User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

An Interface Point-mutation Variant of Triosephosphate Isomerase Is Compactly Folded and Monomeric At Low-protein Concentrations

  1. Goodsell D.S., Olson A.J., Soluble proteins: Size, shape and function, 10.1016/0968-0004(93)90153-e
  2. Janin Joël, Protein-protein interactions and assembly, 10.1016/0959-440x(91)90009-i
  3. Brange Jens, Dodson Guy G., Xiao Bing, Designing insulin for diabetes therapy by protein engineering, 10.1016/0959-440x(91)90088-b
  4. Taylor Susan S., Knighton Daniel R., Zheng Jianhua, Sowadski Janusz M., Gibbs Craig S., Zoller Mark J., A template for the protein kinase family, 10.1016/0968-0004(93)80001-r
  5. Jaenicke Rainer, Folding and association of proteins, 10.1016/0079-6107(87)90011-3
  6. Knowles Jeremy R., Enzyme catalysis: not different, just better, 10.1038/350121a0
  7. Zabori, Z. Naturforsch., 35C, 999 (1980)
  8. Borchert, Proc. Natl. Acad. Sci. USA, 91, 1515 (1994)
  9. Borchert TV, Abagyan R, Kishan KV Radha, Zeelen JPh, Wierenga RK, The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop, 10.1016/0969-2126(93)90021-8
  10. Wierenga R.K., Borcher T.V., Noble M.E.M., Crystallographic binding studies with triosephosphate isomerases: Conformational changes induced by substrate and substrate-analogues, 10.1016/0014-5793(92)80897-p
  11. BORCHERT Torben V., PRATT Kathryn, ZEELEN Johan Ph., CALLENS Mia, NOBLE Martin E. M., OPPERDOES Fred R., MICHELS Paul A. M., WIERENGA Rik K., Overexpression of trypanosomal triosephosphate isomerase in Escherichia coli and characterisation of a dimer-interface mutant, 10.1111/j.1432-1033.1993.tb17599.x
  12. Studier F.William, Moffatt Barbara A., Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes, 10.1016/0022-2836(86)90385-2
  13. LAMBEIR Anne-Marie, OPPERDOES Fred R., WIERENGA Rik K., Kinetic properties of triose-phosphate isomerase from Trypanosoma brucei brucei. A comparison with the rabbit muscle and yeast enzymes, 10.1111/j.1432-1033.1987.tb13388.x
  14. Yphantis David A., Equilibrium Ultracentrifugation of Dilute Solutions*, 10.1021/bi00891a003
  15. Sober, Handbook of Biochemistry, Selected Data for Molecular Biology C10-12 (1970)
  16. JAENICKE Rainer, Protein stability and molecular adaptation to extreme conditons, 10.1111/j.1432-1033.1991.tb16426.x
  17. Casal Jose I., Ahern Tim J., Davenport Robert C., Petsko Gregory A., Klibanov Alexander M., Subunit interface of triosephosphate isomerase: site-directed mutagenesis and characterization of the altered enzyme, 10.1021/bi00379a009
  18. Blacklow Stephen C., Knowles Jeremy R., How can a catalytic lesion be offset? The energetics of two pseudorevertant triosephosphate isomerases, 10.1021/bi00469a012
  19. Joseph-McCarthy Diane, Rost Linda E., Komives Elizabeth A., Petsko Gregory A., Crystal Structure of the Mutant Yeast Triosephosphate Isomerase in Which the Catalytic Base Glutamic Acid 165 Is Changed to Aspartic Acid, 10.1021/bi00176a011
Bibliographic reference Borchert, TV. ; Zeelen, JP. ; Schliebs, W. ; Callens, M. ; Minke, W. ; et. al. An Interface Point-mutation Variant of Triosephosphate Isomerase Is Compactly Folded and Monomeric At Low-protein Concentrations. In: FEBS Letters, Vol. 367, no. 3, p. 315-318 (1995)
Permanent URL http://hdl.handle.net/2078.1/47952