User menu

Asymptotic stability for time-variant systems and observability: Uniform and nonuniform criteria

Bibliographic reference Aeyels, D. ; Sepulchre, Rodolphe ; Peuteman, J. Asymptotic stability for time-variant systems and observability: Uniform and nonuniform criteria. In: Mathematics of Control, Signals and Systems, Vol. 11, no. 1, p. 1-27 (1998)
Permanent URL
  1. [A1] Aeyels, D., Stability of nonautonomous systems by Liapunov's direct method, inGeometry in Nonlinear Control and Differential Inclusions, B. Jakubczyk, W. Respondek, and T. Rzezuchowski, eds., Polish Academy of Sciences, Institute of Mathematics, Banach Center Publications, vol. 32, 1995, pp. 9–17.
  2. [A2] Aeyels, D., A new criterion for asymptotic stability of nonautonomous differential equations,Systems & Control Letters, vol. 25, no. 4, 1995, pp. 273–280.
  3. [AS] Aeyels, D., Sepulchre, R., On the convergence of a time-variant linear differential equation arising in identification,Kybernetica, vol. 30, no. 6, 1994, pp. 715–723.
  4. [A3] Anderson, B. D. O., Exponential stability of linear equations arising in adaptive identification.IEEE Transactions on Automatic Control, vol. 22, 1977, pp. 84–88.
  5. Anderson B. D. O., Moore J. B., New Results in Linear System Stability, 10.1137/0307029
  6. [A4] Artstein, Z., Uniform asymptotic stability via the limiting equations,Journal of Differential Equations, vol. 27, 1978, pp. 172–189.
  7. [A5] Artstein, Z., Stability, observability and invariance,Journal of Differential Equations, vol. 44, 1982, pp. 224–248.
  8. [DMM] D'Anna, A., Maio, A., Moauro, V., Global stability properties by means of limiting equations.Nonliear Analysis, Theory, Methods and Applications, vol. 4, no. 2, 1980, pp. 407–410.
  9. [D] Dieudonné, J.,Foundations of Modern Analysis, Academic Press, New York, 1960.
  10. [H] Hermes, H., Discontinuous vector fields and feedback control, inDifferential Equations and Dynamical Systems, J. K. Hale and J. P. LaSalle, eds., Academic Press, New York, 1967, pp. 155–165.
  11. [K1] Kalman, R. E., Contributions to the theory of optimal control,Boletín de la Sociedad Matemática Mexicana, vol. 5, 1960, pp. 102–119.
  12. [K2] Khalil, H. K.,Nonlinear Systems, Macmillan, New York, 1992.
  13. [MM] Miller, R. K., Michel, A. N., Asymptotic stability of systems: results involving the system topology,SIAM Journal on Control and Optimization, vol. 18, no. 2, 1980, pp. 181–190.
  14. [MN] Morgan, A. P., Narendra, K. S., On the uniform asymptotic stability of certain linear non-autonomous differential equations.SIAM Journal on Control and Optimization, vol. 15, no. 1, 1977, pp. 5–24.
  15. [NA] Narendra, K. S., Annaswamy, A. M., Persistent excitation in adaptive systems,International Journal of Control, vol. 45, no. 1, 1987, pp. 127–160.
  16. Rouche N., Habets P., Laloy M., Stability Theory by Liapunov’s Direct Method, ISBN:9780387902586, 10.1007/978-1-4684-9362-7
  17. [S] Sepulchre, R., Contributions to nonlinear control systems analysis by means of the direct method of Lyapunov, Ph.D. Dissertation, Université Catholique de Louvain, September 1994.
  18. [W] Willems, J. L.,Stability Theory of Dynamical Systems, Nelson, London, 1970.