr (R is rejected)

6 2c0 (]℘(R)) exp




−1

8
· η2

T

1 + ηT ρN−1√
K1|RT |

+
ηT ν(‖cX‖1,∞+c1ρ)√

2jK1δ




.

Replacing ηT and using 2α+ p >
√
α+ p lead to the result. �

4.4.7 Proof of Theorem 4.2

We first prove the following technical lemma.

Lemma 4.8. Let ZT = (Z1, . . . , ZT )′ be a vector of iid Gaussian random
variables with zero mean and VarZ1 = 1. If Mj,R,T is the matrix (4.28),
v is a positive constant and p > 2, then, there exists T0 such that

E
(
Z ′

TMj,R,TZT − trMj,R,T + vkTT
−1/2

)p

6 C (κ, ν, ‖cX‖1,∞, p) T
−p/2

(
21+j/2|R|−1 + vkT

)p

for all T > T0.

Proof. First, we write

E
(
Z ′

TMj,R,TZT − trMj,R,T + vkTT
−1/2

)p

=

p∑

r=0

(
p

r

)
E
(
Z ′

TMj,R,TZT − trMj,R,T

)r ×

× vp−rkp−r
T T−(p−r)/2 . (4.44)

Due to the relationship between the centered moments of a random
variable and its cumulants, we can write

E
(
Z ′

TMj,R,TZT − trMj,R,T

)r

=

r∑

m=0

∑
C(p1, . . . , pm,m, π1, . . . , πm, r)κ

π1
p1
. . . κπm

pm
,

where the second sum is over p1, . . . , pm, π1, . . . , πm in {1, . . . , r} such
that

∑m
i=1 piπi = r, κpi is the pith cumulant of ZTMj,R,TZT and C



146 Chapter 4. Locally adaptive estimation

denotes a generic constant in this proof. From Lemma 4.1, we can
write, using (4.29) and Proposition 4.1:

κpi 6 2pi−2(pi − 1)!Var(Z ′
TMj,R,TZT )‖Mj,R,T ‖pi−2

spec

6 2pi−2(pi − 1)!K2ν
pi−2‖cX‖pi−2

1,∞ 2jpi/2|R|−piT−pi/2.

Consequently,

E
(
Z ′

TMj,R,TZT − trMj,R,T

)r

6 C(κ, ‖cX‖1,∞, r, ν)2
r(1+j/2)|R|−rT−r/2 ,

and using this inequality in (4.44) leads to the result. �

Proof of Theorem 4.2. Let R̃ be the interval selected by the estima-
tion procedure. We consider two cases: |R̃| < |R| or |R̃| > |R| and split
the expectation into two parts:

E|S̃j(z0) − Sj(z0)|p = E|S̃j(z0) − Sj(z0)|p 1|R̃|<|R|

+ E|S̃j(z0) − Sj(z0)|p 1|R̃|>|R|. (4.45)

First term (|R̃| < |R|)
In the first case, we make use of the inequality |a − b|p 6 2p−1|a|p +
2p−1|b|p and write

E|S̃j(z0) − Sj(z0)|p 1|R̃|<|R| 6 2p−1E|Sj(z0) −Qj,R̃|p1|R̃|<|R|

+ 2p−1E|Qj,R̃;T −Qj,R̃|p1|R̃|<|R|.

As |R̃| < |R|, the evolutionary wavelet spectrum is homogeneous over
R and R̃ and then property (4.18) holds for R̃. Then, using Proposition
4.1 on the variance, and the first point of Assumption 4.7, the first term
of the right hand side is bounded as follows:

2p−1E|Sj(z0) −Qj,R̃|p1|R̃|<|R| 6 2p−1E(Cjσj,R,TkT )p

6 2p−1Cp
j k

p
T {K22

j/(Tδ)}p/2

= 2p−1{(α+ p)K2k
2
T }p/2(Tδ)−p/2 (4.46)
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by definition of Cj (see Equation (4.19)). Now, if we denote GT =
Z ′

TMj,R,TZT − trMj,R,T , then the second term may be written

2p−1E|GT + biasT |p1|R̃|<|R| 6 22p−2(E{|GT |p1|R̃|<|R|} + |biasT |p)
where, using Lemma 4.1 and Proposition 4.1 for T large enough,

|biasT |p = | trMj,R,T −Qj,R|p
= |EQj,R,T −Qj,R|p

6 C(p)2jp/2T−p/2 (4.47)

with a constant C(p) depending on p. Finally, we now show that E|GT |p
is uniformly bounded in T . Using δ < |R̃| < |R|, we first note that
Propositions 4.1 and 4.7 imply

Pr

(
|GT | > λ

√
2jK2

δ2T

)
6 exp


−1

2
· λ2

1 + 2λ
τ∞

√
|RT |

2j
√

K1


 . (4.48)

Denote µT = 2jK2/(δ
2T ) and clip the integral

E|GT |p =

∫ ∞

0
dx Pr (|GT |p > x)

at point µ
p/2
T . This leads to

E|GT |p . µ
p/2
T +

∫ ∞

µ
p/2
T

dx Pr (|GT |p > x)

and, with the change of variable x = ypµ
p/2
T , we get

E|GT |p . µ
p/2
T + p µ

p/2
T

∫ ∞

1
dy yp−1 Pr

(
|GT |p > yµ

1/2
T

)

6 µ
p/2
T + p µ

p/2
T

∫ ∞

1
dy yp−1 exp


−1

2

y2

1 + 2yτ∞

√
|RT |

2j
√

K1


 .

For computing the integral, we note that 1 6 y, and then we have
to compute

∫∞
1 dyyp−1 exp(−αT y). Straightforward computations show

that this integral is bounded, up to a constant, by
(

2 +
4τ∞

√
RT

2j
√
K1

)p
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which is multiplied by µ
p/2
T and then gives a constant bound, indepen-

dent of T and j.
In conclusion, in the first case, we get the bound

E|S̃j(z0) − Sj(z0)|p 1|R̃|<|R|

6 2p−1{(α+ p)K2k
2
T }p/2(Tδ)−p/2

+ 22p−2C
(
E1|R̃|<|R| + 2jp/2T−p/2

)

from (4.46) and (4.47). As

E1|R̃|<|R| = Pr(|R̃| < |R|) 6 Pr(R is rejected) = O
(
T−cp

√
δ
)

by Proposition 4.5, we can write

E|S̃j(z0) − Sj(z0)|p 1|R̃|<|R| = O(T−cp
√

δ + kp
T (Tδ)−p/2).

Second term (|R̃| > |R|)
We consider now the second case. Select a subinterval U in R ∩ ℘(R̃)
containing z0. Then, consider the decomposition

E|S̃j(z0) − Sj(z0)|p 1|R̃|>|R| 6 E

{
|Qj,U − Sj(z0)|+

+ |Qj,U ;T −Qj,U | + |Qj,R̃;T −Qj,U ;T |
}p

.

As the wavelet spectrum is regular on U ⊂ R, the term |Qj,U − Sj(z0)|
is bounded by Cjσj,U ,TkT . On the other hand, using Proposition 4.1,
|Qj,U ;T − Qj,U | = |Qj,U ;T − trMj,U ;T | + RT with RT = O(2j/2T−1/2).
Moreover, as R̃ is selected by the estimation procedure, it holds |Qj,R̃;T−
Qj,U ;T | 6 (ησ̃j,R̃,T + ησ̃j,U ,T )kT . Finally,

E|S̃j(z0) − Sj(z0)|p 1|R̃|>|R| 6 E

{
|Qj,U ;T − trMj,U ;T |

+RT + Cjσj,U ,TkT +
(
ησj,R̃,T + ησj,U ,T

)
kT

}p

.
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With 2α+ p >
√
α+ p, we can write

Cjσj,U ,TkT +
(
ησj,R̃,T + ησj,U ,T

)
kT 6 11(2α+ p)K

1/2
2 |UT |−1/2kT .

Lemma 4.8 proves the existence of a constant c5 depending on κ, ν, p,K2

and on ‖cX‖1,∞, such that, for T > T0,

E
{
|Qj,U ;T − trMj,U ;T |

+RT +Cjσj,U ,TαT +
(
ησj,R̃,T + λσj,U ,T

)
kT

}p

6 c5|UT |−p/2
{

21+j/2δ−1 + 11(2α + p)kT

}p

since |R̃| > |U| > δ, and the result follows. �

4.4.8 Proof of Proposition 4.6

Suppose |R0| ∨ |R1| = |R0| w.l.o.g. and write

Pr (R is not rejected)

6 Pr {Qj,R,T −Qj,R0,T 6 η(σj,R,T + σj,R0,T )kT } .

As in the proof of Proposition 4.4, we approximate MT = Σ′
T (Uj,R;T −

Uj,R0;T )ΣT by M?
T = Σ′

T (U?
j,R;T − U?

j,R0;T
)ΣT , where U ?

j,R;T is defined
in Lemma 4.7. Define the random set PT = {Z ′

T (M?
T −MT )ZT 6 λT }

with λT = trM?
T − (1 − log−1

2 T ) trMT , where ZT = (Z1, . . . , ZT )′ is a
vector of iid Gaussian random variables. As in the proof of Lemma 4.7,
equation (4.38), we have

Pr(Pc
T ) = O

(
exp

{
−
√
T trMT

log2
2 T

})
.

Conditioning on PT , we can write

Pr (R is not rejected)

6 Pr
{
Z ′

TM
?
TZT 6 η(σj,R,T + σj,R0,T )kT + λT

}

+O

(
exp

{
−
√
T trMT

log2
2 T

})
.
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We are now in position to apply Lemma 4.6 with the symmetric, positive
definite matrix M ?

j,R;T . As η(σj,R,T + σj,R0,T )kT + λT 6 trM?
T for T

large enough, we can write, with Lemma 4.6,

Pr (R is not rejected)

6 exp

{
−1

2

(η(σj,R,T + σj,R0,T )kT + λT − trM?
T )2

Var
(
Z ′

TM
?
TZ
)

}

+O

(
exp

{
−
√
T trMT

log2
2 T

})
.

Lemma 4.7 leads to Var (Z ′
TM

?
TZ) = O(|R0|T−1 log2

2 T ), and then, re-
placing λT , the rate of the probability becomes

O

(
exp

{
−T (trMT )2|R0|

log2
2 T

}
+ exp

{
−
√
T trMT

log2
2 T

})
.

The result follows using trMT = θT . �

4.5 Possible extension

We end this chapter with an open question for future research.

It is well-known that wavelets are suited to decompose certain inho-
mogeneous signals into a sparse wavelet coefficient vector. Consequently,
the simultaneous localisation of wavelets in time and scale leads to pos-
sibly very sparse representations of evolutionary wavelet spectra. In this
open section, we would like to develop this idea and to give an insight
how the question of testing sparsity can be addressed.

In the multiscale representation (3.27) the coefficients Sj(z) are de-
pending on the continuous rescaled time z ∈ (0, 1). As Ψj(0) = 1 for all
scales j, (3.27) decomposes the instantaneous variance as

cX(z, 0) =
−1∑

j=−∞
Sj(z). (4.49)

If we assume this variance to be non zero, it then follows that, at each
time z, there exists a scale j where Sj(z) is non zero. If only few scales
are non zero for each z, we say that the wavelet spectrum is sparse.
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There are many approaches in the literature where the notion of
sparsity is quantified. In the context of wavelet decompositions of sig-
nals, we refer to Abramovich et al. [1] and the references therein for some
possible definitions. One possibility to define a sparse wavelet spectrum
is to test the null hypothesis that at most M scales are active, i.e.

H0 : #{j : Qj,R6=0} 6 M

for a given time interval R and a given integer M . In this formulation,
the number M quantifies the degree of sparsity.

For testing this null hypothesis, what kind of test statistic can be
derived? A natural procedure is to consider all the histograms

vj = Qj,R;T j = −1, . . . ,−JT ,

and to consider the corresponding rank vector v(−1) > v(−2) > . . . >

v(−JT ). According to our definition of sparsity, it is expected that the
JT −M first elements of this rank vector differ significantly from zero.
Then the idea is to test the significance of the next component, namely
v(−JT +M−1).

However, other definitions of sparsity could be possible. Sparsity
can also mean that there is a relatively small proportion of relatively
large histograms (as in Abramovich et al. [1]). Rewrite the sequence of
theoretical histogram as follows:

θj = Qj,R j = −1,−2, . . .

We then have to control the decrease of the rank vector θ(j), and sparsity
would mean

H0 : θ(j) 6 M |j|−1/p j = −1,−2, . . .

Such constraint corresponds to an `p constraint, and the interesting
range is for p small (substantial sparsity).

In that case, one way to test the sparsity is to study the decrease of
the empirical vector v(j), and this can be done for instance through the
False Detection Rate principle [6]. However, this methodology leads to
new challenging theoretical problems, in particular for the control of the
correlation between different scales of the CWP.
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CHAPTER 5

Computational aspects

and applications

Above, we have considered two main problems, namely a local test of
significance (4.1) for an evolutionary wavelet spectrum (EWS), and the
pointwise estimation of the EWS. From a theoretical viewpoint, there
exists a link between the solution of these two problems, since they are
based on a non-asymptotic result on the deviation of a linear functional
of the wavelet periodogram (Theorem 4.1).

The first aim of this chapter is to study the performance of these
procedures on some simulated examples. Moreover, we show how they
can be applied on some practical examples. We also provide an applica-
tion of the method given by a new test of stationarity. This test is also
illustrated on real data.

5.1 Preliminary remarks

In the following, the performance of the tests is evaluated on two specific
models. The first one is a white noise with mean zero and variance 4,
herewith denoted by Wt ∼ WN(0, σ2 = 4). This is of course a stationary
process and, from the resolution of identity (3.12), its spectrum is given
by SW

j (z) = SW
j = 2j+2 for all z ∈ (0, 1) and j < 0. A plot of this

theoretical spectrum is given in Figure 5.1(a). As the energy is spread
evenly on all scales at each time point, this model corresponds to a non
sparse spectrum.

The second model used in our simulation is nonstationary. It is given
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(a) Wavelet spectrum of the stationary
process Wt ∼ WN(0, 4).
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(b) Wavelet spectrum of the concate-
nated Haar process Ht.

