User menu

In vivo versus in vitro screening or selection for catalytic activity in enzymes and abzymes

Bibliographic reference Fastrez, Jacques. In vivo versus in vitro screening or selection for catalytic activity in enzymes and abzymes. In: Molecular Biotechnology, Vol. 7, no. 1, p. 37-55 (1997)
Permanent URL
  1. Leung, D. W., Chen, E., and Goeddel, D.V. (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction.Technique-J. Meth. Cell Mol. Biol. 1, 11–15.
  2. Cadwell, R. C. and Joyce, G. F. (1994) Mutagenic PCR.PCR Meth. Appl. 1, 5136–5140.
  3. Hermes, J. D., Blacklow, S. C., and Knowles, J. R. (1990) Searching sequence space by definably random mutagenesis: improving the catalytic potency of an enzyme.Proc. Natl. Acad. Sci. USA 87, 696–700.
  4. Hutchison, C. A., III, Swanstrom, R., and Loeb, D. D. (1991) Complete mutagenesis of protein coding domains.Meth. Enzym. 202, 356–391.
  5. Borrego, B., Wienecke, A., and Schwienhorst, A. (1995) Combinatorial libraries by cassette mutagenesis.Nucleic Acids Res. 23, 1834–1835.
  6. Stemmer, W. P. C. (1994) Rapid evolution of a proteinin vitro by DNA shuffling.Nature 370, 389–391.
  7. Schultz, P. G. (1989) Catalytic antibodies.Angew. Chem. Int. Ed. Engl. 28, 1283–1295.
  8. Lerner, R. A., Benkovic, S. J., and Schultz, P. G. (1991) At the crossroads of chemistry and immunology: catalytic antibodies.Science 252, 659–667.
  9. Hilvert, D. (1994) Catalytic antibodies.Curr. Opin. Struct. Biol. 4, 612–617.
  10. Posner, B., Smiley, J., Lee, I., and Benkovic, S. (1994) Catalytic antibodies: perusing combinatorial libraries.TIBS 19, 145–150.
  11. Schultz, P. G. and Lerner, R. A. (1995) From molecular diversity to catalysis: lessons from the immune system.Science 269, 1835–1842.
  12. Köhler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity.Nature 256, 495–497.
  13. Huse, W. D., Sastry, L., Iverson, S.A., Kang, A. S., Alting-Mees, M., Burton, D. R., Benkovic, S. J., and Lerner, R. A. (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda.Science 246, 1275–1281.
  14. Posner, B., Lee, I., Itoh, T., Pyati, J., Graff, R., Thorton, G. B., La Polla, R., and Benkovic, S. J. (1993) A revised strategy for cloning antibody gene fragments in bacteria.Gene 128, 111–117.
  15. Izadyar, L., Friboulet, A., Remy, M. H., Roseto, A., and Thomas, D. (1993) Monoclonal anti-idiotypic antibodies as functional internal images of enzyme active sites: production of a catalytic antibody with a cholinesterase activity.Proc. Natl. Acad. Sci. USA 90, 8876–8880.
  16. Friboulet, A., Izadyar, L., Avalle, B., Roseto, A., and Thomas, D. (1994) Abzyme generation using an antiidiotypic antibody as the internal image of an enzyme active site.Appl. Biochem. Biotech. 47, 229–237.
  17. Zabin, I. (1982) Beta-galactosidase alpha-complementation. A model of protein-protein interaction.Mol. Cell. Biochem. 49, 87–96.
  18. Dunn, I. S., Cowan, R., and Jennings, P. A. (1988) Improved peptide function from random mutagenesis over short “windows.”Prot. Eng. 2, 283–291.
  19. Liebig, H.-D., Skern, T., Luderer, M., Sommergruber, W., Blaas, D., and Kuechler, E., (1991) Proteinase trapping: screening for viral proteinase mutants by alpha complementation.Proc. Natl. Acad. Sci. USA 88, 5979–5983.
  20. Graham, L. D., Haggett, K. D., Jennings, P. A., Le Brocque, D. S., Whittaker, R. G., and Schober, P. A. (1993) Random mutagenesis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificities.Biochemistry 32, 6250–6258.
