User menu

Perturbation Expansion of Variational-principles At Arbitrary Order

Bibliographic reference Gonze, Xavier. Perturbation Expansion of Variational-principles At Arbitrary Order. In: Physical review. A, Atomic, molecular, and optical physics, Vol. 52, no. 2, p. 1086-1095 (1995)
Permanent URL http://hdl.handle.net/2078.1/47890
  1. Hylleraas Egil A., �ber den Grundterm der Zweielektronenprobleme von H?, He, Li+, Be++ usw., 10.1007/bf01397032
  2. E. Wigner, Math. Natur. Anz. (Budapest), 53, 477 (1935)
  3. Stott M. J., Zaremba E., Linear-response theory within the density-functional formalism: Application to atomic polarizabilities, 10.1103/physreva.21.12
  4. Zangwill A., Soven Paul, Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases, 10.1103/physreva.21.1561
  5. Mahan G. D., Modified Sternheimer equation for polarizability, 10.1103/physreva.22.1780
  6. N. E. Zein, Sov. Phys. Solid State, 26, 1825 (1984)
  7. Baroni Stefano, Giannozzi Paolo, Testa Andrea, Green’s-function approach to linear response in solids, 10.1103/physrevlett.58.1861
  8. Levine Zachary H., Allan Douglas C., Linear optical response in silicon and germanium including self-energy effects, 10.1103/physrevlett.63.1719
  9. Giannozzi Paolo, de Gironcoli Stefano, Pavone Pasquale, Baroni Stefano, Ab initiocalculation of phonon dispersions in semiconductors, 10.1103/physrevb.43.7231
  10. Quong Andrew A., Pederson Mark R., Density-functional-based linear and nonlinear polarizabilities of fullerene and benzene molecules, 10.1103/physrevb.46.12906
  11. Quong Andrew A., Eguiluz Adolfo G., First-principles evaluation of dynamical response and plasmon dispersion in metals, 10.1103/physrevlett.70.3955
  12. Wang Cheng-Zhang, Yu Rici, Krakauer Henry, First principles linear response calculations of lattice dynamics for CuCl, 10.1103/physrevlett.72.368
  13. Savrasov S. Yu., Linear response calculations of lattice dynamics using muffin-tin basis sets, 10.1103/physrevlett.69.2819
  14. Gonze X., Vigneron J.-P., Density-functional approach to nonlinear-response coefficients of solids, 10.1103/physrevb.39.13120
  15. S. K. Ghosh, J. Chem. Phys., 71, 295 (1982)
  16. Bartolotti Libero J., Variation‐perturbation theory within a time‐dependent Kohn–Sham formalism: An application to the determination of multipole polarizabilities, spectral sums, and dispersion coefficients, 10.1063/1.446637
  17. Bartolotti Libero J., The hydrodynamic formulation of time-dependent Kohn-Sham orbital density functional theory, 10.1021/j100280a009
  18. Sen K. D., Bartolotti L. J., Density-functional-theory calculations of static dipole polarizability of some ions of interest in Mössbauer spectroscopy, 10.1103/physreva.45.2076
  19. Gonze Xavier, Allan Douglas C., Teter Michael P., Dielectric tensor, effective charges, and phonons in α-quartz by variational density-functional perturbation theory, 10.1103/physrevlett.68.3603
  20. Amos Roger D., Rice Julia E., Implementation of analytic derivative methods in quantum chemistry, 10.1016/0167-7977(89)90001-4
  21. S. Bratoz, Colloq. Int. CNRS, 82, 287 (1958)
  22. Dalgarno A., Perturbation Theory for Atomic Systems, 10.1098/rspa.1959.0108
  23. McWeeny R., Perturbation Theory for the Fock-Dirac Density Matrix, 10.1103/physrev.126.1028
  24. Langhoff P. W., Lyons J. D., Hurst R. P., Electric Dipole Hyperpolarizabilities forS-State Atoms and Ions, 10.1103/physrev.148.18