Figure 5.1: The two theoretical wavelet spectra used in this chapter in order
to evaluate the performance of the procedures.

by the concatenation of two simple stationary processes and corresponds
to the wavelet process generated with the spectrum

SH
j (z) =





1 if z 6 0.5 and j = −1 ,

1 if z > 0.5 and j = −4 ,

0 elsewhere

and nondecimated Haar wavelets. A plot of this spectrum is given in
Figure 5.1(b). The process is stationary on the two segments of time
(0, 0.5) and (0.5, 1). Each of these segments corresponds to a special
MA(q) process. More precisely, the whole process, which is denoted by
Ht, is given by the concatenation of the MA(1) process

1√
2
εt −

1√
2
εt−1 {εt} ∼ WN(0, 1)

on the first segment, with the MA(15) process

1

4
(εt + · · · + εt−7) −

1

4
(εt−8 + · · · + εt−15) {εt} ∼ WN(0, 1).

on the second segment. The EWS of the process Ht is especially sparse,
because, at each time point, only one scale is nonzero.

In the second model, the breakpoint between the two concatenated
processes occurs at time z = 0.5. Here, it is worth mentioning that the
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breakpoint may be placed at any time point in the rescaled time, and
not only on dyadic time points. This is absolutely not a limitation of the
model. Our choice of z = 0.5 here is simply for the sake of convenience.
Later in this chapter, we will define a process with a breakpoint at a
non dyadic time point (see Section 5.4).

In the following, our evaluations are based on simulations of sample
size T = 500. Indeed, the model does not limit the sample size to be a
power of two. Our experience let us think that the sample size T = 500
is quite small in a context of nonstationarity modelling. This should
be taken in mind in the interpretation of the following results. We also
mention that the sample size of the real data in our study case will be
significantly larger.

Figure 5.2(a) and (b) shows a realisation of the two processes Wt and
Ht with Gaussian innovations ξjk and nondecimated Haar wavelets. We
also compute the mean of 100 wavelet periodograms Ijk and corrected
wavelet periodograms Ljk, computed with Haar wavelets in the two
cases, from 100 independent realisations of the processes Wt and Ht.
Figure 5.2(c) and (d) empirically show that, without the correction by
A−1 in (3.31), the wavelet periodogram is biased for the estimation of
the wavelet spectrum.

What is not showed in Figure 5.2 is the high variability of the cor-
rected wavelet periodogram. Figure 5.3 plots a single corrected wavelet
periodogram computed from one realisation of Ht with T = 500. From
this figure, we can also see that the correction by A−1 in the compu-
tation of the CWP in (3.31) may lead to negative values at some time
points. This happens because, in pratical situations, the correction is
provided with a finite-dimensional matrix AT of dimension T×T . In our
simulations below, this point does not pose a practical problem, since
we are smoothing the CWP using histograms with a large window, and
the negative values disappear.
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(a) One realisation of Wt.
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(b) One realisation of Ht.
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(c) Mean of wavelet periodograms
(computed with Haar wavelets) from
100 independent simulations of Wt.
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(d) Mean of wavelet periodograms
(computed with Haar wavelets) from
100 independent simulations of Ht.
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(e) Mean of CWP’s from 100 indepen-
dent simulations of Wt.
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(f) Mean of CWP’s from 100 indepen-
dent simulations of Ht.

Figure 5.2: These plots concern 100 paths of Wt and Ht with sample size
T = 500. Ht corresponds to the spectrum of Figure 5.1(b) using Gaussian
innovations ξjk and nondecimated Haar wavelets.
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Figure 5.3: Corrected wavelet periodogram of one single realisation of Ht (T =
500).

However, if for some reasons it is desirable to guarantee the CWP
to be nonnegative, one may use a refined algorithm for the correction,
ensuring the positiveness of the CWP. One example is provided in [38],
where the CWP is computed from the Linear Complementarity Problem
[78], i.e. from the system





Ijk;T 6
∑

m<0AmjLmk;T

Lmk;T > 0∑
j<0

(∑
m<0AmjLmk;T − Ijk;T

)
Ljk;T = 0.

We do not use this option later in our work.

5.2 Test of local significance

We now apply the test of local signifiance of the CWP developed in
Section 4.2 to the two models described in the preceeding section. In this
section, we assume that all nuisance parameters of the test procedure are
known. The question of the preliminary estimation of these parameters
is deferred to the next section.

In theory, the test is based on the exponential inequality given by
Proposition 4.2. However, this bound is not sharp enough for our appli-
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cations. The reason is revealed by some careful reading of the proof of
this proposition. The proof is based on the decomposition

Qj,R;T −Qj,R = {Qj,R;T − E(Qj,R;T )} + {E(Qj,R;T ) −Qj,R} .

The bound for the deviation of the first term (the stochastic term) comes
from a general result giving an exponential bound for quadratic forms of
Gaussian random variables (Proposition 4.7). As we shall see in this sec-
tion, this bound leads to sensible results in our simulations. In contrast,
the bound for the second term (the deterministic term) comes from an
upper bound for the bias, derived as in the proof of Proposition 4.1.
This bound is not sharp.

One solution adopted in this chapter is to base the test on the null
hypothesis

H′
0 : E(Qj,R;T ) = 0 for a fixed scale j < 0 and for all z ∈ R.

Then, the test may be based on the inequality

Pr (|Qj,R;T − EQj,R;T | > σj,R,Tη)

6 exp


−1

8
· η2

1 + η
2j/2ν‖cX‖1,∞

|R|T 1/2σj,R,T


 , (5.1)

which is derived along the lines of the proof of Propostion 4.2.
The test has been applied to simulated series from the two models

described above. From each simulated series, we have computed the
test statistics TT := |Qj,R;T |/σj,R;T for scales j = −1 up to −6 and for
different choices of intervals R. In the case of the spectrum of Figure
5.1(a) (standard white noise), we consider only the interval R = (0, 1).
In the case of the second model, in Figure 5.1(b), we have considered the
most relevant intevals R = (0, 1/2), R = (1/2, 1) and R = (0, 1). Having
computed TT , we then evaluate the upper bound (5.1) for η = TT , i.e.
we compute an approximated p-value of the test.

The results are presented in Figure 5.4. In this figure, we present a
box plot of the 50 p-values obtained from 50 independent replications of
T = 500 data. These show that very small p-values are obtained where
the spectrum is not zero, and large p-values correspond to regions of
sparsity. If we focus on the results for the white noise process, we can
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see that the test rejects very well the finer scales. However, the test does
very often not reject the null hypothesis of sparsity for coarsest scales.
This is due to the fact that the true EWS of the white noise at scale j
is proportional to 2j (j < 0). Then, the signal-to-noise ratio at lower
scales is very low. This is in contrast with the process Ht, which is 1 at
scale −1 and −4, for the rescaled time z < 0.5, and z > 0.5 respectively.
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(a) p-values of the test of significance
for {Wt} computed on R = (0, 1) for
all scales.
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(b) p-values of the test of significance
for {Ht} computed on R = (0, 1) for
all scales.
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(c) p-values of the test of significance
for {Wt} computed on R = (0, 1/2) for
all scales.
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(d) p-values of the test of significance
for {Wt} computed on R = (1/2, 1) for
all scales.

Figure 5.4: p-values of the test of significance applied on the processes {Wt}
and {HT }, whose the theoretical spectrum is respectively in Figure 5.1(a) and
(b). The results are based on 50 independent similations of times series with
500 data.

We also note from these results that the test makes a correct distinc-
tion between zero and nonzero regions of Ht on the whole scale (Figure
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5.4(b)). Remember that, at scale j = −1 and −4, only half of the true
EWS is active. This remarks leads to the following interesting question
of how to study the behaviour of the test over an interval containing
some inactive regions. For this, we consider again the concatenated
process {Ht}. Let us consider the test at scale −1 for instance. The
idea is to study the behaviour of the test statistics TT when testing the
signifiance over the interval (z, 1), where we let the time point z vary
between 0 and 1/2 in the rescaled time. The behaviour of the p-values
is plotted in Figure 5.5(a) as a function of z on a grid of (0, 0.5). If we
fix the nominal level of the test at α = 0.05, this figure shows that the
test rejects mostly the null hypothesis on (z, 1) when z 6 0.15. In other
words, 175 data corresponding to a non-zero segment of the spectrum
were necessary in order to have a correct control of the Type II error of
the test.

Similarly, in Figure 5.5(b) the test is also computed at scale −4 from
the same process, for testing significance on (0, z), where z takes its
values on a grid of (0.5, 1). This figure shows a nice empirical result,
because the conclusion is the same as for Figure 5.5(a): If we fix the nom-
inal level of the test at α = 0.05, 175 data corresponding to a nonzero
EWS at scale −4 are necessary in order to have a correct control of the
Type II error of the test. This observation will be useful later, for the
practical applications of the pointwise adaptive estimator of the EWS,
because this simulation helps to understand how many data points are
needed if in practice one wishes to detect a breakpoint in the spectrum
with high probability.

Remark 5.1. In our software, we have also used the following approx-
imation for the deterministic matrix Uj,R;T defined in (4.8): The entry
(s, t) of Uj,R;T is approximated by

|RT |−1
−1∑

`=−[log2 T ]

A−1
j` Ψ`(s− t).

Since the approximated matrix is now Toeplitz, its encoding is signifi-
cantly quicker than the encoding of the true matrix Uj,R;T . ♦
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(a) p-values of the test of significance for {Ht} at scale
j = −1 computed on R = (z, 1), where z varies on a grid
between 0 and 0.5.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 .05 .1 .15 .2 .25 .3 .35 .4 .45 .5

(b) p-values of the test of significance for {Ht} at scale
j = −4 computed on R = (0, z), where z varies on a grid
between 0.5 and 1.

Figure 5.5: p-values of the test of significance for {Ht} with respect to an
interval R with a varying length (based on 50 independent simulations of length
500). The horizontal line indicates the value 0.05.
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5.3 Estimation of the variance

In this section, the preliminary estimator of the variance described in
Section 4.2.3 is evaluated on simulations of the process Ht. Recall that
this estimator depends on two quantities: the interval RT and the num-
ber MT (see Assumption 4.5). We have tested the robustness of the test
of significance with respect to these two parameters, and we present here
a typical result.

In the following experiment, we simulate 50 times a realisation of the
process Ht, with T = 500. Suppose we would like to test the significance
of the spectrum at scale j = −1, over the interval R = (0, 1). For
each sample path, we compare the approximated p-values of the test
obtained from four different test statistics TT . The first statistic uses
the theoretical variance, as in the previous section. The three others
use an interval RT with length |RT | = [log2 T ], and with MT = 0, 1, 2
respectively. Note that MT = 0 corresponds to the case where the
covariance matrix ΣT is estimated by a diagonal matrix (see equation
(4.9)). In our simulations, the interval RT (s) is centered around s.

Thus, this experiment considers an interval RT with a constant
length [log2(500)], and studies the variability of the test procedures with
respect to the clipping parameter MT . Figure 5.6 presents the results of
the experiment for two scales (j = −1 and −2) and for the most relevant
testing intervals R = (0, 1), R = (0, 1/2) or R = (1/2, 1). An observa-
tion of these results show that there is no significant difference between
the four situations. This can be considered as a general conclusion, also
for scales lower than −2 which are not reported here.

More surprisingly, we note that the best result is not obtained with
the test statistic computed with the theoretical variance. In most of the
plots, this statistic leads to a more spread out box plot than the one
based on the estimated variance. A possible explanation for this phe-
nomenon is that the theoretical variance σ2

j,R is an asymptotic quantity
depending on the local covariance function cX(z, τ) (see (3.27)). From
a practical viewpoint, this local covariance may be far from the true
finite-sample covariance given by Cov(X[zT ],T , X[zT ]+τ,T ). This argu-
ment especially holds in our case, where the simulations contain only
T = 500 data.
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Figure 5.6: p-values for the test of significance applied on the process {Ht} (50
independent replications of T = 500 data. Each figure presents four box-plots.
The first correponds to the test statistic computed with the theoretical variance.
The three others are with an estimated variance matrix, with MT = 0, 1, 2
respectively with |RT | = [log

2
500], see equation (4.9).
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In conclusion, even if the choice of RT and MT is important for the
preliminary estimation of the covariance matrix ΣT , their impact on the
quality of the test of sparsity is limited. In practice, we recommend
to set RT = log2 T . In our applications, we use the following rule for
the choice of MT . We start with a large value for MT (around 10) and
examine the decreasing (or increasing) of the off-diagonals of the covari-
ance matrix. Very often, in our applications, these off-diagonals start
with an abrupt decreasing, sometimes followed by an increasing trend.
When this behaviour is observed in several off-diagonals of the matrix,
we recommand to clip the matrix just before the abrupt decreasing. This
procedure has been followed for choosing MT in the case studies below.

We end this section by mentioning that the pre-estimation of the
variance is not computationaly expensive. The key point here is that
we only need to estimate the covariance matrix ΣT by Σ̃T of the whole
process and to store it. Then, as explained in Section 4.2.3, the estimated
variance of a histogram Qj,R;T is obtained by computing 2‖U ′

j,R;T Σ̃T‖2
2,

where the matrix Uj,R;T is purely deterministic.

Remark 5.2. One possible way to avoid the estimation of the variance
would be to use the bounds of the variance derived in Proposition 4.1
in the test of sparsity. However, some preliminary simulation studies
showed that these bounds are not sharp in practice. ♦

5.4 Adaptive estimation of the wavelet spectrum

The pointwise adaptive estimator (4.16–4.17) of Sj(z0) is based on the
detection of the interval R around z0 where the evolutionary wavelet
spectrum (EWS) is homogeneous. In this section, we want to be more
specific about all the quantities which are needed in the procedure.

5.4.1 Choice of the sets Λ, ℘(R)

We first need to choose the sets Λ and ℘(R). Recall that Λ defines
a family of interval-candidates R and that, for each candidate R, the
test of homogeneity compares the behaviour of the corrected wavelet
periodogram (CWP) on R and several subintervals U . The set ℘(R)
contains these subintervals U .

Several propositions have been proposed in the literature for choosing
these two sets [74, 105]. In our computations, we used the following
sets. For each scale j < 0, the CWP (3.31) is evaluated on a grid k/T ,
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k = 0, . . . , T − 1 in time. Let us fix an integer K that will be discussed
later on and define the set K = {iT/K, T : i = 0, . . . , (K − 1)}. The set
K depends on K and defines a grid of {0, . . . , T − 1} including the time
points 0 and T − 1. We choose the set Λ as

Λ = {[r0/T, r1/T ] : r0, r1 ∈ K and r0 < [z0T ] < r1} .