  21. Rennell D., Bouvier, S. E., Hardy, L. W., and Poteete, A. R. (1991) Systematic mutation of bacteriophage T4 lysozyme.J. Mol. Biol. 222, 67–87.
  22. Evnin, L. B., and Craik, C. S. (1988) Development of an efficient method for generating and screening active trypsin and trypsin variants.Ann. NY Acad. Sci. 542, 61–77.
  23. Pollack, S. J., Hsiun, P., and Schultz, P. G. (1989) Stereospecific hydrolysis of alkyl esters by antibodies.J. Am. Chem. Soc. 111, 5961–5962.
  24. Gong, B., Lesley, S. A., and Schultz, P. G. (1992) A chromogenic assay for screening large antibody libraries.J. Am. Chem. Soc. 114, 1486–1487.
  25. Lane, J. W., Hong, X., and Schwabacher, A. W. (1993) Sensitive detection of catalytic species without chromophoric substrates.J. Am. Chem. Soc. 115, 2078–2080.
  26. Sano, T., Smith, C. L., and Cantor, C. R. (1992) Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates.Science 258, 120–122.
  27. Fenniri, H., Janda, K. D., and Lerner, R. A. (1995) Encoded reaction cassette for the highly sensitive detection of the making and breaking of chemical bonds.Proc. Natl. Acad. Sci. USA 92, 2278–2282.
  28. Hua, T. D., Rolland-Fulcrand, V. Lazaro, R., Viallefont, P., Lefranc, M.-P., and Weill, M. Detection of enzyme activity at trace levels: a new perspective for the direct screening of active catalytic antibodies.Tetrahedron Lett.37, 175–178.
  29. Tawfik, D. S., Green, B. S., and Eshhar, Z. (1992) Detection of catalytic monoclonal antibodies.Anal. Biochem. 202, 35–39.
  30. Tawfik, D. S., Zemel, R. R., Arad-Yellin, R., Green, B. S., and Eshhar, Z. (1990) Simple method for selecting catalytic monoclonal antibodies that exhibit turnover and specificity.Biochemistry 29, 9916–9921.
  31. Tawfik, D. S., Green, B. S., Chap, R., Sela, M., and Eshhar, Z. (1993) catELISA: a facile general route to catalytic antibodies.Proc. Natl. Acad. Sci. USA 90, 373–377.
  32. MacBeath, G., and Hilvert, D. (1994) Monitoring catalytic activity by immunoassay: implications for screening.J. Am. Chem. Soc. 116, 6101–6106.
  33. Struhl, K., Cameron, J. R., and Davis, R. W. (1976) Functional genetic expression of eukaryotic DNA inEscherichia coli.Proc. Natl. Acad. Sci. USA 73, 1471–1475.
  34. Campbell, J. H., Lengyel, J. A., and Langridge, J. (1973). Evolution of a second gene for β-galactosidase in Escherichia coli.Proc. Natl. Acad. Sci. USA 70, 1841–1845.
  35. Betz, J. L., Brown, P. R., Smyth, M. J., and Clarke, P. H. (1974) Evolution in action.Nature 247, 261–264.
  36. Wills, C. (1976) Controlling protein evolution.Fed. Proc. 35, 2098–2101.
  37. Hall, A., and Knowles, J. R. (1976) Directed selective pressure on a β-lactamase to analyse molecular changes involved in development of enzyme function.Nature 264, 803–804.
  38. Mortlock, R. P. (1982) Metabolic acquisitions through laboratory selection.Ann. Rev. Microbiol. 36, 259–284.
  39. Daumy, G. O., Danley, D., McColl, A. S., Apostolakos, D., and Vinick, F. J. (1985) Experimental evolution of penicillin G acylases fromEscherichia coli andProteus rettgeri.J. Bacteriol. 163, 925–932.
  40. Schneider, K.-H., Jäkel, G., Hoffmann, R., and Giffhorn, F. (1995) Enzyme evolution inRhodobacter sphaeroides: selection of a mutant expressing a new galactitol dehydrogenase and biochemical characterization of the enzyme.Microbiology 141, 1865–1873.
  41. Forney, L. J., Wong, D. C. L., and Ferber, D. M. (1989) Selection of amidases with novel substrate specificities from penicillin amidase ofEscherichia coli.Appl. Environ. Microbiol. 55, 2550–2555.
