User menu

Proposition for the acylation mechanism of serine proteases: A one-step process?

Bibliographic reference Dive, G. ; Dehareng, D. ; Peeters, Daniel. Proposition for the acylation mechanism of serine proteases: A one-step process?. In: International Journal of Quantum Chemistry, Vol. 58, no. 1, p. 85-107 (1996)
Permanent URL
  1. Kollman Peter A., Theory of enzyme mechanisms, 10.1016/0959-440x(92)90213-q
  2. Warshel Arieh, Computer simulations of enzymatic reactions, 10.1016/0959-440x(92)90151-v
  3. Tapia O., Paulino M., Stamato F. M. L. G., Computer assisted simulations and molecular graphics methods in molecular design. 1. Theory and applications to enzyme active-site directed drug design, 10.1007/bf01003761
  4. Longo E., Stamato F.M.L.G., Ferreira R., Tapia O., The catalytic mechanism of serine proteases II: The effect of the protein environment in the α-chymotrypsin proton relay system, 10.1016/s0022-5193(85)80061-8
  5. Nakagawa Setsuko, Yu Hsiang-Ai, Karplus Martin, Urneyama Hideaki, Active site dynamics of acyl-chymotrypsin, 10.1002/prot.340160205
  6. BLOW D. M., BIRKTOFT J. J., HARTLEY B. S., Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin, 10.1038/221337a0
  7. WRIGHT CHRISTINE SCHUBERT, ALDEN RICHARD A., KRAUT JOSEPH, Structure of Subtilisin BPN′ at 2.5 Å Resolution, 10.1038/221235a0
  8. Brady Leo, Brzozowski Andrzej M., Derewenda Zygmunt S., Dodson Eleanor, Dodson Guy, Tolley Shirley, Turkenburg Johan P., Christiansen Lars, Huge-Jensen Birgitte, Norskov Leif, Thim Lars, Menge Ulrich, A serine protease triad forms the catalytic centre of a triacylglycerol lipase, 10.1038/343767a0
  9. Winkler F. K., D'Arcy A., Hunziker W., Structure of human pancreatic lipase, 10.1038/343771a0
  10. Zhou G., Guo J, Huang W, Fletterick R., Scanlan T., Crystal structure of a catalytic antibody with a serine protease active site, 10.1126/science.8066444
  11. Hunkapiller Michael W., Smallcombe Stephen H., Whitaker Donald R., Richards John H., Carbon nuclear magnetic resonance studies of the histidine residue in α-lytic protease. Implications for the catalytic mechanism of serine proteases, 10.1021/bi00747a028
  12. Koeppe Roger E., Stroud Robert M., Mechanism of hydrolysis by serine proteases: direct determination of the pKa's of aspartyl-102 and aspartyl-194 in bovine trypsin using difference infrared spectroscopy, 10.1021/bi00661a009
  13. Markley John L., Porubcan Michael A., The charge-relay system of serine proteinases: Proton magnetic resonance titration studies of the four histidines of porcine trypsin, 10.1016/0022-2836(76)90330-2
  14. Dewar M. J., Storch D. M., Alternative view of enzyme reactions., 10.1073/pnas.82.8.2225
  15. Wang J. H., Facilitated Proton Transfer in Enzyme Catalysis, 10.1126/science.161.3839.328
  17. Robillard George, Shulman R.G., High resolution nuclear magnetic resonance study of the histidine—Aspartate hydrogen bond in chymotrypsin and chymotrypsinogen, 10.1016/0022-2836(72)90366-x
  18. Cruickshank William H., Kaplan Harvey, Properties of the histidines of chymotrypsinogen: Comparison with α-chymotrypsin, 10.1016/0022-2836(74)90391-x
  19. Bachovchin William W., Roberts John D., Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of .alpha.-lytic protease. Implications for the charge-relay mechanism of peptide-bond cleavage by serine proteases, 10.1021/ja00494a001
  20. Kossiakoff A. A., Spencer S. A., Neutron diffraction identifies His 57 as the catalytic base in trypsin, 10.1038/288414a0
  21. Kossiakoff Anthony A., Spencer Steven A., Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: neutron structure of trypsin, 10.1021/bi00525a027
  22. Kollman Peter A., Hayes David M., Theoretical calculations on proton-transfer energetics: studies of methanol, imidazole, formic acid, and methaneethiol as models for the serine and cysteine proteases, 10.1021/ja00401a008