Finally, the set Λ depends only on the parameter K that will be dis-
cussed below. Next, for every interval R = [rm/T, rn/T ] in Λ, we de-
fine the set ℘(R) of subintervals U by taking all smaller subintervals
[rk/T, rn/T ] with the right end point rn/T and similarly all smaller in-
tervals [rm/T, r`/T ] with the left end-point rm/T :

℘(R) = {U = [rk/T, rn/T ] or U = [rm/T, r`/T ] : m < `, k < n}

if R = [rm/T, rn/T ].

5.4.2 The procedure

The test of homogeneity of the EWS over an interval-candidate R is
based on the test statistic

TT (R,U) :=
|Qj,R;T −Qj,U ;T |

log2
2(T )

√
Var |Qj,R;T −Qj,U ;T |

for each subinterval U in ℘(R). An upper bound for the deviation of
this statistic is given in (4.15). In other words, under the assumption of
homogeneity, that is if the difference ∆(R,U) is small, then

Pr(TT (R,U) > η) 6 g(R,U , η) , (5.2)

where g follows from equation (4.15). Then the adaptive iterative pro-
cedure for selecting the interval of homogeneity may be summarized as
follows:

Initialization. Select the smallest interval R in Λ.

Iteration. Select the next interval R and calculate the corresponding
estimate Qj,R,T and the estimated variance σ̃2

j,R,T .

Testing homogeneity. Reject R if there exists one U ∈ ℘(R) such that

g (R,U , TT (R,U)) > g0 .
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Loop. If R is not rejected, then iterate using a larger interval. Otherwise,
select the latest non rejected interval.

This procedure requires the preselection of the sets Λ and ℘(R), but
also the choice of a constant g0 which will be discussed later on.

Remark 5.3. With the approximation explained in Remark 5.1, the
denominator of the test statistics is simple to compute. Indeed, following
the reasoning at the beginning of Section 4.2.3, the variance of |Qj,R;T −
Qj,U ;T | is simply 2‖U ′

j,U ,R;T ΣT‖2
2, where the entry (s, t) of Uj,U ,R;T is

given by

(
|RT |−1 − |UT |−1

) −1∑

`=−[log2 T ]

A−1
j` Ψ`(s− t).

In our computations, the matrix ΣT and the sum over ` are first com-
puted and stored. Then, the variance is computed by a normalisation
with the factor (|RT |−1 − |UT |−1). ♦

To end this subsection, let us discuss two technical points of the
algorithm. The first point is the choice of the first interval-candidate R
needed to initialize the procedure. One first recommendation is to not
take this interval too small. Here, the study of Figure 5.5 above is very
helpful. From this study, we conclude that this interval should not have
less than 175 data, such that we have a correct control of the Type II
error of the test.

The second point is: having accepted an interval R in the procedure,
how can we define the next interval-candidate in the iteration step? The
point here is that increasing of R may be done to the right of the interval,
or to the left of the interval. In our code, we consider the two possibilities
at each iteration, that is we consider an increasing to the right, denote
it by Rr, and to the left, denote it by R`. We test the homogeneity of
the EWS over Rr and R` seperately. If the test rejects the homogeneity
over one of the two intervals, then we reject this interval and do no
longer increase the interval-candidate in this direction. If the test does
not reject any of the two possibilities, then we compare the minimal
probability obtained in the two situations, that is we compare

mr = min
U∈℘(Rr)

g(Rr,U , TT (Rr,U))
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and

m` = min
U∈℘(R`)

g(R`,U , TT (R`,U))

and we select the new interval corresponding to the maximum of mr and
m`.

5.4.3 Discussion of the constants K and g0

Now the procedure basically depends on the choice of two parameters
K and g0. The number K defines the set of subintervals in the test of
homogeneity, and g0 is a kind of level for this test. As a matter of fact,
g0 plays the role of a smoothing parameter.

It is worth mentioning that the parameters K and g0 are global, in
the sense that they do not depend on the time point z0 where we are
testing the homogeneity. They no longer depend on R or U , and they
are fixed by the model only.

The choice of K and g0 follows from some preliminary study of the
CWP. In a different context, Mercurio and Spokoiny [74] propose to
select these nuisance parameters by minimisation of the mean square
prediction error. This could also be possible in our context, since the
prediction theory of LSW processes is developed in the next chapter.

5.4.4 Simulated example

To illustrate the pointwise adaptive estimation procedure on a simulated
example, we consider a new process, called ghaar, whose theoretical
spectrum is given in Figure 5.7(a). This process has two active scales
on j = −1 and −4. The scale j = −4 is active only from the middle of
the time series, while the scale j = −1 is active at each time point, but
with a breakpoint occuring at time point 2T/3.

In this experiment, we focus on the estimation of scale j = −1. The
procedure described above is for a pointwise estimator. If we wish to
estimate a whole scale, the algorithm has to be performed on several
points of the scale. In the following, we have applied the estimator on
19 equidistant time points. If one wants to have an estimator of the
whole scale, these 19 estimators may be linked, for instance by segments
or using a more sophisticated interpolation algorithm.

Moreover, when the estimation procedure is performed on several
points of the scale, it may happen that some homogeneity tests are
computed several times for the same intervals R and U . For instance,
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(d) Scale j = −1 of the corrected wa-
velet periodogram

Figure 5.7: The ghaar process uses the spectrum in (a) with nondecimated
Haar wavelets and Gaussian increments in the Definition of the locally station-
ary wavelet process.

this situation arises if we estimate the EWS at two points included in one
true interval of homogeneity. In theory, we expect that the estimated
interval of homogeneity R̃ will be the same for the two points. As a con-
sequence, in this situation, many identical tests of homogeneity will be
computed in the estimation at the first and second point. To overcome
this loss of efficiency in the procedure, our code stores all tests of ho-
mogeneity for each R and U , such that each test is computed one single
time in the global estimation. In a sense, the algorithm for the global
estimation gets more and more informations when the estimation goes
from one point to another point of estimation. In terms of computation
time, the gain with this self-learning procedure is highly significant.
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Figure 5.8: Above is the result of the pointwise adaptive estimator at scale
j = −1 for the ghaar process (the solid line is the true spectrum, and the dots
are the pointwise adaptive estimators). The estimation is obtained from the
realisation of the process plotted at the bottom. The two horizontal lines on
the time series correspond to some intervals of homogeneity selected by the
adaptive procedure (see text).

The results are presented in Figure 5.8, and correspond to the fol-
lowing choices of parameters: K = 20, g0 = 0.4. In this simulation,
these two parameters are chosen by hand, but the result is robust to
this choice (that is, a small change of the parameters K and g0 does
not change the estimation in a significant way). It is worth mentioning
that these results are given with the pre-estimator of the variance. For
this pre-estimation, we take |RT | = [log2(500)] and MT = 1. The above
figure plots the true EWS at scale j = −1 (solid line) together with our
estimators at 19 equidistant time points (dots). The constancy of the
EWS on (0, 2/3) and (2/3, 1) is well detected by the estimator, except
at one time point near the breakpoint. If we consider the CWP at scale
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j = −1, see Figure 5.7(d), one may observe that the CWP has a short
period with lower amplitudes before the time break. We believe that
the single bad pointwise estimator comes from this phenomenon. Once
again, it is important to note that the CWP is a highly variable quantity,
and our estimation is provided with only 500 data.

In the estimation plotted in Figure 5.8, all the pointwise estimators
near 1 select the same interval of homogeneity R̃, as expected. This
interval is showed together with the original time series at the bottom
of Figure 5.8. Similarly, the estimators near 0.25 select the same interval
of homogeneity, which is plotted on the second plot.

5.5 Case study: Baby heart rate

The test of significance and the pointwise adaptive estimator are devoted
to different specific classes of statistical problems. On one hand, the
test of significance is of use when we would like to measure a change of
regime in an observed process. Many examples arise where the effect of
an input is measured on a time series, for instance the effect of a drug
on the heart rate measured by an electrocardiogram recording. The
resulting time series is expected to be globally nonstationary, and we
think our test procedure may be used to detect if a scale that is not
active before the input becomes active after the input. Moreover, as
already said above, the test of significance may be applied on a whole
scale, in order to test the significance of one given scale in an observed
process. On the other hand, the pointwise adaptive estimator of the
wavelet spectrum may be applied time point by time point, leading to
an estimator of the whole wavelet spectrum of the process.

In this case study, we illustrate the possibility to combine the two
procedures. The key idea is to test the significance of some whole scales
over the whole time, before performing the estimation procedure on the
scales which are significantly different from zero.

Our study concerns a heart rate (electrocardiogram (ECG)) record-
ing on a 66-day-old infant. Figure 5.9(a) plots the series, sampled at
1/16 Hz and recorded from 21:17:59 to 06:27:18 (T = 2048 observa-
tions). This series is considered in Nason and von Sachs [82] and Nason
et al. [83] as a motivating example for the exploratory analysis using
the LSW model. First of all, it is unlikely that this time series will be
a stationary time series. The heart rate varies considerably over time
and changes significantly between periods of sleep and waking. These
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(a) ECG recording. Series is sampled at 1/16 Hz and is
recorded from 21:17:59 to 06:27:18 (T = 2048 observations).
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(b) CWP of the data, computed with Haar wavelets.

Figure 5.9: ECG recording of a 66-day-old infant, and its CWP. (Data courtesy
Institute of Child Health, Royal Hospital for Sick Children, Bristol, and Guy
P. Nason [79])
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changes are of a big interest for the paediatricians. These are related
to other variables of interest which are not easily observable nor easy to
quantify. For instance, the paediatricians are interested to measure the
sleep states (quiet, active, awake,...) using some objective measures and
the question is how the heart rate may be used as a tool for measuring
the sleep state. We shall come back later to this question of the link
between the ECG and the sleep states.

Another argument for applying the LSW model to these data is
because a preliminary analysis in the Fourier domain did not give very
informative results in terms of exploratory analysis. The Fourier analysis
we are mentioning here is a localised analysis, for instance using the
windowed Fourier transform (WFT) [70]. Another drawback of the

analysis in the Fourier domain is the choice of the length of window
in the WFT. Moreover, the result of this analysis is a two-dimensional
surface which is not always easy to interpret.

In contrast, the approach using the LSW model leads to a multiscale
representation of the nonstationary process. Figure 5.9(b) shows the
CWP of the heart rate, computed with nondecimated Haar wavelets.
The CWP is not smoothed and highly variable, and our goal now is to
extract some useful information from it.

As a first step, we need a pre-estimator of ΣT and, for this, need
to choose an appropriate parameter MT and segment RT . From the
conclusions of Section 5.3 above, we choose RT (z) centered in z and of
length [log2 T ]. The selection of MT is provided as described in Section
5.3. We first compute Σ̃T with MT = 10 and then analyse the behaviour
of its off-diagonals. Figure 5.10 superimposes the value of 10 different
off-diagonals, that is we superimpose Σ̃s,s+u for u = 0, . . . , 10 and for 10
different s. This shows a similar behaviour between the off-diagonals,
which decrease quickly to MT = 2 then vary slowly. We then choose
MT = 2 in the pre-estimation of Σ̃T .

To start the analysis, we want to detect if some scales of the CWP
are not significant. For this, we apply our test of significance over the
interval R = (0, 1) at each scale. The results of the test are given in
Table 5.1. From this table, we conclude that the only active scales of
the data are given by j = −1,−7,−9 and −10, and the other scales are
not significantly different from zero. To our knowledge, such conclusion
is new for these data, and also very helpful since it indicates that the
analysis should focus on 4 active scales only.
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Figure 5.10: Ten off-diagonals of the estimated matrix Σ̃T .

We now focus on the significant scale j = −1 and apply our estima-
tion procedure. The results are given in Figure 5.11. In our estimation,
we estimate the EWS at K = 100 points. In fact, this choice does not
follow the “rule of the 175 data” discovered by Figure 5.2. The reason
is that a careful observation of the CWP at scale -1 (see Figure 5.11(a))
shows that some changes of regime in the data occur very often, and
some regions of the spectrum have clearly an interval of homogeneity
containing less than 175 data. In the estimation procedure, we also set
g0 = 0.95, which is quite large. In terms of homogeneity tests, this
means that we perhaps reject the homogeneity assumption very often.
In our opinion, this is in fact very sensible, because this error (Type I
error) is not as serious than the complementary type II error. Indeed,
in the pointwise estimation, it is not so bad if the homogeneity inter-
val is too small, since the corresponding histogram will not differ too
much from the histogram based on a possible larger truly homogeneous
interval. In contrast, if we choose a too large interval, for instant if we
choose an interval which contains some discontinuity, then the estimator
will be significantly different. Once again, it could be possible to select
g0 automatically by minimisation of a criterion like the mean square
prediction error (see Chapter 6).
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Scale Qj,R;T σ̃2
j,R;T approximated p-value

-1 31.66 12.01 1.68 · 10−4

-2 9.71 22.50 0.60

-3 9.31 101.98 0.90

-4 19.69 104.83 0.63

-5 17.25 66.95 0.57

-6 20.14 35.90 0.24

-7 44.66 18.08 1.44 · 10−6

-8 3.67 8.79 0.83

-9 33.53 4.07 5.77 · 10−15

-10 17.56 1.69 5.66 · 10−10

Table 5.1: Results of the test of significance over the interval R = (0, 1) per-
formed at each scale j between −1 and −10 for the heart rate data.
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(a) Scale j = −1 of the CWP.
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(b) The estimator (j = −1).

Figure 5.11: Pointwise adaptive estimator performed at scale j = −1 for the
baby ECG. The estimator is computed at 100 different points, and we line up
two consecutive points.

Simultaneously to the ECG recording, some experts on the analysis
of brain-waves and eye movements recorded the sleep states of the infant.
These states are recorded independently of the ECG. They are plotted
in Figure 5.12 together with our estimator of the EWS at scale j = −1.
The observers classifies the sleep states as quiet sleep (A), between quite
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and active sleep (B), active sleep (C) and awake (D).
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Figure 5.12: Pointwise adaptive estimator of the EWS at scale j = −1 together
with the sleep states (A, quiet sleep; B, state between A and C; C, active sleep;
D, awake).

