User menu

High temperature expansions and dynamical systems

Bibliographic reference Bricmont, Jean ; Kupiainen, Antti. High temperature expansions and dynamical systems. In: Communications in Mathematical Physics, Vol. 178, no. 3, p. 703-732 (1996)
Permanent URL
  1. Bowen Rufus, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, ISBN:9783540071877, 10.1007/bfb0081279
  2. Bricmont, J., Kupiainen, A.: Phase transition in the 3d random field Ising model. Commun. Math. Phys.116, 539–572 (1988)
  3. Bricmont, J., Kupiainen, A.: Coupled analytic maps. Nonlinearity8, 379–396 (1995)
  4. Brydges, D.C.: A short course on cluster expansions. In: Critical Phenomena, Random Systems, Gauge Theories. Les Houches Session XLIII, Osterwalder, K., Stora, R. eds., Elsevier, 1984, pp. 139–183
  5. Bunimovich, L.A., Sinai, Y.G.: Space-time chaos in coupled map lattices. Nonlinearity1, 491–516 (1988)
  6. Bunimovich, L.A., Sinai, Y.G.: Statistical mechanics of coupled map lattices. In: Ref [29]Kaneko, K. (ed): Theory and Applications of Coupled Map Lattices. New York: J. Wiley, 1993
  7. Bunimovich, L.A.: Coupled map lattices: One step forward and two steps back. Preprint (1993), to appear in the Proceedings of the “Gran Finale” on Chaos, Order and Patterns, Como (1993)
  8. Campbell, K.M., Rand, D.A.: A natural spatio-temporal measure for axiom A weakly coupled map lattices. Preprint, Univ. of Warwick (1994)
  9. Cassandro, M., Olivieri, E.: Renormalization group and analyticity in one dimension: A proof of Dobrushin's theorem. Commun. Math. Phys.80, 255 (1981)
  10. Dobrushin, R.L.: Gibbsian random fields for lattice systems with pairwise interactions. Funct. Anal. Appl.2, 292–301 (1968)
  11. Dobrushin, R.L.: The description of a random field by means of conditional probabilities and conditions on its regularity. Theory Prob. Appl.13, 197–224 (1968)
  12. Dobrushin, R.L., Martirosyan, M.R.: Nonfinite perturbations of the random Gibbs fields. Theor. Math. Phys.74, 10–20 (1988)
  13. Dobrushin, R.L., Martirosyan, M.R.: Possibility of high-temperature phase transitions due to the many particle nature of the potential. Theor. Math. Phys.75, 443–448 (1988)
  14. Dobrushin, R.L., Pecherski, E.A.: Uniqueness conditions for finitely dependent random fields. In: Random Fields, Vol. 1, Fritz, J. et al. (eds.) Amsterdam: North-Holland, 1981, pp. 223–261
  15. Dobrushin R. L., Shlosman S. B., Completely Analytical Gibbs Fields, Statistical Physics and Dynamical Systems (1985) ISBN:9781489966551 p.371-403, 10.1007/978-1-4899-6653-7_21
  16. Dobrushin, R.L., Shlosman, S.B.: Completely analytical interactions: A constructive description. J. Stat. Phys.46, 983–1014 (1987)
  17. von Dreifus, H., Klein, A., Perez, J.F.: Taming Griffiths' singularities: Infinite differentiability of quenched correlation functions
  18. van Enter, A.C.D., Fernandez, R.: A remark on different norms and analyticity for many particle interactions. J. Stat. Phys.56, 965–972 (1989)
  19. van Enter, A.C.D., Fernandez, R., Sokal, A.: Regularity properties and pathologies of position-space renormalization-group transformations. J. Stat. Phys.72, 879–1167 (1993)
  20. Fisher, M.: Critical temperatures for anisotropic Ising lattices. II. General upper bounds. Phys. Rev.162, 480–485 (1967)
  21. Gallavotti, G., Miracle-Sole, S.: Correlation functions of a lattice system. Commun. Math. Phys.7, 274–288 (1968)
