User menu

Separation of the exchange-correlation potential into exchange plus correlation: An optimized effective potential approach

Bibliographic reference Filippi, C ; Umrigar, CJ. ; Gonze, Xavier. Separation of the exchange-correlation potential into exchange plus correlation: An optimized effective potential approach. In: Physical review. A, Atomic, molecular, and optical physics, Vol. 54, no. 6, p. 4810-4814 (1996)
Permanent URL
  1. Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
  2. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  3. D. W. Smith, Int. J. Quantum Chem. Symp., 13, 103 (1979)
  4. U. von Barth, Electronic Structure of Complex Systems, Vol. 113 of NATO Advanced Study Institute, Series B: Physics (1984)
  5. C.-O. Almbladh, Phys. Rev. B, 29, 2322 (1984)
  6. Pedroza A. C., Nonlocal density functionals: Comparison with exact results for finite systems, 10.1103/physreva.33.804
  7. Aryasetiawan F., Stott M. J., Density-functional theory for two noninteracting spinless fermions, 10.1103/physrevb.34.4401
  8. Aryasetiawan F., Stott M. J., Effective potentials in density-functional theory, 10.1103/physrevb.38.2974
  9. Nagy A., March N. H., One-body potential theory in terms of the phase of wave functions for the ground state of the Be atom, 10.1103/physreva.39.5512
  10. Nagy Á., March N. H., Exact potential-phase relation for the ground state of the C atom, 10.1103/physreva.40.554
  11. Davidson Ernest R., The correlation potential for two-electron atomic ions, 10.1002/qua.560370609
  12. Chen Jiqiang, Esquivel R. O., Stott M. J., Exchange-correlation potential for small atoms, 10.1080/01418639408240169
  13. van Leeuwen R., Baerends E. J., Exchange-correlation potential with correct asymptotic behavior, 10.1103/physreva.49.2421
  14. Morrison Robert C., Zhao Qingsheng, Solution to the Kohn-Sham equations using reference densities from accurate, correlated wave functions for the neutral atoms helium through argon, 10.1103/physreva.51.1980
  15. Ludeña Eduardo V., Maldonado Jorge, López‐Boada Roberto, Koga Toshikatsu, Kryachko Eugene S., Local‐scaling transformations and the direct determination of Kohn–Sham orbitals and potentials for beryllium, 10.1063/1.469405
  16. Umrigar C. J., Gonze Xavier, Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series, 10.1103/physreva.50.3827
  17. Buijse Marten A., Baerends Evert Jan, Snijders Jaap G., Analysis of correlation in terms of exact local potentials: Applications to two-electron systems, 10.1103/physreva.40.4190
  18. Gritsenko Oleg V., van Leeuwen Robert, Baerends Evert Jan, Molecular Kohn-Sham exchange-correlation potential from the correlatedab initioelectron density, 10.1103/physreva.52.1870
  19. Ingamells Victoria E., Handy Nicholas C., Towards accurate exchange-correlation potentials for molecules, 10.1016/0009-2614(95)01341-5
  20. C. J. Umrigar, High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras '93 Conference (1993)
  21. Knorr W., Godby R. W., Investigating exact density-functional theory of a model semiconductor, 10.1103/physrevlett.68.639
  22. M. Levy, Symp., 29, 93 (1995)
  23. Görling Andreas, Levy Mel, Exact Kohn-Sham scheme based on perturbation theory, 10.1103/physreva.50.196
  24. Levy Mel, Perdew John P., Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms, 10.1103/physreva.32.2010
  25. Oliver G. L., Perdew J. P., Spin-density gradient expansion for the kinetic energy, 10.1103/physreva.20.397
  26. Sharp R. T., Horton G. K., A Variational Approach to the Unipotential Many-Electron Problem, 10.1103/physrev.90.317
  27. Talman James D., Shadwick William F., Optimized effective atomic central potential, 10.1103/physreva.14.36