It is clear that there is some relationship between our estimator and
the sleep states. In particular, periods of activity occur whilst the esti-
mate of S−1(z) is large, and periods of quiet sleep when it is small. It
is worth mentioning that the ECG is easy to measure, while the sleep
states is more tricky and less objective. With our estimator, we are
also able to detect some changes in the sleep states, sometimes with a
small delay. Then, we believe that our estimator may help to provide
some objective measurement of the activity during sleep. Finally, we
mention that a finer analysis of the fitting between the sleep states and
our adaptive estimator is also one possibile way to derive an automatic
choice of the parameter g0.
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(a) Tremor data (T = 3072 data)
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(b) First-order difference

Figure 5.13: Tremor data (Data courtesy Cognitive Neuroscience Laboratory
of the University of Quebec, Anne Beuter and Roderick Edwards).
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5.6 Test of stationarity

We end this chapter with an interesting and simple application of the
previous theory given by a new test of covariance stationarity for time
series.

5.6.1 The basic idea

A covariance stationary process is characterised by an EWS which is
constant over time, i.e. Sj(z) = Sj for each scale j (see Chapter 3). The
key idea for the test of stationarity is to test if the EWS is constant over
time at each scale or not. With this idea, testing the stationarity of a
time series is equivalent to test the homogeneity of the EWS at each
scale over R = (0, 1). This procedure is illustrated in the following case
study.

5.6.2 Case study: Tremor data

The data shown in Figure 5.13(a) are the first 3072 observations of a set
of tremor data. The object of the study is to compare different regions of
tremor activity coming from a subject with Parkinson’s disease. These
data have been considered by von Sachs and Neumann [99] who apply
their test of stationarity over three consecutive segments of length 1024
of the first-order differenced series, shown in Figure 5.13(b). As in [99],
we have added a Gaussian white noise of standard deviation 0.01 to the
originial data, in order to break the discrete nature of the data.

We apply the test of homogeneity over R = (0, 1) scale by scale
for the three segments (1), (2) and (3). The parameters for the pre-
estimation of the variance are |RT | = log2(1024) and MT = 2. For each
scale, we test the homogeneity between the EWS on (0, 1) and on 20
subintervals. Table 5.2 reports the results. The number reported in the
table is the minimum probability value obtained between the 20 tests.
This value is computed using g in (5.2). (*) indicates a value less than
or equal to 0.05 and (**) indicates a value less than 0.01.

The conclusion of this study is a lack of stationarity for segments
(2) and (3) of the tremor data. The test of von Sachs and Neumann
[99] concludes also to a lack of stationarity for series (2). However, they
do not detect any change of regime in the series (3), and our conclusion
seems to be a new observation. A careful inspection of the time series
shows that some changes of regime indeed occur in segment (2), and also
in segment (3) (around the time point 2300). This is also in accordance
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Scale (1) (2) (3)

-1 0.08 0.39 0.05 (*)

-2 0.35 0.44 0.46

-3 0.74 0.42 0.68

-4 0.34 0.001 (**) 0.28

-5 0.07 3 · 10−21 (**) 0.002 (**)

-6 0.54 8 · 10−5 (**) 0.24

-7 0.72 0.02 (*) 0.60

-8 0.91 0.84 0.81

-9 0.92 0.94 0.88

-10 0.98 0.98 0.97

Table 5.2: Results of the test of stationarity for the three segments taken from
the tremor data. (1), (2) and (3) refer to the first, second and third segment
in Figure 5.13(b). At each scale, for each segment, we perform 20 tests of
homogeneity between R = (0, 1) and 20 subintervals U . The number reported
in the table is the minimum probability value obtained among the 20 tests.
This value is computed using g in (5.2). (*) indicates a value less than or equal
to 0.05 and (**) indicates a value less than 0.01.
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with the findings of the neurologists who attributed two different regimes
of tremor activity for this part of data. Our conclusion is that (at least)
one change of regime occurs in segment (2) and also in segment (3).

The difference with the conclusion of von Sachs and Neumann [99]
may be explained by Table 5.2. Indeed, the lack of stationarity for seg-
ment (3) is due to an inhomogeneity at scale −5 only (and perhaps also
at scale −1). This is certainly a very subtle behaviour to be detected,
and our multiscale approach succeeded to find this lack of homogeneity.

Our analysis offers a more precise interpretation of the nonstationar-
ity of the tremor data. Moreover, we would like to recall that, unlike the
test of von Sachs and Neumann [99], our approach is not limited to time
series with a length equal to a power of 2. Furthermore, it is of course
possible with our method to detect some intervals of homogeneity in the
tremor data, such that we can say exactly where the changes of regime
occur in the time series.

To illustrate this last point, let us consider the scale j = −5 of the
CWP of tremor data. From Table 5.2, we have seen that a change of
regime in the tremor data occurs at this scale in both segments 2 and
3. Figure 5.14 plots the corrected wavelet periodogram at scale j = −5
for the 2048 last data (i.e. for the two last segments of the data).

Figure 5.15 presents the result of the pointwise adaptive estimator
from the CWP showed in Figure 5.14. In our estimation, we estimate
the EWS at K = 50 points from time 1025 to 3042 and g0 = 0.95 as in
the baby heart rate case study. This estimation procedure confirms the
nonstationarity of the data, because the estimated spectrum is far from
being constant over time. In addition, this result shows that clear break-
points at scale j = −5 occur around the time points 1880, 2130, 2500
and 2830. This information is easily obtained from our methodology,
and gives valuable details that are of a great interest for the neurolo-
gists.
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Figure 5.14: Fifth scale of the corrected wavelet periodogram of 2048 last data
of the differenciated tremor data. The dotted lines indicate the change between
the segments.
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Figure 5.15: Adaptive estimation of the fifth scale of tremor data (segments 2
and 3).



CHAPTER 6

Forecasting locally stationary

wavelet processes

6.1 Introduction

In this chapter, we address the problem how to use the locally stationary
wavelet (LSW) model for forecasting. In Sections 6.2 and 6.3, we develop
a theory of prediction for these processes. Since the LSW processes are
linear with respect to their random increments, our predictor is linear.
It is motivated by the approach in the stationary case, i.e. it follows
from the minimisation of the mean-square prediction error (MSPE). This
leads to a generalisation of the Yule-Walker equations [15], which can be
solved numerically by matrix inversion or standard iterative algorithms
such as the innovations algorithm [15], provided that the non-stationary
covariance structure is known.

Of course, the local autocovariance function c(z, τ) needs to be es-
timated in order to compute the forecasts in practice. In the previous
chapters, we have presented a new pointwise adaptive estimator of the
evolutionary wavelet spectrum (EWS), and this estimator may be used
to derive an estimator of c(z, τ), due to the equation

c(z, τ) =
−1∑

j=−∞
Sj(z)Ψj(τ) ,

giving the relation between the local autocovariance function and the
EWS Sj(z). The regularity assumption on Sj(z) with respect to z is fixed
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by Definition 3.1, that imposes that the EWS is bounded in the total
variation norm. In other words, the EWS can for instance have a finite
number of jumps between 0 and 1. As a matter of fact, this assumption
is very mild and probably too general for our forecasting task. In order
to forecast the process, we intuitively need more continuity on Sj(z)
with respect to z.

Consequently, even if the prediction equations derived in Section
6.3 are valid under the general assumptions of Definition 3.1, it seems
more appropriate to us to assume some continuity regularity in time for
the EWS as long as forecasting is considered. That is the reason why,
from Section 6.4 on, we impose a Lipschitz-continuity assumption on the
EWS. This assumption is useful in order to extrapolate the EWS into
the future for computing the forecasted value, similarly to the situation
of Chapter 1. We then derive a new algorithm for the estimation of the
local autocovariance and for the forecasting of locally stationary wavelet
processes. This algorithm takes advantage of the continuity assumption
that we have introduced in this section. The whole forecasting procedure
is then applied in Section 6.5 on a case study in meteorology.

6.2 The prediction equations

In this section, we define and analyse the general linear predictor for
non-stationary data which are modelled to follow the LSW process rep-
resentation.

6.2.1 Definition of the linear predictor

Given t observationsX0,T , X1,T , . . . , Xt−1,T of an LSW process, we define
the h-step-ahead predictor of Xt−1+h,T by

X̂t−1+h,T =

t−1∑

s=0

b
(h)
t−1−s;T Xs,T , (6.1)

where the coefficients b
(h)
t−1−s;T are such that they minimise the Mean

Square Prediction Error (MSPE). The MSPE is defined by

MSPE(X̂t−1+h,T , Xt−1+h,T ) = E
(
X̂t−1+h,T −Xt−1+h,T

)2
.

The predictor (6.1) is a linear combination of doubly-indexed ob-
servations where the weights need to follow the same doubly-indexed
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framework. This means that as T → ∞, we augment our knowledge
about the local structure of the process, which allows us to fit coeffi-

cients b
(h)
t−1−s;T more and more accurately. This scheme is different to

the traditional filtering of the data Xs,T by a linear filter {bt}. In par-
ticular, we do not assume the (square) summability of the sequence bt

because (6.1) is a relation which is written in rescaled time.
The following assumption holds in the sequel of the chapter.

Assumption 6.1. If h is the prediction horizon and t is the number of
observed data, then we set T = t+ h and we assume h = o(T ). ♦

With this assumption, the last observation of the LSW process is de-
noted by Xt−1,T = XT−h−1,T , while X̂T−1,T is the last possible forecast
(h steps ahead). Consequently, as in Chapter 1 where a local variance
σ2(z) is estimated, the evolutionary wavelet spectrum Sj(z) can only be
estimated on the interval

[
0, 1 − h+ 1

T

]
. (6.2)

The rescaled-time segment
(

1 − h+ 1

T
, 1

)
(6.3)

accommodates the predicted values of Sj(z). With Assumption 6.1, the
estimation domain (6.2) asymptotically tends to [0, 1) while the predic-
tion domain (6.3) shrinks to an empty set in the rescaled time. Thus,
Assumption 6.1 ensures that asymptotically, we acquire knowledge of
the wavelet spectrum over the full interval [0, 1).

6.2.2 Prediction in the wavelet domain

There is an interesting link between the above definition of the linear
predictor (6.1) and another, “intuitive” definition of a predictor in the
LSW model. For ease of presentation, let us suppose the forecasting
horizon is h = 1, so that T = t+1. Given observations up to time t− 1,
a natural way of defining a predictor of Xt,T is to mimic the structure of
the LSW model itself by moving to the wavelet domain. The empirical
wavelet coefficients are defined by

djk;T =

t−1∑

s=0

Xs,T ψjk(s)
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for all j = −1, . . . ,−J := −[log2 T ] and k ∈ Z. Then, the one-step-ahead
predictor is constructed as

X̂t,T =

−1∑

j=−J

∑

k∈Z

djk;T a
(1)
jk;T ψjk(t) , (6.4)

where the coefficients a
(1)
jk have to be estimated and are such that they

minimise the MSPE. This predictor (6.4) may be viewed as a projec-
tion of Xt,T on the space of random variables spanned by {dj,k;T |j =
−1, . . . ,−J and k = 0, . . . , T − 1}.

It turns out that due to the redundancy of the non-orthogonal wa-
velet system {ψjk(t)}, the predictor (6.4) does not have a unique rep-

resentation: there exists more than one solution {a(1)
jk } minimising the

MSPE, but each solution gives the same predictor (expressed as a dif-
ferent linear combination of the redundant functions {ψjk(t)}). One can
easily verify this observation by considering, for example, the station-
ary process Xs =

∑∞
k=−∞ ψ−1k(s)ζk, where ψ−1 is the non-decimated

discrete Haar wavelet at scale −1 and ζk is an orthonormal increment
sequence.

It is not surprising that the wavelet predictor (6.4) is related to the
linear predictor (6.1) by

b
(1)
t−s;T =

−1∑

j=−J

∑

k∈Z

a
(1)
jk;T ψjk(t) ψjk(s).

Because of the redundancy of the non-decimated wavelet system, for a

fixed sequence b
(1)
t−s;T , there exists more than one sequence a

(1)
jk;T such

that this relation holds. For this reason, we prefer to work directly with
the general linear predictor (6.1), bearing in mind that it can also be
expressed as a (non-unique) projection onto the wavelet domain.

6.2.3 One-step ahead prediction equations

In this subsection, we consider a forecasting horizon h = 1 (so that
T = t + 1) and want to minimise the mean square prediction error

MSPE(X̂t;T , Xt;T ) with respect to b
(1)
t−s;T . This quadratic function may

be written as

MSPE(X̂t;T , Xt;T ) = b
′
tΣt;T bt ,
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where bt is the vector (b
(1)
t−1;T , . . . , b

(1)
0;T ,−1) and Σt;T is the covariance

matrix of X0;T , . . . , Xt;T . However, the matrix Σt;T depends on w2
jk;T ,

which cannot be estimated as they are not identifiable (recall that the
representation (3.22) is not unique due to the redundancy of the system
{ψjk}). The next proposition shows that the MSPE may be approx-
imated by b

′
tBt;T bt, where Bt;T is a (t + 1) × (t + 1) matrix whose

(m,n)−th element is given by

−1∑

j=−J

Qj,RT (n+m
2T )Ψj(n−m) ,

where RT is an interval such that |RT | = oT (1) and Qj,RT
is defined

in (4.2) and can be estimated by estimating the (uniquely defined) wa-
velet spectrum Sj . We first consider the following assumptions on the
evolutionary wavelet spectrum.

Assumption 6.2. The evolutionary wavelet spectrum is such that

‖cX‖1,∞ :=

∞∑

τ=−∞
sup

z
|c(z, τ)| <∞, (6.5)

C1 := ess inf
z,ω

∑

j<0

Sj(z)|ψ̂j(ω)|2 > 0, (6.6)

where ψ̂j(ω) =
∑∞

s=−∞ ψj0(s) exp(iωs). ♦

Note that if (6.5) holds, then

C2 := ess sup
z,ω

∑

j<0

Sj(z)|ψ̂j(ω)|2 <∞. (6.7)

Assumption (6.5) ensures that for each z, the local covariance c(z, τ) is
absolutely summable, so the process is short-memory. This assumption
is also present in Chapter 4 (Assumption 4.1). Assumption (6.6) and
formula (6.7) become more transparent when we recall that for a station-
ary process Xt with spectral density f(ω) and wavelet spectrum Sj, we

have f(ω) =
∑

j Sj|ψ̂j(ω)|2 (the Fourier transform of equation (3.27) for
stationary processes). In this sense, (6.6) and (6.7) are “time-varying”
counterparts of the classical assumptions of the (stationary) spectral
density being bounded away from zero, as well as bounded from above.
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Proposition 6.1. Under Assumptions (6.5) and (6.6), the mean square
one-step-ahead prediction error may be written as

MSPE(X̂t;T , Xt;T ) = b
′
tBt;T bt (1 + oT (1)) . (6.8)

Moreover, if {b(1)s;T} are the coefficients which minimise b
′
tBt;T bt, then

{b(1)s;T } solve the following linear system

t−1∑

m=0

b
(1)
t−1−m;T





−1∑

j=−J

Qj,RT (n+m
2T )Ψj(m− n)





=
−1∑

j=−J

Qj,RT ( t+n
2T )Ψj(t− n) (6.9)

for all n = 0, . . . , t− 1.

