User menu

Control of Nonholonomic Wheeled Mobile Robots By State-feedback Linearization

Bibliographic reference Dandreanovel, B. ; Campion, Guy ; Bastin, Georges. Control of Nonholonomic Wheeled Mobile Robots By State-feedback Linearization. In: International Journal of Robotics Research, Vol. 14, no. 6, p. 543-559 (1995)
Permanent URL http://hdl.handle.net/2078.1/47656
  1. d'Andréa-Novel, B., Proc. of the IEEE Conf. on Robotics and Automation
  2. d'Andréa-Novel, B., Bastin, G., and Campion, G. 1993. Control of nonholonomic wheeled mobile robots by state feedback linearization. Internal report CAS 93, Cesame 93-33.
  3. Bloch, A.M., Proc. IEEE Conf. Decision and Control, 1312 (1990)
  4. Brockett, R.W. 1983. Asymptotic stability and feedback stabilization . In Brockett, R. N., Millmann, R. S., Sussmann, H. (eds.): Differential Geometric Control Theory. Boston: Birkhauser, pp. 181-191.
  5. Campion, G., Proc. of the MTNS Conf
  6. Campion, G., IEEE Trans. on Robotics and Automation (1993)
  7. Charlet, B., Thèse École des Mines de Paris (1989)
  8. Charlet B., Lévine J., Marino R., On dynamic feedback linearization, 10.1016/0167-6911(89)90031-5
  9. Coron Jean -Michel, Global asymptotic stabilization for controllable systems without drift, 10.1007/bf01211563
  10. Coron, J.M., NOLCOS Conf
  11. DESCUSSE J., MOOG C. H., Decoupling with dynamic compensation for strong invertible affine non-linear systems, 10.1080/00207178508933432
  12. Fliess, M., NOLCOS Conf
  13. Isidori Alberto, Nonlinear Control Systems, ISBN:9783662025833, 10.1007/978-3-662-02581-9
  14. Marino Riccardo, On the largest feedback linearizable subsystem, 10.1016/0167-6911(86)90130-1
  15. Martin, P., Thèse École des Mines de Paris (1992)
  16. M'Closey, R.T., 32nd Conf. on Decision and Control
  17. Micaelli, A., ICARCV'92 Conference
  18. Micaelli, A., Trajectory tracking for unicycle-type and two-steering-wheels mobile robots (1993)
  19. Muir, P.F., Automation, 1172 (1987)
  20. Nijmeijer Henk, van der Schaft Arjan, Nonlinear Dynamical Control Systems, ISBN:9781475721027, 10.1007/978-1-4757-2101-0
  21. Pomet Jean-Baptiste, Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, 10.1016/0167-6911(92)90019-o
  22. Pomet, J.B., Time-varying exponential stabilization of nonholonomic systems in power form (1993)
  23. Pomet, J.B., Proc. of the IEEE Conf. on Robotics and Automation
  24. Praly L., Andrea-Novel B., Coron J.-M., Lyapunov design of stabilizing controllers for cascaded systems, 10.1109/9.90230
  25. Samson, C., Proc. of the Intl. Workshop on Nonlinear and Adaptive Control: Issues in Robotics
  26. Samson, C., Proc. of ICARCV'92
  27. Samson, C., Automation, 1136 (1990)
  28. Slotine, J.J., Applied Nonlinear Control (1991)
  29. Sordalen, O.J., Exponential control law for a mobile robot: Extension to path following. Proc. IEEE Conf. on Robotics and Automation
  30. Thuilot, B., IEEE Trans. Robot. Automation (1994)
  31. Walsh, G., Proc. IEEE Conf. Robotics and Automation, 1999 (1992)