  23. Stamato Fulvia M. L. G., Tapia O., Ab initio studies on the catalytic mechanism of ester hydroloysis by serine proteases, 10.1002/qua.560330304
  24. Nagy P., Náray-Szabó G., Electrostatic complementarity between the catalytic triad and the protein environment in serine proteinases, 10.1016/0166-1280(85)80182-2
  25. Scheiner S., Lipscomb W. N., Molecular orbital studies of enzyme activity: catalytic mechanism of serine proteinases., 10.1073/pnas.73.2.432
  26. Aleksandrov, Mol. Biol. (Moscow), 21, 147 (1987)
  27. Dutler Hans, Bizzozero Spartaco A., Mechanism of the serine protease reaction. Stereoelectronic, structural, and kinetic considerations as guidelines to deduce reaction paths, 10.1021/ar00165a005
  28. Daggett Valerie, Schroeder Stefan, Kollman Peter, Catalytic pathway of serine proteases: classical and quantum mechanical calculations, 10.1021/ja00023a047
  29. Komiyama M., Bender M. L., Do cleavages of amides by serine proteases occur through a stepwise pathway involving tetrahedral intermediates?, 10.1073/pnas.76.2.557
  30. Dive G., Peeters D., Leroy G., Ghuysen J.M., Theoretical study of the CN bond breakage catalysed by the serine peptidases, 10.1016/0166-1280(84)80046-9
  31. Scheiner S., Hillenbrand E. A., Modification of pK values caused by change in H-bond geometry., 10.1073/pnas.82.9.2741
  32. and Program MONSTERGAUSS (Department of Chemistry, University of Toronto, Toronto, Canada, 1980).
  33. and Program GAUSSIAN86 (Carnegie-Mellon Quantum Chemistry Publishing Unit, Camegie-Mellon University, Pittsburgh, PA 15213, 1986).
  34. and Program MONSTERGAUSS, Unix version (Department of Chemistry, University of Toronto, Toronto, Canada, 1990).
  35. and Program GAUSSIAN92, Unix Revision B (Gaussian, Inc., Camegie-Mellon Quantum Chemistry Publishing Unit, Camegie-Mellon University, Pittsburgh, PA 15213, 1992).
  36. Dive G., Dehareng D., Ghuysen J. M., Energy analysis on small to medium sized H-bonded complexes, 10.1007/bf01112981
  37. in Statistical Thermodynamics (Harper & Row, New York, 1973).
  38. and in Quantum Chemistry (Wiley, New York, 1983).
  39. and in Transition States of Biochemical Processes, Eds. (Plenum Press, New York, 1978).
  40. Wong Ming Wah, Frisch Michael J., Wiberg Kenneth B., Solvent effects. 1. The mediation of electrostatic effects by solvents, 10.1021/ja00013a010
  41. Wong Ming Wah, Wiberg Kenneth B., Frisch Michael, Hartree–Fock second derivatives and electric field properties in a solvent reaction field: Theory and application, 10.1063/1.461230
  42. Rinaldi Daniel, Ruiz‐Lopez Manuel F., Rivail Jean‐Louis, Ab initio SCF calculations on electrostatically solvated molecules using a deformable three axes ellipsoidal cavity, 10.1063/1.444783
  43. Rivail J.L., Terryn B., Rinaldi D., Ruiz-Lopez M.F., Liquid state quantum chemistry : A cavity model, 10.1016/0166-1280(85)85133-2
  44. Alagona Giuliano, Ghio Caterina, Igual Juan, Tomasi Jacopo, An appraisal of solvation effects on chemical functional groups: The amidic and the esteric linkages, 10.1016/0166-1280(90)85079-3
  45. Bonaccorsi Rosanna, Cammi Roberto, Tomasi Jacopo, On theab initio geometry optimization of molecular solutes, 10.1002/jcc.540120304
  46. Chudinov G.E., Napolov D.V., A new method of geometry optimization for molecules in solution in the framework of the Born-Kirkwood-Onsager approach, 10.1016/0009-2614(93)85065-v
  47. Bianco R., Miertuš S., Persico M., Tomasi J., Molecular reactivity in solution. Modelling of the effects of the solvent and of its stochastic fluctuation on an SN2 reaction, 10.1016/0301-0104(92)87162-3
  48. Corey David R., Craik Charles S., An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin, 10.1021/ja00031a037
  49. Dive G., Dehareng D., Ghuysen J. M., Detailed Study of a Molecule into a Molecule: N-Acetyl-L-tryptophanamide in an Active Site Model of .alpha.-Chymotrypsin, 10.1021/ja00085a039