The proof of the first result can be found in the next section (see
Lemma 6.5) and uses standard approximations of covariance matrices
of locally stationary processes. The second result is simply the minimi-
sation of the quadratic form (6.8) and the system of equations (6.9) is
called the prediction equations. The key observation here is that min-
imising b

′
tΣt;Tbt is asymptotically equivalent to minimising b

′
tBt;Tbt.

Bearing in mind the relation of formula (3.27) between the wavelet spec-
trum and the local autocovariance function, the prediction equations can
also be written as

t−1∑

m=0

b
(1)
t−1−m;T c

(
n+m

2T
,m− n

)
= c

(
n+ t

2T
, t− n

)
. (6.10)

The following two remarks demonstrate how the prediction equations
simplify in the case of two important subclasses of locally stationary
wavelet processes.

Remark 6.1 (Stationary processes). If the underlying process is
stationary, then the local autocovariance function c(z, τ) is no longer a
function of two variables, but only a function of τ . In this context, the
prediction equations (6.10) become

t−1∑

m=0

b
(1)
t−1−m c(m− n) = c(t− n)
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for all n = 0, . . . , t − 1, which are the standard Yule-Walker equations
used to forecast stationary processes. ♦

Remark 6.2 (Time-modulated processes). For the processes con-
sidered in Chapter 1 (equation (1.1)), the local autocovariance function
has a multiplicative structure: c(z, τ) = σ2(z)ρY (τ). Therefore, for
these processes, prediction equations (6.10) become

t−1∑

m=0

b
(1)
t−1−m;Tσ

2

(
n+m

2T

)
ρY (m− n) = σ2

(
n+ t

2T

)
ρY (t− n). ♦

We will now study the inversion of the system (6.9) in the general
case, and the stability of the inversion. Denote by Pt the matrix of this
linear system, i.e.

(Pt)nm =

−1∑

j=−J

Sj

(
n+m

2T

)
Ψj(m− n)

for n,m = 0, . . . , t − 1. Using classical results of numerical analysis
(see for instance Kress [56, Theorem 5.3]) the measure of this stability is
given by the so-called condition number, which is defined by cond (Pt) =
‖Pt‖ ‖P−1

t ‖. It can be proved along the lines of Lemma 6.3 below that,
under Assumptions (6.5) and (6.6), cond (Pt) 6 C1 C2.

6.2.4 The prediction error

The next result generalises the classical Kolmogorov formula for the
theoretical one-step-ahead prediction error (Theorem 5.8.1 in Brockwell
and Davis [15]). It is a direct modification of Theorem 3.2(i) of Dahlhaus
[22], who states a similar result for locally stationary Fourier processes.

Proposition 6.2. Suppose that Assumptions (6.5) and (6.6) hold true.
Given t observations X0,T , . . . , Xt−1,T of the LSW process {Xt,T } (with
T = t + 1), the one-step ahead mean square prediction error σ2

ospe in

forecasting X̂t,T is given by

σ2
ospe = exp





1

2π

∫ π

−π
dω ln




−1∑

j=−∞
Qj,RT (t/T )|ψ̂j(ω)|2







(1 + oT (1)) .
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Proof. The proof uses Lemmas 6.1 to 6.3 below and is along the lines
of the proof of Theorem 3.2(i) of Dahlhaus [22]. The idea is to reduce
the problem to a stationary situation by fixing the local time at νp.
Then, the key point is to use the following relation between the wavelet
spectrum of a stationary process and its classical Fourier spectrum. If
Xt is a stationary process with an absolutely summable autocovariance
and with Fourier spectrum f(·), then its wavelet spectrum is given by

Sj =
∑

`

A−1
j`

∫
dλ f(λ)|ψ̂`(λ)|2 (6.11)

for any fixed non-decimated system of compactly supported wavelets
{ψjk}. We refer to [22] for details. �

Note that due to Assumption (6.6), the sum
∑

j Qj,RT (t/T )|ψ̂j(ω)|2
is strictly positive, except possibly on a set of measure zero.

6.2.5 h-step-ahead prediction

The one-step-ahead prediction equations have a natural generalisation
to the h-step-ahead prediction problem with h > 1. The mean square
prediction error can be written as

MSPE(X̂t+h−1,T , Xt+h−1,T ) = E
(
X̂t+h−1,T −Xt+h−1,T

)2

= b
′
t+h−1Σt+h−1;T bt+h−1,

where Σt+h−1;T is the covariance matrix of X0,T , . . . , Xt+h−1,T and the

vector bt+h−1 is given by (b
(h)
t−1, . . . , b

(h)
0 , b

(h)
−1 , . . . , b

(h)
−h), and is such that

b
(h)
−1 , . . . , b

(h)
−h+1 = 0 and b

(h)
−h = −1. Like before, we approximate the

mean square error by

b
′
t+h−1Bt+h−1;T bt+h−1 ,

where Bt+h−1;T is a (t+ h) × (t+ h) matrix whose (m,n)-th element is
given by

−1∑

j=−J

Qj,RT (n+m
2T ) Ψj(n−m) .
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Proposition 6.3. Under Assumptions (6.5) and (6.6), the mean square
prediction error may be written as

MSPE(X̂t+h−1;T , Xt+h−1;T ) = b
′
t+h−1Bt+h−1;T bt+h−1 (1 + oT (1)) .

The proof of this Proposition is to be found in the next section.

6.3 Theoretical properties of the predictor

Let Xt;T = (X0;T , . . . , Xt−1;T )′ be a realisation of an LSW process. In
this section, we study the theoretical properties of the covariance ma-
trix Σt;T = E(Xt;T X

′
t;T ). As we need upper bounds for the spectral

norms ‖Σt;T ‖ and ‖Σ−1
t;T ‖, we base the following results and their proofs

on methods developed in Section 4 of Dahlhaus [22] for approximating
covariance matrices of locally stationary Fourier processes. However, in
our setting these methods need important modifications. A first reason
is since we are working in the wavelet domain. A second reason is that
we are dealing with non smooth evolutionary spectra, which differs from
Dahlhaus [22], who considers time-varying spectrum which are Lipschitz-
continuous in time only. The first idea of the proof is to approximate
Σt;T by overlapping block Toeplitz matrices along the diagonal.

The approximating matrix is constructed as follows. First, we con-
struct a coverage of the time axis [0, T ). Let L be a divisor of T such
that L/T → 0, and consider the following partition of the time axis:

P0 =
{

[0, L), [L, 2L), . . . , [T − L, T )
}
.

Then, consider another partition of the time axis, which is a shift of P0

by δ < L:

P1 =
{

[0, δ), [δ, L + δ), [L + δ, 2L+ δ), . . . , [T − L+ δ, T )
}
.

In what follows, assume that L is a multiple of δ and that δ/L → 0 as
T tends to infinity. Also, consider the partition of the time axis which
is a shift of P1 by δ:

P2 =
{

[0, 2δ), [2δ, L + 2δ), [L + 2δ, 2L + 2δ), . . . , [T − L+ 2δ, T )
}

and, analogously, define P3,P4, . . . up to PM where M = (L/δ) − 1.
Consider the union of all these partitions P = {P0,P1, . . . ,PM}, which
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is a highly redundant coverage of the time axis. Denote by P the number
of intervals in P, and denote the elements of P by Mp, p = 1, . . . , P .

For each p, we fix a point νp in Mp and consider matrix D
(p) defined

by:

D(p)
nm =

∑

j<0

Qj,RT (νp)Ψj(n−m)In,m∈Mp

where In,m∈Mp means that we only include those n,m that are in Mp,
and the interval RT is such that |RT | = oT (1). Observe that each νp is
contained exactly in L/δ segments. The following lemma concerns the
approximation of Σt;T by matrix D defined by

Dnm =
δ

L

P∑

p=1

D(p)
nm.

Lemma 6.1. Assume that (6.5) holds. If L → ∞, δ/L → 0 and
L2/T → 0 as T → ∞, then

x
′ (Σt;T − D)x = x

′
xoT (1).

Proof. Define matrix Σ
(p)
t;T by

(
Σ

(p)
t;T

)
nm

= (Σt;T )nm In,m∈Mp . Straight-

forward calculations yield

x
′ (Σt;T − D)x = x

′




δ

L

P∑

p=1

(Σ
(p)
t;T − D

(p))



x + RestT (6.12)

where

RestT =

T
δ
−1∑

n,m=0

min

(
|n−m| δ

L
, 1

) δ−1∑

u,s=0

xnδ+u (Σt;T )nδ+u,mδ+s xmδ+s.

Let us first bound this remainder. Replace (Σt;T )nm by

∑

j

Qj,RT (n−m)Ψj(n−m)
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and denote b(k) := supz |
∑

j Qj,RT (z)Ψj(k)| = supz |c(z, k)|. We have

|RestT | 6 2x′
x

T
δ
−1∑

d=1

min

(
d
δ

L
, 1

) dδ∑

k=(d−1)δ+1

b(k) + Rest′T

6 2x′
x


δ +

√
L

L

∞∑

k=1

b(k) +
∑

k>
√

L

b(k)


+ Rest′T

and the main term in the above is oT (1) since L → ∞ and δ/L → 0 as
T → ∞, and by assumption (6.5). Let us now turn to the remainder
Rest′T . We have

Rest′T 6

T−1∑

n,m=0

∣∣∣∣∣∣
xnxm

∑

j,k

(
w2

jk;T −Qj,RT (n−m)

)
ψj,k(m)ψj,k(n)

∣∣∣∣∣∣

which may be bounded by

|RT |−1

∫

RT (n−m)
dz
∑

n,m

∑

j,k

|xnxm| ·
∣∣∣w2

jk;T −Sj(z)
∣∣∣ · |ψjk(n)ψjk(m)|.

Using the decomposition

∣∣∣w2
jk;T − Sj(z)

∣∣∣ 6
Cj

T
+
∣∣∣Sj

(
z +

k − n

T

)
− Sj(z)

∣∣∣

+
∣∣∣Sj

(
z +

k − n

T

)
− Sj

(
k

T

) ∣∣∣ ,

we get three terms that we will bound from above separately. Following
the proofs developed in the above Chapter 4, it is an easy task to show
that the first term, that is the term containing Cj/T , is O(x′

xT−1).
The second term leads to

∑

j,k

∑

n,m

|xnxm| · |ψjk(n)ψjk(m)|×

× |RT |
|RT T |−1∑

`=0

∫ z0+(`+1)/T

z0+`/T
dz
∣∣∣Sj

(
z +

k − n

T

)
− Sj(z)

∣∣∣
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where z0 denotes the left point of the interval RT (νp). With the change
of variables y = z − `/T , this last bound is equal to

∑

j,k

∑

n,m

|xnxm| · |ψjk(n)ψjk(m)|×

×|RT |
|RT T |−1∑

`=0

∫ z0+1/T

z0

dy
∣∣∣Sj

(
y +

`+ k − n

T

)
−Sj

(
y +

`

T

) ∣∣∣.

We bound this last quantity using the total variation constraint on the
EWS. This allows to replace the sum over ` of the integral by |k −
n|TV(Sj) 6 NjLj since the sum over n goes from n to n + Nj . Then
we get the upper bound

|RTT |−1
∑

jk

NjLj

(
∑

n

xnψjk(n)

)2

= O(x′
x|RTT |−1).

The last term is bounded using the change of variables y = z−(n−m)/T ,
which leads to the upper bound

|RT |−1

∫

RT (0)
dy
∑

m,n

|xnxm|
∑

jk

∣∣∣Sj

(
y +

k − n

T

)
− Sj

(
k

T

) ∣∣∣×

× |ψjk(n)ψjk(m)|

An application of the Cauchy-Schwarz inequality for the sums over n
and m leads to the product of two terms like

∑
n xnψjk(n) which is

bounded by
√

x′x. Then, using the total variation constraint on the
EWS derived from the sum over k, we get the upper bound

|RT |−1
x
′
xTV(Sj)

∫

RT (0)
dy |y| = O(x′

x|RT |) .

Then, Rest′T = O(x′
x|RT |).
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Finally, we can consider the main term in (6.12). We have

x
′


 δ

L

P∑

p=1

Σ
(p)
t;T − D

(p)


x

6
δ

L

P∑

p=1

∑

jk

∣∣w2
jk;T −Qj,RT (νp)

∣∣
(
∑

u

ψjk(u)xuIu∈Mp

)2

6
δ

L

P∑

p=1

∑

jk

1

|RT |

∫

RT (νp)

∣∣w2
jk;T − Sj(z)

∣∣×

×
(
∑

u

ψjk(u)xuIu∈Mp

)2

and use the decomposition

∣∣w2
jk;T − Sj(z)

∣∣ 6
Cj

T
+
∣∣∣Sj

(
k

T

)
− Sj

(
z +

k − νp

T

) ∣∣∣

+
∣∣∣Sj (z) − Sj

(
z +

k − νp

T

) ∣∣∣

for each z ∈ RT (νp), and we get three terms IT + IIT + IIIT that we
bound separately. Again, we easily show that the term IT , containing
Cj/T , is O(x′

x/T ). To bound the second term, IIT , we first note that,
by the Cauchy-Schwarz inequality and using (3.11), (

∑
u∈Mp

xuψjk(u))
2

is bounded by
∑

u∈Mp
x2

u, and this upper bound does no longer depend
on k. Consequently, the sum over k together with the total variation
constraint on the EWS leads to the bound

IIT 6
δ

L

P∑

p=1

∫

RT (νp)
dz
∑

j

TV(Sj) |νp − z|
∑

n∈Mp

x2
n.