  22. Griffiths, R.B.: Non-analytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett.23, 17–19 (1969)
  23. Gross, L.: Decay of correlations in classical lattice models at high temperature. Commun. Math. Phys.68, 9–27 (1979)
  24. Gross, L.: Absence of second-order phase transitions in the Dobrushin uniqueness theorem. J. Stat. Phys.25, 57–72 (1981)
  25. Gundlach, V.M., Rand, D.A.: Spatial-temporal chaos: 1. Hyperbolicity, structural stability, spatial-temporal shadowing and symbolic dynamics. Nonlinearity6, 165–200 (1993); Spatialtemporal chaos: 2. Unique Gibbs states for higher-dimensional symbolic systems. Nonlinearity6, 201–214 (1993); Spatial-temporal chaos: 3. Natural spatial-temporal measures for coupled circle map lattices. Nonlinearity6, 215–230 (1993)
  26. Israel, R.B.: High-temperature analyticity in classical lattice systems. Commun. Math. Phys.50, 245–257 (1976)
  27. Jiang, M.: Equilibrium states for lattice models of hyperbolic type. To appear in Nonlinearity
  28. Jiang, M., Mazel, A.: Uniqueness of Gibbs states and exponential decay of correlations for some lattice models. Preprint
  29. Kaneko, K. (ed): Theory and Applications of Coupled Map Lattices. New York: J. Wiley, 1993
  30. Kaneko, K. (ed): Focus Issue on Coupled Map Lattices. Chaos2 (1993)
  31. Keller Gerhard, Künzle Martin, Transfer operators for coupled map lattices, 10.1017/s0143385700006763
  32. Malyshev V. A., Minlos R. A., Gibbs Random Fields, ISBN:9789401056496, 10.1007/978-94-011-3708-9
  33. Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region. Commun. Math. Phys.161, 447–486 (1994)
  34. Miller, J., Huse, D.A.: Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled-map lattice. Phys. Rev. E48, 2528–2535 (1993)
  35. Olivieri, E.: On a cluster expansion for lattice spin systems: A finite-size condition for the convergence. J. Stat. Phys.50, 1179–1200 (1988)
  36. Olivieri, E., Picco, P.: Cluster expansion for d-dimensional lattice systems and finite volume factorization properties. J. Stat. Phys.59, 221–256 (1990)
  37. Pesin, Y.G., Sinai, Y.G.: Space-time chaos in chains of weakly coupled hyperbolic maps. In: Advances in Soviet Mathematics, Vol. 3, ed. Sinai, Y.G., Harwood, 1991
  38. Pomeau, Y.: Periodic behaviour of cellular automata. J. Stat. Phys.70, 1379–1382 (1993)
  39. Ruelle, D.: Thermodynamic Formalism. Reading, MA: Addison-Wesley, 1978
  40. Simon, B.: A remark on Dobrushin's uniqueness theorem. Commun. Math. Phys.68, 183–185 (1979)
  41. Simon, B.: The Statistical Mechanics of Lattice Gases. Vol. 1, Princeton, NJ: Princeton Univ. Press, 1994
  42. Sinai, Y.G.: Gibbs measures in ergodic theory. Russ. Math. Surv.27, 21–64 (1972)
  43. Sinai, Y.G.: Topics in ergodic theory. Princeton, NJ: Princeton University Press, 1994
  44. Temam Roger, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, ISBN:9781468403152, 10.1007/978-1-4684-0313-8
  45. Volevich, D.L.: Kinetics of coupled map lattices. Nonlinearity4, 37–45 (1991)
  46. Volevich, D.L.: The Sinai-Bowen-Ruelle measure for a multidimensional lattice of interacting hyperbolic mappings. Russ. Acad. Dokl. Math.47, 117–121 (1993)
  47. Volevich, D.L.: Construction of an analogue of Bowen-Ruelle-Sinai measure for a multidimensional lattice of interacting hyperbolic mappings. Russ. Acad. Math. Sbornik79, 347–363 (1994)