User menu

Accurate Exchange-correlation Potentials and Total-energy Components for the Helium Isoelectronic Series

Bibliographic reference Umrigar, CJ. ; Gonze, Xavier. Accurate Exchange-correlation Potentials and Total-energy Components for the Helium Isoelectronic Series. In: Physical review. A, Atomic, molecular, and optical physics, Vol. 50, no. 5, p. 3827-3837 (1994)
Permanent URL http://hdl.handle.net/2078.1/48596
  1. Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
  2. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  3. R.G. Parr, Density Functional Theory of Atoms and Molecules (1989)
  4. Langreth David C., Mehl M. J., Beyond the local-density approximation in calculations of ground-state electronic properties, 10.1103/physrevb.28.1809
  5. Perdew John P., Yue Wang, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, 10.1103/physrevb.33.8800
  6. Perdew John P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas, 10.1103/physrevb.33.8822
  7. Perdew John P., Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas, 10.1103/physrevb.34.7406
  8. Becke A. D., Density-functional exchange-energy approximation with correct asymptotic behavior, 10.1103/physreva.38.3098
  9. Wilson Leslie C., Levy Mel, Nonlocal Wigner-like correlation-energy density functional through coordinate scaling, 10.1103/physrevb.41.12930
  10. Lee Chengteh, Yang Weitao, Parr Robert G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, 10.1103/physrevb.37.785
  11. Engel E., Chevary J. A., Macdonald L. D., Vosko S. H., Asymptotic properties of the exchange energy density and the exchange potential of finite systems: relevance for generalized gradient approximations, 10.1007/bf01436696
  12. DePristo Andrew E., Kress Joel D., Rational function representation for accurate exchange energy functionals, 10.1063/1.452230
  13. Lacks Daniel J., Gordon Roy G., Pair interactions of rare-gas atoms as a test of exchange-energy-density functionals in regions of large density gradients, 10.1103/physreva.47.4681
  14. D. W. Smith, Int. J. Quantum Chem. Symp., 13, 103 (1979)
  15. C. O. Almbladh, Phys. Rev. B, 29, 2322 (1984)
  16. A. C. Pedroza, Phys. Rev., 33, 804 (1986)
  17. Davidson Ernest R., The correlation potential for two-electron atomic ions, 10.1002/qua.560370609
  18. S. H. Vosko, Can. J. Phys., 58, 1200 (1980)
  19. Perdew John P., Wang Yue, Accurate and simple analytic representation of the electron-gas correlation energy, 10.1103/physrevb.45.13244
  20. Ceperley D. M., Alder B. J., Ground State of the Electron Gas by a Stochastic Method, 10.1103/physrevlett.45.566
  21. Gell-Mann Murray, Brueckner Keith A., Correlation Energy of an Electron Gas at High Density, 10.1103/physrev.106.364
  22. C.J. Umrigar, High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras 1993 Conference (1993)
  23. Frankowski K., Pekeris C. L., Logarithmic Terms in the Wave Functions of the Ground State of Two-Electron Atoms, 10.1103/physrev.146.46
  24. Freund David E., Huxtable Barton D., Morgan John D., Variational calculations on the helium isoelectronic sequence, 10.1103/physreva.29.980
  25. V. Fock, D. Kngl. Norske Videnskab. Selsk. Forh., 31, 138 (1958)
  26. Frankowski K., Logarithmic Terms in the Wave Functions of the2S1and2S3States of Two-Electron Atoms, 10.1103/physrev.160.1
  27. Almbladh C.-O., von Barth U., Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues, 10.1103/physrevb.31.3231
  28. Kato Tosio, On the eigenfunctions of many-particle systems in quantum mechanics, 10.1002/cpa.3160100201
  29. Steiner Erich, Charge Densities in Atoms, 10.1063/1.1701443
  30. Harbola Manoj K., Sahni Viraht, Quantum-Mechanical Interpretation of the Exchange-Correlation Potential of Kohn-Sham Density-Functional Theory, 10.1103/physrevlett.62.489
  31. Wang Yue, Perdew John P., Chevary J. A., Macdonald L. D., Vosko S. H., Exchange potentials in density-functional theory, 10.1103/physreva.41.78
  32. March N. H., Asymptotic formula far from nucleus for exchange energy density in Hartree-Fock theory of closed-shell atoms, 10.1103/physreva.36.5077
  33. Engel E., Vosko S. H., Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations, 10.1103/physrevb.47.13164
  34. Perdew John P., Generalized gradient approximation for the fermion kinetic energy as a functional of the density, 10.1016/0375-9601(92)91058-y
  35. Görling Andreas, Symmetry in density-functional theory, 10.1103/physreva.47.2783
  36. Levy Mel, Perdew John P., Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms, 10.1103/physreva.32.2010
  37. Levy Mel, Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole, 10.1103/physreva.43.4637
  38. Görling Andreas, Levy Mel, Requirements for correlation energy density functionals from coordinate transformations, 10.1103/physreva.45.1509
  39. M. Levy, Phys. Rev. B, 48, 11 (1993)