  25. Gerratt J., Mills I. M., Force Constants and Dipole‐Moment Derivatives of Molecules from Perturbed Hartree–Fock Calculations. I, 10.1063/1.1670299
  26. Moccia R., Upper bounds for the calculation of second order HF energies, 10.1016/0009-2614(70)85135-1
  27. P. Pulay, Modern Theoretical Chemistry (1977)
  28. Dykstra Clifford E., Jasien Paul G., Derivative Hartree—Fock theory to all orders, 10.1016/0009-2614(84)85607-9
  29. Cave Robert J., Davidson Ernest R., Quasidegenerate variational perturbation theory and the calculation of first‐order properties from variational perturbation theory wave functions, 10.1063/1.455354
  30. Hurst Graham J. B., Dupuis Michel, Clementi Enrico, Abinitioanalytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: Applications to polyenes C4H6to C22H24, 10.1063/1.455480
  31. T. K. Rebane, Opt. Spectrosc. (USSR), 19, 179 (1965)
  32. Moccia R., Variable bases in SCF MO calculations, 10.1016/0009-2614(70)85134-x
  33. Nee Tsun‐Shi, Parr Robert G., Bartlett Rodney J., Direct determination of the rotational barrier in ethane using perturbation theory, 10.1063/1.432448
  34. J. A. Pople, Int. J. Quantum Chem. Symp., 13, 225 (1979)
  35. Jo/rgensen Poul, Simons Jack, Ab initio analytical molecular gradients and Hessians, 10.1063/1.445528
  36. Simons Jack, Jo/rgensen Poul, First and second anharmonicities of the MCSCF energy, 10.1063/1.446182
  37. Ahlberg R, Goscinski O, Atomic polarizabilities and shielding factors with a local linear response method, 10.1088/0022-3700/6/11/018
  38. Ahlberg R, Goscinski O, On the optimization of local linear response calculations of atomic properties, 10.1088/0022-3700/8/13/007
  39. Rérat M., Electric field variant ket for the calculation of dynamic polarizabilities. Application to H2O and N2 : DYNAMIC POLARIZABILITIES, 10.1002/qua.560360208
  40. Rérat Michel, Mérawa Mohammadou, Pouchan Claude, Time-dependent gauge-invariant approach to the calculation of dynamic hyperpolarizabilities: Application to FH and LiH, 10.1103/physreva.46.5471
  41. Pulay Péter, Second and third derivatives of variational energy expressions: Application to multiconfigurational self‐consistent field wave functions, 10.1063/1.445372
  42. Sinanoǧlu Oktay, Relation of Perturbation Theory to Variation Method, 10.1063/1.1731724
  43. Epstein Saul T., Constraints and thev2n+1 theorem, 10.1016/0009-2614(80)85340-1
  44. Dalgarno A., Stewart A. L., On the Perturbation Theory of Small Disturbances, 10.1098/rspa.1956.0219
  45. Dupont-Bourdelet Françoise , Tillieu Jacques , Guy Jean , Sur le calcul des énergies perturbées d'ordre quelconque, 10.1051/jphysrad:019600021011077600
  46. Kostin Morton D., Brooks Harvey, Generalization of the Variational Method of Kahan, Rideau, and Roussopoulos and Its Application to Neutron Transport Theory, 10.1063/1.1704092
  47. Silverman J N, Extension of the perturbational-variational Rayleigh-Ritz formalism to large order, 10.1088/0305-4470/16/15/013
  48. H. F. King, J. Chem. Phys., 84, 5646 (1986)
  49. Dal Corso Andrea, Mauri Francesco, Wannier and Bloch orbital computation of the nonlinear susceptibility, 10.1103/physrevb.50.5756
  50. S. T. Epstein, The Variation Method in Quantum Chemistry (1974)
  51. Gonze Xavier, Adiabatic density-functional perturbation theory, 10.1103/physreva.52.1096
  52. W. T. Reid, Control Theory and the Calculus of Variations (1969)
  53. Feynman R. P., Forces in Molecules, 10.1103/physrev.56.340