  42. Forney, L. J. and Wong, D. C. L. (1989) Alteration of the catalytic efficiency of penicillin amidase fromEscherichia coli.Appl. Environ. Microbiol. 55, 2556–2560.
  43. Roa A, Garcia J L, Salto F, Cortes E, Changing the substrate specificity of penicillin G acylase fromKluyvera citrophilathrough selective pressure, 10.1042/bj3030869
  44. Evnin, L. B., Vasquez, J. R., and Craik, C. S. (1990) Substrate specificity of trypsin investigated by using a genetic selection.Proc. Natl. Acad. Sci. USA 87, 6659–6663.
  45. Perona, J. J., Evnin, L. B., and Craik, C. S. (1993) A genetic selection elucidates structural determinants of arginine versus lysine specificity in trypsin.Gene 137, 121–126.
  46. Venekei, I., Hedstrom, L., and Rutter, W. J. (1996) A rapid and effective procedure for screening protease mutants.Prot. Eng. 9, 85–93.
  47. Howell, E. E., Booth, C., Farnum, M., Kraut, J., and Warren, M. S. (1990) A second site mutation at phenylalanine-137 that increases catalytic efficiency in the mutant aspartate-27-SerineEscherichia coli dihydrofolate reductase.Biochemistry 29, 8561–8569.
  48. Dube, D. K., Parker, J. D., French, D. C., Cahill, D. S., Dube, S., Horwitz, M. S. Z., Munir, K. M., and Loeb, L. A. (1991) Artificial mutants generated by the insertion of random oligonucleotides into the putative nucleoside binding site of the HSV-1 thymidine kinase gene.Biochemistry 30, 11,760–11,767.
  49. Munir, K. M., French, D. C., Dube, D. K., and Loeb, L. A. (1992) Permissible amino acid substitutions within the putative nucleoside-binding site of herpes simplex virus type 1 established by random sequence mutagenesis.J. Biol. Chem. 267, 6584–6589.
  50. Munir, K. M., French, D. C., and Loeb, L. A. (1993) Thymidine kinase mutants obtained by random sequence selection.Proc. Natl. Acad. Sci. USA 90, 4012–4016.
  51. Black, M. E. and Loeb, L. A. (1993) Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: analysis of selected mutantsin vitro.Biochemistry 32, 11,618–11,626.
  52. Munir, K. M., French, D. C., Dube, D. K., and Loeb, L. A. (1994) Herpes thymidine kinase mutants with altered catalytic efficiencies obtained by random sequence selection.Proc. Eng. 7, 83–89.
  53. Schultz, S. C. and Richards, J. H. (1986) Site-saturation studies of β-lactamase: production and characterization of mutant β-lactamases with all possible amino acid substitutions at residue 71.Proc. Natl. Acad. Sci. USA 83, 1588–1592.
  54. Dube, D. K. and Loeb, L. A. (1989) Mutants generated by the insertion of random oligonucleotides into the active site of the β-lactamase gene.Biochemistry 28, 5703–5707.
  55. Oliphant, A. R. and Struhl, K. (1989) An efficient method for generating proteins with altered enzymatic properties: application to β-lactamase.Proc. Natl. Acad. Sci. USA 86, 9094–9098.
  56. Palzkill, T. and Botstein, D. (1992) Probing β-lactamase structure and function using random replacement mutagenesis.Prot.: Struct. Funct. Genet. 14, 29–44.
  57. Palzkill, T., Le, Q. Q., Venkatachalam, K. V., LaRocco, M., and Ocera, H. (1994) Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of betalactamase.Mol. Microbiol. 12, 217–229.
  58. Osuna, J., Viadiu, H., Fink, A. L., and Soberon, X. (1995) Substitution of Asp for Asn at position 132 in the active site of TEM β-lactamase. Activity toward different substrates and effects of neighboring residues.J. Biol. Chem. 270, 775–780.
  59. Viadiu, H., Osuna, J., Fink, A. L., and Soberon, X. (1995) A new TEM β-lactamase double mutant with broadened specificity reveals substrate-dependent functional interactions.J. Biol. Chem. 270, 781–787.
