User menu

Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins

Bibliographic reference Denolf, P ; Hendrickx, K ; Vandamme, J. ; Jansens, S ; Peferoen, M ; et. al. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. In: European Journal of Biochemistry, Vol. 248, no. 3, p. 748-761 (1997)
Permanent URL
  1. Hofmann C., Eur. J. Biochem., 173, 85 (1988)
  2. Hofmann C., Proc. Natl Acad. Sci. USA, 85, 7844 (1988)
  3. Rie J., Eur. J. Biochem., 186, 239 (1989)
  4. Rie J., Appl. Env. Microbiol., 56, 1378 (1990)
  5. Denolf P., Appl. Env. Microbiol., 59, 1828 (1993)
  6. Escriche B., Arch. Insert Biochem. Physiol., 26, 315 (1994)
  7. Estada U., Appl. Env. Microbiol., 60, 3840 (1994)
  8. Sanchis Vincent, Chaufaux Josette, Pauron David, A comparison and analysis of the toxicity and receptor binding properties ofBacillus thuringiensisCryIC ∂-endotoxin onSpodoptera littoralisandBombyx mori, 10.1016/0014-5793(94)01057-9
  9. Tang J. D., Appl. Environm. Microbiol., 62, 564 (1996)
  10. Lambert B., Appl. Env. Microbiol., 62, 80 (1996)
  11. Knowles B., Proc. R. Soc. Lond. B, 245, 31 (1991)
  12. Garczynski S., Appl. Env. Microbiol., 57, 2816 (1991)
  13. Oddou P., Eur. J. Biochem., 202, 673 (1991)
  14. Indrasith L., Comp. Biochem. Physiol., 102, 605 (1992)
  15. Oddon P., Eur. J. Biochem., 212, 145 (1993)
  16. Sanchis Vincent, Ellar David J., Identification and partial purification of aBacillus thuringiensisCryIC δ-endotoxin binding protein fromspodoptera littoralisgut membranes, 10.1016/0014-5793(93)81305-j
  17. Vadlamudi R., J. Biol. Chem., 268, 12334 (1993)
  18. Feldman F., Appl. Env. Microbiol., 61, 2601 (1995)
  19. Cowles E., Appl. Env. Microbiol., 61, 2738 (1995)
  20. Bravo A., J. Invertebr. Pathol., 60, 247 (1992)
  21. Denolf P., Appl. Env. Microbiol., 59, 1821 (1993)
  22. Ravoahangimalala Olga, Charles Jean-François, In vitro binding ofBacillus thuringiensisvar.israelensisindividual toxins to midgut cells ofAnopheles gambiaelarvae (Diptera: Culicidae), 10.1016/0014-5793(95)00220-4
  23. Masson L., Mazza A., Brousseau R., Stable Immobilization of Lipid Vesicles for Kinetic Studies Using Surface Plasmon Resonance, 10.1006/abio.1994.1199
  24. Masson Luke, Mazza Alberto, Brousseau Roland, Tabashnik Bruce, Kinetics ofBacillus thuringiensisToxin Binding with Brush Border Membrane Vesicles from Susceptible and Resistant Larvae ofPlutella xylostella, 10.1074/jbc.270.20.11887
  25. Masson Luke, Lu Yang-jiang, Mazza Alberto, Brousseau Roland, Adang Michael J., The CryIA(c) Receptor Purified fromManduca sextaDisplays Multiple Specificities, 10.1074/jbc.270.35.20309
  26. Roush R., Biocontrol Sci. Technol., 4, 501 (1994)
  27. Wolfersberger M., Bacterial Protein Toxins, 237 (1986)
  28. Ihara H., Biosci. Biotechnol. Biochem., 57, 200 (1993)
  29. Liang Yizhi, Patel Smita S., Dean Donald H., Irreversible Binding Kinetics ofBacillus thuringiensisCryIA δ-Endotoxins to Gypsy Moth Brush Border Membrane Vesicles Is Directly Correlated to Toxicity, 10.1074/jbc.270.42.24719
