User menu

A matrix integral solution to [P,Q]=P and matrix Laplace transforms

Bibliographic reference Adler, M. ; Morozov, A. ; Shiota, T. ; Van Moerbeke, Pierre. A matrix integral solution to [P,Q]=P and matrix Laplace transforms. In: Communications in Mathematical Physics, Vol. 180, no. 1, p. 233-263 (1996)
Permanent URL
  1. Adler, M., van Moerbeke, P.: A matrix integral solution to two-dimensionalW p -Gravity. Commun. Math. Phys.147, 25–56 (1992)
  2. Adler, M., Shiota, T., van Moerbeke, P.: From theω ∞ to its central extension: A τ-function approach. Phys. Lett.A194, 33–43 (1994);
  3. —, A Lax representation for the vertex operator and the central extension. Commun. Math. Phys.171, 547–588 (1995)
  4. Crnković, C., Douglas, M., Moore, G.: Physical solutions for unitary matrix models. Nucl. Phys.B360, 507–523 (1991)
  5. Dalley, S., Johnson, C.V., Morris, T.R., Wätterstam, A.: Unitary matrix models and 2D quantum gravity. Mod. Phys. Lett.A 7, (29) 2753–2762 (1992)
  6. Dalley, S., Johnson, C.V., Morris, T.R.: Multicritical complex matrix models and non-perturbative two-dimensional quantum gravity. Nucl. Phys.B368,625–654 (1992)
  7. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Proceedings RIMS Symp. Non-linear integrable systems—classical theory and quantum theory (Kyoto 1981), Singapore: World Scientific, 1983, pp. 39–119
  8. Dijkgraaf, R.: Intersection Theory, Integrable Hierarchies and Toplogical Field Theory. Lectures given at the Cargese Summer School on “New Symmetry Principles in Quantum Field Theory.” hep-th/9201003.
  9. Fastré, J.: A Grassmannian version of the Darboux transformation. To appear in Bull. des Sciences Math.
  10. Flaschka, H.: A commutator representation of Painlevé equations. J. Math. Phys.21 (5), 1016–1018 (1980)
  11. Flaschka, H., Newell, A.C.: Monodromy- and spectrum-preserving deformations I. Commun. Math. Phys.76, 65–116 (1980)
  12. Fokas, A.S., Ablowitz, M.J.: On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys.23 (11), 2033–2042 (1982)
  13. Gross, D.J., Newman, M.J.: Unitary and Hermitian matrices in an external field. Phys. Lett.B266, 291–297 (1991)
  14. Harish Chandra: Differential operators on a semi-simple lie algebra. Am. J. Math.79, 87–120 (1957)
  15. Hollowood, T., Maramontes, L., Pasquinucci, A., Nappri, C.: Hermitian versus anti-Hermitian onematrix models and their hierarchies. Nucl. Phys.B373, 247–280 (1992)
  16. Kac, V., Schwarz, A.: Geometric interpretation of partition function of 2D gravity. Phys. Lett.B257, 329–334 (1991);
  17. Schwarz, A.: On some mathematical problems of 2d-gravity andW p -gravity. Mod. Phys. Lett.A 6, 611–616 (1991)
  18. Kazakov, V.A.: A simple solvable model of quantum field theory of open strings. Phys. Lett.B237 (2), 212–215 (1990)
  19. Kharchev, S., Marshakov, A., Mironov, A., Morozov, A., Zabrodin, A.: Towards unified theory of 2d gravity. Nucl. Phys.B380, 181–240 (1992)
  20. Kharchev, S., Marshakov, A.: Topological versus non-topological theories. Preprint FIAN/TD-15/92. To appear in Int. J. Mod. Phys.A. See also Sect. 4.9 of the second paper in [24]. For a general discussion of string program and more details on matrix models in this context see: Morozov, A.: String theory: What is it? Usp. Fiz. Nauk162 (8), 83–176 (1992) (Soviet Physics Uspekhi35, 671–714 (1992))
  21. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys.147, 1–23 (1992)
  22. Kostov, I.K.: Exactly solvable field theory ofD=0 closed and open strings. Phys. Lett.B238, 181–186 (1990)
  23. Macdonald, I.G.: Symmetric functions and Hall polynomials. Second Edition. Oxford: Clarendon Press; New York: Oxford University Press, 1995
  24. Minahan, J.A.: Matrix models with boundary terms and the generalized Painlevé II equation. Phys. Lett.B268, 29–34 (1991)
  25. Minahan, J.A.: Schwinger-Dyson equations for unitary matrix models with boundaries. Phys. Lett.B265, 382–388 (1991)
  26. For a general discussion of string program and more details on matrix models in this context see: Morozov, A.: String theory: What is it? Usp. Fiz. Nauk162 (8), 83–176 (1992) (Soviet Physics Uspekhi35, 671–714 (1992)), and Morozov, A.: Integrability and matrix models. Usp. Fiz. Nauk,164 (1), 3–62 (1994)(Physics Uspekhi,37, 1–55 (1994), hep-th/9303139), and references therein.
  27. Morozov, A.: Matrix Models as Integrable Systems. Presented at Banff Conference, Banff, Canada, August 15–23, 1994. ITEP-M2/95, hep-th/9502091
  28. Mulase, M.: Algebraic theory of the KP equations. In: Perspectives in Mathematical Physics, Ed.: R. Penner and S.-T. Yau, International Press Company, 1994, pp. 157–223
  29. Periwal, V., Shevitz, D.: Exactly solvable unitary matrix models: Multicritical potentials and correlations. Nucl. Phys.B344, 731–746 (1990)
  30. Periwal, V., Shevitz, D.: Unitary-matrix models as exactly solvable string theories. Phys. Rev. Lett.64, (12), 1326–1329 (1990)
  31. Sato, M.: Soliton equations and the universal Grassmann manifold (by Noumi in Japanese). Math. Lect. Note Ser. No.18. Sophia University, Tokyo, 1984
  32. Segal Graeme, Wilson George, Loop groups and equations of KdV type, 10.1007/bf02698802
  33. van Moerbeke, P.: Integrable foundation of string theory. In: Proceedings of the CIMPA school 1991. Ed.: O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, Singapore: World Scientific, 1994, pp. 163–267
  34. Wätterstam, A.: A solution to the string equation of unitary matrix models. Phys. Lett.B263, No 1, 51–58 (1991)