  60. Siemers, N. O., Yelton, D. E., Bajorath, J., and Senter, P. D. (1996) Modifying the specificity and activity of theEnterobacter clocae P99 β-lactamase by mutagenesis within an M13 phage vector.Biochemistry 35, 2104–2111.
  61. Jamin, M., Wilkin, J.-M., and Frère, J. M. (1995) Bacterial DD-transpeptidases and penicillin.Essays Biochem. 29, 1–24.
  62. Gulick, A. M. and Fahl, W. E. (1995) Forced evolution of glutathione S-transferase to create a more efficient drug detoxication enzyme.Proc. Natl. Acad. Sci. USA 92, 8140–8144.
  63. Hilvert, D., Carpenter, S. H., Nared, K. D., and Auditor, M. T. (1988) Catalysis of concerted reactions by antibodies: the Claisen rearrangement.Proc. Natl. Acad. Sci. USA 85, 4953–4955.
  64. Tang, Y., Hicks, J. B., and Hilvert, D. (1991)In vivo catalysis of a metabolically essential reaction by an antibody.Proc. Natl. Acad. Sci. USA 88, 8784–8786.
  65. Lesley, S. A., Patten, P. A., and Schultz, P. G. (1993) A genetic approach to the generation of antibodies with enhanced catalytic activities.Proc. Natl. Acad. Sci. USA 90, 1160–1165.
  66. Smiley, J. A. and Benkovic, S. J. (1994) Selection of catalytic antibodies for a biosynthetic reaction from a combinatorial cDNA library by complementation of an auxotrophicEscherichia coli: antibodies for orotate decarboxylation.Proc. Natl. Acad. Sci. USA 91, 8319–8323.
  67. Kaplan, A. H., Michael, S. F., Wehbie, R. S., Knigge, M. F., Paul, D. A., Everitt, L., Kempf, D. J., Norbeck, D. W., Erickson, J. W., and Swanstrom, R. (1994) Selection of multiple human immunodeficiency virus type 1 variants that encode viral proteases with decreased sensitivity to an inhibitor of the viral protease.Proc. Natl. Acad. Sci. USA 91, 5597–5601.
  68. Blank, A., Gallant, J. A., Burgess, R. R., and Loeb, L. A. (1986) An RNA polymerase mutant with reduced accuracy of chain elongation.Biochemistry 25, 5920–5928.
  69. Palzkill, T., Le, Q.-Q., Wong, A., and Botstein, D. (1994) Selection of functional signal peptide cleavage sites from a library of random sequences.J. Bacteriol. 176, 563–568.
  70. Dorner, L. F. and Schildkraut, I. (1994) Direct selection of binding proficient/catalytic deficient variants ofBamH1 endonuclease.Nucleic Acids Res. 22, 1068–1074.
  71. Gold, L. (1988) Posttranscriptional regulatory mechanisms inEschericha coli.Ann. Rev. Biochem. 57, 199–233.
  72. Jespers, L., Sonveaux, E., Fastrez, J., Phanapoulos, A., and Davison, J. (1991) Overexpression of the phage lambda lysozyme cloned inEscherichia coli: use of a degenerative mixture of synthetic ribosome binding sites and increase of the protein stabilityin vivo.Prot. Eng. 4, 485–492.
  73. Stemmer, W. P. C., Morris, S. K., Kautzer, C. R., and Wilson, B. S. (1993) Increased antibody expression fromEscherichia coli through wobble-base library mutagenesis by enzymatic inverse PCR.Gene 123, 1–7.
  74. Simmons, L. C. and Yansura, D. G. (1996) Translational level is a critical factor for the secretion of heterologous proteins inEscherichia coli.Nat. Biotech. 14, 629–634.
  75. Matthews, B. W. (1993) Structural and genetic analysis of protein stability.Annu. Rev. Biochem. 62, 139–160.
  76. Meerman Hendrikus J., Georgiou George, Construction and Characterization of a Set of E. coli Strains Deficient in All Known Loci Affecting the Proteolytic Stability of Secreted Recombinant Proteins, 10.1038/nbt1194-1107
  77. Parmley, S. F. and Smith, G. P. (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes.Gene 73, 305–318.
  78. de la Cruz, V. F., Lal, A. A., and McCutchan, T. F. (1988) Immunogenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage.J. Biol. Chem. 263, 4318–4322.