  30. Schnepf H., J. Biol. Chem., 265, 20923 (1990)
  31. Honee G., Mol. Microbiol., 5, 2799 (1991)
  32. Ge A., J. Biol. Chem., 266, 17954 (1991)
  33. Lee M., J. Biol. Chem., 267, 3115 (1992)
  34. Wu D., J. Biol. Chem., 267, 2311 (1992)
  35. Cummings C., Microbiology,, 140, 2737 (1994)
  36. Lu H., J. Bacteriol., 176, 5554 (1994)
  37. Rajamohan F., J. Bacteriol., 177, 2276 (1995)
  38. Aronson A., J. Bacteriol., 177, 4059 (1995)
  39. Maagd R., Appl. Env. Microbiol., 62, 1537 (1996)
  40. Maagd R., Appl. Env. Microbiol., 62, 2753 (1996)
  41. Gazit E., Biochemistry, 32, 3429 (1993)
  42. Gazit E, Bach D, Kerr I D, Sansom M S P, Chejanovsky N, Shai Y, Theα-5 segment ofBacillus thuringiensis δ-endotoxin:in vitroactivity, ion channel formation and molecular modelling, 10.1042/bj3040895
  43. Gazit Ehud, Shai Yechiel, The Assembly and Organization of the α5 and α7 Helices from the Pore-forming Domain ofBacillusthuringiensisδ-Endotoxin : RELEVANCE TO A FUNCTIONAL MODEL, 10.1074/jbc.270.6.2571
  44. Pang Anthony S.D., Use of Synthetic Peptides to Probe Functional Domains of a Bacillus thuringiensis Toxin, 10.1006/jipa.1993.1050
  45. Cummings C., Mol. Membr. Biol., 11, 87 (1994)
  46. Chen Xue Jun, Curtiss April, Alcantara Edwin, Dean Donald H., Mutations in Domain I ofBacillus thuringiensis-Endotoxin CryIAb Reduce the Irreversible Binding of Toxin toManduca sextaBrush Border Membrane Vesicles, 10.1074/jbc.270.11.6412
  47. Wolfersberger M., Appl. Env. Microbiol., 962, 279 (1996)
  48. Vadlamudi Ratna K., Weber Eric, Ji Inhae, Ji Tae H., Bulla Lee A., Cloning and Expression of a Receptor for an Insecticidal Toxin ofBacillus thuringiensis, 10.1074/jbc.270.10.5490
  49. Knight P., Mol. Microbiol., 11, 429 (1994)
  50. Sangadala S., J. Biol. Chem., 269, 10088 (1994)
  51. Knight Peter J. K., Knowles Barbara H., Ellar David J., Molecular Cloning of an Insect Aminopeptidase N That Serves as a Receptor forBacillus thuringiensisCryIA(c) Toxin, 10.1074/jbc.270.30.17765
  52. Gill Sarjeet S., Cowles Elizabeth A., Francis Vidyasagar, Identification, Isolation, and Cloning of aBacillus thuringiensisCryIAc Toxin-binding Protein from the Midgut of the Lepidopteran InsectHeliothis virescens, 10.1074/jbc.270.45.27277
  53. Valaitis Algimantas P., Lee Mi Kyong, Rajamohan Francis, Dean Donald H., Brush border membrane aminopeptidase-n in the midgut of the gypsy moth serves as the receptor for the CryIA(c) δ-endotoxin of Bacillus thuringiensis, 10.1016/0965-1748(95)00050-x
  54. Lee M., Appl. Env. Microbiol., 62, 2845 (1996)
  55. Luo Ke, Lu Yang-Jiang, Adang Michael J., A 106 kDa form of aminopeptidase is a receptor for Bacillus thuringiensis CryIC δ-endotoxin in the brush border membrane of Manduca sexta, 10.1016/s0965-1748(96)00027-6
  56. Hofte H., Eur J. Biochem., 161, 273 (1986)
  57. Brizzard B., Nucleic Acids Res., 16, 4168 (1988)