By construction, each xn is contained in exactly L/δ segments of the
coverage. Then, with (3.25), we get IIT 6 ρx′

x
∫
RT (0) dz |z| and we
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obtain IIT = x
′
xoT (1). The term IIIT is:

δ

L

P∑

p=1

∫

RT (νp)
dz
∑

jk

∣∣∣Sj (z) − Sj

(
z +

k

T
− νp

) ∣∣∣


 ∑

n∈Mp

xnψjk(n)




2

.

Let us denote by z0 the left point of the interval RT (νp) (note that z0
depends on p). Deriving like above, we get

IIIT 6
δ

L

P∑

p=1

|RT |−1∑

`=0

∫ z0+1/T

z0

dz
∑

jk



∑

n∈Mp

xnψjk(n)




2

×

×
∣∣∣Sj

(
z +

`

T

)
− Sj

(
z +

k + `− νp

T

) ∣∣∣.

The sum over ` leads to Lj|k− νp| which is bounded by Lj(Nj +L) due
to the compact support of the wavelets. We finally get

IIIT 6
δ

TL

∑

p

∑

jk

Lj(Nj + L)


∑

n∈Mp

xnψjk(n)




2

= O(T−1)x′
x

∑

j

(Cj + Lj(Nj + L))(Nj + L)

where the last equality holds because, by construction, each xn is con-
tained in exactly L/δ segments of the coverage. Since we assumed that
L2/T → 0 as T → ∞, we obtain the result. �

Lemma 6.2. Assume that (6.5) holds and there exists a t∗ such that
xu = 0 for all u 6∈ {t∗, . . . , t∗ + L}. Then for each t0 ∈ {t∗, . . . , t∗ + L},

x
′Σt,Tx =

∑

j

Qj,RT (t0)

∑

k

(
t∗+L∑

u=t∗

xuψj,k(u)

)2

+x
′
xO

(
L2

T

)
. (6.13)

Proof. Identical to the part of the proof of Lemma 6.1. �

In what follows, the matrix norm ‖M‖spec denotes the spectral norm
of the matrix M (cf. Appendix A).
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Lemma 6.3. Assume that (6.5) holds. The spectral norm ‖Σt;T ‖spec is
bounded in t. Also, if (6.6) holds, then the spectral norm ‖Σ−1

t;T ‖spec is
bounded in t.

Proof. Lemma 6.1 implies

‖Σt;T ‖spec = sup
‖x‖2

2=1

δ

L

P∑

p=1

∑

j<0

Qj,RT (νp)

∑

k


∑

n∈Mp

xnψj,k−n




2

+oT (1)

Using Parseval formula, ‖Σ‖spec is equal to

sup
‖x‖2

2=1

δ

2πL

P∑

p=1

∫ π

−π
dω

∑

j<0

Qj,RT (νp)

∣∣∣ψ̂j(ω)
∣∣∣
2
×

×
∣∣∣∣∣
∑

n

xn exp(−iωn)In∈Mp

∣∣∣∣∣

2

+ oT (1)

which may be bounded from above by

ess sup
z,ω

∑

j

Sj(z)
∣∣∣ψ̂j(ω)

∣∣∣
2

sup
‖x‖2

2=1

‖x‖2
2 + oT (1)

= ess sup
z,ω

∑

j

Sj(z)
∣∣∣ψ̂j(ω)

∣∣∣
2
+ oT (1)

which is bounded by (6.5) (as (6.5) implies (6.7)). Using (A.1) with
M = Σt;T , the boundedness of ‖Σ−1

t;T ‖ is shown in exactly the same
way. �

We will now study the approximation of Σt;T by Bt;T .

Lemma 6.4. Under the assumptions of Proposition 6.1 and 6.3,

MSPE(X̂t+h−1;T , Xt+h−1;T )

= b
′
t+h−1Bt+h−1;T bt+h−1 + b

′
t+h−1bt+h−1 oT (1)

and, in particular,

MSPE(X̂t;T , Xt;T ) = b
′
tBt;T bt + b

′
tbt oT (1) .
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Proof. Write

b
′
t+h−1Σt+h−1;T bt+h−1 =

∑

jk

t+h−1∑

n,m=0

bnbmψjk(n)ψjk(m)|wjk;T |2

=
∑

jk

t+h−1∑

n,m=0

bnbmΨj(n−m)Qj,RT (n+m
2T ) + Rest1 (6.14)

where Rest1 is such that

|Rest1 | 6
∑

jk

t+h−1∑

n,m=0

bnbmψjk(n)ψjk(m)
(
|wjk;T |2 −Qj,RT (n+m

2T )

)

6 |RT |−1

∫

RT (n+m
2T )

dz
∑

jk

t+h−1∑

n,m=0

bnbmψjk(n)ψjk(m)×

×
(
|wjk;T |2 − Sj(z)

)
.

Now, we use again the decomposition

|wjk;T |2 − Sj(z) 6
Cj

T
+
∣∣∣Sj(k) − Sj

(
z − n+m

2T

) ∣∣∣

+
∣∣∣Sj(z) − Sj

(
z − n+m

2T

) ∣∣∣

and bound each term as in the above proofs, using Assumption (6.5).�

Lemma 6.5. Under the assumptions of Proposition 6.3, we have

b
′
t+h−1Σt+h−1;T bt+h−1 = b

′
t+h−1Bt+h−1;T bt+h−1 (1 + oT (1))

Proof of Lemma 6.5. By Lemma 6.4, we have b
′
t+h−1Σt+h−1;T bt+h−1 =

b
′
t+h−1Bt+h−1;T bt+h−1 +b

′
t+h−1bt+h−1 oT (1) By Lemma 6.3, the inverse

of Σt;T is bounded in T and, by standard properties of the spectral
norm, we have

b
′
t+h−1bt+h−1 6 b

′
t+h−1Σt+h−1;T bt+h−1 ‖Σ−1

t+h−1;T ‖
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for all sequences bt+h−1. The above gives

b
′
t+h−1Σt+h−1;T bt+h−1 6 b

′
t+h−1Bt+h−1;T bt+h−1

+ b
′
t+h−1Σt+h−1;T bt+h−1 ‖Σ−1

t+h−1;T ‖ oT (1)

which is equivalent to

b
′
t+h−1Σt+h−1;T bt+h−1

6 b
′
t+h−1Bt+h−1;T bt+h−1

(
1 − ‖Σ−1

t+h−1;T ‖ oT (1)
)−1

for large T . On the other hand, we have

b
′
t+h−1Σt+h−1;T bt+h−1 > b

′
t+h−1Bt+h−1;T bt+h−1

(
1+‖Σ−1

t;T ‖ oT (1)
)−1

which implies the result. �

6.4 Prediction based on data

Having treated the prediction problem from a theoretical point of view,
we now address the question of how to estimate the unknown time-
varying second order structure in the system of equations (6.9). One
possibility is to use the previous pointwise adaptive estimation to solve
this problem. In the following, we present another way to solve this
problem. For that, we will be more specific about the regularity of the
EWS in time. Then, we introduce some new estimators of the local
autocovariance function. Finally, we propose a complete algorithm for
forecasting non-stationary time series. This algorithm allows to select
adaptively all the parameters needed for the estimation and for the fore-
casting.

6.4.1 LSW model under the Lipschitz constraint

From now on, we assume the EWS of the spectrum to be Lipschitz-
continuous in time. More precisely, we replace the constraint (3.24) in
Definition 3.1 by the folllowing assumption.

Assumption 6.3. For each scale j < 0, the evolutionary wavelet spec-
trum Sj(z) is Lipschitz-continuous on (0, 1) with Lipschitz constants Lj.
♦
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With this assumption, we assume that the EWS is smoothly varying
in time. Under this assumption, the prediction equations can be written
in a simpler form. The proof of result, stated in the next proposition,
is a straightforward adaptation of the previous proof. A detailed proof
may be found in [39].

Proposition 6.4. Under Assumption 6.3 and if (6.5) and (6.6) hold,

then the coefficients {b(1)s;T } which minimise b
′
tBt;T bt in Proposition 6.1,

are such that

t−1∑

m=0

b
(1)
t−1−m;T





−1∑

j=−J

Sj

(
n+m

2T

)
Ψj(m− n)





=
−1∑

j=−J

Sj

(
t+ n

2T

)
Ψj(t− n) (6.15)

for all n = 0, . . . , t− 1.

In the following, we develop an algorithm which exploits the new
assumption and allows to select all the parameters of the forecasting in
a data-driven way. We first need to introduce an estimator of the local
autocovariance function.

6.4.2 Estimation of the time-varying second-order structure

Our estimator of the local autocovariance function c(z, τ), with 0 < z <
t/T , is constructed by estimating the unknown wavelet spectrum Sj(z)
in the multiscale representation (3.27). Let us first define the function
J(t) = −min{j : Nj 6 t}.

We define the multiscale estimator of the local variance function
(3.27) as

c̃

(
k

T
, 0

)
=

−1∑

j=−J

2j Ij

(
k

T

)
. (6.16)

where I is the periodogram defined in Section 3.5. The next proposi-
tion concerns the asymptotic behaviour of the first two moments of this
estimator.
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Proposition 6.5. The estimator (6.16) satisfies

E c̃

(
k

T
, 0

)
= c

(
k

T
, 0

)
+O

(
T−1 log(T )

)
.

If, in addition, the increment process {ξjk} in Definition 3.1 is Gaussian
and (6.5) holds, then

Var c̃

(
k

T
, 0

)

= 2
−1∑

i,j=−J

2i+j

(
∑

τ

c(k/T, τ)
∑

n

ψin(τ)ψjn(0)

)2

+O(T−1).

Proof. We will first show

Cov

(
∑

s

Xs,Tψik(s),
∑

s

Xs,Tψjk(s)

)

=
∑

τ

c

(
k

T
, τ

)∑

n

ψin(τ)ψjn(0) +O(2−(i+j)/2T−1). (6.17)

We have

Cov

(
∑

s

Xs,Tψi,k(s),
∑

s

Xs,Tψj,k(s)

)

=
∑

`,u

{
S`

(
k

T

)
+O

(
C` + L`(u− k)

T

)}

∑

s,t

ψ`s(u)ψjk(s)ψ`t(u)ψik(t).

Using Nj = O(M2−j) in the first step, and the Cauchy inequality in the
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second one, we bound the reminder as follows:

∣∣∣∣∣∣

∑

`,u

O

(
C` + L`(u− k)

T

)∑

s,t

ψ`s(u)ψjk(s)ψ`t(u)ψik(t)

∣∣∣∣∣∣

6
∑

`

C` +ML`(2
−` + min(2−i, 2−j))

T
×

×
∑

u

∣∣∣∣∣
∑

s,t

ψ`s(u)ψjk(s)ψ`t(u)ψik(t)

∣∣∣∣∣

6
∑

`

C` +ML`(2
−` + 2−i/22−j/2)

T
(A`j)

1/2(A`i)
1/2

=
2−(i+j)/2

T

∑

`

(C` +ML`2
−`)2(i+j)/2(A`j)

1/2(A`i)
1/2

+
2−(i+j)/2

T

∑

`

ML`(A`j)
1/2(A`i)

1/2

=
2−(i+j)/2

T
{I + II}.

By formula (3.18),

I 6
∑

`

(C` +ML`2
−`)(2iA`i + 2jA`j)

6
∑

`

(C` +ML`2
−`)2

∑

i

2iA`i

6 D1.

As
∑

i Li2
−i < ∞, we must have Li ≤ C2i so

∑
i LiAij 6 C again by

(3.18). This and the Cauchy inequality give

II 6 2M

(
∑

`

L`A`i

)1/2(∑

`

L`A`j

)1/2

6 D2.

The bound for the reminder is therefore O(2−(i+j)/2T−1). For the main
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term, straightforward computation gives

∑

`,u

S`

(
k

T

)∑

s,t

ψ`s(u)ψjk(s)ψ`t(u)ψik(t)

=
∑

τ

c(k/T, τ)
∑

n

ψin(τ)ψjn(0),

which yields formula (6.17). Using Lemma 3.3 and (6.17) with i = j, we
obtain

E(c̃(k/T, 0)) =
−1∑

j=−J

2j

{
∑

τ

c(k/T, τ)Ψj(τ) +O(2−j/T )

}

=
∑

τ

c(k/T, τ)δ0(τ) +O(log(T )/T )

= c(k/T, 0) +O(log(T )/T ),

which proves the expectation. For the variance, observe that, using
Gaussianity, we have

Cov

(
Ii

(
k

T

)
, Ij

(
k

T

))

= 2

(
∑

τ

c(k/T, τ)
∑

n

ψin(τ)ψjn(0) +O(2−(i+j)/2T−1)

)2

= 2

(
∑

τ

c(k/T, τ)
∑

n

ψin(τ)ψjn(0)

)2

+O(2−(i+j)/2T−1),

(6.18)

provided that (6.5) holds. Using (6.18), we finally obtain

Var(c̃(k/T, 0)) =

2

−1∑

i,j=−J

2i+j

(
∑

τ

c(k/T, τ)
∑

n

ψin(τ)ψjn(0)

)2

+O(T−1). �

(6.19)
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Remark 6.3 (Time-modulated processes). For Gaussian time-mo-
dulated processes with a Lipschitz-continuous time-modulated variance,
the variance of estimator (6.16) reduces to

Var c̃

(
k

T
, 0

)

= 2σ4(k/T )
−1∑

i,j=−J

2i+j

(
∑

τ

ρ(τ)
∑

n

ψin(τ)ψjn(0)

)2

+O(T−1),

(6.20)

where ρY (τ) is the autocorrelation function of Yt (see equation (1.1)).
If Xt,T = σ(t/T )Zt, where Zt are i.i.d. N(0, 1), then the leading term
in (6.20) reduces to (2/3)σ4(k/T ) for all compactly supported wavelets
ψ. ♦

Remark 6.4. Proposition 6.5 can be generalised for the estimation of
c(z, τ) for τ 6= 0. Define the estimator

c̃

(
k

T
, τ

)
=

−1∑

j=−J

( −1∑

`=−J

A−1
j` Ψ`(τ)

)
Ij

(
k

T

)
, (6.21)

for k = 0, . . . , t − 1 and τ 6= 0. Using Lemma 3.4, it is possible to
generalise the proof of Proposition 6.5 for Haar wavelets and to show
that

E c̃

(
k

T
, τ

)
= c

(
k

T
, τ

)
+O

(
T−1/2

)

for τ 6= 0 and, if Assumption (6.5) holds and if the increment process
{ξjk} in Definition 3.1 is Gaussian, then

Var c̃

(
k

T
, τ

)

= 2

−1∑

i,j=−J

hi(τ)hj(τ)

{
∑

τ

c

(
k

T
, τ

)∑

n

ψin(τ)ψjn(0)

}2

+O
(
T−1 log2(T )

)

for τ 6= 0, where hj(τ) =
∑−1

`=−J A
−1
j` Ψ`(τ). ♦
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These results show the inconsistency of the estimator of the local
(co)variance, which needs to be smoothed w.r.t. the rescaled time z
(i.e. c̃(·, τ) needs to be smoothed for all τ). We use standard kernel
smoothing where the problem of the choice of the bandwidth parameter
g arises. The goal of Subsection 6.4.4 is to provide a fully automatic
procedure for choosing g.