  79. Scott, J. K. and Smith, G. P. (1990) Searching for peptide ligands with an epitope library.Science 249, 386–390.
  80. Devlin, J. J., Panganiban, L. C., and Devlin, P. E. (1990) Random peptide libraries: a source of specific protein binding molecules.Science 249, 404–406.
  81. Cwirla, S. E., Peters, E. A., Barrett, R. W., and Dower, W. J. (1990) Peptides on phage: a vast library of peptides for identifying ligands.Proc. Natl. Acad. Sci. USA 87, 6378–6382.
  82. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains.Nature 348, 552–554.
  83. Bass, S., Greene, R., and Wells, J. A. (1990) Hormone phage: an enrichment method for variant proteins with altered binding properties.Prot.: Struct. Funct. Genet. 8, 309–314.
  84. Kang, A. S., Barbas, C. F., Janda, K. D., Benkovic, S. J., and Lerner, R. A. (1991) Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces.Proc. Natl. Acad. Sci. USA 88, 4363–4366.
  85. Barbas, C. F., III, Kang, A. G., Lerner, R. A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site.Proc. Natl. Acad. Sci. USA 88, 7978–7982.
  86. Maruyama, I. N., Maruyama, H. I., and Brenner, S. (1994) Lambda-Foo—a lambda-phage vector for the expression of foreign proteins.Proc. Natl. Acad. Sci. USA 91, 8273–8277.
  87. Sternberg, N. and Hoess, R. H. (1995) Display of peptides and proteins on the surface of bacteriophagelambda.Proc. Natl. Acad. Sci. USA 92, 1609–1613.
  88. O’Neil, K. T. and Hoess, R. H. (1995) Phage display—protein engineering by directed evolution.Curr. Opin. Struct. Biol. 5, 443–449.
  89. McCafferty, J., Jackson, R. H., and Chiswell, D. J. (1991) Phage-enzymes: expression and affinity chromatography of functional alkaline phosphatase on the surface of bacteriophage.Prot. Eng. 4, 955–961.
  90. Corey, D. R., Shiau, A. K., Yang, Q., Janowski, B. A., and Craik, C. S. (1993) Trypsin display on the surface of bacteriophage.Gene 128, 129–134.
  91. Soumillion, P., Jespers, L., Bouchet, M., Marchand-Brynaert, J., Winter, G., and Fastrez, J. (1994) Selection of β-lactamase on filamentous bacteriophage by catalytic activity.J. Mol. Biol. 237, 415–422.
  92. Soumillion, P., Jespers, L., Bouchet, M., Marchand-Brynaert, J., Sartiaux, P., and Fastrez, J. (1994) Phage display of enzymes andin vitro selection for catalytic activity.Appl. Biochem. Biotechnol. 47, 175–190.
  93. Ku, J. and Schultz, P. G. (1994) Phage display of catalytically active staphylococcal nuclease.Bioorg. Med. Chem. 2, 1413–1415.
  94. Light, J. and Lerner, R. A. (1995) Random mutagenesis of Staphylococcal nuclease and phage display selection.Bioorg. Med. Chem. 3, 955–967.
  95. Eerola, R., Saviranta, P., Lilja, H., Petterson, K., Lövgren, T., and Karp, M. (1994) Expression of prostate specific antigen on the surface of a filamentous phage.Biochem. Biophys. Res. Commun. 200, 1346–1352.
  96. Widersten, M. and Mannervik, B. (1995) Glutathione transferases with novel activate sites isolated by phage display from a library of random mutants.J. Mol. Biol. 250, 115–122.
  97. Maenaka, K., Furuta, M., Tsumoto, K., Watanabe, K., Ueda, Y., and Kumagai, I. (1996) A stable phage-display system using a phagemid vector: phage display of hen egg-white lysozyme (HEL),Escherichia coli alkaline phosphatase and anti-HEL monoclonal antibody, HyHEL 10.Biochem. Biophys. Res. Commun. 218, 682–687.
  98. McCafferty, J., Fitzgerald, K. J., Earnshaw, J., Chiswell, D. J., Link, J., Smith, R., and Kenten, J. (1994) Selection and rapid purification of murine antibody fragments that bind a transition-state analogy by phage display.Appl. Biochem. Biotechnol. 47, 157–173.