  58. Kronstad James W., Whiteley H.R., Three classes of homologous Bacillus thuringiensis crystal-protein genes, 10.1016/0378-1119(86)90005-3
  59. Hunter W., Science, 194, 495 (1962)
  60. Fraker P., Biochem. Biophys. Res. Commun., 80, 849 (1978)
  61. Wolfersberger M, Luethy P, Maurer A, Parenti P, Sacchi F.V, Giordana B, Hanozet G.M, Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae), 10.1016/0300-9629(87)90334-3
  62. Bradford M, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, 10.1006/abio.1976.9999
  63. Laemmli U. K., Nature, 227, 680 (1970)
  64. Towbin H., Proc. Natl. Acad. Sci. USA,, 76, 4350 (1979)
  65. Bauw G., Proc. Natl Acad. Sci. USA, 86, 7701 (1989)
  66. Sambrook J., Molecular cloning: a laboratory manual (1989)
  67. Beckers T., Biotechniques, 16, 1075 (1994)
  68. Butkerait Paul, Zheng Yejia, Hallak Hazem, Graham Timothy E., Miller Heather A., Burris Kevin D., Molinoff Perry B., Manning David R., Expression of the Human 5-Hydroxytryptamine1AReceptor in Sf9 Cells : RECONSTITUTION OF A COUPLED PHENOTYPE BY CO-EXPRESSION OF MAMMALIAN G PROTEIN SUBUNITS, 10.1074/jbc.270.31.18691
  69. KUNZ Dagmar, BÜHLING Frank, HÜTTER Hans-Jürgen, AOYAGI Takaaki, ANSORGE Siegfried, Aminopeptidase N (CD13, EC Occurs on the Surface of Resting and Concanavalin A-Stimulated Lymphocytes, 10.1515/bchm3.1993.374.1-6.291
  70. Watt V., J. Biol. Chem., 264, 5480 (1989)
  71. Norén O., Dabelsteen E., Høyer P.E., Olsen J., Sjöström H., Hansen G.H., Onset of transcription of the aminopeptidase N (leukemia antigen CD 13) gene at the crypt/villus transition zone during rabbit enterocyte differentiation, 10.1016/0014-5793(89)81506-6
  72. Olsen Jørgen, Cowell Gillian M., Kønigshøfer Elaine, Danielsen E.Michael, Møller Jette, Laustsen Liselotte, Hansen Ole C., Welinder Karen G., Engberg Jan, Hunziker Walter, Spiesst Martin, Sjöström Hans, Norén Ove, Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA, 10.1016/0014-5793(88)80502-7
  73. Wu Q., Proc. Natl Acad. Sci. USA,, 87, 993 (1990)
  74. Kozak M., Nucleic Acids Res., 15, 8125 (1987)
  75. Kyte J., J. Mol. Biol., 157, 105 (1982)
  76. Heijne G., Nucleic Acids Res., 14, 4683 (1986)
  77. Fletcher T., Biochemistry, 26, 3081 (1987)
  78. Levy N., J. Exp. Med., 169, 2007 (1989)
  79. Kodukula K., Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored membrane proteins in intact cells: specific amino acid requirements adjacent to the site of cleavage and GPI attachment, 10.1083/jcb.120.3.657
  80. Jongeneel C.Victor, Bouvier Jacques, Bairoch Amos, A unique signature identifies a family of zinc-dependent metallopeptidases, 10.1016/0014-5793(89)80471-5
  81. Delmas B., J. Virol., 68, 5216 (1994)
  82. Nanus D., Proc. Natl Acad. Sci. USA, 90, 7069 (1993)
  83. Myers E., Comput. Appl. Biosci., 4, 11 (1988)
  84. 84.K. Hendrickx (1992 )On the mode of action of the CryIAb delta-endotoxin from the bacteriumBacillus thuringiensisin the midgut ofManduca sexta[Insecta: Lepidoptera], PhD thesis, Katholieke Universiteit Leuven, Belgium.
