User menu

Galois cohomology of special orthogonal groups

Bibliographic reference Garibaldi, Ryan S. ; Tignol, Jean-Pierre ; Wadsworth, Adrian R.. Galois cohomology of special orthogonal groups. In: Manuscripta Mathematica, Vol. 93, no. 2, p. 247-266 (1997)
Permanent URL
  1. Allen, H.P.: Hermitian forms II. J. of Algebra10 (1968), 503–515
  2. Arason, J. Kr.: Cohomologische invarianten quadratischer Formen. J. of Algebra36 (1975), 448–491
  3. Bartels, H.-J.: Invarianten hermitescher Formen über Scheifkörpern. Math. Ann.215 (1975), 269–288
  4. Bayer-Fluckiger, E.: Multiplicateurs de similitudes. C. R. Acad. Sci. Paris (I)319 (1994), 1151–1153
  5. Bayer-Fluckiger, E., and Parimala, R.: Galois cohomology of the classical groups over fields of cohomological dimension ≤2. Invent. Math.122 (1995), 195–229
  6. Bayer-Fluckiger, E., Shapiro, D.B., and Tignol, J.-P.: Hyperbolic involutions. Math. Zeit.214 (1993), 461–476
  7. Blanchet, A.: Function fields of generalized Brauer-Severi varieties. Comm. in Algebra19 (1991), 97–118
  8. Borel, A.: Linear algebraic groups. second edition, Springer, Graduate Texts in Mathematics126 (1991)
  9. Bourbaki, N.: Algèbre, Ch. 9: Formes sesquilinéaires et formes quadratiques. Hermann, Paris (1959)
  10. Chevalley, C.: The algebraic theory of spinors. Columbia University Press (1954)
  11. Draxl, P.: Skew fields. London Mathematical Society (1983)
  12. Haile, D., Knus, M.-A., Rost, M., and Tignol, J.-P.: Algebras of odd degree with involution, trace forms and dihedral extensions. to appear in Israel J. Math.
  13. Jacobson, N.: Clifford algebras for algebras with involution of typeD. J. of Algebra1 (1964), 288–300
  14. Kneser, M.: Lectures on Galois cohomology of classical groups. Tata Lecture Notes in Mathematics47 (1969)
  15. Knus, M.-A., Merkurjev, A.S., Rost, M., and Tignol, J.-P.: The book of involutions. in preparation
  16. Knus, M.-A., Parimala, R., and Sridharan, R.: On the discriminant of an involution. Bull. Soc. Math. Belgique (A)43 (1991), 89–98
  17. Lam, T.-Y.: The algebraic theory of quadratic forms. Benjamin (1973)
  18. Merkurjev, A.S.: Galois cohomology of orthogonal groups. handwritten notes dated 05.07.93
  19. Merkurjev, A.S., Panin, I.A., and Wadsworth, A.R.: Index reduction formulas for twisted flag varieties, I.K-Theory10 (1996), 517–596
  20. Merkurjev, A.S., Panin, I.A., and Wadsworth, A.R.: Index reduction formulas for twisted flag varieties, II. preprint (1996)
  21. Merkurjev, A.S., and Tignol, J.-P.: The multipliers of similitudes and the Brauer group of homogeneous varieties. J. reine angew. Math.461 (1995), 13–47
  22. Scharlau, W.: Quadratic and hermitian forms. Springer (1985)
  23. Schofield, A., and van den Bergh, M.: The index of a Brauer class on a Brauer-Severi variety. Trans. AMS333 (1992), 729–739
  24. Serre, J.-P.: Cohomologie Galoisienne. Springer, fifth edition, Lecture Notes in Mathematics5 (1994)
  25. Serre, J.-P.: Local fields. Springer, Graduate Texts in Mathematics67 (1979) (English translation ofCorps locaux)
  26. Springer, T.A.: On the equivalence of quadratic forms. Proc. Kon. Ned. Akad. Wet.62 (1959), 241–253
  27. Tao, D.: The generalized even Clifford algebra. J. Algebra172 (1995), 184–204
  28. Tits, J.: Formes quadratiques, groupes orthogonaux et algèbres de Clifford. Invent. Math.5 (1968), 19–41