  99. Janda, K. D., Lo, C.-H. L., Li, T., Barbas, C. F., III, Wirsching, P., and Lerner, R. A. (1994) Direct selection for a catalytic mechanism from combinatorial antibody libraries.Proc. Natl. Acad. Sci. USA 91, 2532–2536.
  100. Vanwetswinkel, S., Marchand-Brynaert, J., and Fastrez J. (1996) Selection of the most active enzymes from a mixture of phage-displayed β-lactamase mutants.Bioorg. Med. Chem. Lett. 6, 789–792.
  101. Avalle, B., Vanwetswinkel, S., and Fastrez, J. (1997) In vitro selection for catalytic turnover from a library of β-lactamase mutants and penicillin binding proteins.Bioorg. Med. Chem. Lett. 7, 479–484.
  102. Barbas, C. F., III, Rosenblum, J. S., and Lerner, R. A. (1993) Direct selection of antibodies that coordinate metals from semisynthetic combinatorial libraries.Proc. Natl. Acad. Sci. USA. 90, 6385–6389.
  103. Matthews, D. J. and Wells, J. A. (1993) Substrate phage: selection of protease substrates by monovalent phage display.Science 260, 1113–1117.
  104. Matthews, D. J., Goodman, L. J., Gorman, C. M., and Wells, J. A. (1994) A survey of furin substrate using substrate phage display.Prot. Sci. 3, 1197–1205.
  105. Roberts, B. L., Markland, W., Ley, A. C., Kent, R. B., White, D. W., Guterman, S. K., and Ladner, R. C. (1992) Directed evolution of a protein: selection, of potent neutrophil elastase inhibitors displayed on M13 fusion phage.Proc. Natl. Acad. Sci. USA 89, 2429–2433.
  106. Wang Cheng-I, Yang Qing, Craik Charles S., Isolation of a High Affinity Inhibitor of Urokinase-type Plasminogen Activator by Phage Display of Ecotin, 10.1074/jbc.270.20.12250
  107. Sambrook, L., Fritsh, E. F., and Maniatis, T. (1989)Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  108. Fágáin Ciarán Ó., Understanding and increasing protein stability, 10.1016/0167-4838(95)00133-f
  109. Arnold, F. H. (1993) Protein engineering for unusual environments.Curr. Opin. Biotechnol. 4, 450–455.
  110. Alber, T. and Wozniak, J. A. (1985) A genetic sreen for mutations that increase the thermal stability of phage T4 lysozyme.Proc. Natl. Acad. Sci. USA 82, 747–750.
  111. Bryan, P. N., Rollence, M. L., Pantoliano, M. W., Wood, J., Finzel, B. C., Gilliland, G. L., Howard, A. J., and Poulos, T. L. (1986) Proteases of enhanced stability: characterization of a thermostable variant of subtilisin.Proteins 1, 326–334.
  112. Makino, Y., Negoro, S., Urabe, I., and Okada, H. (1989) Stability-increasing mutants of glucose dehydrogenase fromBacillus megaterium IWG3.J. Biol. Chem. 264, 6381–6385.
  113. Cunningham, B. C. and Wells, J. A. (1987) Improvement in the alkaline stability of subtilisin using an efficient random mutagenesis and screening procedure.Prot. Eng. 1, 319–325.
  114. Chen, K. and Arnold, F. H. (1991) Enzyme engineering for non aqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media.Bio/Technology 9, 1073–1077.
  115. You, L. and Arnold, F. H. (1994) Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide.Prot. Eng. 9, 77–83.
  116. Pjura, P., Matsumura, M., Baase, W. A., and Matthews, B. W. (1993) Development of anin vivo method to identify mutants of phage T4 lysozyme of enhanced thermostability.Prot. Sci. 2, 2217–2225.
  117. Matsumura, M. and Aiba, S. (1985) Screening for thermostable mutant of kanamycin nucleotidyltransferase by the use of a transformation system for a thermophile,Bacillus stearothermophilus.J. Biol. Chem. 260, 15,298–15,303.
  118. Liao, H., McKenzie, T., and Hageman, R. (1986) Isolation of a thermostable enzyme variant by cloning and selection in a thermophile.Proc. Natl. Acad. Sci. USA 83, 576–580.