  85. Martinezramirez A.C., Gonzaleznebauer S., Escriche B., Real M.D., Ligand Blot Identification of a Manduca sexta Midgut Binding Protein Specific to Three Bacillus thuringiensis CryIA-Type ICPs, 10.1006/bbrc.1994.1769
  86. Bosch D, Analysis of non-active engineered Bacillus thuringiensis crystal proteins, 10.1016/0378-1097(94)90607-6
  87. Lee Mi Kyong, Dean Donald H., Inconsistencies in Determining Bacillus thuringiensis Toxin Binding Sites Relationship by Comparing Competition Assays with Ligand Blotting, 10.1006/bbrc.1996.0445
  88. Harris E., protein purification applications: a practical approach (1990)
  89. Semenza G, Anchoring and Biosynthesis of Stalked Brush Border Membrane Proteins: Glycosidases and Peptidases of Enterocytes and Renal Tubuli, 10.1146/annurev.cellbio.2.1.255
  90. Kirsch K., J. Appl. Ent., 105, 249 (1988)
  91. Tabashnik Bruce E., Cushing Nancy L., Finson Naomi, Johnson Marshall W., Field Development of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae), 10.1093/jee/83.5.1671
  92. Shelton A. M., Robertson J. L., Tang J. D., Perez C., Eigenbrode S. D., Preisler H. K., Wilsey W. T., Cooley R. J., Resistance of Diamondback Moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis Subspecies in the Field, 10.1093/jee/86.3.697
  93. Takesue S., Comp. Biochem. Physiol, 102, 7 (1992)
  94. Tomita M., Bombyx mori, Int. J. Biochem., 26, 977 (1994)
  95. Udenfriend S., How Glycosylphosphatidylinositol-Anchored Membrane Proteins Are Made, 10.1146/annurev.biochem.64.1.563
  96. Lee Michael J., Anstee John H., Characterization of midgut exopeptidase activity from larval Spodoptera littoralis, 10.1016/0965-1748(94)00041-f
  97. Takeda J, GPI-anchor biosynthesis, 10.1016/s0968-0004(00)89078-7
  98. Lu Y.-J., Adang M.J., Conversion of Bacillus thuringiensis cryIAc-binding aminopeptidase to a soluble form by endogenous phosphatidylinositol phospholipase C, 10.1016/0965-1748(95)00058-5
  99. Higgins Desmond G., Sharp Paul M., CLUSTAL: a package for performing multiple sequence alignment on a microcomputer, 10.1016/0378-1119(88)90330-7
  100. Tan Paris S.T., van Alen-Boerrigter Ingrid J., Poolman Bert, Siezen Roland J., de Vos Willem M., Konings W.N., Characterization of theLactococcus lactis pepNgene encoding an aminopeptidase homologous to mammalian aminopeptidase N, 10.1016/0014-5793(92)80827-4
  101. Germann U., Biochemistry, 29, 2295 (1990)
  102. Kartner Norbert, Hanrahan John W., Jensen Tim J., Naismith A.Leonard, Sun Shizhang, Ackerley Cameron A., Reyes Evangelica F., Tsui Lap-Chee, Rommens Johanna M., Bear Christine E., Riordan John R., Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance, 10.1016/0092-8674(91)90498-n
  103. Fountoulakis M., Eur. J. Biochem., 198, 441 (1991)
  104. Fafournoux P., Biochemistry, 30, 9510 (1991)
  105. Rankl N.B., Rice J.W., Gurganus T.M., Barbee J.L., Burns D.J., The Production of an Active Protein Kinase C-δ in Insect Cells Is Greatly Enhanced by the Use of the Basic Protein Promoter, 10.1006/prep.1994.1051
  106. Jarvis Donald L., Finn Eric E., Biochemical Analysis of the N-Glycosylation Pathway in Baculovirus-Infected Lepidopteran Insect Cells, 10.1006/viro.1995.1508