User menu

A Lax Representation for the Vertex Operator and the Central Extension

Bibliographic reference Adler, M. ; Shiota, T. ; Van Moerbeke, Pierre. A Lax Representation for the Vertex Operator and the Central Extension. In: Communications in Mathematical Physics, Vol. 171, no. 3, p. 547-588 (1995)
Permanent URL
  1. [A-vM0] Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math.38, 267–317 (1980)
  2. [A-vM1] Adler, M., van Moerbeke, P.: A matrix integral solution to two-dimensionalW p -Gravity. Commun. Math. Phys.147, 25–56 (1992)
  3. [A-vM2] Adler, M., van Moerbeke, P.: Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials. To appear in Duke Math J. (1995)
  4. [A-vm3] Adler, M., van Moerbeke, P.: Two-matrix integrals and two-Toda symmetries. To appear
  5. [A-Sh-vM] Adler, M., Shiota, T., van Moerbeke, P.: From thew ∞-algebra to its central extension: a τ-function approach. To appear in Physics Letters A. (1994)
  6. [A-K] Aoyama, S., Kodama, Y.: A generalized Sato equation and theW ∞ algebra. Phys. Lett.B278 56–62 (1992)
  7. [BX] Bonora, L., Xiong, C.S.: Matrix models without scaling limit. SISSA reprint
  8. Brézin E., Kazakov V.A., Exactly solvable field theories of closed strings, 10.1016/0370-2693(90)90818-q
  9. [DJKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Proc. RIMS Symp. Nonlinear integrable systems-Classical theory and quantum theory (Kyoto 1981), Singapore: World Scientific, 1983, pp. 39–119
  10. Dickey L A, Soliton Equations and Hamiltonian Systems, ISBN:9789810202156, 10.1142/1109
  11. [D2] Dickey, L.: Lectures on classicalW-algebras. Cortona, Italy 1993
  12. [D3] Dickey, L.A.: On additional symmetries of the KP hierarchy and Sato's Bäcklund transformation. Commun. Math. Phys.
  13. [DG] Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys.103, 177–240 (1986)
  14. [Fa] Fastré, J.: Boson-correspondence for W-algebras, Bäcklund-Darboux transformations and the equation [L, P]=L n . University of Louvain, doctoral dissertation (1993)
  15. [Fu] Fuchssteiner, B.: Mastersymmetries, Higher Order Time-Dependent Symmetries and Conserved Densities of Nonlinear Evolution Equations. Prog. Theor. Phys.70, No. 6, 1508–1522 (1983)
  16. [FKN] Fukuma, M., Kawai, H., Nakayama, R.: Infinite dimensional Grassmannian structure of two-dimensional Quantum gravity. Commun. Math. Phys.143, 371–403 (1992)
  17. [GMO] Gerasimov, A., Marshakov, A., Mironov, A., Morozov, A., Orlov, A.: Matrix models of Two-dimensional gravity and Toda theory. Nucl. Phys.B357, 565–618 (1991)
  18. [Gr-OS] Grinevich, P.G., Orlov, A.Yu., Schulman, E.I.: On the Symmetries of the integrable system. In: Modern development of the Soliton theory, ed. A. Fokas, V.E. Zakharov, (1992)
  19. [Gr-O] Grinevich, P.G., Orlov, A.Yu.: Flag spaces in KP theory and Virasoro action on DetD j and Segal-Wilson tau-function. In: Modern problems of Quantum Field theory, Belavin, Zamolodchikov, Klimuk (eds.) Berlin, Heidelberg, New York: Springer, 1989
  20. Kac Victor G., Infinite dimensional Lie algebras, ISBN:9780511626234, 10.1017/cbo9780511626234
  21. [K-R] Kac, V.G., Raina, A.K.: Bombay lectures on highest weight representations of infinite dimensional Lie Algebras. Adv. Series Math. Phys. vol. 2, 1987
  22. Kac V., Schwarz A., Geometric interpretation of the partition function of 2D gravity, 10.1016/0370-2693(91)91901-7
  23. [K] Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys.147, 1–23 (1992)
  24. [M-Z] Magri, F., Zubelli, J.P.: Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV. Commun. Math. Phys.141 (2), 329–352, (1991)
  25. [Me] Mehta, M.L.: A method of integration over matrix variables. Commun. Math. Phys.79, 327–340 (1981)
  26. [N] Niedermaier, M.:W 1+α as a symmetry ofGL α-orbits, preprint 1993
  27. [O-Fa] Oevel, W., Falck, M.: Master Symmetries for Finite-Dimensional Integrable Systems: the Calogero-Moser system. Prog. Theor. Phys.75, 1328–1341 (1986)
  28. Oevel W., Fuchssteiner B., Explicit formulas for symmetries and conservation laws of the Kadomtsev-Petviashvili equation, 10.1016/0375-9601(82)90605-3
  29. [O-F-B] Oevel, G., Fuchssteiner, B., Blaszak, M.: Action-Angle Representation of Multisolitons by Potentials of Mastersymmetries. Prog. Theo. Phys.83, N0 3, 395–413 (1990)
  30. [O] Orlov, A.Y.: Vertex operator, $$\bar \partial $$ -problem, symmetries, variational identities and Hamiltonian formalism for 2+1 integrable systems. In: Proc. Kiev Intern. Workshop “Plasma Theory and Non-linear and Turbulent Processes in Physics”, Baryakhtar (ed.) Singapore: World Scientific, 1988
  31. [O-Sc] Orlov, A.Y., Schulman, E.I.: Additional Symmetries for Integrable and Conformal Algebra Representation. Lett. Math. Phys.12, 171–179 (1986)
  32. [Sa1] Sato, M.: Soliton equations and the universal Grassmann manifold (by Noumi in Japanese). Math. Lect. Note Ser. No.18, Sophia University, Tokyo, 1984
  33. Sato Mikio, The KP hierarchy and infinite-dimensional Grassmann manifolds, 10.1090/pspum/049.1/1013125
  34. [S-S] Sato, M., and Sato, Y.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. Lect. notes in Num. Appl. Anal. Vol.5, 259–271 (1982)
  35. [Sc] Schwarz, A.: On solutions to the string equation. Mod. Phys. Lett.A 6, 2713–2725 (1991)
  36. [Sh] Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math.83, 333–382 (1986)
  37. [T-T] Takasaki, K., Takebe, T.: Integrable hierarchies and dispersionless limit. Reviews in Mathematical Physics, to appear
  38. [U-T] Ueno, K., Takasaki, K.: Toda Lattice Hierarchy. Adv. Studies in Pure Math., Vol.4, 1–95 (1984)
  39. [v1] van de Leur, J.: TheW 1+α(gl s )-symmetries of thes-component KP-hierarchy, preprint 1994
  40. [v2] van de Leur, J.: The Adler-Shiota-van Moerbeke formula for the BKP-hierarchy, preprint 1994
  41. [vM-M] van Moerbeke, P., Mumford, D.: The spectrum of difference operators and algebraic curves. Acta Math.143, 93–154 (1979)
  42. [vM] van Moerbeke, P.: Integrable foundations of string theory. CIMPA Summer School at Sophia-Antipolis (June 1991), Lectures on Integrable systems, Ed.: O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, World Scientific, 1994, pp. 163–267
  43. [W2] Witten, E.: On the Kontsevich Model and other Models of Two Dimensional Gravity. IASSNS-HEP-91/24 (6/1991), Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol.1,2 (New York, 1991), 176–216, World Sci. Publishing, River Edge, NJ 1992