User menu

Gaussian estimation of a continuous time dynamic model with common stochastic trends

Bibliographic reference Simos, T. Gaussian estimation of a continuous time dynamic model with common stochastic trends. In: Econometric Theory, Vol. 12, no. 2, p. 361-373 (1996)
Permanent URL
  1. Agbeyegbe, Econometric Theory, 3, 143 (1987)
  2. Agbeyegbe Terence D., An exact discrete analog of an open linear non-stationary first-order continuous-time system with mixed sample, 10.1016/0304-4076(88)90057-7
  3. Bergstrom A. R., Gaussian Estimation of Structural Parameters in Higher Order Continuous Time Dynamic Models, 10.2307/1912251
  4. Bergstrom, Handbook of Econometrics, 2, 1145 (1984)
  5. Bergstrom A. R., The Estimation of Parameters in Nonstationary Higher Order Continuous-Time Dynamic Models, 10.1017/s0266466600011269
  6. Bergstrom A. R., The Estimation of Open Higher-Order Continuous Time Dynamic Models with Mixed Stock and Flow Data, 10.1017/s026646660001166x
  7. Engle Robert F., Granger C. W. J., Co-Integration and Error Correction: Representation, Estimation, and Testing, 10.2307/1913236
  8. Harvey A. C., Stock James H., The Estimation of Higher-Order Continuous Time Autoregressive Models, 10.1017/s0266466600011026
  9. Harvey A.C., Stock James H., Continuous time autoregressive models with common stochastic trends, 10.1016/0165-1889(88)90046-2
  10. Phillips P. C. B., Optimal Inference in Cointegrated Systems, 10.2307/2938258
  11. Phillips P. C. B., Error Correction and Long-Run Equilibrium in Continuous Time, 10.2307/2938169
  12. Robinson Peter M., The construction and estimation of continuous time models and discrete approximations in econometrics, 10.1016/0304-4076(77)90014-8
  13. Robinson, Models, Methods, and Applications of Econometrics, 71 (1993)
  14. Rozanov, Stationary Random Processes. (1967)
  15. Yaglom, An Introduction to the Theory of Stationary Random Functions. (1962)