To compute the linear predictor in practice, we invert the generalised
Yule-Walker equations (6.15) in which the theoretical local autocovari-
ance function is replaced by the smoothed version of c̃(k/T, τ). How-
ever, in equations (6.16) and (6.21), our estimator is only defined for
k = 0, . . . , t − 1 while the prediction equations (6.15) require the local
autocovariance up to k = t (for h = 1). This problem is inherent to
our non-stationary framework. We denote the predictor of c(t/T, τ) by
ĉ(t/T, τ) and, motivated by the slow evolution of the local autocovari-
ance function, propose to compute ĉ(t/T, τ) by the local smoothing of
the (unsmoothed) estimators {c̃(k/T, τ), k = t− 1, . . . , t − µ}. In prac-
tice, the smoothing parameter µ for prediction is set to be equal to gT ,
where g is the smoothing parameter (bandwidth) for estimation. They
can be obtained by the data-driven procedure described in Subsection
6.4.4.

6.4.3 Future observations in rescaled time

For clarity of presentation, we restrict ourselves (in this and the following
subsection) to the case h = 1.

In Chapter 1, we explained the mechanics of rescaled time for non-
stationary processes (Remark 1.2). An important ingredient of this con-
cept is that the data come in the form of a triangular array whose
rows correspond to different stochastic processes, only linked through
the asymptotic wavelet spectrum sampled on a finer and finer grid.
This mechanism is inherently different to what we observe in practice,
where, typically, observations arrive one by one and neither the values of
the “old” observations, nor their corresponding second-order structure,
change when a new observation arrives.

One way to reconcile the practical setup with our theory is to assume
that for an observed process X0, . . . , Xt−1, there exists a doubly-indexed
LSW process Y such that Xk = Yk,T for k = 0, . . . , t − 1. When a
new observation Xt arrives, the underlying LSW process changes, i.e.
there exists another LSW process Z such that Xk = Zk,T+1 for k =
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0, . . . , t. An essential point underlying our adaptive algorithm of the
next subsection is that the spectra of Y and Z are close to each other,
due to the above construction and the regularity assumptions imposed
by Definition 1 (in particular, the Lipschitz continuity of Sj(z)).

The objective of our algorithm is to choose appropriate values of
certain nuisance parameters (see the next subsection) in order to forecast
Xt fromX0, . . . , Xt−1. Assume that these parameters have been selected
well, i.e. that the forecasting has been successful. The closeness of the
two spectra implies that we can also expect to successfully forecast Xt+1

from X0, . . . , Xt using the same, or possibly “neighbouring”, values of
the nuisance parameters.

Bearing in mind the above discussion, we introduce our algorithm
with a slight abuse of notation: we drop the second subscript when
referring to the observed time series.

6.4.4 Data-driven choice of parameters

In theory, the best one-step-ahead linear predictor of Xt,T is given

by (6.1), where bt = (b
(1)
t−1−s;T )s=0,...,t−1 solves the prediction equa-

tions (6.9). In practice, each of the t components of the vector bt is
estimated using our estimator of the local autocovariance function based
on the observations X0,T , . . . , Xt−1,T . Hence, we have to find a balance
between the estimation error, potentially increasing with t, and the pre-
diction error which is a decreasing function of t.

As a natural balancing rule which works well in practice, we suggest
to choose an index p such that the “clipped” predictor

X̂
(p)
t,T =

t−1∑

s=t−p

b
(1)
t−1−s;TXs,T (6.22)

gives a good compromise between the theoretical prediction error and the
estimation error. The construction (6.22) is reminiscent of the classical
idea of AR(p) approximation for stationary processes.

We propose an automatic procedure for selecting the two nusiance
parameters: the order p in (6.22) and the bandwidth g, necessary to
smooth the inconsistent estimator c̃(z, τ) using a kernel method. The
idea of this procedure is to start with some initial values of p and g and
to gradually update these parameters using a criterion which measures
how well the series gets predicted using a given pair of parameters. This
type of approach is in the spirit of adaptive forecasting [58].
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Suppose that we observe the series up to Xt−1 and want to predict
Xt, using an appropriate pair (p, g). The idea of our method is as
follows. First, we move backwards by s observations and choose some
initial parameters (p0, g0) for predicting Xt−s from the observed series
up to Xt−s−1. Next, we compute the prediction of Xt−s using the pairs
of parameters around our preselected pair (i.e. (p0 − 1, g0 − δ), (p0, g0 −
δ), . . . , (p0 + 1, g0 + δ) for a fixed constant δ). As the true value of
Xt−s is known, we are able to use a preset criterion to compare the 9
obtained prediction results, and we choose the pair corresponding to the
best predictor (according to this preset criterion). This step is called
the update of the parameters by predicting Xt−s. In the next step,
the updated pair is used as the initial parameters, and itself updated
by predicting Xt−s+1 from X0, . . . , Xt−s. By applying this procedure
to predict Xt−s+2, Xt−s+3, . . . , Xt−1, we finally obtain an updated pair
(p1, g1) which is selected to perform the actual prediction.

Many different criteria can be used to compare the quality of the
pairs of parameters at each step. Denote by X̂t−i(p, g) the predictor
of Xt−i computed using pair (p, g), and by It−i(p, g) the corresponding
95% prediction interval based on the assumption of Gaussianity:

It−i(p, g)

=
[
−1.96σ̂t−i(p, g) + X̂t−i(p, g) , 1.96σ̂t−i(p, g) + X̂t−i(p, g)

]
,

(6.23)

where σ̂2
t−i(p, g) is the estimate of MSPE(X̂t−i(p, g), Xt−i) computed

using formula (6.8) with the remainder neglected. The criterion which
we use in the simulations reported in the next section is to compute

∣∣Xt−i − X̂t−i(p, g)
∣∣

length(It−i(p, g))

for each of the 9 pairs at each step of the procedure and select the
updated pair as the one which minimises this ratio.

We also need to choose the initial parameters (p0, g0) and the number
s of data points at the end of the series, which are used in the procedure.
We suggest that s should be set to the length of the largest segment at
the end of the series which does not contain any apparent breakpoints
observed after a visual inspection. To avoid dependence on the initial
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values (p0, g0), we suggest to iterate the algorithm a few times, using
(p1, g1) as the initial value for each iteration. We propose to stop when
the parameters (p1, g1) are such that at least 95% of the observations
fall into the prediction intervals.

In order to be able to use our procedure completely on-line, we do
not have to repeat the whole algorithm. Indeed, when observation Xt

becomes available, we only have to update the pair (p1, g1) by predicting
Xt, and we directly obtain the “optimal” pair for predicting Xt+1.

There are, obviously, many possible variants of our algorithm. Pos-
sible modifications include, for example, using a different criterion, re-
stricting the allowed parameter space for (p, g), penalising certain re-
gions of the parameter space, or allowing more than one parameter up-
date at each time point.

We have tested our algorithm on numerous examples, and the follow-
ing section presents an application to a real data set. A more theoretical
study of this algorithm is left for future work.

6.5 Case study: Wind speed anomaly index

El Niño is a disruption of the ocean atmosphere system in the tropical
Pacific which has important consequences for the weather around the
globe. Even though the effect of El Niño is not avoidable, research on
its forecast and its impacts allows specialists to attenuate or prevent
its harmful consequences (see Philander [91] for a detailed overview).
The effect of the equatorial Pacific meridional reheating may be mea-
sured by the deviation of the wind speed on the ocean surface from its
average. It is worth mentioning that this effect is produced by conduc-
tion, and thus we expect the wind speed variation to be smooth. This
legitimates the use of LSW processes with Lipschitz-continuous EWS
to model the speed. In this section, we study the wind speed anomaly
index, i.e. its standardised deviation from the mean, in a specific re-
gion of the Pacific (12-2N, 160E-70W). Modelling this anomaly helps to
understand the effect of El Niño effect in that region. The time series
composed of T = 910 monthly observations is available free of charge at
http://tao.atmos.washington.edu/data_sets/eqpacmeridwindts. Fig-
ure 6.1(a) shows the plot of the series.

Throughout this section, we use Haar wavelets to estimate the lo-
cal (co)variance. Having provisionally made a safe assumption of the
possible non-stationarity of the data, we first attempt to find a suitable

http://tao.atmos.washington.edu/data_sets/eqpacmeridwindts
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(a) The wind anomaly index (in cm/s).
The two vertical lines indicate the seg-
ment shown in Figure 6.1(b).
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(b) Comparison between the one-step-
ahead prediction in our model (dashed
lines) and AR (dotted lines).

Figure 6.1: The wind anomaly data (910 observations from March 1920 to
December 1995).

pair of parameters (p, g) which will be used for forecasting the series.
By inspecting the acf of the series, and by trying different values of the
bandwidth, we have found that the pair (7, 70/T ) works well for many
segments of the data; indeed, the segment of 100 observations from June
1928 to October 1936 gets predicted very accurately in one-step-ahead
prediction: 96% of the actual observations are contained in the corre-
sponding 95% prediction intervals (formula (6.23)).

However, the pair (7, 70/T ) does not appear to be uniformly well
suited for forecasting the whole series. For example, in the segment of
40 observations between November 1986 and February 1990, only 5% of
the observations fall into the corresponding one-step-ahead prediction
intervals computed using the above pair of parameters. This provides
strong evidence that the series is non-stationary (indeed, if it was sta-
tionary, we could expect to obtain a similar percentage of accurately
predicted values in both segments). This further justifies our approach
of modelling and forecasting the series as an LSW process.

Motivated by the above observation, we now apply our algorithm,
described in the previous section, to the segment of 40 observations men-
tioned above, setting the initial parameters to (7, 70/T ). After the first
iteration along the segment, the parameters drift up to (14, 90/T ), and
85% of the observations fall within the prediction intervals, which is in-
deed a dramatic improvement over the 5% obtained without applying
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our adaptive algorithm. In the second pass, we set the initial values to
(14, 90/T ), and obtain a 92.5% coverage by the one-step-ahead predic-
tion intervals, with the parameters drifting up to (14, 104/T ). In the last
iteration, we finally obtain a 95% coverage, and the parameters get up-
dated to (14, 114/T ). We now have every reason to believe that this pair
of parameters is well suited for one-step-ahead prediction within a short
distance of February 1990. Without performing any further updates,
we apply the one-step-ahead forecasting procedure to predict, one by
one, the eight observations which follow February 1990, the prediction
parameters being fixed at (14, 114/T ). The results are plotted in Figure
6.1(b), which also compares our results to those obtained by means of
AR modelling. At each time point, the order of the AR process is chosen
as the one that minimises the AIC criterion, and then the parameters
are estimated by means of the standard S-Plus routine. We observe
that for both models, all of the true observed values fall within the cor-
responding one-step-ahead prediction intervals. However, the main gain
obtained using our procedure is that the prediction intervals are on av-
erage 17.45% narrower in the case of our algorithm. This result is not
peculiar to AR modelling as this percentage is also similar in comparison
with other stationary models, like ARMA(2,10), believed to accurately
fit the series. A similar phenomenon has been observed at several other
points of the series.
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(a) 9-step-ahead prediction using LSW
modelling
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(b) 9-step-ahead prediction using AR
modelling

Figure 6.2: The last observations of the wind anomaly series and its 1- up
to 9-step-ahead forecasts (in cm/s). The first predicted value in Figure (b)
corresponds to March 1990.
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We end this section by applying our general prediction method to
compute multi-step-ahead forecasts. Figure 6.2 shows the 1- up to 9-
step-ahead forecasts of the series, along with the corresponding predic-
tion intervals, computed at the end of the series (December 1995). In
Figure 6.2(a), the LSW model is used to construct the forecast values,
with parameters (10, 2.18) chosen automatically by our adaptive algo-
rithm described above. Figure 6.2(b) shows the 9-step-ahead prediction
based on AR modelling (here, AR(2)). The prediction in Figure 6.2(a)
looks “smoother” because it uses the information from the whole series.
This information is averaged out, whereas in the LSW forecast, local
information is picked up at the end of the series, and the forecasts look
more “jagged”. It is worth mentioning here that our approach is inher-
ently different from the one that attempts to find (almost) stationary
segments at the end of the series to perform the prediction. Instead, our
procedure is adapting the prediction coefficients to the slow evolution of
the covariance.

6.6 Conclusion

In this last chapter, we have given an answer to the pertinent question,
asked by time series analysts over the past few years, of whether and
how wavelet methods can help in forecasting non-stationary time se-
ries. To develop the forecasting methodology, we have considered the
Locally Stationary Wavelet (LSW) model, which is based on the idea of
a localised time-scale representation of a time-changing autocovariance
function. This model includes the class of second-order stationary pro-
cesses and has several attractive features, not only for modelling, but
also for estimation and prediction purposes. Its linearity and the fact
that the time-varying second order quantities are modelled as smooth
functions, have enabled us to formally extend the classical theory of
linear prediction to the whole class of LSW processes. These results
are a generalisation of the Yule-Walker equations and, in particular, of
Kolmogorov’s formula for the one-step-ahead prediction error.

In the empirical prediction equations the second-order quantities
have to be estimated, and this is where the LSW model proves most
useful. The rescaled time, one of the main ingredients of the model,
makes it possible to develop a rigorous estimation theory. Moreover, by
using well-localised non-decimated wavelets instead of a Fourier based
approach, our estimators are able to capture the local time-scale features
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of the observed non-stationary data very well [82].
In practice, our new prediction methodology depends on two nui-

sance parameters which arise in the estimation of the local covariance
and the mean-square prediction error. More specifically, we need to
smooth our inconsistent estimators over time, and in order to do so, we
have to choose the bandwidth of the smoothing kernel. Moreover, we
need to reduce the dimension of the prediction equations to avoid too
much inaccuracy of the resulting prediction coefficients due to estima-
tion errors. We have proposed an automatic computational procedure
for selecting these two parameters. Our algorithm is in the spirit of
adaptive forecasting as it gradually updates the two parameters basing
on the success of prediction. This new method is not only essential for
the success of our whole prediction methodology, it also seems to be
promising in a much wider context of choosing nuisance parameters in
non-parametric methods in general.