  119. Liao, H. H. (1993) Thermostable mutants of kanamycin nucleotidyltransferase are also more stable to proteinase K, urea, detergents, and water-miscible organic solvents.Enzyme Microb. Technol. 15, 286–292.
  120. Hendrix, J. D. and Welker, N. E. (1985) Isolation of aBacillus stearothermophilus mutant exhibiting increased thermostability in its restriction endonuclease.J. Bacteriol. 162, 682–692.
  121. Joyet Philippe, Declerck Nathalie, Gaillardin Claude, Hyperthermostable Variants of a Highly Thermostable Alpha-Amylase, 10.1038/nbt1292-1579
  122. Kotsuka, T., Akanuma, S., Tomuro, M., Yamagishi, A., and Oshima, T. (1996) Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile,Thermus thermophilus, by a suppressor mutation method.J. Bacteriol. 178, 723–727.
  123. Burke, J. M. and Berzal-Herranz, A. (1993)In vitro selection and evolution of RNA: applications for catalytic RNA, molecular recognition, and drug discovery.FASEB J. 7, 106–112.
  124. Chapman, K. B. and Szostak, J. W. (1994)In vitro selection of catalytic RNAs.Curr. Opin. Struct. Biol. 4, 618–622.
  125. Kumar, P. K. R. and Ellington, A. D. (1995) Artificial evolution and natural ribozymes.FASEB J. 9, 1183–1195.
  126. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential emrichment: RNA ligands to bacteriophage T4 DNA polymerase.Science 249, 505–510.
  127. Ellington, A. D. and Szostak, J. W. (1990)In vitro selection of RNA molecules that bind specific ligands.Nature 30, 818–822.
  128. Beaudry, A. A. and Joyce, G. F. (1992) Directed evolution of an RNA enzyme.Science 257, 635–641.
  129. Joseph, S. and Burke, J. M. (1993) Optimization of an anti-HIV hairpin ribozyme byin vitro selection.J. Biol. Chem. 268, 24,515–24,518.
  130. Pan, T. and Uhlenbeck, O. C. (1992)In vitro selection of RNAs that undergo autolytic cleavage with Pb2+.Biochemistry 31, 3887–3895.
  131. Bartel, D. P. and Szostak, J. W. (1993) Isolation of new ribozymes from a large pool of random sequences.Science 261, 1411–1418.
  132. Yuan, Y. and Altman, S. (1994) Selection of guide sequences that direct efficient cleavage of mRNA by human ribonuclease P.Science 263, 1260–1273.
  133. Robertson, D. L. and Joyce, G. F. (1990) Selectionin vitro of an RNA enzyme that specifically cleaves single-stranded DNA.Nature 344, 467468.
  134. Tsang, J. and Joyce, G. F. (1994) Evolutionary optimization of the catalytic properties of a DNA-cleaving ribozyme.Biochemistry 33, 5966–5973.
  135. Cuenoud, B. and Szostak, J. W. (1995) A DNA metalloenzyme with DNA ligase activity.Nature 375, 611–614.
  136. Breaker, R. R. and Joyce, G. F. (1995) A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity.Chem. Biol. 2, 655–660.
  137. Lorsch, J. R. and Szostak, J. W. (1994)In vitro evolution of new ribozymes with polynucleotide kinase activity.Nature 371, 31–36.
  138. Wilson, C. and Szostak, J. W. (1995)In vitro evolution of a self-alkylating ribozyme.Nature 374, 777–782.
  139. Prudent, J. R., Uno, T., and Schultz, P. G. (1994) Expanding the scope of RNA catalysis.Science 264, 1924–1927.
  140. Gallop, M. A., Barrett, R. W., Dower, W. J., Fodor, S. P. A., and Gordon, E. M. (1994) Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries.J. Med. Chem. 37, 1233–1251.
  141. Gordon, E. M., Barrett, R. W., Dower W. J., Fodor, S. P. A., and Gallop, M. A. (1994) Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions.J. Med. Chem. 37, 1386–1401.
  142. Burgess, K., Lim, H.-J., Porte, A. M., and Sulikowski, G. A. (1996) New catalysts and conditions for a C-H insertion reaction identified by high through-put catalyst screening.Angew. Chem. Int. Ed. Engl. 35, 220–222.