We have applied our new algorithm to a meteorological data set.
Our non-parametric forecasting algorithm shows interesting advantages
over the classical parametric alternative (AR forecasting). Moreover,
we believe that one of the biggest advantages of our new algorithm is
that it can be successfully applied to a variety of data sets, ranging from
financial log-returns to series traditionally modelled as ARMA processes,
including in particular data sets which are not, or do not appear to be,
second-order stationary.



Conclusions

Overview of the contributions

The contributions of this thesis on locally stationary processes are of
three types.

Modelling. The contribution is threefold. First, we present a simple
and meaningful model for economic time series data in Chapter 1.
This is a new model in econometry, and the empirical evaluation
of its fitting is new in this context. Second, Chapter 3 extends the
class of locally stationary wavelet processes in a significant way.
We are now able to model intermittent phenomena, and not only
smoothly varying evolutions in the spectrum. Finally, the test of
significance of Chapters 4 and 5 allows to remove some scales which
are not significant in the evolutionary wavelet spectrum (EWS). In
that sense, we get an EWS with some inactive scales, which offers
apparent advantages compared to the “full EWS”. In particular,
the EWS is now easier to analyse as we can focus on those scales
and locations that provide a significant contribution.

Estimating. Chapter 2 presents a new estimating (or fitting) procedure
for semiparametric models. Moreover, Chapter 4 presents a new
pointwise estimator of the EWS. In both cases, our results are
based on non asymptotic risk bounds. These bounds are more
delicate to derive in our context than in the iid case. Moreover,
the estimation procedures depend on the spectral norm of the co-
variance matrix ΣT and we provide a new consistent pre-estimator
of this quantity.

Forecasting. It may seem contradictory to forecast data which are not
assumed to be stationary. We address this problem and give a pre-
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cise explanation of the forecasting mechanics for locally stationary
processes. Our forecasting procedure concerns the LSW models
and we provide a new data-driven algorithm for forecasting these
processes.

The estimation and forecasting procedures in this thesis are adaptive
in the sense that all the parameters needed in the algorithm are chosen
in a data-driven way. Applications are provided on economic, biomedical
and meteorological time series.

Possible directions for future research

Some challenging problems remain for future research. Some of these
have already been mentioned above in the thesis.

A first problem, which is not addressed in our work, is the problem
of model selection. This problem arises in two situations. First, in
the semiparametric fitting of Chapter 2, we assumed that the number of
components of θ were known. In the context of time-varying ARMA(p,q)
fitting, this means that the orders p and q of the model are known. Of
course, it would be of a considerable interest to develop procedures for
selecting these orders from data. Another model selection problem arises
for the LSW model. LSW processes are constructed using a fixed wavelet
system, e.g. Haar or another Daubechies’ system. It would be interesting
to develop a method for choosing the wavelet system automatically. This
is a relevant question because an EWS could be sparse with respect to
one given wavelet system, and not sparse with respect to another one.

To solve these two model selection problems, one current possibility
offered by this thesis is to compare the fitting quality of each model by
comparing its prediction performance on the observed data. This has
to be investigated in more details. In particular, this is perhaps not the
best solution in terms of computing time.

Another nice problem is the use of the results of Chapter 5 in order to
construct tests of second-order stationarity. We provided an illustration
on Tremor data, but we do not believe that this is the definitive answer
to this question. This test is a complicated multiple tests procedure,
with highly dependent tests. A theoretical investigation of this proce-
dure could be useful in order to derive an appropriate level of the test.
Another possibility is to use the false discovery rate in order to improve
the quality of the test [1]. This is not straightforward, since it requires
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to analyse the correlations of the corrected wavelet periodogram (CWP)
between scale. And this inter-scales correlation cannot be written in a
simple way from a mathematical viewpoint.

To end with, we also mention a possible extension of the pointwise
adaptive estimator of Chapter 4 if we replace the histogram-based point-
wise estimation by a smooth kernel estimate. The behaviour of the re-
sulting estimator in terms of the smoothness of the kernel would be of
interest. As our procedure is based on nonasymptotic approximations
and is fully adaptive, a practical evaluation of the kernel-based estimator
may also be provided through simulations.
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APPENDIX A

Standard results in matrix theory

In this appendix, we recall some standard results in matrix theory. These
are used in the proofs of the thesis.

Suppose M is an n×n matrix and M ? is the conjugate transpose of
M . We denote

‖M‖2 :=
√

tr (M?M)

the Euclidean norm of M and

‖M‖spec := max{
√
λ : λ is eigenvalue of M ?M}

the spectral norm of M . If M is symmetric and nonnegative definite,
by standard theory we have

‖M‖spec = sup
‖x‖2

2=1

x
′Mx ‖M−1‖spec =

(
inf

‖x‖2
2=1

x
′Mx

)−1

. (A.1)

We will also use the following standard relations which hold for all sym-
metric matrices B,C:

‖B‖spec 6 ‖B‖2 (A.2)

‖B‖spec = max{λ : λ is eigenvalue of B} (A.3)

‖BC‖spec 6 ‖B‖spec‖C‖spec (A.4)

‖BC‖2 6 ‖B‖spec‖C‖2 6 ‖B‖2‖C‖2 (A.5)
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Moreover, if we suppose that the elements of the matrix B are con-
tinuously differentiable functions of t, then we shall also use

∂

∂t
log detB = tr

(
B−1 ∂

∂t
B

)
. (A.6)
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Functional spaces

We will first define Hölder spaces Cs and Sobolev spaces W s,p, where s
is a positive number (not necessarily an integer) which is associated to
the regularity of the function space. After that, we will define the Besov
spaces Bs,p

q .

B.1 Hölder spaces

If m is a nonnegative integer, Cm is the space of continuous functions
which are bounded up to the order m (i.e. f and f (k) are continuous
and bounded for all integer k 6 m). With the norm

sup
x∈R

|f(x)| + sup
x∈R

|f (m)(x)|,

Cm is a Banach space.
To define Hölder spaces with noninteger m, we note that, for all f

in C1 (R) and for all h ∈ R, we have supx∈R |f(x) − f(x− h)| 6 C · |h|
and, for all f in C0 (R), supx∈R |f(x)−f(x−h)| tends to zero as |h| → 0
arbitrarily slowly. These observations lead us to define, if 0 < s < 1:

Cs (R) =

{
f ∈ C0 (R) such that sup

x∈R

|f(x) − f(x− h)| 6 C · |h|s
}

and, if m < s < m+ 1:

Cs (R) =
{
f ∈ Cm (R) such that f (m) ∈ Cs−m (R)

}
.

This property can be rewritten

sup
x∈R

|∆n
hf(x)| 6 C · |h|s
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where n > s and ∆n
h is such that

{
∆1

hf(x) = f(x) − f(x− h)

∆n
hf(x) = ∆1

h

(
∆n−1

h

)
f(x).

B.2 Sobolev spaces

Now, we will recall the definition of the Sobolev spaces in the frequency
domain. If s is nonnegative, we define

Hs (R) =

{
f ∈ L2 (R) such that

‖f‖Hs =

(∫

R

(1 + |λ|)2m
∣∣∣f̂ (λ)

∣∣∣
2
dλ

)2

<∞
}
.

More generally, in Lp, the Sobolev space W s,p is defined through the
norm

‖f‖W s,p = ‖f‖Lp +

(∫

R2

∣∣f (m)(x) − f (m)(y)
∣∣p

|x− y|sp+1 dxdy

)1/p

where m is a nonnegative integer, 0 < s < 1 and the derivatives of f are
weak derivatives (see Adams [2]). With these definitions, W s,2 = Hs.

B.3 Besov spaces

Before defining the Besov spaces, we have to define the moduli of conti-
nuity, that are such that, for all t > 0:

ω1
p(f, t) = sup|h|6t

∥∥∆1
hf
∥∥

Lp

...

ωn
p (f, t) = sup|h|6t ‖∆n

hf‖Lp

where n is a nonnegative integer. Now, we are able to define the Besov
spaces Bs,p

q (R), for s > 0 and 1 6 p, q 6 ∞. These are spaces of
functions f in Lp (R) such that

(
2sjωn

p

(
f, 2−j

))
j>0

∈ `q (N) . (B.1)
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A natural norm for these spaces is

‖f‖Bs,p
q

= ‖f‖Lp +
∥∥2sjωn

p

(
f, 2−j

)∥∥
`q(N)

with s < n. (It can be shown that the definition of Besov spaces does
not depend on n, more presicely if t 6 m,n, then ωn

p (f, t) ∼ ωm
p (f, t)).

Besov spaces contain a third parameter, q. If q = ∞, (B.1) leads
to ‖∆n

hf‖ 6 C · |h|−s with |h| < 1. If q < ∞, this decay is faster.
Roughly speaking, the parameter q determines the regularity rate which
is given by s. Indeed, we have that Bs,p

q1 ⊆ Bs,p
q2 if q1 6 q2. But this

new parameter is of secondary importance with respect to s, because of
Bs1,p

q1 ⊆ Bs2,p
q2 for s1 6 s2 and for all q1, q2.

There exists numerous relations between Hölder, Sobolev and Besov
spaces. For example, if s is not an integer, we have Bs,∞

∞ = Cs and
Bs,p

p = W s,p. This relation does not hold if s is not an integer, except
for Bs,2

2 = W s,2 = Hs. Other embeddings are illustrated in Figure B.1.

����Bs′,p′

q′

�
�
�
�
Bs′,p′

q̂

#
"

 
!
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Figure B.1: Some embedding results in Besov spaces (s′ − 1/p′ = ŝ − 1/p̂,
q′ 6 q̂, q′ 6 q, s > ŝ, s > 1/p̂, p′ 6 p̂)

.
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Adaptive forecasting, 204
AIC, 25, 208
ARCH process, 36
Autocorrelation wavelet function

continuous-time, 90
discrete-time, 90, 91

Bernstein inequality, 61, 62
Besov space, 218

Christoffersen test, 29
Concatenated Haar process, 153
Contrast function, 49
Corrected wavelet periodogram, 103,

155
Cramér representation, 42
CUSUM test, 15, 17, 22

Decimation, 87
Discrete wavelet system, see Wave-

let
Discrete wavelet transform, 88

EGARCH process, 30, 33, 37
Empirical contrast function, 49
Empirical spectral process, 60
ESD, see Evolutionary spectral den-

sity
Evolutionary spectral density, 46

for time-modulated processes,
47

for time-varying ARMA, 47
Evolutionary wavelet spectrum, 97

of a stationary process, 100

of a TM process, 100
of a white noise, 100

Exponential inequality, see Berns-
tein inequality

Forecasting
in the wavelet domain, 183
Locally stationary wavelet pro-

cesses, 182
Time-modulated processes, 18

GARCH, 13
GARCH process, 30, 33, 37
ghaar process, 167

Hölder space, 217
Harmonizable process, 43
Horizon of prediction, 17, 188

Kolmogorov formula, 187
Kullback-Leibler information diver-

gence, 49

Lipschitz continuous, 11, 197
Local autocovariance, 97, 100
Local stationarity, 9–10
Locally stationary process, 44–45
Locally stationary wavelet process,

95

Maximal inequality, 61, 65, 67
Meese-Rogoff test, 31
Minimum contrast estimator, 50
Moduulus of continuity, 218
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MRA, see Multiresolution analysis
Multiresolution analysis, 82–83

r-regular, 84
Multliscale estimator, 198

Nondecimated wavelet, see Wavelet

Orthonormal increment process, 43
Oscillatory process, 43

Periodogram, 47
localised, see Preperiodogram

Piecewise polynomials, 55
Pointwise adaptive estimation, 115–

120, 164
Post-sample prediction test, 14, 20
Prediction error, 187
Prediction intervals

Time-modulated processes, 19
Preperiodogram, 47–48
Pyramid algorithm, 88

Rescaled time, 9–10
and prediction, 17, 203

Scaling function, 83
Daubechies scaling function, 85–

86
Haar scaling function, 85
Shannon scaling function, 86

Sieve estimator, 49
Sobolev space, 218
Sparsity, 150–151
Spectral density, 43
Spectral representation, 42–43, 46

Test of significance, 106, 157
Test of stationarity, 14–16, 176–179
Time-modulated ARMA, 11–13
Time-modulated GARCH, 11, 13–

14
Time-modulated process, 10
Time-modulated White Noise, 11–

12

Time-varying ARMA, see tv-ARMA
Total variation, 45, 96
Transfer function, 43, 44
Trigonometric polynomials, 54
tv-ARMA, 41, 212

Wavelet
Daubechies, 85–86
Discrete wavelet system, 55, 88–

89
Haar mother wavelet, 85
Mother wavelet, 83

of class r, 85
Nondecimated discrete wavelet

system, 89–90
Shannon mother wavelet, 86

wavelet basis, 83
Wavelet periodogram, 103
Whittle likelihood, 43, 49
Wigner-Ville spectrum, 46
Windowed Fourier transform, 172

Yule-Walker equations
for locally stationary processes,

186, 198
for stationary processes, 186
for time-modulated processes,

187



Bibliography

[1] F. Abramovich, Y. Benjamini, D. Donoho, and I. Johnstone.
Adapting to unknown sparsity by controlling the False Discovery Rate.
Technical Report 2000-19, Dept. of Statistics, Stanford University, 2000.
http://www.math.tau.ac.il/~felix/ltx/PAPERS/Annals.ps.gz.

[2] R. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[3] H. Akaike. A new look at the statistical model identification. IEEE
Trans. Automat. Control, 19:716–723, 1974.

[4] Y. Baraud, F. Comte, and G. Viennet. Adaptive estimation in
autoregression or β-mixing regression via model selection. Ann. Statist.,
29:839–875, 2001.
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d’opérateurs. Séminaire Bourbaki, 662, 1986.

[76] Y. Meyer. Ondelettes et Opérateurs 1. Hermann, Paris, 1990.
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